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ABSTRACT: Some properties of chaotic dynamical systems can be probed through features of recurrences, also called

analogs. In practice, analogs are nearest neighbors of the state of a system, taken from a large database called the catalog.

Analogs have been used in many atmospheric applications including forecasts, downscaling, predictability estimation, and

attribution of extreme events. The distances of the analogs to the target state usually condition the performances of

analog applications. These distances can be viewed as random variables, and their probability distributions can be related

to the catalog size and properties of the system at stake. A few studies have focused on the first moments of return-time

statistics for the closest analog, fixing an objective of maximum distance from this analog to the target state. However, for

practical use and to reduce estimation variance, applications usually require not just one but many analogs. In this paper,

we evaluate from a theoretical standpoint and with numerical experiments the probability distributions of theK shortest

analog-to-target distances. We show that dimensionality plays a role on the size of the catalog needed to find good

analogs and also on the relative means and variances of the K closest analogs. Our results are based on recently de-

veloped tools from dynamical systems theory. These findings are illustrated with numerical simulations of well-known

chaotic dynamical systems and on 10-m wind reanalysis data in northwest France. Practical applications of our deriva-

tions are shown for forecasts of an idealized chaotic dynamical system and for objective-based dimension reduction using

the 10-m wind reanalysis data.

KEYWORDS: Atmosphere; Statistics; Data science; Other artificial intelligence/machine learning

1. Introduction

Atmospheric analogs have been introduced by Lorenz

(1969) in a study on atmospheric predictability. The faster

one target state z and its closest analog a1 diverge from one

another, the harder it is to predict the evolution of z. In

Lorenz’s study, the state z was characterized by height

values of the 200-, 500-, and 850-hPa isobaric surfaces at a

grid of ’1000 points over the Northern Hemisphere. The

database of available analogs, called the catalog, contained

five years of twice-daily values. In his abstract, Lorenz states

that there are ‘‘numerous mediocre analogues but no truly

good ones.’’

Since Lorenz’s work, analogs have been used in many ap-

plications such as weather generators (Yiou 2014), data as-

similation (Hamilton et al. 2016; Lguensat et al. 2017), kernel

forecasting (Alexander et al. 2017), downscaling (Wetterhall

et al. 2005), nonlinear bias correction (Hamill et al. 2015),

climate reconstruction (Schenk and Zorita 2012; Fettweis et al.

2013; Yiou et al. 2013), and extreme event attribution

(Cattiaux et al. 2010; Jézéquel et al. 2018).
The reason why Lorenz could not find any good analog was

made clear later on by VanDenDool (1994). It was shown that

for high-dimensional systems, the mean return time of a good

analog (used as a proxy for a minimum catalog size) grows ex-

ponentially with dimension. This result is a variant for analogs of

the ‘‘curse of dimensionality,’’ well known in data sciences.

With three pressure levels over the whole Northern Hemisphere,

the dimension of Lorenz’s study was very high, and only

5 years of twice-daily data was not enough to hope finding a

good analog.

Nicolis (1998) added a dynamical systems’ perspective to

Van Den Dool’s analysis. She showed that studying mean re-

turn times was not enough, as the relative standard deviation of

this return time could be very high. Furthermore, it was shown

that return-time statistics exhibit strong local variations in

phase-space, so that certain target states may need a larger

catalog size to find good analogs.

Accounting for Van Den Dool’s findings, it is now usual to

reduce as much as possible the feature-space dimension before

searching for analogs. Also, the last decades have witnessed a

proliferation of data from in situ and satellite observations, as

well as outputs from numerical physics-based model. Such

conditions allow one to find good analogs in many situations,

and it has become standard to use not just one, but many an-

alogs (usually a few tens). From a statistical perspective, using

many analogs instead of one can increase estimation bias, but it

reduces estimation variance, so that the estimation is less

sensitive to noise. Using many analogs also allows us to per-

form local regression techniques on the analogs, such as local

linear regression (Lguensat et al. 2017). This technique has

proven efficient in analog forecasting applications (Ayet and

Tandeo 2018), and it was shown that local linear regression

allows analog forecasting to capture the local Jacobian of the

dynamics of the real system (Platzer et al. 2021).Corresponding author: Paul Platzer, paul.platzer@ifremer.fr
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This new context suggests focusing not only on the closest

analog a1, but also the kth closest analog, for k up to;40. The

number of analog used is usually the result of a trade-off be-

tween the number of available good analogs and the minimum

number of analogs required to perform a given task (for in-

stance, Yiou and Déandréis 2019; search for 20 analogs at each

step to perform ensemble analog forecasts). Also, one can now

reasonably hope to find good analogs using dimension reduc-

tion and a large amount of data. Thus, one is less interested in

return times, but rather in analog distances. That is, for a given

length of available data, how far will the closest analogs be?

Performances of analog-based methods are usually condi-

tioned by analog-to-target distances [see, for instance, the re-

lationship between analog distances and forecast performance

in Farmer and Sidorowichl (1988) and Platzer et al. (2021)]. In

this work, we propose to evaluate the probability distribution

of these distances. Our analytical probability distributions

make the link between analog-to-target distances, catalog size,

and local dimension. This brings new insight on the impact of

dimensionality on analog methods.

Section 2 outlines the theoretical framework and findings.

The section 3 shows implications of the findings and compares

the present analysis with past studies. Section 4 shows results

from numerical experiments of the three-variable Lorenz

(1963) system, the variable-dimension Lorenz (1996) system,

and from 10-m wind reanalysis data from the regional climate

model AROME, further referred to as ‘‘the AROME re-

analysis data.’’ Detailed derivations of the results of section 2

can be found in appendixes B and C.

2. Theory

a. Analogs in dynamical systems and local dimensions

We assume a dynamical system with an attractor set A, so

that (almost) all trajectories in the basin of attraction of A
converge to the attractor (Milnor 1985). For such systems, al-

most all trajectories starting from the attractor come back in-

finitely close to their initial condition after a sufficiently long

time (Poincaré 1890). Analog methods are based on the idea

that if one is provided with a long enough trajectory of the

system of interest, one will find analog states close to any point

z of the attractor A.

The trajectory from which the analogs are taken is called the

‘‘catalog’’ C and can either come from numerical model output

or reprocessed observational data. It can be seen either as a

trajectory from a discrete dynamical system or as evenly spaced

time samples from a continuous dynamical system. In any case,

the catalog has a finite number of elements noted L:5 card(C).
This catalog size may be divided by a typical correlation time

scale so that elements of the catalog can be considered inde-

pendent (Van Den Dool 1994). In fact, for the analogs of a

given target z to be considered independent, it is enough that

themaximum distance between any two analogs of z be smaller

than the minimum distance between any analog of z and its

neighbors in time (i.e., its successor and predecessor).

The structure of the attractor, expressed by the system’s

invariantmeasurem, conditions the structure of the catalog and

the ability to find analogs. In particular, Van Den Dool (1994)

and Nicolis (1998) studied the role of the attractor’s dimension

that we will now introduce. Let Bz,r the ball centered on z 2 A
and of radius r, then

d
z,r

:5
logm(B

z,r
)

logr
(1)

defines the finite-resolution (r-resolution) local dimension at

point z. As mentioned later in the text, this definition depends

on the unit used tomeasure the distance r, although only lightly

if r is small [see Eq. (13)]. For instance, relative temperature

differences are higher if measured in degrees Fahrenheit rather

than degrees Celsius, resulting in a smaller value of dz,r at fixed

r. However, in practice we estimate here dz,r based on Eq. (2)

which considers ratios of distances and is therefore unit inde-

pendent. There are many other ways to estimate dimension,

including ones that do not depend on the choice of unit [see, for

instance, the more global estimates of Wang and Shen (1999)];

however, Eq. (1) is the most suited to our purpose and deri-

vations, as appears clearly in appendix B.

Note that for ergodic measures,m(Bz,r) can be approximated

by counting the number of times a given trajectory enters Bz,r

[this is the consequence of the ergodic theorem of Birkhoff

(1931)]. In the following, we assume that m is ergodic and

stationary. This does not apply when nonstationary processes,

such as climate change, break the stationarity of m. Also, in

practice, periodic forcings such as seasonality make the struc-

ture of the attractor of a system such as the atmosphere vary

between winter and summer. Therefore, analogs must be

searched within a given time window around the calendar date

of the target z, so that the subsampling allows us to recover an

invariant measure (see Lorenz 1969; Yiou and Déandréis
2019). For a discussion on the modification of the invariant

measure due to seasonality and nonperiodic forcing, see Robin

et al. (2017).

Assuming that m is ergodic and that lim
r/0

dz,r exists, m is said to

be exact dimensional and the limit is independent of z (Young

1982). This typical value of the local dimension is the order-one

Renyi dimension, also called information dimension, or at-

tractor dimension, and is here noted D1. It is a typical value in

the sense that for every z and for small enough r, dz,r is close to

D1. Also, D1 can be estimated by taking the average of the

estimates of local dimension (see next section):

D
1
:5 lim

r/0
d
z,r
.

