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Abstract :   
 
The recent application of macroecological tools and concepts has made it possible to identify consistent 
patterns in the distribution of microbial biodiversity, which greatly improved our understanding of the 
microbial world at large scales. However, the distribution of microbial functions remains largely uncharted 
from the macroecological point of view. Here, we used macroecological models to examine how the genes 
encoding the functional capabilities of microorganisms are distributed within and across soil systems. 
Models built using functional gene array data from 818 soil microbial communities showed that the 
occupancy-frequency distributions of genes were bimodal in every studied site, and that their rank-
abundance distributions were best described by a lognormal model. In addition, the relationships between 
gene occupancy and abundance were positive in all sites. This allowed us to identify genes with high 
abundance and ubiquitous distribution (core) and genes with low abundance and limited spatial 
distribution (satellites), and to show that they encode different sets of microbial traits. Common genes 
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encode microbial traits related to the main biogeochemical cycles (C, N, P and S) while rare genes encode 
traits related to adaptation to environmental stresses, such as nutrient limitation, resistance to heavy 
metals and degradation of xenobiotics. Overall, this study characterized for the first time the distribution 
of microbial functional genes within soil systems, and highlight the interest of macroecological models for 
understanding the functional organization of microbial systems across spatial scales. 
 
 

 

 



distributions of genes were bimodal in every studied site, and that their rank-abundance distributions were best

described by a lognormal model. In addition, the relationships between gene occupancy and abundance were

positive in all sites. This allowed us to identify genes with high abundance and ubiquitous distribution (core) and

genes with low abundance and limited spatial distribution (satellites), and to show that they encode different sets

of microbial traits. Common genes encode microbial traits related to the main biogeochemical cycles (C, N, P

and S) while rare genes encode traits related to adaptation to environmental stresses, such as nutrient limitation,

resistance to heavy metals and degradation of xenobiotics. Overall, this study characterized for the first time the

distribution of microbial  functional  genes within soil  systems,  and highlight  the interest  of  macroecological

models for understanding the functional organization of microbial systems across spatial scales.

KEYWORDS: microbial communities, functional gene diversity, macroecology, rare biosphere, functional gene

array, soil microbiome, functional rarity

INTRODUCTION

The functional potential of microbes relies on the collection of metabolic capabilities encoded by the

genes contained in their genomes, and that, once expressed, define the traits of the microorganism carrying these

genes.  While  several  functional  genes  are  specific  to  certain  taxa  [1],  many  genes  are  common  to  most

microorganisms and compose the “core genome”  [2, 3].  This results in high levels of functional redundancy

among microbial taxa  [4–6]. In addition, the wide occurrence of  mobile accessory genes exchanged through

horizontal transfer  [7, 8] plays significant contribution in these systems and adds to their complexity. Further,

some genes exist with different sequences despite encoding similar products, which correspond to the functional

redundancy  among  variants  of  the  same  gene.  For  all  these  reasons,  the  insights  provided  by  taxonomic

approaches into the role of microbial communities in ecosystem functioning are limited. As an alternative, the

use of functional approaches has been widely advocated, notably through the direct study of the gene content of

microbial communities and regarding genes as potential microbial functional traits [6, 9, 10].

In the recent  years, researchers have used macroecological models to disentangle the complexity of

microbiomes [11, 12]. Such approaches have been notably used to explore commonness and rarity patterns in

microbial systems and successfully uncovered regularities in the distribution of microorganisms across various
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spatial scales (species, communities, or ecosystems) and revealed similarities or idiosyncrasies in the processes

underlying these distributions [12–14]. Such macroecology-based frameworks do not rely on arbitrarily defined

thresholds that oppose rare versus abundant biological units. Instead, full distributions are used to classify units

along gradients ranging from rarity to commonness. To investigate patterns in local abundance, rank-abundance

distributions (RAD) place biological units from a given area or community along a gradient from low to high

abundance.  RAD have  been  used  to  describe  the  distribution  of  taxa  within  microbial  taxa,  revealing  the

presence of a long tail of rare organisms composing the so-called “rare biosphere” [15–17]. In spatial occupancy

