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Abstract: Automated fiber placement (AFP), once limited to aerospace, is gaining acceptance and
offers great potential for marine structures. This paper describes the influence of manufacturing
defects, gaps, and overlaps, on the out-of-plane properties of carbon/epoxy composites manufactured
by AFP. Apparent interlaminar shear strength measured by short beam shear tests was not affected
by the presence of defects. However, the defects do affect delamination propagation. Under Mode I
(tension) loading a small crack arrest effect is noted, resulting in higher apparent fracture energies,
particularly for specimens manufactured using a caul plate. Under Mode II (in-plane shear) loading
there is a more significant effect with increased fracture resistance, as stable propagation for specimens
with small gaps changes to arrest with unstable propagation for larger gaps.

Keywords: fiber placement; gap; overlap; interlaminar; delamination

1. Introduction

The use of automated fiber placement (AFP) is increasing, as it offers the possibility to
produce very complex shapes with tight process control [1]. Initially developed for high
performance aerospace applications, the capability for efficient manufacture of complex
structures can also be applied to marine components such as hydrofoils [2], propellers [3],
and tidal turbine blades [4]. These structures tend to be thicker than aerospace composites,
so through-thickness properties are more critical. Figure 1 shows an example of a foil
manufactured by AFP on an ocean racing yacht.

AFP enables the trajectory of unidirectional composite tape to be optimized but laying
down complex shapes with this technology can result in defect introduction. Two particular
types of defects are possible; gaps between tapes and overlaps where they are superposed.
Several authors have investigated the influence of these defects on in-plane properties,
with particular emphasis on the more critical compression properties. These have included
studies to quantify how 90◦ defects can result in ply waviness, leading to reduced com-
pression performance [5], and tow drops have also been shown to affect compression
behaviour [6]. The number and offset of gaps are additional parameters which have been
examined [7–10]. Experimental studies have also underlined the importance of defect
orientation [11,12]. A recent study highlighted the importance of staggering, offsetting
successive ply defects, to reduce their influence [13]. There has also been some testing and
modelling work on the influence of gaps on behaviour under dynamic loading [14,15] and
fatigue [16]. In two previous papers, for the same carbon-epoxy material as studied here,
the authors also examined the influence of different gap and overlap singularities first
under in-plane tensile [17], then under in-plane shear and compression loads [18]. Such
defects may occur due to variations in tape width or movements on complex mould shapes.
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Samples were produced with and without caul plates. Under certain conditions, the caul
plate can promote healing of defects. For example, after autoclave cure of blocks of plies
with one orientation no defects remain when a caul plate is present, only a local change
in thickness. There is then no loss in tensile properties. In blocks of plies with different
orientations, the effect of the caul plate is less significant, but changes in thickness are still
reduced. Under compression loads, when buckling is present, the presence of a caul plate
during cure helps to retain properties.

Materials 2021, 14, x FOR PEER REVIEW 2 of 18 
 

 

Such defects may occur due to variations in tape width or movements on complex mould 
shapes. Samples were produced with and without caul plates. Under certain conditions, 
the caul plate can promote healing of defects. For example, after autoclave cure of blocks 
of plies with one orientation no defects remain when a caul plate is present, only a local 
change in thickness. There is then no loss in tensile properties. In blocks of plies with dif-
ferent orientations, the effect of the caul plate is less significant, but changes in thickness 
are still reduced. Under compression loads, when buckling is present, the presence of a 
caul plate during cure helps to retain properties. 

 
Figure 1. Photograph of IMOCA class APIVIA racing boat, the hydrofoils are manufactured using AFP technology: Photo 
C. Baley. 

In spite of the significant amount of data now available for in-plane properties very 
few studies have focused on the influence of manufacturing defects on out-of-plane be-
haviour. Comer and colleagues [19,20] did study the interlaminar fracture behaviour of 
thermoplastic composites manufactured by tape placement but without defects. They 
found that the laminates produced by Laser Assisted Automated Tape Placement (LATP) 
performed better than the autoclaved laminates in terms of interlaminar fracture tough-
ness, probably due to the presence of butt joints, but ILSS (interlaminar shear strength) 
and other mechanical properties were lower. Void contents were higher in the LATP ma-
terials. Stokes-Griffin and Compston [21] also used an out-of-plane shear test (ILSS) to 
study processing parameters for tape placement of carbon/PEEK and found a significant 
influence of placement rate. Grouve et al. [22] used a peel test to examine adhesion be-
tween layers in tape laid carbon/PPS laminates for different manufacturing conditions, 
but again without studying singularities. Other work on the influence of manufacturing 
singularities on out of plane properties include a recent study by Zhou et al. who used a 
through thickness tensile test [23]. Their experimental and numerical results indicated that 
gaps of up to 3 mm could result in a drop in out-of-plane tensile strength from around 37 
to 30 MPa. Ghayour et al. used short and long flexural specimens to examine the effect of 
tow gaps. They found a reduction in apparent shear strength of 13% and a drop in flexural 

Figure 1. Photograph of IMOCA class APIVIA racing boat, the hydrofoils are manufactured using AFP technology: Photo
C. Baley.