The finite-resolution local dimension dz,r, however, can de-

viate from the typical value D1. More precisely, dz,r exhibits

large deviations from its limit value. The amplitude of these

deviations depends on (2logr)21/2 and on the spectrum of

fractal dimensions (for more details, see Caby et al. 2019).

These definitions of dimension correspond to the notion of

attractor dimension, which comes from the field of dynamical

systems. There are strong connections with othermathematical

objects used to estimate dimensionality in computer science

and machine learning. These include the doubling dimension

(Gupta et al. 2003) and expansion dimension (Karger andRuhl

2002) which are related to ratios of volume occupied by data,

and the intrinsic dimension (Houle 2013), which is related to
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the minimum number of variables needed to correctly repre-

sent a dataset. The local intrinsic dimension as defined by

Houle (2017) is closely related to the local attractor dimension

dz,r which is used in the present study.

The definitions ofBz,r, dz,r, andD1 depend on themetric that

is used to evaluate distances. However, we show in appendix A

that the limit value D1 is independent of the choice of metric;

therefore, dz,r is also expected to depend only lightly on the

metric that is used. The theoretical results expressed in this

paper in the limit of small distance r / 0 (or, equivalently, of

large catalog L / 1‘) are valid whatever the metric used.

Note that this does not apply to measures of similarity such as

correlation or statistical divergence, that are not actual metrics

(of which we recall the definition in appendix A).

All these definitions are valid in the limit of small distance r,

which can be hard to achieve in high dimension due to the

concentration of norms or ‘‘curse of dimensionality’’ (Verleysen

and François 2005). The effect of the curse of dimensionality on

the estimation of dimensions following Eq. (1) was studied ana-

lytically and numerically by Pons et al. (2020), with effects starting

to be nonnegligible in dimension ’40. In the numerical experi-

ments presented here, we have checked empirically that the

concentration of norms was small enough.

The distance from the kth analog ak(z) 2 C to the target state
z is noted rk(z):5 dist[ak(z), z]. To lighten notations, we will

often make the z dependency implicit, writing simply ak and rk
rather than ak(z) and rk(z). Analog-to-target distances always

depend on a target z, and the only way to remove this depen-

dency would be through averaging, which is done only in

section 4e. Distances are sorted so that r1(z) , r2(z) , ��� ,
rK(z), and K is the total number of analogs considered.

Empirical methods usually setK to a fixed value, reaching for a

bias-variance trade-off. A small value of K typically increases

the variance of the analog method, for instance, in the case of

observation noise. Raising the value of K allows us to average

out this variability. However, a too large value of K would

include analogs that are too far from the target and not rele-

vant, therefore raising bias. For an example of this bias-

variance trade-off, see Platzer et al. (2021). This amounts to

looking at a lower quantile of the function x1dist(z, x).

Another possibility is to set a threshold R for the analog-to-

target distances so that rK(z), R, rK11(z). In this case, K(z)

depends on z. This is referred to as the epsilon nearest neighbor

search. However, in the numerical experiments of this paper

we always set K to a fixed value.

b. Simple scaling of analog-to-target distance with local
dimension

Using extreme value theory and dynamical systems theory,

Caby et al. (2019) showed that dz,r can be estimated using the

empirical cumulative distribution function (CDF) of points

inside a ball of exponentially decreasing radius:

F
z
(s)5

m(B
z, rKe

2s)

m(B
z, rK

)
,

where s takes values according to the available data, that is, for

the kth analog of z, sk 5 2log(rk/rK), and Fz(s)5k/K. This

empirical distribution is thus the CDF of theK closest available

analogs. It follows from Caby et al. (2019) that, for regular

enough measures, Fz(s)’ e2ds, where d5 dz,rK . Therefore, an

estimate of dz,rK is given by

d
z,rK

’

�
�
K

k52

(s
k
2 s

k21
)F

z
(s

k
)

�21

5

�
�
K

k52

k

K
log

�
r
k21

r
k

��21

.

(2)

In the following and unless otherwise noted, ‘‘the local di-

mension,’’ or d, both refer to dz,rK , which is estimated using the

above formula. Exceptions will arise in appendix B where a for-

mal proof is given and d might refer to dz,r as defined in Eq. (1).

A practical application of Eq. (2) with the system of Lorenz

(1963) (see appendix D for a formal definition of this system) is

given in Fig. 1. Another way to estimate dz,rK is not to use di-

rectly Eq. (2) but rather to make a least squares fit of the em-

pirical CDF, Fz(s), assuming an exponential shape Fz(s)’ e2s/s

and returning the obtained value s21. As can be seen in the ex-

ample of Fig. 1, both methods give similar results.

Also following Caby et al. (2019), we can estimate the at-

tractor dimension D1 from the average of realizations of dz,rK

inside the catalog:

D
1
’

1

L
�
z2C

d
z,rK

, (3)

where it is taken care of that the neighbors in time of z 2 C are

not included in the list of analogs [ak(z)]k51,. . .,K. Caby et al.

(2019) use this approximation to estimate the attractor di-

mension of the system of Lorenz (1963, hereafter noted L63) as

2.06, which is in agreement with values found in the literature.

The approximation Fz(s)’ e2ds implies the scaling of rk(z)

with k:

r
k
(z); k1/d , (4)

where again d5 dz,rK is the local dimension at finite resolution rK.

Equation (4) already reveals an important point of our

analysis, which is the scaling of rk with k, and is approximately

given by a power-lawwith exponent 1/d. However, this formula

comes from a work on local dimensions, not analog-to-target

distances. It is therefore not surprising that some of the ele-

ments required for our study are missing. In particular, this

scaling does not give the constant in front of k1/d, in which

resides the relation to the catalog size, a crucial point for analog

applications. Also, it only gives a mean or typical value of rk(z),

while our objective is to evaluate the probability distribution of

rk(z) at fixed z and L, or at least the probability of departures

from this mean scaling.

The next section gives the full probability distribution of

rk(z) for a fixed target z as a function of the local dimension, the

catalog size, and the analog number k.

c. Full probability distribution of analog-to-target distance

In appendix Bwe show themain result of this paper, which is

that, assuming fixed and known values of L, k, and dz,rK the kth

analog-to-target distance rk(z) follows the following proba-

bility density function:
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p
k
(r)5 dLrd21 (Lr

d)
k21

(k2 1)!
e2Lrd , (5)

where pk(r) is defined through P(rk 2 [r, r1 dr))5pk(r)dr,

and the variables rk and d both depend on z. Equation (5) was

obtained neglecting the variations of dz,r with r, and therefore,

in practice we assume that d5 dz,rK and that it is estimated from

Eq. (2) with a fixed value ofK. The value of d is thus assumed to

be independent of k. This is consistent with practical applica-

tions where the limited available data do not allow us to evaluate

fine variations of dz,r with r, but where clear variations of dz,rK

with z are witnessed and reveal different dynamical situations

(Faranda et al. 2017). Therefore, in this section d always refers to

dz,rK . An alternative proof for Eq. (5) using K largest-order

statistics from extreme value theory is given in appendix C.

Equation (5) then allows us to compute the mean and vari-

ance of rk for fixed k, z, L, and d:

hr
k
i5

G

�
k1

1

d

�
L1/dG(k)

, (6a)

hr2ki2 hr
k
i2 5 1

L2/dG(k)2

�
G

�
k1

2

d

�
G(k)2G

�
k1

1

d

�2�
,

(6b)

where G is Euler’s gamma function. These identities can

be simplified through scalings of the gamma function

G(x1 1)5
Ð 1‘

0
uxe2u du for large x, using Laplace’s method up

to second order to evaluate the integral (the first order gives

Stirling’s formula). This gives the following expressions for the

mean and relative standard deviation:

hr
k
i’
�
k

L

�1/d

, (7a)

(hr2ki2 hr
k
i2)1/2

hr
k
i ’

1

dk1/2
, (7b)

where we recover the scaling rk ; k1/d of Eq. (4). These ap-

proximations are the result of Taylor expansions for large k

fromEqs. (6a) and (6b), andwill therefore be increasingly valid

as k grows. However, even for k 5 1, Eqs. (7a) and (7b) give a

satisfactory numerical approximation of Eqs. (6a) and (6b).

If kd . 1, one can also compute rk*, the value of r for which

pk reaches a maximum:

r
k
*5 argmax

r
[p

k
(r)]5

0
B@k2

1

d
L

1
CA

1/d

,

and when kd # 1, rk*5 0 and pk(0) 5 1‘. Note that the three

quantities hrki, (k/L)1/d and rk* are equivalent as k / 1‘.
Equation (5) calls for the rescaling of rk by L1/d, later on

referred to as the catalog density. The probability distribu-

tion ~pk of the rescaled analog-to-target distance uk 5 L1/drk
can be computed by imposing the change of variable

~pk(u)du5 pk(r)dr, giving

~p
k
(u)5 dud21 ud(k21)

(k2 1)!
e2ud , (8)

which shows that after rescaling by the catalog densityL1/d, the

probability density is independent of L.

