1	Newly identified proviruses in Thermotogota suggest that viruses are
2	the vehicles on the highways of interphylum gene sharing.
3	
4	Running title: Viruses and Proviruses of Thermotogota.
5	
6	Thomas H. A. Haverkamp ^{a#} , Julien Lossouarn ^b , Olga Zhaxybayeva ^c , Jie Lyu ^d , Nadège
7	Bienvenu ^d , Claire Geslin ^d and Camilla L. Nesbø ^{e,f}
8	
9	^a Centre for Ecological and Evolutionary Synthesis, Department of Biosciences,
10	University of Oslo, Norway.
11	^b Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350,
12	Jouy-en-Josas, France
13	^c Department of Biological Sciences, Dartmouth College, Hanover, NH, USA.
14	^d Université Brest, CNRS, IFREMER, Laboratoire de Microbiologie des Environnements
15	Extrêmes, F-29280 Plouzané, France
16	^e Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
17	^f Department of Chemical Engineering and Applied Chemistry,
18	University of Toronto, Toronto, ON, Canada, M5S 3E5
19	
20	[#] Present address: Department of Epidemiology, Norwegian Veterinary Institute, Oslo,
21	Norway.
22	
23	

24 ABSTRACT

25 Phylogenomic analyses of bacteria from the phylum Thermotogota have shown extensive 26 lateral gene transfer (LGT) with distantly related organisms, particularly with Firmicutes. 27 One likely mechanism of such DNA transfer is viruses. However, to date only three 28 temperate viruses have been characterized in this phylum, all infecting bacteria from the 29 Marinitoga genus. Here we report 17 proviruses integrated into genomes of eight 30 Thermotogota genera and induce viral particle production from one of the proviruses. The 31 proviruses fall into two groups based on sequence similarity, gene synteny and taxonomic 32 classification. Proviruses of one group are found in six genera and are similar to the 33 previously identified Marinitoga viruses, while proviruses from the second group are 34 only distantly related to the proviruses of the first group, have different genome 35 organization and are found in only two genera. Both groups are closely related to 36 Firmicutes in genomic and phylogenetic analyses, and one of the groups show evidence 37 of very recent LGT and are therefore likely capable of infecting cells from both phyla. 38 We conjecture that viruses are responsible for a large portion of the observed gene flow 39 between Firmicutes and Thermotogota. 40

41 Introduction

42 The phylum Thermotogota comprises anaerobic fermentative bacteria, most of which are 43 thermophiles [1]. They are common in subsurface environments such as marine vents, 44 terrestrial hot springs and deep subsurface oil reservoirs [2–5]. On phylogenetic trees of 45 16S rRNA gene, Thermotogota are usually a deep branching bacterial lineage, while 46 ribosomal proteins and other markers do not always agree with that placement [6, 7]. 47 Such discrepancies are likely due to lateral gene transfer (LGT), which has been an 48 important force shaping the genomes of Thermotogota, with Firmicutes and Archaea 49 being their most notable gene transfer partners [1, 7, 8]. The LGT between Firmicutes 50 and Thermotogota is so extensive that the two phyla have been suggested to be linked by 51 "highways of gene sharing" [7]. However, how these inter-phylum gene-sharing events 52 occur is still unclear. 53 The subsurface constitutes the largest biosphere on Earth and is estimated to 54 contain ~70% of all cells [9]. Viruses are likely to be particularly important in subsurface 55 environments, since 97% of all viruses on earth being found in soil and sediments [10, 56 11]. Moreover, although both prokaryotic cell and virus numbers decrease with depth, the 57 virus-to-cell ratio increases with depth [10, 12, 13]. Phylogeographic studies of 58 hyperthermophilic *Thermotoga* and mesophilic *Mesotoga* have revealed genetic 59 interaction between geographically distant populations, particularly among the 60 hyperthermophilic *Thermotoga* [3, 5]. Viruses are one potential source of such long-61 distance dispersal of genetic material [14], especially for anaerobic organisms where 62 surface dispersal is problematic.

63	Although viruses are likely candidates for transferring DNA both within and						
64	between species, only three temperate siphoviruses (MCV1, MCV2, and MPV1), all						
65	infecting one Thermotogota genus, Marinitoga, have been described [15, 16]. MCV1 and						
66	MCV2 infect Marinitoga camini strains isolated from deep-sea hydrothermal vents [16].						
67	MPV1 infects the deep-sea marine vent bacterium Marinitoga piezophila, where it is						
68	highjacked by a plasmid co-occurring in the same host, illustrating the potential route of						
69	gene mobilization in these ecosystems [15]. The three viruses are found as proviruses in						
70	their host genomes and show similar genomic organization and virion morphology.						
71	Phylogenetic and protein sequence-similarity analyses of the viral ORFs revealed that						
72	they often group either with Firmicutes or Firmicutes' viruses, which suggests that						
73	viruses infecting members of Firmicutes and Thermotogota phyla share a common gene						
74	pool [15, 16].						
75	Here we report 17 additional proviruses in Thermotogota genomes from eight						
76	Thermotogota genera, and a successful induction of one of these proviruses. The						
77	identified proviruses fall into two distinct groups. Both groups are closely related to						
78	Firmicutes viruses, and the proviruses from one of these groups are likely able to infect						
79	cells from both phyla. We hypothesize that membrane transport proteins, such as ABC						
80	transporters, serve as receptors for Thermotogota viruses. We propose a mechanism that						
81	could account for the highways of gene sharing observed between Thermotogota and						
82	Firmicutes, where LGT of viral genes encoding transmembrane proteins may make the						

84

83

85 Material and Methods

host vulnerable to new viruses.

86 **Prediction and taxonomic classification of proviruses and functional annotation of**

87 their ORFs

88 One hundred eleven Thermotogota genomes were downloaded from either Genbank or 89 IMG [17] prior to June 2018. For draft genomes, the contigs were combined into 90 'artificially closed' genome using the "union" command from the EMBOSS package 91 (version 6.6.0) [18]. Each genome was screened for the presence of proviruses using the 92 Prophinder web server [19], PHAST web server [20], and PhiSpy (version 2.3) [21] 93 between October 2014 and July 2018 (Supplementary Table S1). For artificially closed 94 genomes, the proviral regions that crossed contig borders were discarded. Putative 95 provirus regions were inspected to identify the most likely provirus sequence by 1: 96 looking at annotations, 2: identifying possible flanking tRNA genes and 3: comparing the 97 region to genomes from the same genus and defining the boundaries, to ensure that 98 flanking genomic regions present in closely related genomes without provirus were not

99 included. Proviruses were considered complete if they contained modules for lysogeny,

100 replication, packaging, head/tail morphogenesis and lysis. If one of these modules were

101 missing, the provirus was scored as incomplete.

To see if there were close relatives of the predicted proviruses in other genomes, provirus ORFs were used as queries in BLASTX (ver.2.2.26) [22] searches of the NCBI non-redundant (nr) database [23] (accessed between July 2018 and March 2020). When homologs for multiple ORFs from the predicted provirus were found in the same distantly related subject genome (usually a Firmicutes genome), the identified genome was downloaded and aligned to the Thermotogota genome carrying the provirus using Progressive Mauve [24]. This resulted in the identification of a local alignment covering

similar proviruses in two otherwise distantly related genomes. The aligned region was
used to determine the boundaries of the provirus, limiting the provirus ends to the ends of
the alignment.

112 Proviral-ORF annotations were obtained from their respective Genbank entries 113 and supplemented by results from BLASTP searches [22] of the nr database with an 114 expected-value cutoff of 10⁻¹, and from HHpred searches [25] of the PDB database [26] 115 with a probability cutoff of 99%. In addition, recombinase- and terminase-encoding 116 ORFs were annotated using InterProScan [26], as implemented in Geneious v.10 117 (Biomatters Ltd.). 118 The sequences of the predicted proviruses were compared to each other using 119 BLASTN and TBLASTX (ver.2.2.26) [22] and visualized using genoPlotR [27] and 120 Circos [28]. Taxonomic classification of the provirus genomes was carried out using 121 searches of NCBI's viral RefSeq database (v. 94) as implemented in VContact2 using 122 Diamond [29] to identify viral protein clusters and ClusterONE [30] to obtain virus 123 clusters [31, 32]. Taxonomic classification was also assessed with Virfam [33], VIRIDIC 124 [34] and VIPTree [35]. Morphological classification was obtained with Virfam [33]. 125 126 **Inference of potential host range of the putative Thermotogota viruses.** A database 127 containing all proteins from 59 Thermotogota genomes without identified proviruses was 128 constructed in Geneious v.10. Translated Thermotogota provirus proteins were used as 129 queries in BLASTP searches of this database. The provirus genes were scored as present 130 in the Thermotogota genomes if the query protein had a match with > 50% amino acid

131 identity and > 60% coverage.

132 CRPISPR spacer sequences from 90 Thermotogota genomes were obtained from
133 IMG [17]. The spacers were mapped to the provirus genomes in Geneious v.10, allowing
134 upto 10% nucleotide mismatches.

135

136 Phylogenetic analyses of provirus genes and candidate receptor genes. Homologs of

137 provirus genes selected for phylogenetic analysis were obtained by searching each

138 translated proviral gene against nr database (accessed between December 2019 and

139 March 2020), as well as a local database of all the *Thermotogota* virus proteins identified,

140 using BLASTP (version 2.2.26), with E-value cutoff of 10^{-1} . The 20 top-scoring matches

141 from each database were retrieved and aligned using MAFFT v. 7.450 with the G-INS-I

142 option [36]. Identical sequences and highly similar sequences from the same genus were

143 removed. Alignment positions with > 50% gaps were trimmed. Phylogenetic trees were

reconstructed using RAxML [37] with WAG+G substitution model with four rate

145 categories and 100 bootstrap replicates, as implemented in Geneious v.10.

146 Candidate receptor proteins in genomes of *Petrotoga* sp. 8T1HF07.NaAc.6.1,

147 Petrotoga olearia, Petrotoga mobilis, Petrotoga sp. 9T1HF07.CasAA.8.2, Defluviitoga

148 *tunisiensis, Lacticigenium naphtae*, and *Mahella australiensis*, which had proviruses

149 assigned to Group 2 (see the Results section for definition), were identified in IMG using

150 an amino acid identity cut-off of 50%. Homologs in Geosporobacter ferrireducens

151 genome, which was not available in IMG, were identified using BLASTP search with E-

152 value cutoff of 10^{-10} . Collection of additional homologs and phylogenetic analyses were

153 carried out as described above.

