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Text S1.
Description of model
The biogeochemical model used in Cliff et al. (2021) is the Model of Ocean Biogeochemistry and Isotopes (MOBI) (Khatiwala et al., 2019; Muglia et al., 2018) coupled to the Transport Matrix Method (TMM) (Khatiwala, 2007; Khatiwala et al., 2005), a computationally efficient scheme for “offline” tracer simulations. MOBI-TMM was driven by physical forcing fields (winds, circulation, temperature, salinity and sea ice) from a preindustrial configuration of the University of Victoria Earth System Climate Model (UVic ESCM v2.9) (Weaver et al., 2001), a 3-D ocean general circulation model of resolution 1.8º x 3.6º x 19 layers that is coupled to atmospheric energy-moisture balance, dynamic-thermodynamic sea ice and land surface components. The model was tuned to a variety of ocean chemical and biogeochemical tracer observations (Muglia & Schmittner, 2015; Muglia et al., 2018). In order to explicitly calculate  (i.e., -TOU) preformed PO4 was simulated (Ito et al., 2004) by propagating the seasonally-varying surface ocean phosphate field into the interior using the TMM. Disequilibrium O2 was diagnosed by simulating preformed O2 and “O2,eq” by similarly propagating the seasonally-varying surface ocean oxygen and equilibrium O2 fields, respectively, into the interior. Lastly, to decompose disequilibrium O2 into physical and biological components, a parallel simulation was carried out with identical physical forcings but with the source/sink terms in the biogeochemical model switched off. To apply the proposed O2/Ar method, we simulated Ar with the TMM as in our previous work (Nicholson et al., 2016) using the same physical forcing fields and gas transfer parameterization as for O2. The Ar saturation concentration was calculated according to Jenkins et al. (2019).



Text S2.
Derivation of -estimates of 

From main text Equations (1) and (5):

    (1)
 (5)

Replacing  in Equation (1) with  from Equation (5) and isolating :



Factoring out  and  on right-hand side of equation:



Or,
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[bookmark: _Hlk74642495]Figure S1. Left panels: Relation of nitrate, dissolved oxygen, and AOU to phosphate in the ocean interior (> 600 meters). Red lines represent robust bisquare regressions. Points are color-coded for data density. Right panels: Residuals around the regressions, all in phosphate-equivalent units for comparison purposes by dividing by the respective slopes. All values in M. 5o-resolution data from World Ocean Atlas 2009 (Garcia et al., 2010).
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Figure S2. Depth-profiles of DIC and O2 saturation anomaly (%) (or at Station ALOHA (HOT Time-series, data from 1988-2007). 
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[bookmark: _Hlk74642504]Figure S3. Comparison of O2 and Ar gas exchange and solubility properties. Isopleths of constant ratios of (A) gas exchange velocities, (B) Bunsen solubility coefficients. Gas exchange velocities are based on Wanninkhof (1992). O2 and Ar solubilities are based on Garcia and Gordon (1992), and Hamme and Emerson (2004), respectively.
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Figure S4. Predicted  based on  vs. model . Assuming that Ar is at saturation when estimating  (red markers) introduces a small error compared to the more exact  estimates of  (blue markers). Concentrations are in mmol m-3.
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Figure S5. Modeled ocean inventories of O2 components, as defined in the main text.  
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Figure S6. Cumulative frequency of the difference in performance of modeled O2/Ar-derived  and  in predicting TOU.  
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