Figure 2 shows plots of ~pk(u) against u for varying values of d

and k. As a consequence of the scaling uk ; k1/d, we observe

large variations of huki with k for small dimensions d, and very

small variations of huki with k for large dimensions d. Note

that, in the limiting case d/‘, the random variables rk are

degenerate and all equal L21/d almost surely. This can be

witnessed through the different scales of the horizontal axis of

FIG. 1. Computing the finite-resolution local dimension d5dz,rK at a point z of the three-variable L63 system,

usingK5 40 analogs. (a) Following fromCaby et al. (2019), we evaluate d by taking themean of the empirical CDF

of analog distance in logarithmic scale. For this example, fitting the empirical CDF with an exponential exp(2s/s)

and taking the inverse of s gives approximately the same value for dz,rK . (b) Target z (black star) and one in three

analogs [colored dots matching (a)]. The trajectories from which the analogs are taken are in gray. In this example,

the smallest analog-to-successor distance is much larger than the largest analog-to-target distance (the successors

are not even visible in the figure).
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the plots. This result is the consequence of the contraction of

norms in high dimension, which can cause the search for ana-

logs to be meaningless. In particular, Beyer et al. (1999)

showed that, under reasonable conditions, the ratio between

the distance from a target state z to its nearest neighbor r1 and

the distance to the farthest point in a dataset rL equals 1 for

infinitely high-dimensional systems. Finally, it might seem

counterintuitive that large values of the horizontal axis are

observed in low dimension and not in high dimension, but this

is only because the L21/d factor was removed by rescaling.

Figure 2 is still consistent with Eq. (7a) which shows that hrki is,
at fixed L, a growing function of the local dimension d.

Also, as a consequence of Eqs. (7), we have that the standard

deviation of rk is a growing function of k for d , 2, while it is

constant for d 5 2 and decreasing for d . 2. However, the

relative standard deviation of rk is always a decreasing function

of k and d according to Eq. (7b).

d. Normalization and convergence to the standard
normal distribution

In this section, we go further from the rescaling uk, and

propose a normalization of the variable rk (at fixed z) that

depends on the local dimension d5dz,rK , on the value of k,K,

and on the catalog size L. Equations (7a) and (7b) suggest the

change of variables from rk to yk as

y
k
:5dk1/2

"�
L

k

�1/d

r
k
2 1

#
.

Then one can define the probability density function hk(y)

of the normalized kth analog-to-target distance, so that y 5
dk1/2[(L/k)1/d(r 2 1)] and hk(y)dy 5 pk(r)dr. This gives

h
k
(y)5

kk21/2

(k2 1)!

�
11

y

dk1/2

�dk21

exp

�
2k

�
11

y

dk1/2

�d�
, (9)

and simple asymptotic analysis gives

lim
k/1‘

h
k
(y)5

1ffiffiffiffiffiffi
2p

p exp

�
2
y2

2

�
,

which shows that the distribution of the normalized random

variable yk approaches the standard normal distribution for

large k. Note, however, that this limit cannot be fully ob-

served in practice, as the distribution of Eq. (5) is valid only

in the limit of large catalog size and with k � L. In practice,

as the convergence is in k21/2, the relative difference

FIG. 2. Probability density functions of uk 5 L1/drk, the rescaled kth analog-to-target distance, for fixed values of

k, and of the local dimension d, fromEq. (8). The dimension equals (a) 1.3, (b) 2, (c) 5, and (d) 15, and is assumed to

be independent of k. All densities ~pk are normalized by their maximum value. Dashed vertical lines indicate the

exact mean value L1/dhrki from Eq. (6a), while dotted vertical lines indicate the approximate value k1/d from

Eq. (7a). The argmax values of ~p1, ~p15, and ~p30 are shown respectively with squares, circles, and triangles.
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between hk and the standard normal distribution is of’15%

for k 5 40.

e. Distances in observation space

In practice, one is very rarely able to observe the full state z,

but rather an observable y 5 f(z) defined through a vector-

valued function f :A1Rn. In this case, the appropriate mea-

sure on the space of observations is m+f21, where f21 is the

inverse image of f that acts on sets (not vectors), and can

therefore be defined even when f is not invertible. This allows

us to define an observation-based dimension:

df
z,r 5

logm+f21(B
f (z),r

)

log r
.

The limit lim
r/0

df
z,r, when it exists, is a function of D1 and of

properties of f. For instance, if f is differentiable and its

Jacobian matrix at z is of rankm. 0, then lim
r/0

df
z,r 5min(m, D1).

Also, it is easy to find examples where f is quadratic, and its

Jacobian matrix at z is zero, and therefore, lim
r/0

df
z,r 5D1/2. This

shows that there are a variety of ways in which the ob-

served dimension can be lower than the actual attractor di-

mension. For more details, see Caby et al. (2020).

However, if we keep the hypothesis that m is ergodic and z

is a nonperiodic point, we can conduct the same analysis as in

appendix B but replacing m by m+f21, z by y5 f(z), and dz,r by

df
z,r. Adding the hypothesis that f is C‘ and that df

z,r exists and

has a finite limit as r / 0, we recover Eq. (5), only replacing d

by df.

Therefore, the statistics of analog-to-target distances in ob-

servation space also follow Eq. (5), this time with a dimension

that depends not only on the dynamical system, but also on

properties of the observable.

3. Consequences for applications of analogs

a. Comparison with previous studies

The pioneering work of VanDenDool (1994) focuses on the

minimum length of catalog needed to have a 95% chance to

find at least one analog with a distance below a low threshold «.

With our notations, this condition can be written

LjP(r
1
, «). 0:95.

VanDenDool (1994) uses aGaussian approximation for the

difference between two states, which is reasonable in high di-

mensions. Then P(r1 , «)5 12 (12aD1 )
L
, where a is the

probability that the distance between two arbitrarily chosen

states is less then « and can be expressed as the integral of a

Gaussian probability density function. For small «, a5O(«)

and aD1 � 1. This finally suggests

L.
log 0:05

log(12aD1 )
’

2log 0:05

aD1
. (10)

Similar results can be found from Eq. (5). Indeed, one has

P(r1 , «)5
Ð «
0
p1(r) dr5 12 [exp(2«d)]L, so that a ’ «. Here,

D1 is replaced by the local finite-resolution dimension d5dz,rK .

Thus, our analysis encompasses the one of VanDenDool (1994).

Nicolis (1998) extended the work of Van Den Dool (1994).

Interpreting Eq. (10) in terms of mean return times and using

the formula from Kac (1959), she found an expression of mean

return times using the identity mz,r ’ rD1 and a mean velocity.

This theoretical analysis includes neither variations in phase

space of the return time, nor variability of the return time due

to the variability of the catalog for fixed L. However, Nicolis

(1998) performed empirical estimates of such variations of the

return time, shading light on the pitfalls of an analysis limited

to mean return times.

In the present paper, the point of view switches from sta-

tistics of return times to statistics of analog-to-target distance,

and is extended to theK closest analogs rather than just the first

one. The full probability distribution of Eq. (5) gives a detailed

view of the variability of the process of searching for analogs.

Note that our work has many connections to the one of

Houle (2017), who also studied probability distributions of

distance functions. However, we are not aware of any pub-

lished work giving probability distributions of analog distances

such as in Eq. (5).

b. Searching for analogs: Consequences

The full probability distribution of Eq. (5) has many con-

sequences for the practical search of analogs.

For very low-dimensional systems (D1 , 2), the first analog-

to-target distance has a lower variability than the next ones, so

that a given value of r1 will be more representative of the next

values of r1 than a given value of r10 would be of the next values

of r10. The inverse phenomenon happens for higher dimen-

sional systems (D1 . 2). This can be taken into account to

evaluate the expected performances of analog methods.

Also, the scaling rk ; k1/d implies that the growth with k of

the mean analog-to-target distance is much faster for low-

dimensional systems (D1 & 2), so that the thirtieth analog

would be much farther from z than the first one. Again, this is

consistent with the work of Beyer et al. (1999) on the con-

centration of norms in high dimensions. In low dimension, the

sensitivity of analog-to-target distances to the choice ofK (i.e.,

the number of analogs used) is thus higher than in high di-

mension. In practice, in the case of a sparse catalog (i.e., if the

density of pointsL1/d is not large enough to ensure finding very

close analogs), a low value of Kmight be preferred in order to

avoid using analogs too far away from the target. Conversely,

in high dimension and with a similar density L1/d, using a small

or a large number of analogs should not play an important role

on analog-to-target distances. However, note that the most

important factor driving analog-to-target distances remains the

catalog density L1/d, which is higher in low dimension if the

catalog size L is fixed. Therefore, our analysis is still consistent

with the fact that, for a given size of dataset, better analogs will

be found in low attractor dimension than in high attractor di-

mension. The higher sensitivity of analog-to-target distances to

K in low dimension is only true ifL1/d is fixed, whichmeans that

we are comparing the case of a low dimension d and a small

catalog size L to the case of a high dimension and a large

catalog size.