In spite of the significant amount of data now available for in-plane properties very
few studies have focused on the influence of manufacturing defects on out-of-plane be-
haviour. Comer and colleagues [19,20] did study the interlaminar fracture behaviour of
thermoplastic composites manufactured by tape placement but without defects. They
found that the laminates produced by Laser Assisted Automated Tape Placement (LATP)
performed better than the autoclaved laminates in terms of interlaminar fracture toughness,
probably due to the presence of butt joints, but ILSS (interlaminar shear strength) and
other mechanical properties were lower. Void contents were higher in the LATP materials.
Stokes-Griffin and Compston [21] also used an out-of-plane shear test (ILSS) to study pro-
cessing parameters for tape placement of carbon/PEEK and found a significant influence
of placement rate. Grouve et al. [22] used a peel test to examine adhesion between layers in
tape laid carbon/PPS laminates for different manufacturing conditions, but again without
studying singularities. Other work on the influence of manufacturing singularities on out
of plane properties include a recent study by Zhou et al. who used a through thickness
tensile test [23]. Their experimental and numerical results indicated that gaps of up to
3 mm could result in a drop in out-of-plane tensile strength from around 37 to 30 MPa.
Ghayour et al. used short and long flexural specimens to examine the effect of tow gaps.
They found a reduction in apparent shear strength of 13% and a drop in flexural stiffness
of 35% (due to thickness reduction), compared with a hand lay-up reference, when gaps
were present [24]. However, to date there has been very little work to characterize the
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presence of defects in AFP composites using a fracture mechanics approach. This is a
powerful method to enable the interaction of local singularities with a propagating crack to
be characterized, and fracture mechanics values are being increasingly integrated in design
in order to evaluate damage tolerance. A recent paper describes these tests [25].

This paper will examine the influence of singularities deliberately introduced at the
mid plane of [90/07/90]S laminates on the out-of-plane fracture properties of the same
carbon/epoxy composites as those previously studied under in-plane loading [17,18].
Samples from plates manufactured with and without caul plates were tested. This is an
original application of fracture mechanics testing, which introduces some difficulties in
specimen definition and analysis but provides the basis to allow the presence of defects to
be accounted for in design.

2. Material and Methods
2.1. Material

The results reported in this paper were obtained by testing laminates made from
AS4/8552 prepreg supplied by Hexcel Composites in Dagneux (France), reference
(8552/AS4/RC34/AW194). Various plates were manufactured using a Coriolis 8 tow
robotic fibre placement machine installed at Quéven (France) [26]. In order to be process-
able by the machine, the prepreg is slit to a width of 6.35 ± 0.125 mm. A single batch of
prepreg material was employed to manufacture all the panels, with a compaction force
of 600 N applied during lay-up. In order to introduce gap and overlap defects in specific
regions of the panels, the machine was programmed using off-line software to stagger sec-
tors. The same defect sizes as references [17,18] were introduced as they can be commonly
found in double curvature parts produced using the AFP technology.

A 15 µm thick PTFE film was inserted at the mid-plane of the laminate to act as a
delamination initiator. The edge of the starter film was located 10 mm from the centre of
the gap/overlap defects.

In order to determine if the caul plate has an effect on the delamination behaviour of
laminates having manufacturing singularities, a first series of panels was cured using a
caul plate (2 mm thick aluminium sheet) while a second series of panels was cured without.
To promote flow of material during cure and prevent the laminate from sticking to the caul
plate, a Wrightlon™ 5200 PTFE release film supplied by AirTech® (Springfield, TN, USA)
was placed between the plate and the laminate.

The panels were cured in an autoclave at 180 ◦C under 7 bar pressure for 2 h after a
dwell at 110 ◦C for 1 h, following the prepreg supplier’s recommendations. After cure,
the panels were C-scanned to check the quality of the laminates. The test specimens were
then cut using a diamond coated wet circular saw and the edges were polished to prevent
premature crack initiation.

2.2. Configuration of Samples

Two types of tests were employed in this study. First, short beam shear tests were
performed on specimens from panels manufactured with a caul plate. This is a widely-used
quality control test described by ASTM D2344. Then Mode I and Mode II interlaminar
fracture tests were performed. These are usually performed on unidirectional laminates,
but in order to investigate how crack propagation is affected by gap or overlap defects,
these singularities must be placed in a layer at 90◦ to the crack front. This requires careful
consideration; Mode III stresses may occur during the loading phase if both the specimen
and each specimen arm are not symmetrical with respect to their mid-planes. Anticlastic
deformation will be generated by the non-symmetrical half laminates.

This has been addressed in previous studies on delamination of cross-ply lami-
nates [27–29]. The solution adopted here was to balance each arm by placing an additional
90◦ layer on the outer surface of the specimen, so the specimen layup was the following:

[90◦/0◦7/90◦2/0◦7/90◦]
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The samples must also be stiff enough to avoid large displacements, and this was
achieved by keeping the majority of unidirectional plies in each arm of the laminate.

Figure 2 shows schematically the defect positions in the two central 90◦ plies.
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Figure 2. Specimens layups [90◦/0◦7/90◦2/0◦7/90◦] showing embedded defects in the centre plies
of the laminate. Plies oriented at 0◦ are shown in grey and plies oriented at 90◦ are shown in red. (i)
Gap 0.5 mm; (ii) Gap 3.175 mm, (iii) Gap 6.35 mm, (iv) Overlap 3.175 mm.

2.3. Material Quality Control

All test panels were inspected using ultrasonic C-Scan. Sofratest™ 49,944 equipment
was used for the inspections with a flat aluminium panel acting as a reflector. The control
was performed by a focused transducer, with a frequency of 10 MHz and a focalization
length of 76 mm. The acquisition step was 0.5 mm. The quality of all the panels was
satisfactory, with low attenuation and no evidence of delamination.

To check for voids and to verify the position and the morphology of the embedded
defects, cross sections were observed with a Jeol JSM 6460 LV scanning electron microscope.
To produce flat sections, the samples were polished with diamond paste down to 1 micron
before examination. Several images were taken and then assembled, to produce the figures
of defect regions shown in this paper. Figure 3 shows a section through the thickness of
a specimen, illustrating the film insert and a 6.35 mm gap. The pre-crack created by the
PTFE film is clearly visible on the left-hand side of the micro-graph. It can be noted that
the defect initially created by a 6.35 mm gap has healed during cure. The resin and the 90◦

fibres have flowed into the gap reducing the defect size to about 2 mm.
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2.4. Short Beam Shear Tests

Short beam shear tests (NF EN ISO 14130) were performed in three-point flexure
under displacement control at 2 mm/minute on specimens from all the panels produced
with a caul plate. The distance between supports was 5 times the specimen thickness.
Apparent interlaminar shear strength τ13 is calculated as: 0.75*P/(Bh), with P the critical
load at delamination, B the specimen width, and h the thickness.