154	Phylogenetic analysis of single copy gene in Thermotogota genomes available in
155	Genbank (accessed May 27 2020) were done using the GToTree pipeline [38] with the
156	Bacterial hmm-set of 74 target genes. The resulting alignment was imported into
157	Geneious Prime 2020.1.2 where sites with more than 50% gaps were removed, giving an
158	alignment of 11,003 amino acid positions. The phylogenetic tree was reconstructed using
159	FastTree with the JTT model with optimized Gamma20 likelihood [39].
160	
161	Virus induction and electron microscopy. T. africanus H17ap6033 and two Petrotoga
162	isolates, <i>P.olearia</i> and <i>Petrotoga</i> sp. 8T1HF07.NaAc.6.1, were cultivated in a modified
163	Ravot medium as previously described [15] at 65°C and 55°C, respectively. Attempts
164	were made to increase the viral production of the strains by using mitomycin C, as
165	reported previously [15, 16]. A final concentration of 5 μ g/mL of mitomycin C was
166	added to 300 mL bacterial culture at early to mid-log growth phase. After 3 hours of
167	incubation with mitomycin C, cultures were centrifuged at 7500 rpm and 4°C for 15 min,
168	and supernatants were ultracentrifuged at 37 000 rpm (~100 000 g) and 10°C for 1h
169	(Beckman Optima LE-80 K; rotor 70.1.Ti). Pellets were resuspended in 100μ L of buffer
170	(10 mM Tris-HCL, 100 mM NaCl, 5 mM CaCl ₂ , 20 mM MgCl ₂) and suspensions were
171	prepared for negative staining electron microscopy as previously described [40]. Briefly,
172	$5\mu L$ of the suspensions were directly spotted onto a Formwar carbon coated copper grid.
173	Putative virus-like particles were allowed to adsorb to the carbon layer for 2 min and
174	excess of liquid was removed. 5 μ L of a staining uranyl acetate solution (2%) was then
175	spotted to the grid for 45 s and excess of liquid was removed again. The grid was imaged
176	at 120 kV in a JEOL JEM 100 CXIIVR transmission electron microscope.

177

178 **Results**

179

180	Newly identified Thermotogota proviruses come from two distinct viral					
181	lineages. Analysis of 111 Thermotogota genomes identified 20 proviruses, including the					
182	three already characterized viruses from Marinitoga [15, 16] and four likely partial					
183	proviruses (Supplementary Table S1 and Supplementary Table S2). One of the 20					
184	proviruses is present with 100% nucleotide sequence identity in all six available					
185	Thermosipho melanesiensis genomes [41], and therefore is counted as just one novel					
186	provirus. An additional provirus (MLaV1) was reported in a Marinitoga lauensis genome					
187	after we completed the screening [42]. Due to its similarity to proviruses identified in					
188	other Marinitoga genomes, it was not included in our further analyses.					
189	The predicted proviruses can be divided into two distinct groups, hereafter					
190	denoted as Group 1 (15 proviruses: 13 complete and 2 incomplete) and Group 2 (5					
191	proviruses: 3 complete and 2 incomplete). First, the genome organization differs between					
192	the proviruses in two groups (Fig. 1 and Fig. 2). Second, the genes within each group are					
193	more similar than the genes between groups (Fig. 3, Supplementary Table S2). Third,					
194	the two groups form separate clusters in the VContact2 network (Supplementary Fig.					
195	S1, panel A). Finally, the two groups show up as different clades on the Viral Proteomic					
196	Tree (Supplementary Fig. S2). Group 1 proviruses are found in the genera Marinitoga,					
197	Thermosipho, Kosmotoga, Mesotoga, Geotoga and Mesoaciditoga, while Group 2					
198	proviruses are limited to the genera Petrotoga and Defluviitoga (Supplementary Fig. S1,					
199	panel B). However, presence of 29 protein families shared between the two groups					

200 (Supplementary Table S3) suggests that LGT may occur between the viruses of the two

201 groups.

202

203 Classification and genomic features of Group 1 proviruses.

All complete Group 1 proviruses are likely to encode siphoviruses based on their head,

205 neck and tail gene sequences [33], and the morphology observed for the earlier

206 characterized MPV1, MCV1, MCV2 viruses and the TAV1 virus induced in the current

study (see below).

208 None of the proviruses have significant nucleotide identity with viral genomes in

209 the NCBI nr/nt database. Following taxonomic criteria, where viruses with > 50-70%

210 nucleotide identity over the full genome belong to the same genus and viruses with >

211 95% nucleotide identity belong to the same species [43, 44], the complete proviruses are

assigned to 13 new species and at least 11 new genera (Supplementary Table S4). The

213 sequence similarity suggests that the closest relatives of the Group 1 proviruses are

214 Firmicutes' viruses (Supplementary Fig. S1, panel A), since 15% of the provirus genes

215 have Firmicutes as the top-scoring match, if members of the proviruses' host genus are

216 excluded (Supplementary Table S5).

The proviruses have the same modular structure as genomes of the earlier described MPV1, MCV1 and MCV2 viruses [15, 16] (**Fig. 1**). The 5' module contains genes involved in lysogeny and is encoded on the opposite strand compared to the rest of the virus genes. The lysogeny module is followed by modules for replication, packaging, morphogenesis and host lysis. Similar to the described *Marinitoga* viruses [15, 16], the gene content of lysogeny module of all examined proviruses is very variable, with onlythe recombinase gene conserved (Fig. 1).

224	All Group 1 proviruses are inserted next to a tRNA gene. Eight of them (the						
225	Marinitoga proviruses MPV1, MCV1, MCV2, MHV1 and M1137V2; the Kosmotoga						
226	pacifica provirus KPV1, Geotoga petrae provirus GPV1, and Mesoaciditoga lauensis						
227	provirus MLV1), are inserted next to the tRNA-Glu gene, and carry similar site-specific						
228	DNA serine recombinases (KEGG Orthology; K06400, homologs of Marpi_0291 in						
229	MPV1 from <i>M. piezophila</i>) (Fig. 4). The <i>Thermosipho</i> proviruses TMV1 and T1074V1						
230	carry more distant homologs of this recombinase (Fig. 4) and are inserted next to the						
231	tRNA-Phe gene. The most divergent homolog of the serine recombinase is present in						
232	TAV1, which is inserted next to the tRNA-Pro gene. MTOLDCV1 is also inserted next to						
233	a tRNA-Pro gene, but it is located at the end of a contig in an incomplete single cell						
234	genome and its 5' end (where recombinase would be found) is missing (the Mesotoga sp.						
235	SC_TOLDC recombinase included in Fig. 4 is located on a separate contig). We						
236	hypothesize that these recombinases are integrases that specifically recognize the tRNA						
237	genes next to which the provirus is inserted (i.e., the tRNA-Glu, tRNA-Phe, or tRNA-Pro						
238	genes). The remaining three proviruses (M1135V1, M1138V1, and M1137V1) are						
239	inserted next to tRNA-Cys gene and may also use similar integration mechanism, but						
240	these proviruses do not have the detectable serine recombinase homologs. M1135V1 and						
241	M1138V1 have homologous ORFs of unknown function in the recombinase gene						
242	position (Fig. 1), which may or may not provide this function.						
243	Another typical viral protein that shows variation across the Group 1 proviruses is						
244	the large subunit of the terminase protein involved in the packaging of viral DNA into the						

245	virus particle [45]. The proviruses carry three types of these proteins (BLASTP E-value
246	cut-off < 0.01, identity < 25%, Supplementary Fig. S3). The first type, exemplified by
247	the protein in MPV1 (Marpi_0320), contains a PBSX family domain and has homologs in
248	MCV1 and MCV2 and the proviruses in Marinitoga sp. 1135, Marinitoga sp. 1138,
249	Thermosipho sp. 1074 and M. lauensis. The second, exemplified by the terminase in
250	TAV1 (H17ap60334_04902), contains a 'Terminase_lsu_T4-like' domain and has
251	homologs in the proviruses from K. pacifica, T. melanesiensis, Mesotoga sp. TolDC and
252	G. petrae. The third type is found in the proviruses in M. hydrogenitolerans and
253	Marinitoga sp. 1137 (BUA62_RS02495, LN42_01905 and LN42_00550). These
254	terminases also contain a 'Terminase_lsu_T4-like' domain and are distant homologs of
255	the second terminase type.
256	In addition to the recombinase and terminase, other typical viral proteins such as
257	tail tape measure, capsid and portal proteins were identified, but did not always show
258	detectable similarity among the proviruses (Fig. 1). Two transcription regulators
259	(Marpi_0297 and Marpi_0298 in MPV1), a DNA repair exonuclease (Marpi_0340 in
260	MPV1) and a single stranded DNA-binding protein (Marpi_0306 in MPV1), show
261	relatively high (32-100%) identity across most Group 1 proviruses (Fig. 1,
262	Supplementary Table S4). Genes encoding two hypothetical proteins (homologs of
263	Marpi_0299 and Marpi_0338 in MPV1) are shared among 10 of the proviruses (36-96%
264	identity), suggesting these genes may provide important viral functions.
265	
266	Broad host range of Group 1 proviruses

266 Broad host range of Group 1 proviruses.

267	Detection of Group 1 proviruses in the genera Marinitoga, Thermosipho, Kosmotoga,
268	Mesotoga, Geotoga and Mesoaciditoga (Supplementary Table S1), suggests that the
269	Group 1 viruses are widespread among Thermotogota, particularly among organisms
270	inhabiting hydrothermal vents. Such wide distribution and relatively high sequence
271	identity among the proviral genomes (Fig. 1, Supplementary Table S4) suggest that the
272	Group 1 temperate viruses might have broad host ranges. Experiments showing that
273	MPV1 from <i>M. piezophila</i> can infect and transfer a plasmid to a <i>Thermosipho</i> isolate is
274	consistent with this hypothesis [15].
275	Further support comes from mapping of CRISPR spacer sequences from 90
276	Thermotogota genomes to the Group 1 proviruses. Five of the 17 proviruses matched
277	CRISPR spacers in the genomes from a different genus (Table 1). For example, the
278	Thermosipho provirus TAV1 had 35 matches to spacers in the genomes of
279	Pseudothermotoga and Thermotoga spp. Anecdotal evidence corroborates an ability of
280	TAV1 to infect <i>Thermotoga</i> spp. Back in 2005, when the sample from the Hibernia oil
281	reservoir containing TAV1 and its host, T. africanus H17ap60334, was being processed
282	by one of us (Camilla L. Nesbø) in the laboratory, Thermotoga isolates from Troll oil
283	reservoir in the North Sea, which were at the same time being transferred to fresh media,
284	experienced a mass death. Analysis of the genomes of the surviving Thermotoga isolates
285	[3] revealed presence of three CRISPR spacer matching the TAV1 genome
286	(Supplementary Fig. S4). These spacers were located in the middle of the CRISPR
287	arrays, indicating that they were not new acquisitions [46]. Therefore the only surviving
288	isolates of Thermotoga must have had already experienced and survived TAV1 or related
289	virus infections in the oil reservoir.