studies, occupancy-frequency distribution (OFD) describes how biological units are spatially distributed across a

set  of  communities  [18],  and classifies these units  along a distribution gradient,  from spatially restricted to

ubiquitous.  OFD models  describing  both  macro  and microorganisms were  found  to  be  either  unimodal  or

bimodal, and to exhibit a higher left mode  [19], that is, high proportion of taxa represents small fractions of

communities. Finally, the relationship between local abundance and spatial occupancy (occupancy-abundance

relationships - OAR) is one of the most reported trends in macroecology and has been shown to be positive for a

wide range of macro- [20–25] and microorganisms [12, 26–34]. The positive OAR for biological units in natural

systems predicts that some units have a restricted spatial distribution with low abundance (i.e. “satellites”) while

others are ubiquitous and found in high abundance (i.e. “core”) [35–38]. In microbial ecology, observations of

these  distribution  patterns  contributed  to  unveil  community  dynamics,  which  later  led  to  the  concept  of

“conditionally  rare  taxa”,  i.e. satellite  organisms  having  the  potential  to  bloom  and  temporarily  influence

community dynamics [39–41]. Such life strategy is known to be related to the metabolic capabilities of certain

microbes  [42,  43].  Therefore,  if  we  aim  to  understand  the  mechanisms  underpinning  the  macroecological

patterns of microbial communities, applying these concepts in the context of functional genes could provide

valuable information.

In this study, we aimed to address a simple, and yet unanswered, question: how are the functions carried

by microorganisms distributed within soil systems ? To tackle this question, we aimed to assess the distribution

of microbial functional genes at different scales in soils using macroecological models, to identify abundant and

rare functions across these systems. For that, we constructed a database with functional gene array (FGA) [44]
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data from 818 topsoil microbial communities sampled from ten sites located around the globe and representing

various ecosystem types (i.e. tundra, grassland, forest, shrubland and pasture; Figure 1). The FGA was used to

hybridize microbial community DNA to a set of 39,681 probes that correspond to variants of 194 functional

genes encoding various microbial functions involved in biogeochemical cycles, pollutant breakdown, virulence

and resistance to various types of physical and chemical stress. By considering genes instead of taxa as the unit

of our study, we can make the following predictions about their distribution patterns: the presence of a set of core

genes shared among most microorganisms should lead to (i) OFD displaying either unimodal with a right mode

or bimodal with a stronger right mode; and (ii) RAD characterized by few dominant genes and a long tail of rare

genes.  Consequently,  as  observed for most  of  the  biological  units  from the smallest  to the largest,  the  two

previous patterns should result in positive OAR. By using this approach, we classified genes along a continuum

from low abundance and limited occurrence to high abundance and ubiquity, with the two ends of this gradient

representing satellite and core genes, respectively. Then, by investigating the functions carried by these genes we

show that rare and common microbial genes encode different functions in soil ecosystems. 

MATERIAL AND METHODS

Composition of the database

The database consisted of ten datasets collected in the frame of previous projects and comprised a total

of 818 surface topsoil samples from three continents, representing a wide gradient of environmental conditions

(Figure S1 and Table S1). The spatial scale covered by each dataset range from hundreds of meters in some

experimental  sites  to  dozens  of  kilometers  across  natural  landscapes.  We  did  not  investigate  within  site

differences among samples as our goal was to look for repeatable patterns across geographically distant sites,

considered as separate entities from the physico-chemical, climatic and pedoclimatic standpoint. Here, we opted

for  a large spatial scale macroecological approach that did not consider local contingencies and focused on

comparing the distribution of functional gene variants within and across communities from isolated ecosystems

[45].
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Five sites were located in the United States, including three grassland [46–48] and two Alaskan tundra

ecosystems  [49,  50].  Climate  change  experiments  were  conducted  in  four  of  these  sites  (i.e. variation  in

temperature, CO2 concentration, etc.). Four sites were located in China, comprising two grassland ecosystems

from the Qinghai province [51, 52], in addition to forests and shrubland sites from the Hubei Province [53, 54].