2.5. Interlaminar Fracture Toughness Tests

The delamination specimens were tested on an Instron™ test machine with a load cell
of 10 kN at loading rates of 2 mm/min and 1 mm/min respectively for Mode I and Mode
II tests. For each configuration, an average of six specimens was tested.

The configuration of the delamination tests in Mode I is the Double Cantilever Beam
which respects the standard ISO15024 [30]. This test applies a through-the-thickness tension
to the two arms of samples. The loading is introduced through aluminium blocks bonded
to the end of the samples on the upper and lower surfaces. Specimens are loaded by pins
that leave the blocks free to rotate. Cyanoacrylate adhesive was used to bond the blocks.

For Mode II delamination tests a 4ENF (Four Point End Notched Flexure) geome-
try [31] was used to propagate mid-plane cracks under the effect of a shear stress introduced
in 4-point bending. This is one of a number of in-plane shear delamination tests avail-
able [32] and has the advantage of encouraging the stable crack propagation required here.
Figure 4 illustrates the 4ENF specimen configuration. For this test, the distance between
the upper loading points was 50 mm and the distance between the lower supports was
100 mm. A roller bearing was positioned so that the upper load points rotate about the
specimen mid-length.
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2.6. Data Analysis

Standard data analysis to determine strain energy release rates was not applicable
here because of the cross-ply nature of the sample and the unstable behaviour of the crack
growth. The method used is based on the calculation of the crack length using beam theory
and requires only the force and displacement data. This data analysis was developed by
the author in a previous study of delamination tests performed under pressure [33] when
visual crack length measurement was not possible inside a pressure vessel. The derivation
of the data analysis can be found in [33].

For Mode I the crack length is calculated using the following equation:

aCalc =

[
3EIδ

2P

] 1
3

(1)

where aCalc is the calculated crack length, E is the flexural modulus, I is the second moment
of inertia, δ is the opening displacement and P the applied load.
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The apparent fracture toughness in Mode I, GIapp, is then calculated as:

GIapp =
1
b

[
3P2δ

2
√

EI

] 2
3

(2)

For Mode II the crack length is calculated as:

aCalc =
1
3

[
32EIδ

PL2 +
10
3

L− S
]

(3)

Here, δ is the deflection of the beam due to cross head displacement, P is the applied
load, E is the flexural modulus, I is the second moment of inertia, S the span between the
outer loading rollers, and L the distance between the inner and the outer loading rollers.

The apparent fracture toughness in Mode II is then calculated as:

GIIapp =
P2

2b
3L2

32EI
(4)

It should be noted that the crack lengths and toughness values given in this paper are
apparent values. They can only be used in a comparative way, but they enable the effect
of the gap/overlap defects on the delamination behaviour of CF/epoxy laminates to be
examined.

For calculations under both Mode I and Mode II loading, δ and P were recorded by
the test machine data acquisition system.

In order to determine the term EI, Equations (1) and (3) were inverted giving the two
following equations:

EI =
P
δ

2
3

a3
0 =

1
C

2
3

a3
0 (5)

EI =
P
δ

L2

32

[
3a0 + S− 10

3
L
]
=

1
C

L2

32

[
3a0 + S− 10

3
L
]

(6)

During the linear loading phase of the test prior to any crack propagation, the initial
crack length a0 is known (See Figure 4). The compliance C = δ/P is determined from the
slope of the force vs. displacement curve during the linear loading, allowing EI to be
determined for each specimen. Then GIIcApp can be determined from Equation (4).

3. Results
3.1. Influence of Singularities on Interlaminar Shear Strength

Figure 5 shows the results from short beam shear tests. These results indicate that the
short beam shear test, among the most widely used tests to check composite quality, is
not very sensitive to the presence of these singularities. This is an interesting result, but
this test has some limitations as noted by Whitney and Browning [34]. They showed the
complex stress state in ILSS specimens, with compression stresses tended to suppress the
interlaminar shear failure mode. It was therefore decided to perform interlaminar fracture
tests, as these can quantify the behaviour when a propagating delamination meets a zone
containing singularities.

3.2. Mode I Testing of Unidirectional Composites without Singularities

Figure 6 shows the results from Mode I tests on samples laid up from prepreg layers
of the same material as that employed for tape laying, and manufactured in the autoclave
with the same cure cycle, i.e., the same composite but without any singularities.
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These curves show typical behaviour of this material in DCB tests without singularities.
The initiation from the starter film is unstable for all specimens, a load drop is noted on
the force–displacement plot as the crack rapidly advances a few millimetres beyond the
insert film, but then stable propagation is recorded throughout the test. This results in
propagation values in the range 0.25–0.30 kJ/m2.

3.3. Influence of Manufacturing Defects in Mode I

Figure 7 shows the load vs. displacement traces (left) and the calculated R-curves
(right) of [90/07/90]s laminates containing 0.5 mm gaps. The crack propagation is typical of
stick/slip behaviour. The crack jumps immediately to a 90/0 interface. With further loading,
the crack jumps from one 90/0 interface to the other 90/0 interface. This phenomenon
has also been observed by Brunner and Blackman for tests on specimens with 90◦ central
layers without singularities [35]. Despite the differences in the laminate configurations, the
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apparent toughness levels reached in this study are comparable with the calculated GIC
values reported by Brunner and Blackman.
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Figure 7. Load vs. displacement traces (left) and R-curves (right) for cross ply laminates ([90/07/90]s) containing a
0.5 mm gap (considered as reference configuration without defects).