290

291 Classification, genomic features and distribution of Group 2 proviruses.

- Group 2 consists of three complete proviruses in the genomes of *Petrotoga* sp. 8T1HF07
- 293 (P8T1HF07V1), Petrotoga olearia (POV1) and Defluviitoga tunesiensis (DTV1) (Fig. 2),
- and two incomplete proviruses in the genomes of *Petrotoga mobilis* SJ95 and *Petrotoga*
- sp. 9T1HF07 (Supplementary Fig. S5). Due to the short length of the incomplete

296 proviruses, they were not included in the remaining analyses of this section.

297 Following the taxonomic classifications criteria described above, the three

complete proviruses P8T1HF07V1, DTV1 and POV1 are assigned to three new viral

species (Supplementary Table S4). Based on the head-neck-tail module classification

300 [33], these proviruses likely encode siphoviruses of Type1 - Cluster 2. All hosts of the

301 previously described members of this Siphoviridae lineage belong to Firmicutes. In

302 agreement with this, similarity searches revealed that these proviruses show very high

303 similarity to proviruses of three Firmicutes genomes: *Lacticigenium naphta*e (LNV1),

304 Geosporobacter ferrireducens (GFV1) and Mahella australiensis (MAV1) (Fig. 2,

305 Supplementary Table S4).

The sequences and genome organization of the three complete Group 2 proviruses differ considerably from that of Group 1 (**Fig. 1** and **Fig. 2**). These proviruses are also not located next to tRNA genes. The 5' module encodes genes involved in virus replication and transcription, and the comparative genomic analysis shows high level of diversity in this region (**Fig. 2**). This module is followed by highly conserved packaging,

311 morphogenesis and lysis modules. The lysogeny module is located at the 3' end of the

312	virus. The site-specific serine recombinases carried by the Group 2 proviruses in this					
313	module are distant homologs of the earlier discussed Group 1 recombinases (Fig. 4).					
314	When comparing the Group 2 provirus genomes from Thermotogota and					
315	Firmicutes, each Thermotogota provirus is more similar to a Firmicutes provirus than to					
316	other Thermotogota proviruses (Fig. 2, Supplemental Table S4). Alignments of the two					
317	Thermotogota-Firmicutes provirus pairs, P8T1HF07V1 and GFV1, and DTV1 and					
318	MAV1, have 66.7 % and 56.7 % intergenomic similarity values, respectively					
319	(Supplementary Table S4), suggesting they may be assigned to the same genus.					
320	Moreover, P8T1HF07V1 has 97% nucleotide identity to the GFV1 over specific					
321	subregions that encode structural genes and the genes for DNA packaging and genome					
322	integration (Fig. 3). Similarly, in the same regions in DTV1 and MAV1 have 95-97%					
323	identity. In contrast, the same regions in P8T1HF07V1 and POV1, and P8T1HF07V1 and					
324	DTV1 have 53 and 75% nucleotide identity, respectively. Such similarity patterns suggest					
325	that these viruses likely can infect hosts from both Thermotogota and Firmicutes phyla.					
326	In contrast to the Group 1, none of the Group 2 proviruses had matches to					
327	CRISPR spacers in 90 Thermotogota genomes, suggesting that the Group 2 viruses have					
328	a more restricted host range within the Thermotogota or started to infect members of this					
329	phylum recently.					
330						

331 Successful induction of TAV1 from *T. africanus* H17ap60333.

332 Induction assays were performed on three of the putatively lysogenized *Thermotogota*: *T*.

333 africanus H17ap6033 (Group 1), Petrotoga sp. P8T1HF07 (Group 2) and P. olearia

334 (Group 2). Only the provirus in *T. africanus* H17ap6033 (TAV1) was successfully

335	induced using mitomycin C. TAV1 was shown to produce viral particles with a					
336	polyhedral head of ~50 nm in diameter and a flexible non-contractile tail of ~160 nm in					
337	length and ~10 nm in width (Fig. 5a). Based on tail morphology, TAV1 was classified to					
338	the order Caudovirales and the family Siphoviridae, confirming the sequence-based					
339	classification. TAV1 morphology is similar to the three previously characterized					
340	temperate Marinitoga viruses, whose virion tails were just slightly longer [15, 16]. In					
341	addition to viral particles, a release of membrane vesicles or toga fragments was regularly					
342	observed (Fig. 5b).					
343	While the induction of the proviruses in <i>Petrotoga</i> sp. 8T1HF07 (P8T1HF07V1)					
344	and P. olearia (POV1) using mitomycin C was unsuccessful, membrane vesicles of					
345	various sizes and shapes (20 - 100nm) were produced by the cells, and in particular by the					
346	induced Petrotoga sp. 8T1HF07 cells. Analysis of the supernatant of the latter culture					
347	revealed similarly-sized round-shaped vesicles connected together in long chains by					
348	hooking onto the flagella, like a "pearl necklace", while free vesicles showed more					
349	diversity in size and shape (Fig. 5c). Some "sunflower-like" structures were also					
350	observed inside a remaining cell (Fig. 5d). It is unknown if the provirus or stressors					
351	influence the production of these vesicles and structures, or if they are produced					
352	spontaneously.					
353						
354	A potential receptor for the Group 2 viruses					

355 Several types of structures on the surface of bacteria, such as membrane proteins,

356 flagella, pili, or carbohydrate moieties, can act as virus receptors [47]. Most siphoviruses

357 of Gram-negative bacteria, and some of Gram-positive bacteria, use proteinaceous

receptors for adsorption [48, 49]. If the Group 2 viruses use the same protein receptor to
attach to both Thermotogota and Firmicutes cells, the large phylogenetic distance
between these hosts offers an opportunity to identify possible membrane protein receptors
bioinformatically, since the receptor proteins would be expected to be conserved across
the genomes from both phyla. It should be noted that this approach would only identify
possible protein receptors, while potential shared carbohydrate receptors would not be
detected.

365 Four predicted membrane proteins with transmembrane helices were identified in 366 all genomes carrying a Group 2 provirus. One of these was the viral holin gene, leaving 367 three receptor candidates: a ComEA family DNA-binding protein, an oxaloacetate 368 decarboxylase beta subunit, and an ABC transporter ATP-binding protein. Phylogenetic 369 analyses revealed that the ComEA and the oxaloacetate decarboxylase homologs are 370 widely distributed among Thermotogota (Supplementary Fig. S6). In contrast, the ABC 371 transporter is, among the Thermotogota, restricted to *Petrotoga* and *Defluviitoga*, the two 372 genera where the Group 2 proviruses are observed (Supplementary Fig. S6, panel C). 373 Moreover, the phylogenetic analysis suggests the homologs in *Petrotoga* and 374 *Defluviitoga* originated from an LGT event with a Firmicute (**Supplementary Fig. S6**). 375 These proteins show particularly high amino acid sequence similarity in the C-terminal 376 domain of both Thermotogota and Firmicutes homologs, which is facing the exterior of 377 the cell and could serve as a virus target (Supplementary Fig. S7). Although 378 experiments are needed to demonstrate if any of these proteins functions as receptor for 379 these viruses, we suggest that the ABC-transporter ATP-binding protein is a strong 380 candidate for a Group 2 virus receptor.

381

382 Moron genes are abundant in the identified proviruses.

- 383 Many temperate viruses are known to carry moron genes, which are genes that do not
- have a direct viral function [50, 51]. The detected proviruses of Thermotogota are no
- exception: the Group 1 proviruses carry up to 6 morons (**Fig. 1**), while the Group 2
- proviruses have between 4 and 13 morons (Fig. 2). However, it should be noted that
- 387 because the 5' ends were hard to define for Group 2 proviruses, some of the moron genes
- at the 5' ends might not be part of the proviruses. Sequencing virus DNA isolated from
- 389 capsids will help resolve this issue in the future.

390 Among the morons are several proteins that may confer a selective advantage to

the host (**Fig. 1** and **Fig. 2**, **Supplementary Table S2**). For instance, M1138V1 carry two

392 genes involved in sulfur metabolism. The Group 2 proviruses encode several transporters,

393 peptidases and hydrolases, likely to be beneficial for these heterotrophic bacteria. In

- addition, all the viruses carry several hypothetical proteins that may also have non-viralfunctions.
- 396

397 Evidence for the viruses' impact on lateral gene transfer

Eight hundred seventy homologs of 106 proviral genes were detected in 54 out of 59

399 Thermotogota genomes with no detectable proviruses (Supplementary Table S6). It

400 should be noted that some provirus genes, e.g. the Group 1 recombinases and terminases

401 (Fig. 4 and Supplementary Fig. S3), did not pass our stringent screening criteria (see

402 Material and Methods), thus these represent minimum estimates of matches to proviral

403 genes in these genomes. Notably, 370 of 870 were homologs of 28 moron genes,

404 suggesting that the viruses may facilitate exchange of "host" genes among Thermotogota. 405 Moron genes also had the highest number of homologs across 54 genomes, with most 406 abundant being a queuine tRNA-ribosyltransferase in the Group 2 provirus DTV1 (found 407 in 48 genomes) and an aldo/keto reductase in Group 1 provirus GPV1 (found in 41 408 genomes). 409 Among phylogenetically informative datasets, 10 proviral genes group within 410 Thermotogota and 17 group within Firmicutes, suggesting that many of the proviral genes 411 originated either in Thermotogota and Firmicutes (Supplementary Table S6). For 412 instance, the above-described abundant moron gene queuine tRNA-ribosyltransferase is 413 of Thermotogota origin, while the aldo/keto reductase appears to be of Firmicutes origin 414 (Supplementary Table S6). In the phylogeny of another moron gene, a cadmium or 415 heavy metal transporter found in Firmicutes provirus MAV1 and Thermotogota Group 2 416 proviruses DTV1 and POV1, the provirus genes group closely with Firmicutes' homologs 417 (Supplementary Fig. S8). Notably, the other closely related Thermotogota homologs are 418 found in three *Fervidobacterium* and *Pseudothermotoga* genomes, genera where no

419 proviruses have yet been identified. Inspecting the genomic region surrounding these

420 genes in *Fervidobacterium* and *Pseudothermotoga*, revealed that the homolog of the

421 proviral recombinase (Fig. 4) is located immediately upstream of the transporter gene. No

422 other typical virus genes were observed in these regions, suggesting these genes are likely

423 remnants of proviruses. This also indicates that viruses related to Group 2 proviruses may

424 have broader host range that we presently detect.