The last site corresponded to pasture areas located in the Brazilian Amazon basin [55, 56].

All the samples were analyzed using a functional  gene array  (FGA)[44] composed of 39 681 DNA

probes targeting protein-coding genes. Probe design was done as described elsewhere [44, 57, 58], by searching

keywords against the NCBI nr database. Candidate sequences were validated with HMM models and 50-mer

oligonucleotide probes were designed using CommOligo 2.0 [59]. These probes (herafter termed genes variants

or  variants)  served  as  the  unit  of  our  study  to  characterize  the  macroecological  distribution  of  microbial

functions. The potential role of these gene variants in the microbial communities were defined according to a

functional classification performed using information available in databases such as NCBI, UniProt, or EXpasy

and were also based on extensive literature reviews [10]. The 39 681 variants correspond to 194 genes (e.g. nirB,

ureC, exochitinase, arsB), defined as collections of variants encoding a similar product but with slightly different

DNA sequence  and  originating  from  different  organisms  [60].  Genes  were  further  classified  into  56  gene

families,  defined as collections of genes that,  together, represent  a coherent  set  of  microbial  functions (e.g.

resistance to oxygen or heat stress, C fixation, denitrification). Finally, these families were grouped into 9 broad

categories of microbial functions (e.g. C, N, P or S cycling, antibiotic resistance and virulence; cf. Table S2 for a

full description of the distribution of variants in this different levels of functional resolution). This classification

allowed the linkage of genes with the function they carry.

Functional Gene Array analyses

FGA hybridizations were performed according to standardized laboratory procedure from the Institute

for Environmental Genomics (IEG, OK, USA), as described in [44]. Total community DNA was quantified using

picogreen and, for each sample, 800 ng were labeled with Cy-5 (GE Healthcare), dried in a Speedvac at 45°C for
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45 min and stored at  -20°C before hybridization.  The pellet  was re-hydrated in 2.68 µl  of  tracking control

completed with 7.12 µl of hybridization solution (Formamide, SSC, SDS, oligo Cy-3, oligo Cy-5 and universal

standard). Labeled DNA was incubated at 95°C for 5 minutes before loading onto the array. The hybridization

was done at 42°C in the presence of 40% formamide for 16 hours.  After  washing and drying, arrays were

scanned and gridded before signal intensity quantification using ImaGene 6.0 (Biodiscovery Inc., El Segundo,

CA,  USA).  Original  raw  hybridization  signal  intensity  data  were  retrieved  from the  IEG microarray  data

repository (http://ieg2.ou.edu/NimbleGen/analysis.cgi).  To estimate  the  abundance of  functional  genes,  noise

data were removed using a hybridization signal cutoff of 2000 intensity [57, 61].

Distribution patterns of functional gene variants

The  abundance  of  the  39,681  genes  variants  within  a  given  sample  was  estimated  as  the  logged

hybridization signal intensity on the FGA. The shape of variants rank-abundance distributions (RAD) within

each of  the  818 samples  was  assessed  using four  widely  used  rank-abundance models  (Logseries,  Poisson

lognormal, Negative binomial and Zipf). Models were fitted using maximum likelihood estimation of parameters

and their goodness of fit compared using the AIC (Akaike Information Criterion). For each sample, the model

with the lowest AIC value was considered to be the best fitting model. Models were fitted and compared using

the python package macroecotools [62]. 

Gene variants occupancy was estimated within each site by counting the number of samples in which the

variant was detected and dividing it by the total number of samples in the site (ranged between 0 and 1). The

shape of occupancy-frequency distribution (OFD) of variants across multiple soil communities was analyzed

using the Mitchell-Olds & Shaw test as implemented in the MOStest function of the R package vegan [63]. This

approach fits  a quadratic generalized linear models of the type  µ = b0 + b1x + b2x2 to the OFD, where  b0

corresponds to the intercept, b1 to rate of change and b2 determines whether the model is convex or concave and

was used to estimate the model shape: if b2 < 0 the model is unimodal and if b2 > the model is bimodal.
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To test occupancy-abundance relationships (OAR) within each site, variants abundance was estimated as

the average abundance across samples from that site, occupancy in each site was estimated as described above

and the relationships were analyzed using linear models (lm() function in R) relating variants occupancy with

their average abundance across samples.