Figure 8 shows an example of the load/displacement plots from six DCB tests on
specimens with the largest gap defects. There is an initial stable propagation as the damage
zone in front of the insert develops, then the crack meets the singularity region and the
load increases until an unstable crack jump. Further crack propagation is then stable. The
plots from the six specimens all show the same form, with similar load levels once the crack
has passed the singularity.
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Figure 8. Load-displacement plots for the various samples containing a Gap of 6.35 mm polymerized
with caul plate.

The corresponding R-curves (Figure 9) show that GIApp increases as the crack ap-
proaches the zone containing the manufacturing defect (red shaded area), then an unstable
crack propagation of around 15 mm is noted, before the fracture energy stabilizes.
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Figure 9. Mode I fracture R-curve, strain energy release rate versus the calculated crack length, for
6 DCB specimens containing a gap of 6.35 mm, manufactured with caul plate (calculated from plots
in Figure 8).

Table 1 summarizes the results from Mode I tests on specimens from panels with the
eight singularity conditions. The values shown are mean values. For each type of defect, a
peak value in the defect zone and a value at a calculated (arbitrary) crack length of 80 mm,
i.e., beyond the singularity, are given.

Table 1. Summary of Mode I test results. Mean values and standard deviations from tests on
6 specimens for each configuration.

Mode I Delamination Toughness (kJ/m2)

Embedded Defect Region Propagation a = 80 mm

Gap 0.5 mm—Without CP 0.565 (±) 0.136 0.425 (±) 0.090
Gap 0.5 mm—With CP 0.701 (±) 0.137 0.371 (±) 0.073

Gap 3.175 mm—Without CP 0.623 (±) 0.098 0.431 (±) 0.127
Gap 3.175 mm—With CP 0.641 (±) 0.196 0.384 (±) 0.061

Gap 6.35 mm—Without CP 0.498 (±) 0.177 0.373 (±) 0.055
Gap 6.35 mm—With CP 0.558 (±) 0.117 0.353 (±) 0.068

Overlap 3.175 mm—Without CP 0.559 (±) 0.141 0.389 (±) 0.099
Overlap 3.175 mm—With CP 0.460 (±) 0.071 0.402 (±) 0.014

CP: Caul Plate.

3.4. Mode II Testing of Unidirectional Laminates without Singularities

Figure 10 shows the results from the Mode II tests on the same material in unidirec-
tional form without singularities. As for the Mode I tests on unidirectional specimens
(Figure 6), the initiation of the delamination is unstable. The subsequent crack propagation
is stable reaching GIIapp values of the order of 800 J/m2. This level of GIIapp is comparable
to results found in the literature for the same material (values around 0.9 kJ/m2) [36].

3.5. Influence of Manufacturing Defects in Mode II

Figure 11 shows examples of load–displacement plots for Mode II tests of the cross
ply laminated containing a gap of 0.5 mm, in which no defects could be found after cure.
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Figure 11. Load–displacement plots for tests on six 4ENF specimens containing a Gap of 0.5 mm
manufactured with a caul plate.

Here there is an initial load drop, followed by a period of stick–slip crack propagation,
then a steep increase in load as the crack reached the region of the specimen affected by the
loading point compression zone. The plots for the six specimens are quite similar, both in
terms of behaviour and values.

Figure 12 shows the corresponding plots of GIIapp versus calculated crack length for
these specimens. The shaded area represents the location and size of the embedded defect.

The shape of the R-curves suggests that the stiffness of the sample increases after an
unstable crack propagation as observed for the samples cut out of unidirectional laminates.
The observation of the edges of the test coupons indicates that the crack front has jumped
to the upper 0◦/90◦ interface, as illustrated in Figure 13. In this case, corresponding
to the smallest defect, there is an initial crack jump from the insert to the defect zone.
Then from the defect zone onwards the propagation values appear to be quite stable,
around 0.65 kJ/m2. Figures 14 and 15 show the R-curves for six Mode II specimens
with the two larger gaps (3.175 mm and 6.35 mm). A clear effect of the defect zone on
the crack propagation behaviour is observed, with crack arrest, there is an increase in
apparent fracture energy followed by an increasingly unstable jump as the defect zone is
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increased. For the 6.35 mm gap the crack jumps to below the loading point, there is no
longer any stable propagation. The results for the 3.175 mm gap show an intermediate
behaviour. Figure 16 shows the R-curves of a laminate containing a 3.175 mm overlap
defect (Figure 2iv). The crack propagation in these samples differs from that of specimens
containing gap type defects by the fact that the crack advances rapidly through the defect
area to a calculated crack length of approximately 65 mm with a corresponding GIIapp

of approximately 0.4 kJ/m2. Once the crack front has passed the defect area, the crack
propagates in a more stable manner at a GIIapp of the order of 0.6 kJ/m2, similar to the
values for specimens without defects, until it reaches the loading roller. The behaviour is
similar to that of the specimens without defects but with more unstable crack propagation
through the defect area. This can be explained by the fact that in the case of overlap defects,
the local fibre content is increased. The lack of resin results in lower resistance to the crack
propagation.
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Figure 15. Mode II fracture energy as a function of the crack length for six 4 ENF specimens containing
a gap of 6.35 mm from plates manufactured with caul plate.

Table 2 summarizes the Mode II results. Once again, to compare the effects of the
different defect types, the values are taken as the peak values and those corresponding to
an arbitrary calculated crack length of 75 mm.
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Figure 16. Mode II fracture energy as a function of the crack length for six 4ENF specimens containing
an overlap of 3.175 mm from plates manufactured with caul plate.