- Taken together the above analyses suggest that the viruses of both Group 1 and
 Group 2 may facilitate exchange of genes not only among Thermotogota, but also
 between Thermotogota and Firmicutes.
- 428

429 **Discussion**

In our search for proviruses in genomes of Thermotogota, we discovered two distinct
groups of temperate siphoviruses that have lysogenized this bacterial phylum. These
proviruses may represent multiple new viral species and genera. Our analyses suggest
that these viruses likely have broad host range that spans at least multiple genera. We also
found that the identified proviruses lineages are closely related to Firmicutes' viruses.
One of the bioinformatically identified Group 1 proviruses (TAV1) was induced

436 and shown to produce virus particles. The provirus resides in a genome of a *T. africanus*

437 isolate from the Hibernia oil reservoir off the Canadian east coast. The analysis of

438 CRISPR spacers suggested that this virus may have a particularly wide host range, with

the highest number of spacer-matches in genomes from outside its genus. For instance, a

440 virus very similar to TAV1 had likely infected *Thermotoga* spp. isolates from the North

441 Sea Troll oil reservoir. Similar predatory virus pressure in geographically and

442 geologically remote subsurface environments have been observed for Methanohalophilus

```
isolates from reservoirs in the USA and Russia [52].
```

We were not able to induce virus production from the selected Group 2 proviruses This could be due to these proviruses currently being inactive, or we may not have applied the right conditions to induce the expression of these proviruses. Nevertheless,

447	the high level of sequence identity between Group 2 provirus sequences from					
448	Thermotogota and Firmicutes phyla uggests that they have been active very recently.					
449	Many of the genes carried by both Group 1 and Group 2 proviruses are found in					
450	genomes of Thermotogota that do not have detectable proviruses. These genes often					
451	group with Firmicutes or viruses that infect Firmicutes, and many can be classified as					
452	morons. This suggests that both Group 1 and Group 2 viruses transfer genes within					
453	Thermotogota and between Thermotogota and Firmicutes, and may serve as a major					
454	mechanism for the earlier reported large amounts of lateral gene transfer between					
455	Thermotogota and Firmicutes [7, 8].					
456	Based on our bioinformatic and phylogenetic analyses, we propose that an ABC					
457	transporter may serve as a receptor for at least some of these proviruses. ABC transporter					
458	proteins are, to our knowledge, not commonly identified as bacterioviral receptors.					
459	However, Lactoccocus viruses from the siphoviral c2 group have been shown to use					
460	membrane proteins Pip or YjaE, both with sequence similarity to ABC-transporter					
461	domains, as secondary receptors [47, 53].					
462	Intriguingly, transporters, and ABC transporters in particular, are among the most					
463	frequently transferred genes both within the Thermotogota and between Thermotogota					
464	and Firmicutes [7, 8, 54]. Transporter genes were also detected in the provirus genomes.					
465	The possibility that transporters can function as viral receptors in the Thermotogota					
466	therefore suggests that acquiring a new transporter, perhaps via a viral infection, might					
467	result in the cell not only acquiring a new function but also becoming susceptible to a					
468	new virus. This virus might carry another transporter gene, which can introduce yet					
469	another virus, resulting in a ratchet-like process. Using transporters as receptors will					

therefore not only provide the virus with the wide host range but could also make viruses
the vehicles on the highways of gene sharing observed between the Thermotogota and
Firmicutes.

473 Genes encoding proteins for membrane transport, including ABC transporters, 474 have been observed in several other viruses [55], and thus the proposed process could 475 operate widely among bacteria. This is contrary to a role commonly assigned to morons 476 where they often confer resistance to infections by other viruses [51]. Further studies and 477 experiments are needed to investigate if such ratchet processes are indeed occurring in 478 natural systems. However, regardless of the functions of the morons in the *Thermotogota* 479 proviruses, the observation of viruses potentially infecting organisms from different phyla 480 further demonstrates that viruses are key actors in the evolution of microbial diversity. 481 482 Acknowledgements 483 This work is supported by a Research Council of Norway award (project no. 484 180444/V40) to C.L.N., by the Sino-French LIA/PRC 1211 MicrobSea to J.L. and by the 485 Simons Foundation Investigator in Mathematical Modeling of Living Systems award 486 327936 to O.Z. Strains were obtained from the Université de Bretagne Occidentale 487 Culture Collection (UBOCC, Plouzané, France, www.univ-brest.fr/ubocc). 488 489 490 **Competing Interests:**

491 The authors declare no conflict of interest.

Δ	9	3
-	/	\mathcal{I}

494 **References**

495	1.	Pollo SMJ, Zhaxybayeva	O, Nesbø CL.	Insights into	thermoadaptation	and the
-----	----	------------------------	--------------	---------------	------------------	---------

- 496 evolution of mesophily from the bacterial phylum *Thermotogae*. Can J Microbiol
- 497 2015; **61**: 655–670.
- 498 2. Bhandari V, Gupta RS. The Phylum Thermotogae. In: Rosenberg E, DeLong EF,
- Lory S, Stackebrandt E, Thompson F (eds). *The Prokaryotes*. 2014. Springer Berlin
 Heidelberg, Berlin, Heidelberg, pp 989–1015.
- 501 3. Nesbø CL, S Swithers K, Dahle H, Haverkamp TH, Birkeland N-K, Sokolova T, et
- al. Evidence for extensive gene flow and Thermotoga subpopulations in subsurface
- 503 and marine environments. *ISME J* 2015; **9**: 1532–1542.
- 4. Foght JM, Gieg LM, Siddique T. The microbiology of oil sands tailings: past,
- 505 present, future. *FEMS Microbiol Ecol* 2017; **93**.
- 506 5. Nesbø CL, Charchuk R, Pollo SMJ, Budwill K, Kublanov IV, Haverkamp THA, et
- al. Genomic analysis of the mesophilic Thermotogae genus *Mesotoga* reveals
- 508 phylogeographic structure and genomic determinants of its distinct metabolism:
- 509 Comparative genomic analysis of *Mesotoga*. *Environ Microbiol* 2019; **21**: 456–470.
- 510 6. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. A
- 511 new view of the tree of life. *Nat Microbiol* 2016; **1**: 16048.
- 512 7. Zhaxybayeva O, Swithers KS, Lapierre P, Fournier GP, Bickhart DM, DeBoy RT, et
- al. On the chimeric nature, thermophilic origin, and phylogenetic placement of the
- 514 Thermotogales. *Proc Natl Acad Sci* 2009; **106**: 5865–5870.

- 515 8. Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, et al. Evidence
- 516 for lateral gene transfer between Archaea and Bacteria from genome sequence of
- 517 Thermotoga maritima. *Nature* 1999; **399**: 323–329.
- 518 9. Magnabosco C, Biddle JF, Cockell CS, Jungbluth SP, Twing KI. Biogeography,
- 519 Ecology, and Evolution of Deep Life. In: Orcutt BN, Daniel I, Dasgupta R (eds).
- 520 *Deep Carbon*, 1st ed. 2019. Cambridge University Press, pp 524–555.
- 521 10. Anderson RE, Brazelton WJ, Baross JA. The Deep Viriosphere: Assessing the Viral
- 522 Impact on Microbial Community Dynamics in the Deep Subsurface. *Rev Mineral*
- 523 *Geochem* 2013; **75**: 649–675.
- 524 11. Cobián Güemes AG, Youle M, Cantú VA, Felts B, Nulton J, Rohwer F. Viruses as
 525 Winners in the Game of Life. *Annu Rev Virol* 2016; **3**: 197–214.
- 526 12. Engelhardt T, Kallmeyer J, Cypionka H, Engelen B. High virus-to-cell ratios
- 527 indicate ongoing production of viruses in deep subsurface sediments. *ISME J* 2014;
 528 8: 1503–1509.
- 529 13. Walsh EA, Kirkpatrick JB, Pockalny R, Sauvage J, Spivack AJ, Murray RW, et al.
- 530 Relationship of Bacterial Richness to Organic Degradation Rate and Sediment Age
- 531 in Subseafloor Sediment. *Appl Environ Microbiol* 2016; **82**: 4994–4999.
- 532 14. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of
 533 bacterial innovation. 2000; 405: 6.
- 15. Lossouarn J, Nesbø CL, Mercier C, Zhaxybayeva O, Johnson MS, Charchuck R, et
- al. 'Ménage à trois': a selfish genetic element uses a virus to propagate within
- 536 Thermotogales. *Environ Microbiol* 2015; **17**: 3278–3288.

537	16.	Mercier C, Lossouarn J, Nesbø CL, Haverkamp THA, Baudoux AC, Jebbar M, et al.
538		Two viruses, MCV1 and MCV2, which infect Marinitoga bacteria isolated from
539		deep-sea hydrothermal vents: functional and genomic analysis. Environ Microbiol
540		2018; 20 : 577–587.
541	17.	Markowitz VM, Chen I-MA, Chu K, Szeto E, Palaniappan K, Pillay M, et al.
542		IMG/M 4 version of the integrated metagenome comparative analysis system.
543		Nucleic Acids Res 2014; 42 : D568–D573.
544	18.	Rice P, Longden I, Bleasby A. EMBOSS: The European Molecular Biology Open
545		Software Suite. Trends Genet 2000; 16,: 276–277.
546	19.	Lima-Mendez G, Van Helden J, Toussaint A, Leplae R. Prophinder: a
547		computational tool for prophage prediction in prokaryotic genomes. Bioinformatics
548		2008; 24 : 863–865.
549	20.	Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: A Fast Phage Search
550		Tool. Nucleic Acids Res 2011; 39 : W347–W352.
551	21.	Akhter S, Aziz RK, Edwards RA. PhiSpy: a novel algorithm for finding prophages
552		in bacterial genomes that combines similarity- and composition-based strategies.
553		Nucleic Acids Res 2012; 40: e126–e126.
554	22.	Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al.
555		BLAST+: architecture and applications. BMC Bioinformatics 2009; 10: 421.
556	23.	O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al.
557		Reference sequence (RefSeq) database at NCBI: current status, taxonomic
558		expansion, and functional annotation. Nucleic Acids Res 2016; 44: D733–D745.