Translation of gene variants distribution into microbial functions distribution

To determine how the distribution of genes variants translates into the distribution of microbial functions

in soil  systems,  we associated the variants  to  the  functions  they encode (Figure  1)  using the classification

provided by the FGA (genes, gene families and broad categories, cf. Table S2). First, variant distributions were

used to rank the 39 681 variants and to group them into bins that represented gradients of abundance within a

community  (RAD),  occupancy  across  communities  (OFD)  or  commonness  within  sites  (OAR).  Bins  were

defined by splitting variants into 6 sets of equal number based on their rank (see supplementary information for

an explanation of the choice of bin number). Then, for each bin (ranked 1 for the lowest end of the gradient to 6

for the highest end), the importance of a function at a given level of functional classification was estimated as

the proportion of the summed hybridization signal of all the variants from that bin. However, different functions

(e.g. gene families) differed in numbers of variants on the FGA design (Table S2), and this must be accounted for

when estimating function importance. If the importance of a function in a bin is simply estimated by counting

the number of variants from this function, or their summed signal intensity, then functions represented by many

variants are more likely to be considered important than those represented by few variants. To avoid this bias,

and thus take into account unequal sampling effort across function on the FGA, function importance within a bin

was estimated by dividing the observed proportion of the total signal intensity in the bin represented by variants

from this function by the proportion of the total number of variants represented by this function on the FGA

design (Figure 1). The obtained ratio, here termed weight of the function, describes how much the proportion of

the signal  represented by a function in the bin departs  from a null  expectation,  which corresponded to the

proportion of the signal represented by this function if variants were randomly sampled on the FGA. Functions
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with weight values > 1 were considered over-represented in a given bin,  i.e. more abundant than expected by

chance, while functions with a weight < 1 were considered under-represented, i.e. less abundant than expected

by chance.  This  provided matrices  describing the  composition  of  each bin  (column)  in  terms of  microbial

functions (rows), with each function being associated with a weight. As bins (B1 to B6) represented gradients of

increasing  abundance  within  communities,  increasing  occupancy  across  communities  and  increasing

commonness within sites, we were able to identify the functions encoded by variants along these gradients.

Analysis of the distribution of microbial functions in soil systems

To  characterize  the  distribution  of  microbial  functions  in  soil  systems,  we  analyzed  the  weighted

matrices described above (i.e. functions x bins). The dissimilarity between bins was estimated with the Bray-

Curtis index and visualized using Detrended Correspondence Analysis (DCA). We tested for differences in the

composition of bins using permutational multivariate analysis of variance (PERMANOVA)[64], implemented as

the adonis function in the R package vegan [63]. We tested the differences between bins of different ranks (1 to

6) and originating from different sites. This was done after associating genes to function weight at the three

levels of functional classification (genes, gene families and broad categories). 

For each of the 194 genes, we fitted linear models describing the relationship between the weight of

genes in each bin and the rank of occupancy-abundance bins (1 to 6). By looking at the slopes of these models,

we identified the  genes, and the corresponding gene families, that were under- or over-represented  along the

occupancy-abundance gradient. Negative relationships (significant negative slopes) corresponded to genes over-

represented in rare variants,  whereas positive ones (significant  positive slopes) corresponded to genes over-

represented in abundant variants. When the slope of the linear model was not significant the case was classified

as “no relation”.  Finally,  we characterized the composition in terms of  function weight  of  in  rare (B1)  and

common (B6) occupancy-abundance bins.

RESULTS
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Macro-ecological distribution patterns of functional gene variants in soil ecosystems

The  rank-abundance  distributions  (RAD)  of  gene  variants within  communities  (i.e. samples)  was

described using four different RAD models (Logseries, Poisson lognormal, Negative binomial and Zipf). Poisson

lognormal was found to be the best model to describe variants RAD in 100% of the samples (n = 818, Figure 2).