Table 2. Summary of mode II test results. Mean values and standard deviations from tests on
6 specimens for each configuration.

Mode II Delamination Toughness (kJ/m2)

Embedded Defect Region Propagation a = 75 mm

Gap 0.5 mm—Without CP 0.576 (±) 0.052 0.447 (±) 0.079
Gap 0.5 mm—With CP 0.702 (±) 0.037 0.583 (±) 0.075

Gap 3.175 mm—Without CP 0.1727 (±) 0.130 0.725 (±) 0.074
Gap 3.175 mm—With CP 0.944 (±) 0.069 0.472 (±) 0.045

Gap 6.35 mm—Without CP 1.752 (±) 0.112 0.641 (±) 0.070
Gap 6.35 mm—With CP 1.809 (±) 0.135 0.625 (±) 0.079

Overlap 3.175 mm—Without CP 0.642 (±) 0.088 0.461 (±) 0.067
Overlap 3.175 mm—With CP 0.592 (±) 0.089 0.434 (±) 0.038

CP: Caul Plate.

4. Discussion

First, it should be noted that this type of interlaminar fracture data for AFP composites
with singularities does not exist in the literature, so it is not possible to compare results
with published values. However, the tests provide a large amount of information which
is discussed below in three sections: First the validity of the experimental approach is
analysed. Then the influence of the type of loading on the crack propagation resistance is
discussed. Fnally, the influence of the caul plate is examined.

The Mode I delamination test on unidirectional laminates is standardized, and has
been extensively studied, but its application to AFP materials poses three main difficulties.
The first is the need to balance the stacking sequence of the specimen arms, so that they
are symmetric both with respect to the overall specimen and also with respect to each arm
mid-plane. As the defects need to be placed in 90◦ layers, this requires adding an additional
external 90◦ ply on each face resulting in a specific stacking sequence for the test. The
second choice to be made is the position of the singularity as the aim here is to examine how
a propagating crack is affected when it meets a singularity; this differs from the standard
test which is primarily focused on obtaining initiation values of GIc from implanted thin
films. Here a distance of 10 mm was maintained between the end of the insert film and the
centre of the defect in order that the crack will start to propagate. This choice of distance is
open to discussion; a longer distance may allow additional damage mechanisms to develop,
while a shorter distance may be affected by the insert film. However, the distance was kept
constant for all tests and should therefore allow direct comparisons between defect types
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to be made. Finally, the third difficulty is determining crack length. This is intrinsic to all
fracture mechanics tests, but the choice here was to calculate the crack length from the
measured force and displacement. Again, this is open to discussion but the same approach
was used for all tests and so again it allows comparisons to be made for different defects
on the same basis.

Mode II testing is more controversial than Mode I, even without adding manufacturing
defects [32]. The choice here of a four-point ENF specimen was based on the need for a
stable crack propagation for which this geometry is the simplest available option. Once
again, the main difficulty is the determination of the crack length and the choice was made
here to use the calculated apparent crack length value.

It is noticeable that in some cases the calculated crack length appears to decrease after
the unstable crack propagation. This crack length is derived from the measured stiffness of
the specimen, and the latter will depend on both the open crack and the damage zone in
front of the crack. Aksoy and Carlsson [37] showed that this damage zone involves micro-
cracks which extend well beyond the open crack and coalesce to form a new crack surface.
The relationship between measured stiffness and crack length is further complicated by the
friction between fracture surfaces, which has been shown to have a significant influence on
Mode II fracture energy [38].

A comparison of the Mode I results with those for the unidirectional material indicates
higher peak values in the initiation region. The apparent crack resistance tends to increase
as the damage zone in front of the crack top interacts with the singularities. Various
authors have shown that a plastic or process zone precedes the main crack tip during
Mode I propagation [39,40]. As a result of the development of this zone, and its interaction
with through-thickness defects, damage including resin cracking and debonding, can
occur above and below the crack plane, initiating secondary cracks. Even during the first
millimetres of propagation, there is a tendency for the crack to jump between the 0/90◦

interfaces (see Figure 17). This has been seen in previous work on crack propagation at
0/90◦ interfaces [41]. These appear to encourage crack bifurcation, deviating cracks to
the 0/90◦ interface, and this raises the apparent fracture energy, Figure 17b. Once the
crack has passed the singularity it propagates more easily, and stable propagation fracture
energy values return to those measured at the start of the test, around 0.3–0.4 kJ/m2. These
values are similar to those published elsewhere for this 0/90◦ material [41]. The type and
dimensions of the singularity and the presence of a caul plate, all affect the peak fracture
energy (Table 1).

Materials 2021, 14, x FOR PEER REVIEW 15 of 18 
 

 

dimensions of the singularity and the presence of a caul plate, all affect the peak fracture 
energy (Table 1). 

 
Figure 17. Examples of Mode I crack propagation paths for tests on (a) gap 0.5 mm, with caul plate, (b) gap 6.35 mm, with 
caul plate. 

Concerning the Mode II results, these clearly indicate that the presence of the larger 
gaps has a significant effect on the crack propagation behaviour. There is a large arresting 
effect increasing with increasing defect size (within the range of defect tested in this study) 
followed by unstable crack growth. The specimens with overlaps are much less affected 
by the defect. Examination of micrographs suggests that the crack arrest may be due to 
large resin pockets resisting Mode II crack propagation, though local curvature in the plies 
visible in Figure 18 which will also hinder crack advance. The scatter in Mode II values is 
quite low; the crack tends to stay at the same 0/90° interface during propagation. 

 
Figure 18. Micrograph Mode II specimen, 6.35 mm gap with caul plate. 

Finally, concerning the influence of the caul plate, the data are provided in Tables 1 
and 2, but Figure 19 shows plots of mean values to illustrate the effects more clearly. 