For instance, Lguensat et al. (2017) use analogs to pro-

duce forecasts of several well-known dynamical systems, setting
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K 5 40, while the use of Gaussian kernels with a variable

bandwidth equal to lz 5 mediankrk allows us to give a very low

weight to analogs at distance rk . lz. One might think that the

filtering out of analogs with rk . lz makes the forecast proce-

dure relatively insensitive to the choice of K. Conversely, as-

suming that lz ’ hr[K/2]i, where [K/2] is the integer part of K/2,

we have that lz grows with K as lz ; K1/d. Thus, for low-

dimensional systems such as the one of L63 for whichD1’ 2.06,

our results suggest that in the caseof a low sampling density, high

values of K might have detrimental effects on the efficiency of

analog methods. This affirmation is tested in section 4b.

However, note that here we focus on analog-to-target dis-

tances assuming that they are an important driving factor of the

efficiency of analog methods, but in practice many other pa-

rameters come into play, such as the choice of the proper

metric, or the choice of the feature space. The tuning of analog

methods does not reduce to the objective of minimizing

analog-to-target distances. Nevertheless, our results can be

used, with caution, to indicate tendencies and general behav-

iors of analog methods.

In particular, the scaling hrki ; (k/L)1/d can be used in the

context of dimension reduction. Assume that one wants to

perform a statistical task that necessitates K analogs (for in-

stance, an ensemble forecast). Then assume that one wants to

reduce the dimension in order to have hrKi , «. From the

scaling hrki ; (k/L)1/d, we find that the dimension must be

reduced to at least dmax,K 5 {1 2 [log(K)]/[log(L)]}dmax,1.

Detailed arguments and a practical example are given in

section 4e. Thus, for instance, if the criterion hr1i, « is met for

dmax,1 5 10 and if L 5 104, then the criterion hr25i , « will be

met only for dmax,25 5 6. This shows that any dimension re-

duction performed with the objective of decreasing analog

distances strongly depends on how many analogs are required.

Finally, the joint distribution of analog-to-target distances

from appendix C theoretically allows us to express the proba-

bility distributions of any random variable of the form�kvkr
p
k ,

where (vk)k are weights and p is a positive integer. Such

quantities can give error bounds for analog methods [see

Platzer et al. (2021) for the case of analog forecasting].

However, a closed form for the distribution of such variables is

yet to be derived.

4. Numerical experiments

a. Three-variable Lorenz system

Using the procedure of Caby et al. (2019), one estimates the

local finite-resolution dimension d5 dz,rK for any point z using

the K closest analogs in the system of L63. This procedure is

illustrated in Fig. 1. Then the scaling of Eq. (7a) is used to

make a least squares fit from the data:

r
k
(z)’LS C(z)k1/d , (11)

where rk(z) is the observed kth analog-to-target distance and

’LS means that the constant C(z) is evaluated with least

squares from Eq. (11). Figure 3 shows an application of this

procedure for a given z of the L63, plotting the real values of

rk(z), and using C(z)k1/d as an approximation for hrk(z)i and
dotted lines show the standard deviation around themean from

the approximate relative standard deviation given in Eq. (7b).

From Eqs. (11) and (7) one expects to find

C(z)’L21/d ; (12)

however, as L takes large values (from 105 to 107 or more), a

small estimation error for d results in a large estimation error

for L21/d. Another way to look at this estimation issue is that d

is relatively insensitive to a rescaling of distances or a change of

unit. Let

d 0
z,r 5

logm
z,r

log(r/r)
, (13)

FIG. 3. Analog-to-target distance rk, against analog number k at the same point z as in Fig. 1. (a) Log scale and

(b) linear scale. Full circles are the empirical points given by the analogs. The dashed dark line is the best fit from

Eq. (11), where d is fixed (fromCaby’smethod) andC is estimated with least squares in log scale.Assuming that this

fit gives an estimation of the mean, the dotted lines represent approximate standard deviation around this mean,

assuming that the relative standard deviation is given by Eq. (7b).
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where r is a scalar value and r/r is a rescaled version of r, or

equivalently r expressed in a different unit system. Note that

we use mz,r and not mz,r/r as we only changed the unit of r, not

the actual distance it represents. Then d0
z,r ; dz,r as long as

jlogrj � jlogrj. In particular, themethod of Caby et al. (2019) is

insensitive to a change of unit, as it involves only ratios of

distances [see Eq. (2)]. Thus, Eq. (12) does not hold when C

and d are determined as explained above. This is why C(z) is

rather evaluated through Eq. (11), which allows one to find the

scaling factor r(z) defined through

C(z)5
r(z)

L1/d
. (14)

Note that similar issues are raised by Faranda et al. (2011)

regarding the continuity of mz,rwith respect to r and its limiting

behavior for small r, which motivates Lucarini et al. (2014) to

postulate that mz,r is the product of rD1 and a slowly varying

function of r, which is in some sense equivalent to our hy-

pothesis that C(z) has to be rescaled with r(z) when the local

dimension is estimated from the method of Caby et al. (2019).

The fact that r(z) varies with z (and is thus not exactly a

change of unit) can be explained by the possibility for two

points z1 and z2 to have the same local dimension dz1 ,rK 5dz2 ,rK ,

but not to be visited at the same frequency by the system. A

simple example of such a situation is any nonuniform, one-

dimensional, continuous random variable. For such a variable

Z, there exists values z1 and z2 such that the probability forZ to

lie in the vicinity of z1 is higher than in the vicinity of z2, and

yet dz1,rK 5 dz2,rK 5 1.

Equations (11) and (14) are tested in numerical experiments

using the system of L63, with results reported in Fig. 4. Analogs

of a fixed target point z are sought for in 3 3 600 independent

catalogs, with three different catalog sizes. Each catalog is built

from a random draw without replacement of L points inside a

(common) trajectory of 109 points, generated using a Runge–

Kutta numerical scheme with a time step of 0.01 in usual

nondimensional notations. The dimension is calculated using

K 5 150 points, where this number is justified by a bias-

variance trade-off: using this number and testing the procedure

on 100 points picked from the measure m, one finds a mean

dimension D1 from Eq. (3) between 2.03 and 2.04, which is

coherent with values reported by Caby et al. (2019), and a

standard deviation of ;0.26. Using a lower value of K results

in a higher variance, and using higher values results in biases

that are dependent on the value of L used in this study. For

more details on the distribution of local dimensions in the

system of L63 the reader is referred to Faranda et al. (2017).

The consistency of empirical densities of r across varying

values of L validates the scaling of C with L and d. Empirical

probability densities of rescaled analog-to-target distances,

also consistent across varying catalog sizes, are coherent with

the theoretical probability densities fromEq. (5). The values of

the rescaling parameter r are not surprising, as typical values

of distances between points in the attractor are ;16 and

maximum distances are ;28. Note that Nicolis (1998) uses a

rescaling in studying analog return times with Lorenz’s three-

variable system, dividing all distances by the maximum dis-

tance between two points on the attractor. The fact that r(z)

exhibits seemingly large values is only the result of the choice

of variables in the system of L63. For instance, it is possible to

make a change of variables that would result in a system having

the same chaotic properties, the same dimension, defined by

almost the same dynamical equations, but with variables

spanning smaller ranges, which would give numerical values of

r(z) close to 1 (see appendix D).

Repeating this experiment for different target points z gives

similar results. Values of r are on the same order of magnitude

as the ones reported in Fig. 4. The consistency across varying

values of L is almost always recovered, except for some points

that have slightly higher dimensions d* 2:15 (not shown). We

expect this to come from a bad choice ofKwhen estimating the

dimension and the rescaling factor: the choice of K 5 150 is

relevant for most points, but should be adapted to the local

dimension. Moreover, the use of other metrics (Manhattan,

order-8 Minkowski, Chebyshev) has a very small influence on

the results presented in Fig. 4.

Finally, we have conducted the same experiments but using

observations of the first coordinate of the Lorenz system. The

results are shown in Fig. 5. Again, the numerical data fit the

theory, with an observed dimension close to 1 as expected.

These last numerical experiments confirm the fact that our

theory can be applied to observables of dynamical systems.

b. N-variable system of Lorenz (1996)

In sections 2c and 3b, we state that for a fixed catalog local

density L1/d, the sensitivity of analog-to-target distances with k

is stronger in low dimension. We also make the link between

this sensitivity and the choice ofK to be made for the efficiency

of analog methods. Here we propose a simple illustration with

analog forecasting on the system of Lorenz (1969) (see

appendix D for a description of the system).