The occupancy-frequency distributions (OFD) of variants across communities were significantly bimodal in all

ten sites, with a maximum at low and high occupancy (Figure 3, MOS test, p value < 0.001). In all but one site

(CiPEHR), we observed increased variant frequencies at high occupancy, in comparison to low occupancy (i.e.

the right mode of the OFD was stronger). This was supported by the observation of higher F-values when testing

the presence of a frequency maximum at high occupancy (F = 103±74) compared with low occupancy (F =

59±57, Table S3). F-values at high occupancy were 1.7±0.7 times higher than at low occupancy. F-values of the

left mode  was less pronounced for the two datasets with the lowest number of samples (KAEFS, n = 12 and

Fazenda nova vida, n = 24), suggesting that the sampling effort was not high enough to capture variants with

spatially restricted distribution.  The relationships between average variant abundance and occupancy (OAR)

were linear, positive and highly significant in all ten  sites  (Figure 4). This linear trend represents a gradient

ranging from rarity,  i.e. low abundance and restricted spatial  distribution (bottom left),  to commonness,  i.e.

ubiquitous distribution across communities and high abundance (top right). At the two ends of this gradients lie

satellite (B1) and core gene variants (B1), respectively. 

Distribution of microbial functions in soil ecosystems

We  found  that  abundance  bins  from  different  samples  but  with  similar  rank  had  a  more  similar

distribution of function weights than bins from the same sample but with different ranks. This was validated for

each site,  as  bins  with similar  rank clustered together  on the DCA, based on the Bray-Curtis  dissimilarity

estimated on function weights (Figure S2). Additionally, bins located at the two ends of the abundance gradient

within samples were the most dissimilar (B1 and B6). This result was also validated when comparing the weight

of functions in abundance bins across sites (n = 818 samples, times 6 abundance bins). The weight of genes in
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abundance bins was better predicted by the rank of the bin along abundance gradient (B 1 to B6, PERMANOVA,

p < 0.01) than by its site of origin (Table 1). Bin rank explained between 65 and 84% of the variation in gene

weight while the site explained between 8 and 16%. This trend was confirmed when higher levels of variants

classification were used (e.g. gene families and broad categories), as suggested by higher F values of bin rank

compared with the site effect (i.e. 18.6, 8.3 and 8.1 times higher for broad categories, gene families and genes,

respectively).

We performed a similar analysis using occupancy bins (B1 to B6) and found that variants with similar

occupancy within sites exhibited similar function weights. Bin rank explained from 31 to 57% of the variation in

gene weight distribution between bins from the ten sites, while the factor site explained only 8 to 15% (Table 1).

According to the F values, the effect of occupancy rank was 5.4 to 13.3 times higher than the site effect. As

observed for abundance bins, the greatest differences in distribution of function weight among occupancy bins

were observed between the two extremes of the gradient, B1 and B6 (Table S4).

Functions of satellites and core genes in soil ecosystems

 We observed clear trends in the distribution of the 194 gene families along the occupancy-abundance

gradient in soil systems, and we identified the gene families, and the corresponding broad ecological categories

that were systematically over-represented at one end of this gradient (Figures 5 and S3-S4-S5, Table S5). Among

the 194 linear models fitted between genes weight and bin rank, only 22 (11%) were not significant (p value >

0.05, Figure 5-A and Figure S3). This corresponded to genes that were not associated with rare or abundant

variants. We observed 91 (47%) negative relationships (p value < 0.05 and slope < 0, Figure 5-A and Figure S4),

corresponding to  genes  that  were  over-represented  in  rare  (i.e.  satellites)  variants  and  under-represented  in

abundant (i.e. core) variants. Among these, 38.5% of the genes were related to stress responses (e.g. osmotic,

oxygen or radiation stress, cold or heat shocks, sigma factors, N or P limitations), 18.7% to metal resistance,

14.3% to C cycling, 11% to virulence, and the remaining 6% comprised three categories (antibiotic resistance, N

and S cycling). The 20 genes with the strongest negative slope were related to various forms of stress responses,
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virulence proteins (toxin, adhesin, aerobactin), metal resistance (cadmium, cobalt, aluminum), broad biological

functions  (blue  copper  protein,  thioredoxin),  C  cycling  (acetogenesis)  and  energy processes  (hydrogenase).