Figure 17. Examples of Mode I crack propagation paths for tests on (a) gap 0.5 mm, with caul plate, (b) gap 6.35 mm, with
caul plate.



Materials 2021, 14, 5332 15 of 18

Concerning the Mode II results, these clearly indicate that the presence of the larger
gaps has a significant effect on the crack propagation behaviour. There is a large arresting
effect increasing with increasing defect size (within the range of defect tested in this study)
followed by unstable crack growth. The specimens with overlaps are much less affected
by the defect. Examination of micrographs suggests that the crack arrest may be due to
large resin pockets resisting Mode II crack propagation, though local curvature in the plies
visible in Figure 18 which will also hinder crack advance. The scatter in Mode II values is
quite low; the crack tends to stay at the same 0/90◦ interface during propagation.

Finally, concerning the influence of the caul plate, the data are provided in
Tables 1 and 2, but Figure 19 shows plots of mean values to illustrate the effects more
clearly.
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Figure 19. Influence of the caul plate on Mode I (left) and Mode II (right) fracture energies.

Under Mode I loading the caul plate tends to increase the fracture energy slightly,
perhaps due to a more constrained interlaminar microstructure resulting in less planar
interfaces.

Under Mode II loading the difference is small for small defects but for larger gaps
(3.175 mm) the crack resistance with a caul plate is lower than without. For the largest
6.25 mm gaps the results are similar with and without the caul plate. This suggests there
may be a critical ratio between the dimensions of the zone affected by the defect and the
homogenizing effect of the caul plate, which controls the damage zone and energy required
to propagate the crack. More work is needed to quantify this effect.

5. Conclusions

This study investigates the effect of AFP manufacturing gap/overlap singularities on
the crack propagation behaviour in carbon fibre epoxy laminates. Such local defects may
occur due to the variation of tape width or laying tapes over complex shapes while their
influence under in-plane loads was characterized in two previous studies [17,18]. Here
original results for out-of-plane loads are presented for the same materials and defects.
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It was first necessary to develop a specific test procedure and laminate stacking
sequence. Mode I and Mode II interlaminar fracture tests were performed because results
from simpler tests (ILSS) were shown not to be sensitive to these defects. The latter test
involves a complex stress field, with compression tending to close the defects, and should
not be used to investigate the influence of AFP manufacturing singularities.

The interlaminar fracture results show clear effects of the gap defects on the crack
propagation behaviour under out of plane loading. The effects measured increase with
increasing defect size. The influence of these defects under both Mode I and Mode II
loading conditions is always to slow down crack propagation, promoting unstable crack
growth. Use of a caul plate during manufacturing influences the measured values of
fracture energy but not the overall trends observed.

In further work, it would be interesting to examine whether cyclic and dynamic
loading have a similar influence on the fracture behaviour.

Author Contributions: Conceptualization, D.C., M.L., P.D. and C.B.; Data curation, D.C.; Funding
acquisition, D.C. and C.B.; Investigation, M.L.; Methodology, P.D. and C.B.; Supervision, P.D.;
Writing—original draft, M.L.; Writing—review and editing, D.C., P.D. and C.B. All authors have read
and agreed to the published version of the manuscript.

Funding: The authors are grateful to the region of Brittany (France) and the Regional Council of
Morbihan for their financial support.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Raw data confidential at present, study ongoing.

Acknowledgments: The authors thank Amaury Ducloux and Gildas Leverger (Coriolis Composite)
who manufactured the plates by Automated Fiber Placement, and Luc Riou (Ifremer) who performed
ultrasonic C-Scan analysis.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Lukaszewicz, D.H.-J.A.; Ward, C.; Potter, K.D. The engineering aspects of automated prepreg layup: History, present and future.

Compos. Part B Eng. 2012, 43, 997–1009. [CrossRef]
2. Maung, P.; Prusty, B.G.; White, J.M.; David, M.; Phillips, A.W.; St John, N.A. Structural performance of a shape-adaptive composite

hydrofoil using automated fibre placement. Eng. Struct. 2019, 183, 351–365. [CrossRef]
3. Maung, P.T.; Prusty, B.G.; Phillips, A.W.; St John, N.A. Curved fibre path optimisation for improved shape adaptive composite

propeller blade design. Compos. Struct. 2021, 255, 112961. [CrossRef]
4. Robert, C.; Pecur, T.; Maguire, J.M.; Lafferty, A.D.; McCarthy, E.D.; Brádaigh, C.M.Ó. A novel powder-epoxy towpregging line for

wind and tidal turbine blades. Compos. Part B Eng. 2020, 203, 108443. [CrossRef]
5. Sawicki, A.; Minguett, P. The effect of intraply overlaps and gaps upon the compression strength of composite laminates. In

Proceedings of the 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit,
Structures, Structural Dynamics, Long Beach, CA, USA, 20–23 April 1998; p. 744. [CrossRef]

6. Blom, A.W.; Lopes, C.S.; Kromwijk, P.J.; Gurdal, Z.; Camanho, P.P. A Theoretical Model to Study the Influence of Tow-drop Areas
on the Stiffness and Strength of Variable-stiffness Laminates. J. Compos. Mater. 2009, 43, 403–425. [CrossRef]

7. Turoski, L.E. Effects of Manufactoring Defects Ont the Strength of Toughened Carbon/Epoxy Prepreg Composites. Ph.D. Thesis,
Montana State University, Bozeman, MT, USA, 2000.