We use a time step of 0.05 (nondimensional units) to gen-

erate catalogs. We perform one forecast experiment with N 5
12 variables and another withN5 20 variables. DimensionsD1

were estimated from Eq. (3) on an independent trajectory of

105 points, andwith full, perfect observation catalogs of size 105

for each value of N (these were not the catalogs used to per-

form forecasts). This gives values of D1 ’ 8 when N 5 12 and

D1 ’ 12 when N 5 20.

For the forecast experiment, we set the mean attractor

density toL1/D1 ’ 3:5. This number is intentionally low, placing

ourselves in a situation where using too many analogs can be

detrimental to the efficiency of analog forecasts. The catalog

sizes were then L 5 103 time units for the N 5 12-variables

system, and L 5 105 time units for the N 5 20-variable system.

We used catalogs of noisy observations, adding independent and

identically distributed (i.i.d.), zero-mean Gaussian white noises

to a trajectory of full observations. The standard deviation of the

noise was set to 1% of the root-mean-square distance (RMSD)

between two states picked randomly in the attractor:

RMSD5

�
1

L(L2 1)
�
i6¼j

dist(z
i
, z

j
)2
�1/2

’

�ðð
dist(z, z0)2 dm(z)dm(z0)

�1/2
.
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The analog forecast was simply done with a weighted mean

of the successors of the K closest analogs, and weights defined

by Gaussian kernels vk } exp(2r2k/2l
2
k), where lk(z) is defined

as the median over k of the values rk(z) as explained in

section 3b and used in Lguensat et al. (2017) and Platzer et al.

(2021). Values of K 5 5, 15, 25, 50, and 75 were tested for the

total number of analogs. Distances were evaluated using the

Euclidean metric. The analog forecast error was computed as

the Euclidean distance between the analog forecast and the

true future state, divided by the RMSD.

Figure 6 shows medians of analog forecast errors from this

numerical experiment as a function of forecast horizon. First, it

can be seen that the errors are very similar in magnitude,

confirming that analog forecast errors strongly depend on

analog-to-target distances (Platzer et al. 2021), which are

largely determined by catalog density as we have seen. These

errors are between 15% and 40% of the RMSD, which is the

mean error of a climatological forecast that estimates the

future state as a constant equal to the average over all states in

the catalog. Therefore, the analog forecast errors from Fig. 6

appear to be relatively high, which was expected since the

catalog density is quite low.

In higher dimension D1 ’ 12 and for small forecast horizon

(#0.15), using five analogs results in the highest forecast error,

because for this system averaging through a large number of

analogs helps the forecast and reduces observational noise

(Platzer et al. 2021). Then, still for small forecast horizon

(#0.15) and attractor dimensionD1’ 12, using 15, 25, 50, or 75

analogs does not make a significant difference. This is consis-

tent with the fact that analog-to-target distances grow slowly

with k in high dimension. Now, for the same system, the same

catalog density L1/D1 , the same time horizon (#0.15), but a

lower attractor dimension D1, the worst forecast is still wit-

nessed with a low number of analogs K 5 5, but values of K

above 25 (i.e.,K5 50, 75) increase forecast error, since analog-

to-target distances grow faster with k in lower dimension. For

FIG. 4. Numerical experiments of the systemofL63, for a fixed target point z, using catalogs of various sizesL, repeating

the experiment 600 times for each catalog to obtain empirical probability densities. (a) Empirical density of the local

dimensiond, obtainedwith themethodof Fig. 1 andwith 150 analogs, (b) empirical density of r(z) obtained fromEqs. (11)

and (14), setting d to the mean value of its empirical densities, which is d 5 1.95 here, and (c) normalized empirical

probability densities of rescaled distances (L1/d/r)r, setting r and d to themean value of their empirical densities, that is

r 5 28.2 and d 5 1.95 and normalized theoretical probability densities using the same value of d. The probability

densities are estimated using Gaussian kernels with bandwidths of 0.15 (for d), 4 (for r), and 0.3 (for rescaled r).
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larger forecast horizons ($0.15), the error is increased due to

the chaotic dynamics of the system, and this growth is stronger

for large values of K which correspond to larger analog-to-

target distances. For these larger time horizons and in dimen-

sion D1 ’ 8, using K 5 5, 15, or 25 analogs results in lower

forecast errors than using K 5 50 or 75 analogs.

This example illustrates the higher sensitivity of analog

methods to the choice of K in low dimension, at fixed catalog

density L1/D1 . However, it also shows that the main driver of

analog-to-target distances is the catalog density, which is a rap-

idly decreasing function of dimension. Indeed, in this example,

keeping a constant catalog density amounts to multiplying by

100 the catalog size while only multiplying by 1.5 the attractor

dimension. Therefore, we stress again that at fixed catalog size

L, reducing the dimension (through any dimension-reduction

technique) allows us to find more analogs close to the target.

c. AROME reanalysis data: Dimensionality

To further appreciate the applicability of our results to high-

dimensional, real geophysical systems, the theoretical devel-

opments from section 2 are tested on five years (2015–19) of

hourly 10-m wind output from the physical model AROME

(Ducrocq et al. 2005) coupled with satellite, radar, and in situ

observations through a variational data assimilation scheme

(similar to the one of Fischer et al. 2005). The spatial domain is

an evenly spaced grid above Brittany, with latitudes ranging

from 47.0758 to 49.38 and longitudes from 25.78 to 22.5758,
and a spacing of 0.0258. To focus on wind at sea, land points are

removed from the data resulting in a domain of 8190

grid points.

Note that this dataset is not comprised of state vectors, but of

partial observations (10-m wind, over a finite-width, evenly

spaced grid) of the state of the atmosphere. Projections of the

state z would be noted y 5 f(z) classically. However, we keep

the notations z, rk, d, D1, when referring to quantities com-

puted directly from the 10-mwind data. As stated in section 2e,

our analytical derivations are still valid for observational data,

only that the dimension d obtained when searching analogs of

observables can be different from the dimension obtained

when searching analogs of the system state.

From these data, one can compute local dimensions with the

method of Caby et al. (2019). As the data are limited (;33 104

FIG. 5. As in Fig. 4, but only using observations of the first coordinate of the system of L63. The mean value of d

that is used to produce (b) and (c) is d5 0.97. The mean value of r that is used to produce (c) is r5 12.5. In (c), the

probability densities are not normalized, as p1(r) has no maximum value since k , 1/d. The empirical probability

densities are estimated using Gaussian kernels with bandwidths of 0.15 (for d), 4 (for r), and 1 (for rescaled r).
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time points), K is set to 40. Note also that, as elements of the

catalog are only one hour away from each other, they cannot be

assumed to be independent. Therefore, if several analogs are

neighbors in time, only one analog is retained, and it is selected

randomly in the set of time-neighboring analogs. Also, analogs

that are less than one-and-a-half days away from the target z

are discarded. Usually, analog are searched for in a time win-

dow of fixed length around the calendar date of the target z.

However, in this example, searching for analogs with or with-

out calendar-date restriction resulted in similar results for es-

timates of dimension and analog-to-target distances, indicating

that the closest analogs naturally lied in similar seasons than

their targets z.

Histograms of local dimensions dz,rK are plotted in Fig. 7a.

These indicate that the (observed) system lives in an attractor

of dimension approximately between 7 and 19, with some local

dimensions likely to exceed 25. The average of these local di-

mensions dz,rK , noted D1 here, is 16. Our local dimension his-

togram is similar in shape to the one of Faranda et al. (2017),

who also focused on North Atlantic circulation (in their study,

the local dimension is called ‘‘instantaneous dimension’’).

However, our histogram shows slightly higher average di-

mensions and a higher variability. Note that we focus on two

components of horizontal wind velocity, on a dense grid of

;104 grid points, while Faranda et al. (2017) focus on sea level

pressure (SLP) at ;103 grid points. Therefore, it is not sur-

prising that we find higher average values of the local dimen-

sion. The fact that we observe a higher variability in the local

dimension could be due to an intrinsic higher variability of this

dynamical indicator, but also to a higher variability in the

process of estimating d caused by a lack of data. Indeed, we

have slightly less data than Faranda et al. (2017), for a system of

slightly higher dimension, so that we can find fewer good an-

alogs to estimate d than Faranda et al. (2017). Faranda et al.

(2017) useL; 23 104 days of historical data.We use;43 104

hours of data, which must be divided by the typical correlation

time scale in hours. If we assume that the latter is between 12

and 24 h, we find that our L is between 1.5 3 103 and 3 3 103.