- 559 24. Darling AE, Mau B, Perna NT. progressiveMauve: Multiple Genome Alignment
- 560 with Gene Gain, Loss and Rearrangement. *PLoS ONE* 2010; **5**: e11147.
- 561 25. Zimmermann L, Stephens A, Nam S-Z, Rau D, Kübler J, Lozajic M, et al. A
- 562 Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server
- 563 at its Core. *J Mol Biol* 2018; **430**: 2237–2243.
- 26. Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5:
- 565 genome-scale protein function classification. 5.
- 566 27. Guy L, Roat Kultima J, Andersson SGE. genoPlotR: comparative gene and genome
 567 visualization in R. *Bioinformatics* 2010; 26: 2334–2335.
- 568 28. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos:
- 569 An information aesthetic for comparative genomics. *Genome Res* 2009; **19**: 1639–
- 570 1645.
- 571 29. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using
- 572 DIAMOND. *Nat Methods* 2015; **12**: 59–60.
- 573 30. Nepusz T, Yu H, Paccanaro A. Detecting overlapping protein complexes in protein-
- 574 protein interaction networks. *Nat Methods* 2012; **9**: 471–472.
- 575 31. Bolduc B, Jang HB, Doulcier G, You Z-Q, Roux S, Sullivan MB. vConTACT: an
- 576 iVirus tool to classify double-stranded DNA viruses that infect Archaea and
- 577 Bacteria. PeerJ 2017; **5**: e3243.
- 578 32. Bin Jang H, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, et al.
- 579 Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by
- 580 gene-sharing networks. *Nat Biotechnol* 2019; **37**: 632–639.

581	33.	Lopes A, Tavares P, Petit M-A, Guérois R, Zinn-Justin S. Automated classification
582		of tailed bacteriophages according to their neck organization. BMC Genomics 2014;
583		15 : 1027.
584	34.	Moraru C, Varsani A, Kropinski AM. VIRIDIC – a novel tool to calculate the
585		intergenomic similarities of prokaryote-infecting viruses. 2020. Microbiology.
586	35.	Nishimura Y, Yoshida T, Kuronishi M, Uehara H, Ogata H, Goto S. ViPTree: the
587		viral proteomic tree server. Bioinformatics 2017; 33: 2379–2380.
588	36.	Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7:
589		Improvements in Performance and Usability. Mol Biol Evol 2013; 30: 772–780.
590	37.	Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis
591		of large phylogenies. <i>Bioinformatics</i> 2014; 30 : 1312–1313.
592	38.	Lee MD. GToTree: a user-friendly workflow for phylogenomics. Bioinformatics
593		2019; 35 : 4162–4164.
594	39.	Price MN, Dehal PS, Arkin AP. FastTree 2 – Approximately Maximum-Likelihood
595		Trees for Large Alignments. PLoS ONE 2010; 5: e9490.
596	40.	Geslin C, Le Romancer M, Erauso G, Gaillard M, Perrot G, Prieur D. PAV1, the
597		First Virus-Like Particle Isolated from a Hyperthermophilic Euryarchaeote,
598		"Pyrococcus abyssi". J Bacteriol 2003; 185: 3888–3894.
599	41.	Haverkamp THA, Geslin C, Lossouarn J, Podosokorskaya OA, Kublanov I, Nesbø
600		CL. Thermosipho spp. immune system differences affect variation in genome size
601		and geographical distributions. Genome Biol Evol 2018.

602	42.	L'Haridon S.	Gouhier L	, John ESt	Reysenbach	A-L. Marinitog	a lauensis sp.	nov., a

- 603 novel deep-sea hydrothermal vent thermophilic anaerobic heterotroph with a
- 604 prophage. *Syst Appl Microbiol* 2019; **42**: 343–347.
- 43. Walker PJ, Siddell SG, Lefkowitz EJ, Mushegian AR, Adriaenssens EM, Dempsey
- 606 DM, et al. Changes to virus taxonomy and the Statutes ratified by the International
- 607 Committee on Taxonomy of Viruses (2020). *Arch Virol* 2020; s00705-020-04752–x.
- 44. Adriaenssens E, Brister JR. How to Name and Classify Your Phage: An Informal
- 609 Guide. Viruses 2017; **9**: 70.
- 610 45. Catalano CE. The terminase enzyme from bacteriophage lambda: a DNA-packaging
- 611 machine. *Cell Mol Life Sci CMLS* 2000; **57**: 128–148.
- 612 46. Rath D, Amlinger L, Rath A, Lundgren M. The CRISPR-Cas immune system:
- Biology, mechanisms and applications. *Biochimie* 2015; **117**: 119–128.
- 614 47. Stone E, Campbell K, Grant I, McAuliffe O. Understanding and Exploiting Phage–
 615 Host Interactions. *Viruses* 2019; **11**: 567.
- 616 48. Zhang Z, Yu F, Zou Y, Qiu Y, Wu A, Jiang T, et al. Phage protein receptors have
- multiple interaction partners and high expressions. *Bioinformatics* 2020; **36**: 2975–
 2979.
- 619 49. Bertozzi Silva J, Storms Z, Sauvageau D. Host receptors for bacteriophage
- adsorption. *FEMS Microbiol Lett* 2016; **363**: fnw002.
- 50. Cumby N, Davidson AR, Maxwell KL. The moron comes of age. *Bacteriophage*2012; 2: e23146.
- 51. Taylor VL, Fitzpatrick AD, Islam Z, Maxwell KL. The Diverse Impacts of Phage
- Morons on Bacterial Fitness and Virulence. *Adv Virus Res* 2019; **103**: 1–31.

625	52.	Borton MA, Daly RA, O'Banion B, Hoyt DW, Marcus DN, Welch S, et al.
626		Comparative genomics and physiology of the genus Methanohalophilus, a
627		prevalent methanogen in hydraulically fractured shale. <i>Environ Microbiol</i> 2018; 20:
628		4596–4611.
629	53.	Millen AM, Romero DA. Genetic determinants of lactococcal C2viruses for host
630		infection and their role in phage evolution. J Gen Virol 2016; 97: 1998–2007.
631	54.	Nesbø CL, Nelson KE, Doolittle WF. Suppressive Subtractive Hybridization
632		Detects Extensive Genomic Diversity in Thermotoga maritima. J Bacteriol 2002;
633		184 : 4475–4488.
634	55.	Greiner T, Moroni A, Van Etten J, Thiel G. Genes for Membrane Transport
635		Proteins: Not So Rare in Viruses. Viruses 2018; 10: 456.
636	56.	Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new
637		developments. Nucleic Acids Res 2019; 47: W256-W259.
638		

639 Table 1. CRISPR spacer matches to provirus genomes in Thermotogota genomes.

640 Matches to spacers from the provirus' host genome are labeled as a self-match.

Genome with a CRISPR spacer match (number of spacers)
Kosmotoga olearia (1)
Pseudothermotoga elfii NBRC107921 (1), Marinitoga sp. 1154 (1)
Marinitoga sp. 1154 (2)
Marinitoga sp. 1155 (1) self-match, Marinitoga sp. 1154 (2)
Marinitoga sp. 1137 (1)
Marinitoga sp. 1155 (1)

Marinitoga piezophila (1)
Thermosipho africanus TCF52B (1),
Thermosipho melanesiensis (1), Pseudothermotoga elfii
NBRC107921 (1), Marinitoga sp. 1137 (1)
Thermosipho africanus H17ap60334 (3) self -match, Thermosipho
africanus TCF52B (2), Thermosipho africanus Ob7 (1), Thermosipho
melanesiensis (2), Thermotoga maritima 2812B (1), Thermotoga sp.
EMP (1), Thermotoga sp. XYL54 (3), Thermotoga sp. CELL2 (3),
Thermotoga sp. TBGT1766 (3), Thermotoga sp. TBGT1765 (4),
Thermotoga sp. A7A (1), Thermotoga sp. MC24 (2),
Pseudothermotoga elfii lettingae (4), Pseudothermotoga elfii
NBRC107921 (9), Pseudothermotoga elfii DSM9442 (2)
Thermosipho melanesiensis (1) self-match, Thermosipho africanus
TCF52B (1), Thermosipho africanus Ob7 (1), Thermotoga sp.
TBGT1765 (1), Thermotoga sp. Mc24 (1), Pseudothermotoga elfii
NBRC107921 (1), Pseudothermotoga elfii lettingae (2)
Thermosipho affectus B11070 (1), Thermosipho affectus 1223 (3),
Thermosipho affectus Bl1063 (1)

641 *Proviruses that have been induced and shown to produce virus particles.

- 642
- 643

644 Fig. 1. Comparison of sequences from all detected Group 1 proviruses. Provirus

645 name and the species of its host are shown to the left of the nucleotide sequence, in which

646	predicted ORFs are depicted as arrows. Proviruses that have been induced and shown to
647	produce virus particles are marked with an asterisk. The lines connect regions of adjacent
648	viruses that have TBLASTX similarity of more than 30% over 100bp. Lines are colored
649	in red or blue indicate that the matching sequences encoded in the same or opposite
650	strand, respectively. The predicted ORFs are color-coded based on their function and
651	should be considered approximate, because it relies only on gene annotations. Selected
652	gene annotations are included and abbreviated as follows. Ser recomb: serine
653	recombinase, LexA: LexA repressor, ParB: ParB-like nuclease, RecT: RecT family
654	recombinase, dUTP hydrolase: deoxyuridine 5'-triphosphate nucleotidohydrolase, ssb:
655	single stranded DNA-binding protein, tss: terminase small subunit, tls: terminase large
656	subunit, mcp: major capsid protein, tail tape: tail tape measure protein, rRNA lsm:
657	ribosomal RNA large subunit methyltransferase, flagella bbp: flagella basal-body protein,
658	DnaC: DnaC replication protein, DnaD: DnaD replication protein, DNA pol sc: DNA
659	polymerase sliding clamp, SecB: SecB protein-export protein, rep organizer :replisome
660	organizer, RusA: RusA family crossover junction endodeoxyribonuclease, Cys peptidase:
661	cysteine peptidase, sulfate AT: sulfate adenylyltransferase subunit 2, PAPS reductase:
662	phosphoadenosine phosphosulfate reductase, CW hydrolase: cell wall-associated
663	hydrolase, MazF: MazF endoribonuclease, dsbr: DNA double-strand break repair protein,
664	metal bp: metal-binding protein, CMP hydrolase: cytidine 5'-monophosphate hydrolase.
665	The figure was produced using genoPlotR [27].
666	
667	Fig. 2. Comparison of sequences from three complete Thermotogota Group 2

proviruses and their Firmicutes' homologs. Provirus name (in red for Thermotogota

669	and blue for Firmicutes) and the species of its host are shown to the left of the nucleotide
670	sequence, in which predicted ORFs are depicted as arrows. The lines connect regions of
671	adjacent viruses that have TBLASTX similarity of more than 30% over 100bp. Lines are
672	colored in red or blue indicate that the matching sequences encoded in the same or
673	opposite strand, respectively. The predicted ORFs are color-coded based on their function
674	and should be considered approximate, because it relies only on gene annotations.
675	Selected gene annotations are included and abbreviated; HMT ATPase: heavy metal
676	translocating ATPase, FMN reductase: flavine mono nucleotide reductase, HAD family
677	phosphatase: haloacid dehalogenase superfamily of hydrolase). The figure was produced
678	using genoPlotR [27].
679	
680	Fig. 3. Comparison of representative Thermotogota proviruses. Due to sequence
681	similarity, only one provirus per Thermotogota genus is shown. The nucleotide sequences
682	of the proviruses are arranged around the circle and color-coded. Numbers indicate
683	kilobases (kb) and grey boxes outline locations of predicted genes. Lines connecting
684	different proviral sequences represent TBLASTX matches between the proviral regions,
685	with the percent identity shown in histograms at the ends of each line. The plot was

686 created using Circos [28].