8. Boon, Y.D.; Joshi, S.C.; Bhudolia, S.K. Review: Filament Winding and Automated Fiber Placement with In Situ Consolidation for
Fiber Reinforced Thermoplastic Polymer Composites. Polymers 2021, 13, 1951. [CrossRef]

9. Woigk, W.; Hallett, S.R.; Jones, M.I.; Kuhtz, M.; Hornig, A.; Gude, M. Experimental investigation of the effect of defects in
Automated Fibre Placement produced composite laminates. Compos. Struct. 2018, 201, 1004–1017. [CrossRef]

10. Oromiehie, E.; Prusty, B.G.; Compston, P.; Rajan, G. Automated fibre placement based composite structures: Review on the
defects, impacts and inspections techniques. Compos. Struct. 2019, 224, 110987. [CrossRef]

11. Croft, K.; Lessard, L.; Pasini, D.; Hojjati, M.; Chen, J.; Yousefpour, A. Experimental study of the effect of automated fiber placement
induced defects on performance of composite laminates. Compos. Part A Appl. Sci. Manuf. 2011, 42, 484–491. [CrossRef]

http://doi.org/10.1016/j.compositesb.2011.12.003
http://doi.org/10.1016/j.engstruct.2019.01.014
http://doi.org/10.1016/j.compstruct.2020.112961
http://doi.org/10.1016/j.compositesb.2020.108443
http://doi.org/10.2514/6.1998-1786
http://doi.org/10.1177/0021998308097675
http://doi.org/10.3390/polym13121951
http://doi.org/10.1016/j.compstruct.2018.06.078
http://doi.org/10.1016/j.compstruct.2019.110987
http://doi.org/10.1016/j.compositesa.2011.01.007


Materials 2021, 14, 5332 17 of 18

12. Legay, P. Etude De L’influence De Défauts Sur Les Propriétés Mécaniques De Matériaux Composites Fabriqués Par Le Procédé De
Placement De Fibres. Ph.D. Thesis, Ecole Polytechnique de Montréal, Montréal, QC, Canada, 2011.

13. Falcó, O.; Mayugo, J.A.; Lopes, C.S.; Gascons, N.; Costa, J. Variable-stiffness composite panels: Defect tolerance under in-plane
tensile loading. Compos. Part A Appl. Sci. Manuf. 2014, 63, 21–31. [CrossRef]

14. Rhead, A.; Dodwell, T.; Butler, R. The effect of tow gaps on compression after impact strength of robotically laminated structures.
Comput. Mater. Contin. 2013, 35, 1–16.

15. Falcó, O.; Lopes, C.S.; Mayugo, J.A.; Gascons, N.; Renart, J. Effect of tow-drop gaps on the damage resistance and tolerance of
Variable-Stiffness Panels. Compos. Struct. 2014, 116, 94–103. [CrossRef]

16. Elsherbini, Y.M.; Hoa, S. V Experimental and numerical investigation of the effect of gaps on fatigue behavior of unidirectional
carbon/epoxy automated fiber placement laminates. J. Compos. Mater. 2017, 51, 759–772. [CrossRef]

17. Lan, M.; Cartié, D.; Davies, P.; Baley, C. Microstructure and tensile properties of carbon-epoxy laminates produced by automated
fibre placement: Influence of a caul plate on the effects of gap and overlap embedded defects. Compos. Part A Appl. Sci. Manuf.
2015, 78, 124–134. [CrossRef]

18. Lan, M.; Cartié, D.; Davies, P.; Baley, C. Influence of embedded gap and overlap fiber placement defects on the microstructure
and shear and compression properties of carbon-epoxy laminates. Compos. Part A Appl. Sci. Manuf. 2016, 82, 198–207. [CrossRef]

19. Comer, A.J.; Ray, D.; Obande, W.O.; Jones, D.; Lyons, J.; Rosca, I.; Higgins, R.M.O.; McCarthy, M.A. Mechanical characterisation
of carbon fibre–PEEK manufactured by laser-assisted automated-tape-placement and autoclave. Compos. Part A Appl. Sci. Manuf.
2015, 69, 10–20. [CrossRef]

20. Ray, D.; Comer, A.J.; Lyons, J.; Obande, W.; Jones, D.; Higgins, R.M.O.; McCarthy, M.A. Fracture toughness of carbon
fiber/polyether ether ketone composites manufactured by autoclave and laser-assisted automated tape placement. J. Appl.
Polym. Sci. 2015, 132, 41643. [CrossRef]

21. Stokes-Griffin, C.M.; Compston, P. The effect of processing temperature and placement rate on the short beam strength of carbon
fibre–PEEK manufactured using a laser tape placement process. Compos. Part A Appl. Sci. Manuf. 2015, 78, 274–283. [CrossRef]

22. Grouve, W.J.B.; Warnet, L.L.; Rietman, B.; Visser, H.A.; Akkerman, R. Optimization of the tape placement process parameters for
carbon–PPS composites. Compos. Part A Appl. Sci. Manuf. 2013, 50, 44–53. [CrossRef]

23. Zhou, W.; Cheng, Q.; Xu, Q.; Zhu, W.; Ke, Y. Deformation and fracture mechanisms of automated fiber placement pre-preg
laminates under out-of-plane tensile loading. Compos. Struct. 2021, 255, 112948. [CrossRef]

24. Ghayour, M.; Ganesan, R.; Hojjati, M. Flexural response of composite beams made by Automated Fiber Placement process: Effect
of fiber tow gaps. Compos. Part B Eng. 2020, 201, 108368. [CrossRef]

25. Le Guen-Geffroy, A.; Davies, P.; Le Gac, P.-Y.; Habert, B. Influence of Seawater Ageing on Fracture of Carbon Fiber Reinforced
Epoxy Composites for Ocean Engineering. Oceans 2020, 1, 198–214. [CrossRef]

26. Coriolis. Available online: https://www.coriolis-composites.com/ (accessed on 1 September 2021).
27. Laksimi, A.; Benzeggagh, M.L.; Jing, G.; Hecini, M.; Roelandt, J.M. Mode I interlaminar fracture of symmetrical cross-ply

composites. Compos. Sci. Technol. 1991, 41, 147–164. [CrossRef]
28. Benzeggagh, M.L.; Gong, X.J.; Laksimi, A.; Roelandt, J.M. On the mode I delamination test and the importance of laminate

lay-ups. Polym. Eng. Sci. 1991, 31, 1286–1292. [CrossRef]
29. Gong, X.J.; Hurez, A.; Verchery, G. On the determination of delamination toughness by using multidirectional DCB specimens.