Faranda et al. (2017) found a seasonality in the local di-

mension of SLP fields, with higher dimensions and a higher

variability in winter. In our case, no seasonal trend for the

mean or median dimension is observed, but the weekly vari-

ability of local dimensions is higher in winter, as witnessed in

Fig. 7b. Also, a diurnal cycle can be seen in Fig. 7c, with di-

mension increasing in daytime and decreasing in nighttime. As

diurnal variability is mixed with other sources of variability, it

cannot always be identified by eye (see the three first days of

Fig. 7c). Histograms of dimension restricted to daytime are

similar to histograms restricted to nighttime, so that diurnal

cycle does not appear to be the main driver of dimension

variability.

We repeated the experiments leading to the histograms of

Fig. 7a, but using different metrics (the Manhattan distance,

order-8 Minkowski metric, and Chebyshev distance). This did

not result in significant change, only that the dimension esti-

mates were slightly larger when using the order-8 Minkowski

andChebychevmetrics (not shown). This further demonstrates

the robustness of our results to a change of metric.

d. AROME reanalysis data: Analog distances

An example of target state and analogs is shown in Fig. 8.

The chosen target state is a classical winter situation in

Brittany, with strong eastward wind coming from the sea. Thus,

good analogs are found in the catalog. It is hard to discriminate

which analog is closest: for such a high-dimensional system, the

first analog-to-target distances are very similar.

Note that for this moderately high dimensional system, the

concentration of norms might make the search for analogs

meaningless as pointed out by Beyer et al. (1999). For very

high-dimensional systems, the ratio between the distance to the

nearest analog, r1, and the distance to the furthest point in the

catalog, rL, is close to one, making the search for analog ir-

relevant. Moreover, Hinneburg et al. (2000) showed that for

order-p Minkowski metrics the difference between the dis-

tance to the furthest point and to the nearest neighbor scales as

d(1/p) 2 (1/2), indicating that for different types of distances the

FIG. 6. Sensitivity of analog forecasting to the choice ofK, for the same catalog density L1/D1 ’ 3:5, but different

attractor dimensions (and thus, catalog sizes), using theN-variable system of Lorenz (1996). (left) Lower attractor

dimensionD1 and catalog size L, N 5 12. (right) Higher attractor dimensionD1 and catalogs size L, N 5 20. The

catalogs are simulated from noisy observations of long trajectories. Analog forecasts are performed as weighted

means of successors of the K-closest analogs.
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concentration of norm might behave differently. To ensure

that this concentration of norm was not an issue, we computed

r1/rL for every point in the catalog (again, omitting neighbors in

time to compute r1), and forMinkowski metrics of order 1 (also

called Manhattan distance), 2 (also called Euclidean distance),

8, and infinity (also called Chebyshev distance or infinity

norm). This allowed us to compute histograms of r1/rL (not

shown), which showed a very low probability for r1/rL to ex-

ceed 0.3 whatever the distance used. This shows that the curse

of dimensionality is not a severe issue for our example of 10-m

wind reanalysis, and that looking for analogs is still meaningful.

Using the estimated values of d5dz,rK andC(z) (through the

least squares approximation introduced in the previous sec-

tion), it is possible to approximate the rescaled theoretical

variable yk (introduced in section 2d) through

~y
k
5dk1/2

�
r
k

Ck1/d
2 1

�
, (15)

so that ~yk should be close to yk, especially for large values of k.

However, due to the small catalog size, only probability den-

sities up to k 5 8 will be studied; otherwise, the expressions

obtained theoretically in the limit L / 1‘ are likely not

to hold.

To obtain these distributions, analogs of each hourly z 2 C
(where C is the catalog) are sought for in the catalog, omitting

analogs that are neighbors in time as explained previously. For

each z, C(z) is computed from Eq. (11), and the distances are

rescaled following Eq. (15) and then stored. Finally, the stored

values of each ~yk are used to estimate probability density

functions using Gaussian kernels with a bandwidth of

0.3. Figure 9 shows the outcome of this procedure. For

comparison, a similar procedure is applied on data from the

model of L63, using a catalog of L 5 106 points and testing

the procedure on 105 target points that are taken from a

trajectory independent from the catalog. Also, the theo-

retical density functions yk from Eq. (9) are shown for sim-

ilar (fixed) dimensions. Note that to obtain distributions ~yk
we are combining values obtained at different points and

therefore different values of dz,rK . However, we should find

h~yki’ 0 and h~y2ki’ 1.

Figure 9 shows a relatively good agreement between theo-

retical and empirical distributions, especially for the Lorenz

data. Indeed, the curves of Figs. 9b and 9d are similar in shape,

especially the asymmetry for k5 1. As k grows, the variance of

the empirical data (Fig. 9b) becomes smaller than expected in

theory (Fig. 9d). This can be explained by the fact that the

assumption L/1‘ (or equivalently rk/0) is better satisfied

for low values of k. High values of rk are associated with a low

variability. This also explains the lower variance of the em-

pirical curves (Fig. 9a) compared to the theoretical curves

FIG. 7. Statistics of local dimensions estimated using the method of Caby et al. (2019), as in Fig. 1, with K 5 40.

(a) Histogram of dimension from 10-mwind data off the Brittany coast, (b) 5 years of dimension daily averages, and

weekly variations defined as the difference between the 90% and 10% quantiles of hourly dimension over a week.

This last quantity is smoothed over an;80-day window using convolution and Gaussian kernels, and (c) 14 days of

hourly local dimension, and an 8-h smoothing using convolution and Gaussian kernels.

3328 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 78

Brought to you by IFREMER/BILIOTHEQUE LA | Unauthenticated | Downloaded 10/05/21 10:29 AM UTC



(Fig. 9c), using the wind data. Again, the asymmetry in the

shape of the curves for k5 1 is respected, and the estimation of

the mean fits our theory.

This experiment shows that the present theory, which was

derived assuming a large catalog density, is also partially ap-

plicable to limited catalog densities (here L1/D1 ’ 1:6, which is

even lower than the example of section 4b). Although we

overestimate the standard deviation of rk at fixed k, z, and L,

our estimates of the mean hrk(z)i are satisfying even for low

catalog densities. Therefore, most of our theory seems to be

applicable to partial observations of real, moderately high-

dimensional systems, with limited catalog size (here, only

5 years of data, for a system of observed dimension D1 ’ 16).

The fact that our theory could eventually break down for even

lower values of the catalog density is not worrying, as it would

mean that analog-to-target distances would probably be too

large for analogs to be used.

e. AROME reanalysis data: Objective-based dimension
reduction

In this section, we apply a dimension reduction technique to

the AROME reanalysis data in order to achieve the following

criterion:

r
k

RMSD
, « , (16)

where rk is the mean over all target points of the kth analog-to-

target distance, RMSD is the root-mean-squared distance be-

tween two points randomly taken from the dataset, and « is a

user-defined threshold. rk is thus different from hrk(z)i, which is
the mean over all possible realizations of the kth analog-to-

target distance at fixed target z and catalog sizeL. The average

rk does not depend on z, while in the rest of this document rk(z)

depends on z, and so does hrk(z)i.

FIG. 8. An example of (top left) target state z and the (top right) first, (bottom left) second, and (bottom right)

eighth analogs, using 10-mwind data off the coast of Brittany from theAROME reanalysis. Standard stationmodel

notations are used, with wind speed in knots and point-centered flags.
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We reduce dimension using EOFs, which allows us to reduce

rk/RMSD. However, one might not want to reduce dimension

too much, in order to keep enough information on the state of

the system. In this scenario, the practical question is, What is

the maximum number of EOFs that can be used in order to

meet Eq. (16)?

We use the notation deof 5deof
z,rK

for the local dimension esti-

mated as previously but after applying the projection on a limited

number of EOFs noted Neof. We note Deof
1 5 (1/L)�id

eof
zi ,rK(zi)

where the sum is over all elements of the catalog.Deof
1 is thus the

average dimension of the dataset after projection onto the Neof

first EOFs.

According to the theoretical study of Caby et al. (2020), we

expect Deof
1 to be inferior to both Neof and the attractor di-

mension of the dynamical system under study. For large

enough Neof we should find Deof
1 ’D1 (where D1 is the di-

mension found using the original dataset). For small Neof, in

principle, Deof
1 ’Neof. The numerical experiments presented

below show that the behavior is more complex when Neof is

close to D1.

Following from the theoretical results of this paper, we as-

sume that, for each target point z,

hr
k
(z)i

RMSD
5 r(z)

�
k

L

�1/deof

,

where r(z) is on the order of one. When using the method

described in the previous sections to compute deof
z,rK

and C(z),

we find that r(z) is typically between 0.4 and 0.7. Thenwemake

the following ergodicity hypothesis:

r
k
(z)5 hr

k
(z)i ,

neglecting the variations of deof
z,rK

with z, we finally find the

approximate scaling:

r
k

RMSD
’ r

�
k

L

�1/Deof
1

,

which gives, combined with Eq. (16):

Deof
1 ,D

max,k
:5

log(L/k)

2log(«/r)
.