687

Fig. 4. Maximum likelihood tree of recombinases found in Thermotogota proviruses and of their homologs in Firmicutes proviruses, and Thermotogota and Firmicutes genomes. Host names of Thermotogota and Firmicutes proviruses are colored in red and

blue, respectively. The names of their proviruses are added next to the host name. Names

 genome without detected proviruses are shown in black. Branches without labels represent Firmicutes without an identified Group 2 provirus. Homologs from incomplete proviruses are labeled with "(in)". Circles on the branches represent bootstrap support, and only values above 70% are shown. Some proteins have identical amino acid sequences in more than one organism. The protein labelled 'Bacteria inc. POLV1 <i>Fervidobacterium</i> spp.'corresponds to accession number WP_011994748.1 and is found in <i>Fervidobacterium nodosum</i> Rt17-B1 (NC_009718.1), <i>Fervidobacterium pennivorans</i> DSM 9078 (NC_017095.1), <i>Fervidobacterium islandicum</i> (NZ_CP014334.1), <i>Fervidobacteriu gondwane</i>nse DSM 13020 (FRDJ01), <i>Petrotoga olearia</i> (PNR98053) and <i>Coprothermobacter proteolyticus</i> (PXJB01). The protein labelled 'Bacteria inc. <i>Mahella australiensis</i> MAV1, <i>Pseudothermotoga elfii</i> corresponds to accession number WP_013782344.1 and is also found in <i>Clostridium</i> sp. SYSU GA15002T (NZ_CP040924.1), <i>Thermoanaerobacter thermocopriae</i> JCM 7501 (NZ_KI912455.1), <i>Pseudothermotoga elfii</i> and MAV1 from <i>Mahella australiensis</i>. The tree was rooted by mid-point rooting and visualized using iTOL [56]. Tree scale, substitutions per site. 	692	of Thermotogota homologs that either resided outside of proviral regions or come from a
 proviruses are labeled with "(in)". Circles on the branches represent bootstrap support, and only values above 70% are shown. Some proteins have identical amino acid sequences in more than one organism. The protein labelled 'Bacteria inc. POLV1 <i>Fervidobacterium</i> spp.'corresponds to accession number WP_011994748.1 and is found in <i>Fervidobacterium nodosum</i> Rt17-B1 (NC_009718.1), <i>Fervidobacterium pennivorans</i> DSM 9078 (NC_017095.1), <i>Fervidobacterium islandicum</i> (NZ_CP014334.1), <i>Fervidobacterium gondwane</i>nse DSM 13020 (FRDJ01), <i>Petrotoga olearia</i> (PNR98053) and <i>Coprothermobacter proteolyticus</i> (PXJB01). The protein labelled 'Bacteria inc. <i>Mahella australiensis</i> MAV1, <i>Pseudothermotoga elfii</i>' corresponds to accession number WP_013782344.1 and is also found in <i>Clostridium</i> sp. SYSU GA15002T (NZ_CP040924.1), <i>Thermoanaerobacter thermocopriae</i> JCM 7501 (NZ_KI912455.1), <i>Pseudothermotoga elfii</i> and MAV1 from <i>Mahella australiensis</i>. The tree was rooted by mid-point rooting and visualized using iTOL [56]. Tree scale, substitutions per site. 	693	genome without detected proviruses are shown in black. Branches without labels
 and only values above 70% are shown. Some proteins have identical amino acid sequences in more than one organism. The protein labelled 'Bacteria inc. POLV1 <i>Fervidobacterium</i> spp.'corresponds to accession number WP_011994748.1 and is found in <i>Fervidobacterium nodosum</i> Rt17-B1 (NC_009718.1), <i>Fervidobacterium pennivorans</i> DSM 9078 (NC_017095.1), <i>Fervidobacterium islandicum</i> (NZ_CP014334.1), <i>Fervidobacterium gondwane</i>nse DSM 13020 (FRDJ01), <i>Petrotoga olearia</i> (PNR98053) and <i>Coprothermobacter proteolyticus</i> (PXJB01). The protein labelled 'Bacteria inc. <i>Mahella australiensis</i> MAV1, <i>Pseudothermotoga elfii</i>' corresponds to accession number WP_013782344.1 and is also found in <i>Clostridium</i> sp. SYSU GA15002T (NZ_CP040924.1), <i>Thermoanaerobacter thermocopriae</i> JCM 7501 (NZ_KI912455.1), <i>Pseudothermotoga elfii</i> and MAV1 from <i>Mahella australiensis</i>. The tree was rooted by mid-point rooting and visualized using iTOL [56]. Tree scale, substitutions per site. 	694	represent Firmicutes without an identified Group 2 provirus. Homologs from incomplete
 sequences in more than one organism. The protein labelled 'Bacteria inc. POLV1 <i>Fervidobacterium</i> spp.'corresponds to accession number WP_011994748.1 and is found in <i>Fervidobacterium nodosum</i> Rt17-B1 (NC_009718.1), <i>Fervidobacterium pennivorans</i> DSM 9078 (NC_017095.1), <i>Fervidobacterium islandicum</i> (NZ_CP014334.1), <i>Fervidobacterium gondwane</i>nse DSM 13020 (FRDJ01), <i>Petrotoga olearia</i> (PNR98053) and <i>Coprothermobacter proteolyticus</i> (PXJB01). The protein labelled 'Bacteria inc. <i>Mahella australiensis</i> MAV1, <i>Pseudothermotoga elfii</i>' corresponds to accession number WP_013782344.1 and is also found in <i>Clostridium</i> sp. SYSU GA15002T (NZ_CP040924.1), <i>Thermoanaerobacter thermocopriae</i> JCM 7501 (NZ_KI912455.1), <i>Pseudothermotoga elfii</i> and MAV1 from <i>Mahella australiensis</i>. The tree was rooted by mid-point rooting and visualized using iTOL [56]. Tree scale, substitutions per site. Fig. 5. Electron micrographs of the induced virus and vesicles, stained with 2% 	695	proviruses are labeled with "(in)". Circles on the branches represent bootstrap support,
 <i>Fervidobacterium</i> spp.'corresponds to accession number WP_011994748.1 and is found in <i>Fervidobacterium nodosum</i> Rt17-B1 (NC_009718.1), <i>Fervidobacterium pennivorans</i> DSM 9078 (NC_017095.1), <i>Fervidobacterium islandicum</i> (NZ_CP014334.1), <i>Fervidobacterium gondwane</i>nse DSM 13020 (FRDJ01), <i>Petrotoga olearia</i> (PNR98053) and <i>Coprothermobacter proteolyticus</i> (PXJB01). The protein labelled 'Bacteria inc. <i>Mahella australiensis</i> MAV1, <i>Pseudothermotoga elfii</i>' corresponds to accession number WP_013782344.1 and is also found in <i>Clostridium</i> sp. SYSU GA15002T (NZ_CP040924.1), <i>Thermoanaerobacter thermocopriae</i> JCM 7501 (NZ_KI912455.1), <i>Pseudothermotoga elfii</i> and MAV1 from <i>Mahella australiensis</i>. The tree was rooted by mid-point rooting and visualized using iTOL [56]. Tree scale, substitutions per site. Fig. 5. Electron micrographs of the induced virus and vesicles, stained with 2% 	696	and only values above 70% are shown. Some proteins have identical amino acid
 in Fervidobacterium nodosum Rt17-B1 (NC_009718.1), Fervidobacterium pennivorans DSM 9078 (NC_017095.1), Fervidobacterium islandicum (NZ_CP014334.1), Fervidobacterium gondwanense DSM 13020 (FRDJ01), Petrotoga olearia (PNR98053) and Coprothermobacter proteolyticus (PXJB01). The protein labelled 'Bacteria inc. Mahella australiensis MAV1, Pseudothermotoga elfii' corresponds to accession number WP_013782344.1 and is also found in Clostridium sp. SYSU GA15002T (NZ_CP040924.1), Thermoanaerobacter thermocopriae JCM 7501 (NZ_KI912455.1), Pseudothermotoga elfii and MAV1 from Mahella australiensis. The tree was rooted by mid-point rooting and visualized using iTOL [56]. Tree scale, substitutions per site. Fig. 5. Electron micrographs of the induced virus and vesicles, stained with 2% 	697	sequences in more than one organism. The protein labelled 'Bacteria inc. POLV1
 DSM 9078 (NC_017095.1), Fervidobacterium islandicum (NZ_CP014334.1), Fervidobacterium gondwanense DSM 13020 (FRDJ01), Petrotoga olearia (PNR98053) and Coprothermobacter proteolyticus (PXJB01). The protein labelled 'Bacteria inc. Mahella australiensis MAV1, Pseudothermotoga elfii' corresponds to accession number WP_013782344.1 and is also found in Clostridium sp. SYSU GA15002T (NZ_CP040924.1), Thermoanaerobacter thermocopriae JCM 7501 (NZ_KI912455.1), Pseudothermotoga elfii and MAV1 from Mahella australiensis. The tree was rooted by mid-point rooting and visualized using iTOL [56]. Tree scale, substitutions per site. Fig. 5. Electron micrographs of the induced virus and vesicles, stained with 2% 	698	Fervidobacterium spp.'corresponds to accession number WP_011994748.1 and is found
 Fervidobacterium gondwanense DSM 13020 (FRDJ01), Petrotoga olearia (PNR98053) and Coprothermobacter proteolyticus (PXJB01). The protein labelled 'Bacteria inc. Mahella australiensis MAV1, Pseudothermotoga elfii' corresponds to accession number WP_013782344.1 and is also found in Clostridium sp. SYSU GA15002T (NZ_CP040924.1), Thermoanaerobacter thermocopriae JCM 7501 (NZ_KI912455.1), Pseudothermotoga elfii and MAV1 from Mahella australiensis. The tree was rooted by mid-point rooting and visualized using iTOL [56]. Tree scale, substitutions per site. Fig. 5. Electron micrographs of the induced virus and vesicles, stained with 2% 	699	in Fervidobacterium nodosum Rt17-B1 (NC_009718.1), Fervidobacterium pennivorans
 and <i>Coprothermobacter proteolyticus</i> (PXJB01). The protein labelled 'Bacteria inc. <i>Mahella australiensis</i> MAV1, <i>Pseudothermotoga elfii</i>' corresponds to accession number WP_013782344.1 and is also found in <i>Clostridium</i> sp. SYSU GA15002T (NZ_CP040924.1), <i>Thermoanaerobacter thermocopriae</i> JCM 7501 (NZ_KI912455.1), <i>Pseudothermotoga elfii</i> and MAV1 from <i>Mahella australiensis</i>. The tree was rooted by mid-point rooting and visualized using iTOL [56]. Tree scale, substitutions per site. Fig. 5. Electron micrographs of the induced virus and vesicles, stained with 2% 	700	DSM 9078 (NC_017095.1), Fervidobacterium islandicum (NZ_CP014334.1),
 Mahella australiensis MAV1, Pseudothermotoga elfii' corresponds to accession number WP_013782344.1 and is also found in <i>Clostridium</i> sp. SYSU GA15002T (NZ_CP040924.1), <i>Thermoanaerobacter thermocopriae</i> JCM 7501 (NZ_KI912455.1), <i>Pseudothermotoga elfii</i> and MAV1 from <i>Mahella australiensis</i>. The tree was rooted by mid-point rooting and visualized using iTOL [56]. Tree scale, substitutions per site. Fig. 5. Electron micrographs of the induced virus and vesicles, stained with 2% 	701	Fervidobacterium gondwanense DSM 13020 (FRDJ01), Petrotoga olearia (PNR98053)
 WP_013782344.1 and is also found in <i>Clostridium</i> sp. SYSU GA15002T (NZ_CP040924.1), <i>Thermoanaerobacter thermocopriae</i> JCM 7501 (NZ_KI912455.1), <i>Pseudothermotoga elfii</i> and MAV1 from <i>Mahella australiensis</i>. The tree was rooted by mid-point rooting and visualized using iTOL [56]. Tree scale, substitutions per site. Fig. 5. Electron micrographs of the induced virus and vesicles, stained with 2% 	702	and Coprothermobacter proteolyticus (PXJB01). The protein labelled 'Bacteria inc.
 (NZ_CP040924.1), <i>Thermoanaerobacter thermocopriae</i> JCM 7501 (NZ_KI912455.1), <i>Pseudothermotoga elfii</i> and MAV1 from <i>Mahella australiensis</i>. The tree was rooted by mid-point rooting and visualized using iTOL [56]. Tree scale, substitutions per site. Fig. 5. Electron micrographs of the induced virus and vesicles, stained with 2% 	703	Mahella australiensis MAV1, Pseudothermotoga elfii' corresponds to accession number
 <i>Pseudothermotoga elfii</i> and MAV1 from <i>Mahella australiensis</i>. The tree was rooted by mid-point rooting and visualized using iTOL [56]. Tree scale, substitutions per site. Fig. 5. Electron micrographs of the induced virus and vesicles, stained with 2% 	704	WP_013782344.1 and is also found in <i>Clostridium</i> sp. SYSU GA15002T
 mid-point rooting and visualized using iTOL [56]. Tree scale, substitutions per site. Fig. 5. Electron micrographs of the induced virus and vesicles, stained with 2% 	705	(NZ_CP040924.1), Thermoanaerobacter thermocopriae JCM 7501 (NZ_KI912455.1),
 708 709 Fig. 5. Electron micrographs of the induced virus and vesicles, stained with 2% 	706	Pseudothermotoga elfii and MAV1 from Mahella australiensis. The tree was rooted by
709 Fig. 5. Electron micrographs of the induced virus and vesicles, stained with 2%	707	mid-point rooting and visualized using iTOL [56]. Tree scale, substitutions per site.
	708	
710 uranyl acetate. Panel a. The TAV1 virus particle, which shows a typical Siphoviridae	709	Fig. 5. Electron micrographs of the induced virus and vesicles, stained with 2%
	710	uranyl acetate. Panel a. The TAV1 virus particle, which shows a typical Siphoviridae
711 morphology. Panel b. Vesicles and toga fragments produced by <i>Thermosipho africanus</i>	711	morphology. Panel b. Vesicles and toga fragments produced by Thermosipho africanus
H17ap60334. Panel c. Vesicles produced by <i>Petrotoga</i> sp. 8T1HF07.NaAc.6.1, some of	712	