Polym. Test. 2010, 29, 658–666. [CrossRef]
30. 15024 IS0 15024, Fiber Reinforced Plastic Composites—Determination of Mode I Interlaminar Fracture Toughness, GIC, for Unidirectionnally

Reinforced Materials; International Organization for Standardization: Geneva, Switzerland, 2001.
31. Martin, R.H.; Davidson, B.D. Mode II fracture toughness evaluation using four point bend, end notched flexure test. Plast. Rubber

Compos. 1999, 28, 401–406. [CrossRef]
32. Davies, P.; Sims, G.D.; Blackman, B.R.K.; Brunner, A.J.; Kageyama, K.; Hojo, M.; Tanaka, K.; Murri, G.; Rousseau, C.; Gieseke, B.;

et al. Comparison of test configurations for determination of mode II interlaminar fracture toughness results from international
collaborative test programme. Plast. Rubber Compos. 1999, 28, 432–437. [CrossRef]

33. Cartié, D.; Davies, P.; Peleau, M.; Partridge, I.K. The influence of hydrostatic pressure on the interlaminar fracture toughness of
carbon/epoxy composites. Compos. Part B Eng. 2006, 37, 292–300. [CrossRef]

34. Whitney, J.M.; Browning, C.E. On short-beam shear tests for composite materials. Exp. Mech. 1985, 25, 294–300. [CrossRef]
35. Brunner, A.J.; Blackman, B.R.K. Delamination Fracture in Cross-Ply Laminates: What can be Learned from Experiment? In

European Structural Integrity Society; Blackman, B.R.K., Pavan, A., Williams, J.G., Eds.; Elsevier: Amsterdam, The Netherlands,
2003; Volume 32, pp. 433–444. [CrossRef]

36. Cartié, D.D.R.; Laffaille, J.-M.; Partridge, I.K.; Brunner, A.J. Fatigue delamination behaviour of unidirectional carbon fibre/epoxy
laminates reinforced by Z-Fiber®pinning. Eng. Fract. Mech. 2009, 76, 2834–2845. [CrossRef]

37. Aksoy, A.; Carlsson, L.A. Crack tip yield zone estimates in mode II interlaminar fracture of interleaved composites. Eng. Fract.
Mech. 1991, 39, 525–534. [CrossRef]

38. Davies, P. Influence of ENF Specimen Geometry and Friction on the Mode II Delamination Resistance of Carbon/PEEK. J.
Thermoplast. Compos. Mater. 1997, 10, 353–361. [CrossRef]

39. Ozdil, F.; Carlsson, L.A. Plastic zone estimates in mode I interlaminar fracture of interleaved composites. Eng. Fract. Mech. 1992,
41, 645–658. [CrossRef]

http://doi.org/10.1016/j.compositesa.2014.03.022
http://doi.org/10.1016/j.compstruct.2014.05.005
http://doi.org/10.1177/0021998316655393
http://doi.org/10.1016/j.compositesa.2015.07.023
http://doi.org/10.1016/j.compositesa.2015.12.007
http://doi.org/10.1016/j.compositesa.2014.10.003
http://doi.org/10.1002/app.41643
http://doi.org/10.1016/j.compositesa.2015.08.008
http://doi.org/10.1016/j.compositesa.2013.03.003
http://doi.org/10.1016/j.compstruct.2020.112948
http://doi.org/10.1016/j.compositesb.2020.108368
http://doi.org/10.3390/oceans1040015
https://www.coriolis-composites.com/
http://doi.org/10.1016/0266-3538(91)90025-K
http://doi.org/10.1002/pen.760311709
http://doi.org/10.1016/j.polymertesting.2010.04.007
http://doi.org/10.1179/146580199101540565
http://doi.org/10.1179/146580199101540600
http://doi.org/10.1016/j.compositesb.2005.12.002
http://doi.org/10.1007/BF02325100
http://doi.org/10.1533/9781845694821.3.281
http://doi.org/10.1016/j.engfracmech.2009.07.018
http://doi.org/10.1016/0013-7944(91)90064-8
http://doi.org/10.1177/089270579701000404
http://doi.org/10.1016/0013-7944(92)90151-4


Materials 2021, 14, 5332 18 of 18

40. Paris, I.; Poursartip, A. Delamination Crack Tip Behavior at Failure in Composite Laminates under Mode I Loading. J. Thermoplast.
Compos. Mater. 1998, 11, 57–69. [CrossRef]

41. Chai, H. The characterization of Mode I delamination failure in non-woven, multidirectional laminates. Composites 1984, 15,
277–290. [CrossRef]

http://doi.org/10.1177/089270579801100103
http://doi.org/10.1016/0010-4361(84)90708-0

	Introduction 
	Material and Methods 
	Material 
	Configuration of Samples 
	Material Quality Control 
	Short Beam Shear Tests 
	Interlaminar Fracture Toughness Tests 
	Data Analysis 

	Results 
	Influence of Singularities on Interlaminar Shear Strength 
	Mode I Testing of Unidirectional Composites without Singularities 
	Influence of Manufacturing Defects in Mode I 
	Mode II Testing of Unidirectional Laminates without Singularities 
	Influence of Manufacturing Defects in Mode II 

	Discussion 
	Conclusions 
	References