From this formula, it appears thatDmax,k is a linear function

of log(k). This can be rearranged to give

D
max,k

5D
max,1

�
12

log(k)

log(L)

�
. (17)

This last expression shows how Dmax,k strongly depends on

k. On a practical example, assume that Dmax,1 ’ 10 and that

L 5 104, then Dmax,25 ’ 6. In this experiment, we assume that

FIG. 9. Probability densities of rescaled analog-to-target distances rk (a) from 10-m wind data off the Brittany

coast and (b) from numerical experiments of the L63 system, compared to theoretical distributions fromEq. (9) for

a local dimension of (c) 13 and (d) 2. Empirical probability densities are estimated using Gaussian kernels with a

bandwidth of 0.3. Empirical values of dz,rK are estimated with K 5 40.
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the number of required analogs is fixed. Reducing dimension in

order to decrease analog distances thus strongly depends on

how many analogs are needed for the analog method. For in-

stance, if an ensemble of analogs is used to estimate the full

probability density function of a one-dimensional variable

(say, the day after tomorrow’s accumulated rainfall over the

city of Paris), then one might need at least 100 analogs. Yet 10

analogs might be enough to simply estimate the mean of the

distribution. As another example, if one wants to estimate the

covariance associated with the forecast error of 5 independent

variables, one needs at the very least 5 analogs, but 50 analogs

might be necessary, especially in the presence of observational

noise. Also, the complexity of the system under study might

vary according to phase space location, so that the number of

required analogs could depend on the state z. In practice, the

number of required analogs is a complex function of the

quantity to be estimated, the quality of the data, the method

that is used, and properties of the system at stake.

Figure 10 shows comparison of this scaling with numerical

experiments performed on the AROME reanalysis data.

Upper and lower bounds for Dmax,k were derived from esti-

mations of Deof
1 and by checking whether the criterion

rk/RMSD, « was met. For low values of Neof we find that

Deof
1 ’Neof, and for high values of Neof we find thatDeof

1 ,D1

while we expected Deof
1 ’D1. This calls for more theoretical

studies on the dimension of observables. However, consid-

ering only the applicability of Eq. (17), Fig. 10 shows a sat-

isfying agreement between our theoretical scaling and the

numerical experiments, especially given the number of ap-

proximations that we have taken.

The way to use these equations for Dmax,k in practice de-

pends on the particular application. For instance, if one wants

to perform a statistical task such as downscaling, one might

impose a fixed minimum number of K samples to correctly

represent a statistical distribution. One might, at the same time,

ask that the analog-to-target distance does not exceed a given

threshold to ensure a good quality of analogs (assuming that this

‘‘quality’’ is correctly estimated by the chosen distance). Then

our formulas can be used to estimate how much of dimension

reduction is needed to fulfil these criteria by choosing a number

of EOFs close to the theoretical value of Dmax,k.

Another possibility is that the required number of samplesK

varies withD1. This is the case in ensemble forecast where one

wants to use successors to estimate the covariancematrix of the

future state. If the local dimension is d, we can assume that the

data have been projected on some dde-dimensional space,

where dde is the ceiling function of d (i.e., the smallest in-

teger i such that i$ d). In this case, the covariance matrix of

the future state is of size dde(dde1 1)/2, and each successor

is a dde-dimensional vector. Therefore, one needs to have at

leastK$ (dde1 1)/2 for the successors to be able to estimate

the covariance matrix using the estimation formulas of

Lguensat et al. (2017). Identifying d with D1, this last in-

equality can be rewritten in the form D1 #D0
max,K, where

D0
max,K is a growing function of K (in this covariance exam-

ple, D0
max,K 5 2K2 1). Since Dmax,K from Eq. (17) is a de-

creasing function of K, the intersection D* between Dmax,K

andD0
max,K (i.e., the dimensionD* so that there is a valueK*

for which D
max,K* 5D0

max,K*
) gives a maximum value for

D1 that is independent of K. This maximum value is fixed by the

threshold « and the required relationship between the mini-

mum value of K and the dimension D1. Knowing D*, one can

estimate the optimal number of EOFs to use.

However, note that our formulas do not reveal how much

information is left behind when reducing the dimension. For

instance, in the case of forecast, the maximum dimension

Dmax,K might be too low to represent accurately the dynamics

of the system. In such a case, one is bound to either raising the

value ofL (which can rarely be done) or increasing the value of

« (which might decrease the efficiency of the analog method).

5. Conclusions

We combined extreme value theory and dynamical systems

theory to derive analytical joint probability distributions of

analog-to-target distances in the limit of large catalog density.

Those distributions shed new light on the influence of dimen-

sion in practical use of analog. In particular, we found that

analog-to-target distances are more sensitive to the number of

analogs used in low dimension than in high dimension, at fixed

catalog density. Contrarily to previous works on the proba-

bility to find good analogs, this study focuses on distances

rather than return times, gives whole probability distributions

rather than first moments, and looks at the K closest analogs

rather that only the closest one. Numerical simulations of the

three-variable Lorenz system confirm the theoretical findings.

An example of practical consequence of our theory on the

FIG. 10. Maximum dimension (or number of EOF) to fulfill the

criterion (1/RMSD)rk , «, where rk is the mean over all target

points of the kth analog-to-target distance, RMSD is the root-

mean-squared distance between two random points from the

dataset, and « is a user-defined threshold. We use the 10-m wind

data, and we project both component simultaneously onNeof basis

functions. For a given value of Neof, the dimension Deof
1 is com-

puted as the mean of dimensions estimated from the method of

Caby et al. (2019). Then (1/RMSD)rk is computed empirically and

compared to «, giving upper and lower bounds for the maximum

dimension Dmax,k. Full lines show the theoretical scaling Dmax,k 5
Dmax,1[12 log(k)/log(L)]. The values ofDmax,1 were set by hand in

order to fit visually the so-obtained upper and lower bounds for

Dmax,k, and L was set to ;2 3 103, which corresponds to a corre-

lation time scale of 24 h.
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sensitivity of analog forecasts to the number of analogs used,

depending on dimension, is given using the system of Lorenz

(1996). The 10-m wind reanalysis data from the AROME physical

model show that our analysis is also relevant for observations of

real systems.Our investigation indicates that the studiedwind fields

lie in an attractor of moderately high dimension ;16. In this situ-

ation of moderate dimensionality, the analog-to-target distances of

the first analogs are all very similar and have a low variability. Our

theoretical derivations can be used to find optimal dimension re-

duction for the purpose of decreasing analog distances, which we

demonstrate on an example using the AROME reanalysis data.

These examples reveal the applicability of the derived probability

distributions even to relatively low catalog densities.
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APPENDIX A

Proof that D1 is Independent of Metric Choice in Finite
Dimension

A metric dist(�, �) associates a real positive number to any

two vectors z1 6¼ z2, and must verify dist(z1, z1) 5 0, dist(z1,

z2) 5 dist(z2, z1), and for any third vector z3, dist(z1, z3) #

dist(z1, z2) 1 dist(z2, z3).

Let dist(�, �) and dist0(�, �) be two metric acting on a finite-

dimensional space. We note B0
z,r the ball of radius r around

the point z, defined with the distance dist0(�, �), such that

B0(z, r)5 fajdist0(z, a), rg. This allows us to define the finite-

resolution local dimension:

d0
z,r 5

logm(B0
z,r)

logr
,

and the attractor dimension D0
1 5 lim

r/0
d0
z,r . Quantities without

primes 0 are defined using the regular distance dist(�, �).
Here, we will prove that D0

1 5D1. The finite-dimension hy-

pothesis implies strong equivalence of metrics; therefore, there

exists two real positive numbers q andQ such that for all points

z and a:

q dist0(z, a)#dist(z, a)#Q dist0(z, a). (A1)

It is easy to check that this implies the double inclusion

Bz,qr4B0
z,r4Bz,Qr, for all points z and all positive real number

r. Taking the logarithm of the measure of this double inclusion,

we find

logm(B
z,qr

)# logm(B0
z,r)# logm(B

z,Qr
),

and, dividing by log r,

logm(B
z,qr

)

log(qr)2 logq
#
logm(B0

z,r)

logr
#

logm(B
z,Qr

)

log(Qr)2 logQ
.

Taking the limit of this last inequality when r/ 0 givesD0
1 5D1.

This means that for small values of r, d0
z,r,, and dz,r approach

the same limit, and are therefore close to each other. However,

this proof does not give the convergence rate. In particular, it is

possible to find a metric dist0(�, �) such that the rate of con-

vergence of d0
z,r toward D1 is arbitrarily slow. Therefore, for a

given dataset, it is always possible to find a specific metric such

that dimension estimates are far from the real limit value D1.