which are attached to a flagellum. **Panel d.** Sunflower-like structures inside *Petrotoga* sp.

714 8T1HF07.NaAc.6.1 cells. The structures are highlighted by arrows.

715

716 Supplementary Figures:

717

718 Supplementary Fig. S1. Panel A. Gene-sharing network of proviruses calculated in

719 VContact2. The network is based on shared protein clusters between viral genomes.

720 Only proviruses at most three nodes away from MPV1 and P8T1HF07V1 are shown. The

721 Thermotogota proviruses are colored in red, viruses from Firmicutes are blue and viruses

infecting other taxa are colored orange. The quality scores calculated by ClusterOne are

0.94 (p=0.00004) for the Group 1 cluster and 0.83 (p=0.006) for the Group-2 cluster.

724 **Panel B. Placement of proviruses on the phylogenetic tree of Thermotogota genomes**

725 reconstructed from 74 single copy protein-coding genes. Closely related genomes

(distance > 0.1), monophyletic genomes from the same genus, and clades consisting of

only metagenome assembled genomes were collapsed. Identified proviruses are indicated

next to their respective host genera. The tree was visualized in iTOL [56]. Tree scale,

729 substitutions per site.

730

731 Supplementary Fig. S2. Placement of complete Thermotogota and Firmicutes

732 proviruses on the viral proteomic tree. The viral proteomic tree is from ViPTree v. 1.9

[35], and only the relevant region of the tree is shown. The Thermotogota and Firmicutes

proviruses are labeled with red stars. Taxonomy of the related viruses and their hosts is

indicated as color bars next to a terminal leaf on the tree.

737 Supplementary Fig. S3. Maximum likelihood trees of three families of terminase

738 large subunit genes. The phylogenetic trees displayed were constructed using RAxML 739 as implemented in Geneious v. 10 with a GAMMA-WAG substitution model and 100 740 bootstrap replicates. The trees should be considered unrooted. Bootstrap support > 70% is 741 shown on branches as circles, with the size corresponding to the strength of support. 742 Taxonomic labels of Thermotogota with proviruses are shown in red bold font, with the 743 provirus name listed after the host name. Thermotogota homologs from genomes with no 744 detected provirus are listed in bold font. Numbers in front of each taxon name represent 745 database accession numbers. The tree was visualized in iTOL and rooted by midpoint 746 rooting and should be considered unrooted [56]. 747 748 Supplementary Fig. S4. Overview of CRISPR spacer sequences from Thermotoga 749 isolates from the Troll oil reservoir mapped on to the TAV1 genome. Alignment 750 position of each CRISPR spacer is indicated as black bars. Mapping and visualization 751 was performed in Geneious v. 10 and maximum of one mismatch was allowed. 752 753 Supplementary Fig. S5. Comparison of the three complete and two incomplete 754 Thermotogota Group 2 provirus sequences. Virus name and the genus the host belongs 755 to is indicated. The regions with significant pairwise BLASTX similarity scores are 756 connected, red indicates that sequence is in the same direction while blue indicates that 757 the similar sequences are on opposite strands. The predicted ORFs are color-coded based

on their function and should be considered approximate, because it relies only on gene

annotations. Selected gene annotations are included and abbreviated; HMT ATPase:

760	heavy metal translocating ATPase, FMN reductase: flavine mono nucleotide reductase,
761	HAD family phosphatase: haloacid dehalogenase superfamily of hydrolase),
762	dimethyladenosine trf: dimethyladenosine transferase, 2Fe-2S bp: 2Fe-2S binding p
763	rotein, MFS transporter: multi facilitator superfamily transporter. The figure was
764	produced using genoPlotR [27].
765	
766	Supplementary Fig. S6. Maximum likelihood trees of three potential virus receptor
767	genes. Panel A: Competence protein ComEA, Panel B: oxaloacetate decarboxylase
768	and Panel C: ATP-binding cassette, subfamily B. Bootstrap support > 70% is shown
769	on branches as circles, with the size corresponding to the strength of support. The names
770	of Thermotogota taxa that contain Group 2 proviruses are displayed in red font and
771	Firmicutes with Group 2-like proviruses are displayed in blue font. Clades containing
772	sequences from the same genus are collapsed into wedges. The trees were rooted using
773	midpoint rooting, and should be considered unrooted. The trees were visualized in iTOL
774	[56].
775	
776	Supplementary Fig. S7. Overview of the alignment of the ABC transporter ATP-
777	binding protein in Thermotogota and Firmicutes genomes with Group 2 proviruses.
778	Sites 100% conserved in all sequences sites are highlighted in color, while variable sites
779	are shown in grey. Transmembrane regions, predicted using the TMHMM Server v. 2.0,
780	are shown in red above the alignment (http://www.cbs.dtu.dk/services/TMHMM-2.0/).
781	

782 Supplementary Fig. S8. Maximum likelihood tree of the moron gene annotated as a

- 783 **cadmium transporter**. Bootstrap support > 70% is shown on branches as circles, with
- the size corresponding to the strength of support. Taxon names of Thermotogota with a
- provirus are given in red and taxon name of Firmicutes with a Group 2-like provirus are
- 786 given in blue. Provirus name is also indicated. Thermotogota homologs from genomes
- 787 with no detected provirus, or where the homolog is found outside the provirus region, are
- given in bold font. Database accession numbers are shown in front of taxonomic names.
- 789 The tree was rooted by midpoint rooting and visualized in iTOL [56].

Mesotoga sp. SC_TOLDC MTOLDCV1 (incomplete)

Mesoaciditoga lauensis MLV1

Kosmotoga pacifica KPV1

Thermosipho sp. 1074 T1074V1

Thermosipho africanus TAV1*

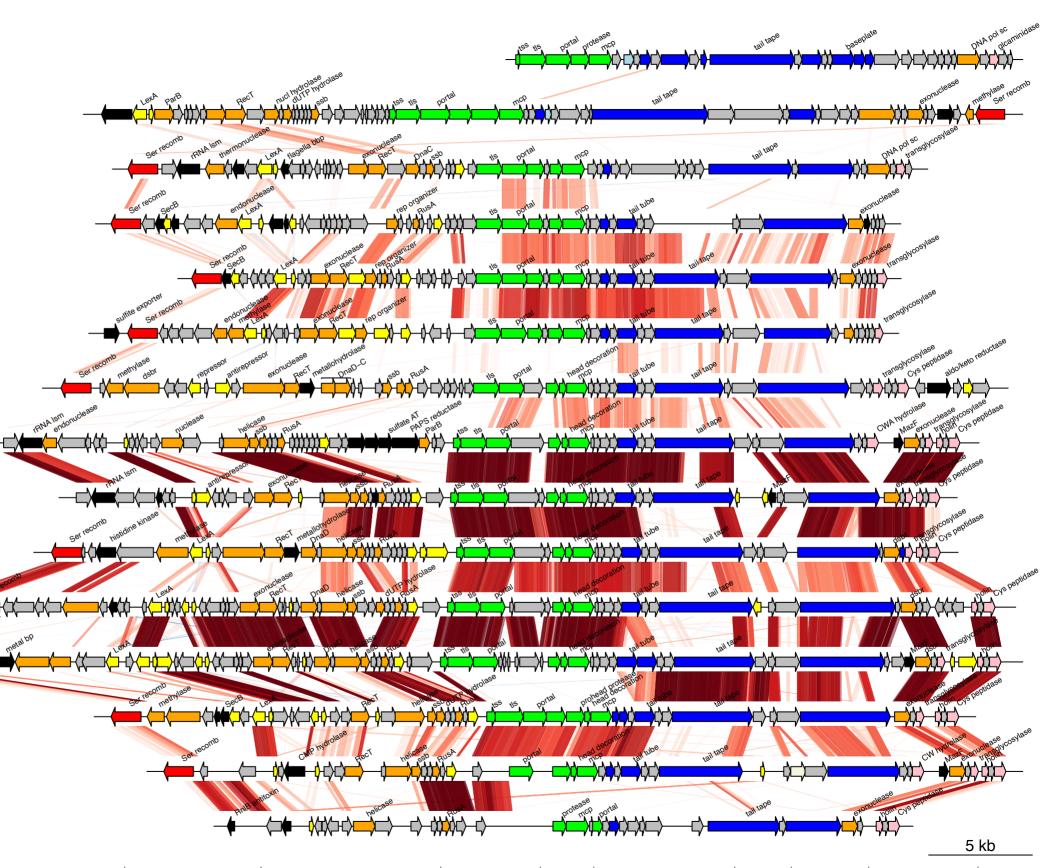
Thermosipho melanesiensis TMV1

Geotoga petraea GPV1

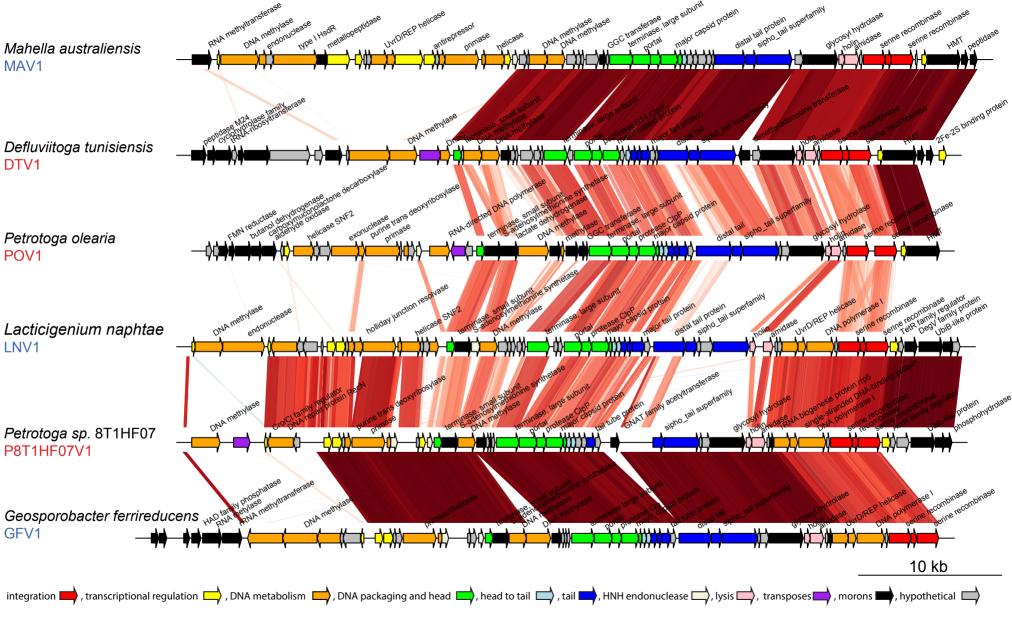
Marinitoga sp. 1138 M1138V1

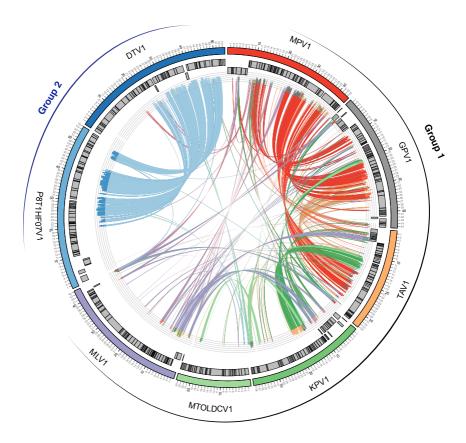
Marinitoga sp. 1135 M1135V1

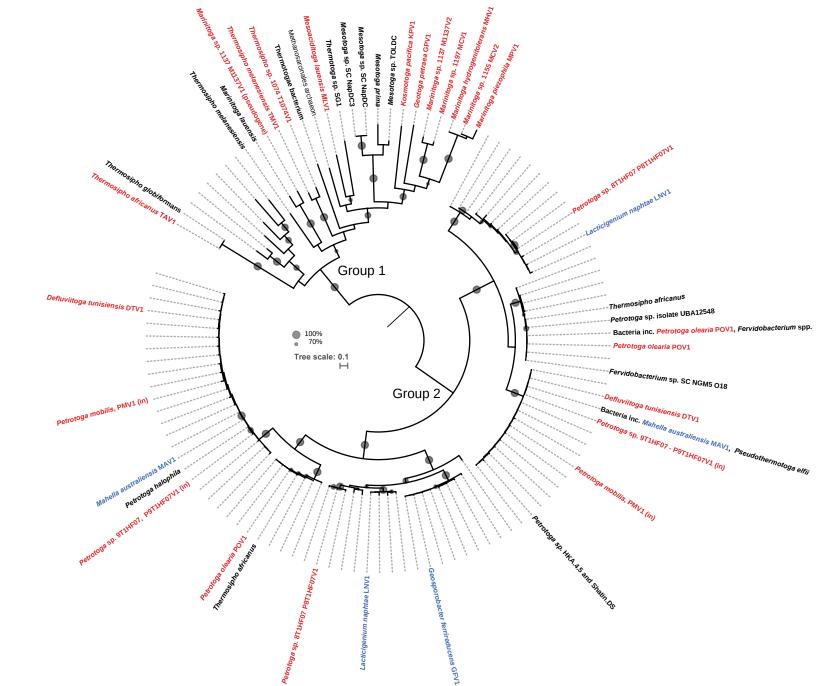
Marinitoga piezophila MPV1*

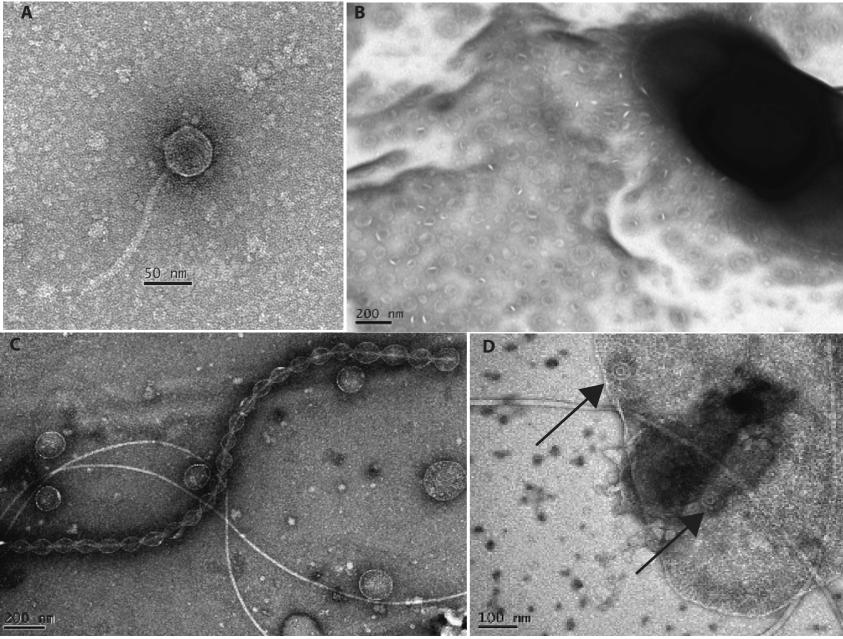

Marinitoga camini MCV2*

MCV1*


Marinitoga hydrogenitolerans MHV1


Marinitoga sp. 1137 M1137V2


M1137V1 (incomplete)



integration 📕 , transcriptional regulation 🖾 , DNA metabolism 📥 , DNA packaging and head 📥 , head to tail 📥 , tail 📥 , HNH endonuclease 📥 , lysis 📥 , morons 빠 , hypothetical 📖