Nevertheless, this peculiar behavior is not expected for usual

metrics, such as the order-p Minkowski metrics used in the

numerical examples of the present paper.

APPENDIX B

Direct Proof for pk(r)

In this appendix, we give the proof of Eq. (5) by evaluating

directly the probability that analogs lie between the sphere of

radius r and the sphere of radius r 1 dr.

a. Poisson distribution of the number of analogs in a ball

Haydn and Vaienti (2019) have shown that, for dynamical

systems having rare event Perron–Frobenius operator prop-

erties, and for nonperiodic points z, the number of visitsV(z, r)

of a trajectory of size L into the ball Bz,r follows a Poisson

distribution with mean Lm(Bz,r):

P[V(z, r)5 k]5
[Lm(B

z,r
)]k

k!
e2Lm(Bz,r), (B1)

where k! is k factorial. In the context of analogs, this is the

probability to find k analogs with distances to z below the ra-

dius r. In machine learning, this is called the epsilon nearest

neighbor search. In the following we write mz,r :5m(Bz,r).

b. Distribution of analogs close to the sphere

Now we will use m to evaluate P(rk 2 [r, r1 dr)), the prob-

ability that the kth analog-to-target distance is between r and

r 1 dr, for fixed k and z and where dr is small compared to r.

The event ‘‘rk 2 [r, r 1 dr)’’ is the intersection of the event

‘‘there are k2 1 analogs in the ballBz,r’’ and the event ‘‘there is

one analog in Bz,r1dr \ Bz,r.’’ For a Poisson point process these

two events are independent (Daley and Vere-Jones 2003),

so that

P(r
k
2 [r, r1 dr))5P[V(z, r)5 k2 1 ^dx 2 C \ B

z,r1dr
\ B

z,r
]

5P[V(z, r)5 k2 1]P(dx 2 C \ B
z,r1dr

\ B
z,r
)

5
(Lm

z,r
)k21

(k2 1)!
e2Lmz,rP(dx 2 C \ B

z,r1dr
\ B

z,r
).

(B2)
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Then it follows from Haydn and Vaienti (2019) that the

event that strictly one element of the catalog lies between Bz,r

and Bz,r1dr has a probability of the same form as Eq. (B1) but

replacing k by 1 and mz,r by dmz,r:5mz,r1dr 2mz,r:

P(d!x 2 C \ B
z,r1dr

\ B
z,r
)5Ldm

z,r
e2Ldmz,r . (B3)

If the invariant measure m is regular enough so that

lim
dr/ 0

dmz,r 5 0 we then have e2Ldmz,r ’ 1. Also, the probability to

find more than one element of the catalog between Bz,r and

Bz,r1dr has a probability of O(dmz,r)
2
. This justifies the approxi-

mation P(dx 2 C \ Bz,r1dr \ Bz,r)’P(d!x 2 C \ Bz,r1dr \ Bz,r).

Finally, combining Eqs. (B2) and (B3), one finds

P(r
k
2 [r, r1 dr))5Ldm

z,r

(Lm
z,r
)
k21

(k2 1)!
e2Lmz,r . (B4)

This last equation is a more general form of our main result

which is given in the next section. Here, the probability is

expressed in terms of the invariant measure, which is usually

not known analytically. The next section expresses the same

probability in terms of the analog-to-target distance r.

c. Distribution of analog-to-target distances

The link between mz,r and r is given by the definition of the

finite-resolution local dimension in Eq. (1):

m
z,r

5 rd , (B5)

where d 5 dz,r. In this section, we first acknowledge the vari-

ations of dz,r with r, to better justify why they are neglected in

the rest of the paper. Therefore, in this section d 5 dz,r for

varying values of z and r, while in the rest of the paper d usually

refers to a value at fixed distance rK, dz,rK .

The link between dmz,r and dr involves variations of the local

dimension with r. Let D5 dz,r1dr 2 dz,r, we have mz,r1dr 5 (r1
dr)d1D 5 mz,rr

D(1 1 dr/r)d1D, which gives

dm
z,r

m
z,r

5

�
11

dr

r

�d1D

eDlogr 2 1: (B6)

Using the regularity hypothesis D � d, and keeping only

lower-order terms, we find

dm
z,r

m
z,r

’ d
dr

r
1D logr . (B7)

The term d(dr/r) represents an almost steady increase in mz,r

when r grows. The term Dlogr represents fluctuations in this

increase given by the fluctuations in dz,r. In practice, the

method described in section 2b to evaluate dz,rK should catch a

mean local dimension over the analogs and not catch the

fluctuations of dz,r with r at scales smaller than rK. Thus, the

approximation

dm
z,r

m
z,r

’ d
dr

r
, (B8)

which is not valid in theory, should be relevant in practice for

finite catalog size and regular enough measures. For small

enough dr, one can then define pk, the probability density

function of rk through the identity P(rk 2 [r, r1 dr)). Combining

Eqs. (B4), (B5), and (B8), we find

p
k
(r)5dLrd21(Lr

d)
k21

(k2 1)!
e2Lrd ,

which is the main result of this paper.

APPENDIX C

Alternative Proof for pk(r) and Joint Probability
Distribution Using K Largest-Order Statistics

Lucarini et al. (2016) give a detailed analysis of the map

from A to R, x12log dist(z, x), using tools from dynamical

systems theory and extreme value theory (EVT). For our

purpose, it is interesting to look at the simpler distance

map x1 dist(z, x).

The minimum of this map over the catalog is achieved for

the closest analog of z, a1. The minimum is thus r1. EVT tells

(see Coles et al. 2001) that in the limit of large catalog, the

minimum of this lower-bounded distance map on a finite

sample of the attractor (a catalog of size L) follows a Weibull

distribution, after rescaling. The Poisson law from Eq. (B1)

with k 5 1 actually gives the scaling and the exact form of the

Weibull distribution:

P(r
1
. r)5 e2Lrd ,

for positive r; otherwise, the probability is 1.

The K largest-order statistics of this function then corre-

spond to the K analogs of the point z. Again, in the limit of

large catalog and for small enough K, EVT provides the limit

law (see Coles et al. 2001) for the kth minima of this distance

function when L / ‘:

P(r
k
. r)5 e2Lrd �

k21

s50

(Lrd)
s

s!
.

Differentiating and with a bit of rearrangement, one finds

back the formula of Eq. (5):

p
k
(r)52

›

›r
P(r

k
. r)

5 dLrd21(Lr
d)

k21

(k2 1)!
e2Lrd .

From a broader perspective, extremal process theory

(Lamperti 1964) gives the joint distribution of analog-to-

target distances p1:K in the limit L / ‘:

p
1:K

(r
1
, . . . , r

K
)5 (dL)K

 
P
K

k51

r
k

!d21

e2Lrd
K ,

where the function is nonzero only when 0, r1 , r2 , ���,rK.

For notation convenience and only in this formula, the random

variables rk are noted identically as the values they can

possibly take.
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APPENDIX D

Three-Variable Lorenz System

The three-variable L63 system of equations is8>>>>>>>><
>>>>>>>>:

dx
1

dt
5b

1
(x

2
2 x

1
) ,

dx
2

dt
5 x

1
(b

2
2 x

3
)2 x

2
,

dx
3

dt
5 x

1
x
2
2b

3
x
3
,

(D1)

with usual parameters b1 5 10, b2 5 28, and b3 5 8/3. In this

case, the variables X1, X2, and X3 span values between ap-

proximately [220, 20], [220, 20], and [0, 40], respectively. If we

now make the following change of variables,8>>>>>>>>><
>>>>>>>>>:

x
1
/X

1
5

x
1

b
2

,

x
2
/X

2
5

x
2

b
2

,

x
3
/X

3
5

x
3

b
2

,

amounts to changing the units of all variables by the same

amount. In this case, the new set of governing equation

becomes 8>>>>>>>><
>>>>>>>>:

dX
1

dt
1b

1
X

1
5b

1
X

2
,

dX
2

dt
1X

2
5b

2
X

1
(12X

3
) ,

dX
3

dt
1b

3
X

3
5b

2
X

1
X

2
,

which is very similar to the usual set of equation. Setting the

same values for the parameters gives the same chaotic patterns,

only in different units. The local dimensions of the system are

the same, but now X1, X2, and X3 span values between ap-

proximately [22/3, 2/3], [22/3, 2/3], and [0, 4/3], respectively.

For this new system, the values of r(z) calculated as in

section 4a of the present paper would be close to 1 and

not to 28.

Finally, theN-variable system of Lorenz (1996) is defined by

the following equations:

"i 2 [1,N],
dx

i

dt
52(x

i22
1 x

i11
)x

i21
2 x

i
1 u , (D2)

where u is the forcing parameter. In our numerical experiments

we use the value u5 8 and two different values of N 5 12 and

N 5 20, with periodic boundary conditions xi1n 5 xi.
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