Significant positive relationships were found for 81 (42%) genes (p value < 0.05 and slope > 0, Figure 5-A and

Figure S5). These genes were under-represented in rare and over-represented in abundant variants. From those,

39.5% were related to C cycling, 18.5% to metal resistance, 12.3% to N cycling, 9.9% to stress responses, 4.9%

to antibiotic resistance and S cycling, 3.7% to energy processes and P cycling and 2.5% to virulence. The 20

genes with  the  strongest  positive  slope were related to  the  degradation  of  C-based  substrates,  the  N cycle

(denitrification, assimilatory-N-reduction and ammonification), metal resistance (lead, silver and mercury), C

fixation (pcc and CODH genes), S oxidation (sox gene) and energy processes (hydrogenase).

We also looked at the weight of each gene family across the ten sites in the first (B 1, satellite variants)

and in the sixth (B6, core variants) occupancy-abundance bins (Figure 5-C-D, figure S6). Core variants were

enriched in functions related to the C, N, P and S biogeochemical cycles, but were depleted in functions related

to  stress  response,  virulence,  heavy  metal  and  antibiotics  resistance.  Satellite  variants  were  more  evenly

distributed across the categories, despite notable depletion in functions related to the N cycle and enrichment in

stress  response and virulence related functions.  Twelve processes  were clearly enriched in  core  variants:  S

oxidation, denitrification, C fixation, ammonification, assimilatory-N-reduction, C degradation, P utilization and,

surprisingly, resistance to mercury, lead and silver contamination. On the contrary, the processes enriched in

satellites variants included stress response (e.g. oxygen limitation, heat shocks, radiation, osmotic and protein

stresses, P and N limitation), antibiotics resistance (e.g. membrane transporters), resistance to heavy metal (e.g.

Cr,  Cu,  As,  Te  and  Al)  and  virulence  (e.g. hemolysin,  capsule  formation,  pilin,  aerobactin  and  pilin).

Interestingly, two C-related processes (methane metabolism and acetogenesis) were also enriched in satellites

variants.

DISCUSSION

Macro-ecological distribution patterns of microbial gene variants in soil systems
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In this study, we applied an analytical framework derived from macroecological concepts to describe the

distribution of microbial gene variants at two scales,  i.e. within and across communities, in ten different soil

ecosystems. We showed that rank-abundance distributions (RAD) of gene variants within soil communities can

be adequately described using classic macroecological models that were designed to capture the intrinsically

uneven distribution of species within natural assemblages. Here the Poisson lognormal model was the best one to

describe variants RAD. While many RAD models have been developed over time to describe these data, the

Poisson lognormal model is often considered as the most widely applicable due to its “positive range, right

skewness, heavy right tail, and easily computed parameter estimates” [65]. In microbes, it was identified as the

best  model  to  characterize  bacterial  RAD at  the  global  scale  [14],  in  the  marine  environment  [66]  and in

wastewater treatment plants [67], and it was used to predict  the total number of microbial OTUs at a global

scale [68, 69]. Overall, our results highlight that the wide applicability of the lognormal model to describe RAD

of biological units can be extended to microbial gene variants. Furthermore, we found that RAD of microbial

taxa and gene variants are very similar, which demonstrates the usefulness of macroecological tools beyond the

dichotomy  micro-  vs.  macro-organisms  [12],  and  toward  a  wider  range  of  biological  units  (e.g. genes,

interactions, viruses).

When looking  at  the  spatial  distribution  of  gene  variants  across  samples,  the  observed occupancy-

frequency distributions (OFD) differed from what is generally reported for taxa in communities of both macro

and microorganisms (i.e. the “hollow” distribution), with a higher number of taxa being found in a few sites and

only a small number of ubiquitous taxa [70]. In their review, McGeoch & Gaston (2002), analyzed OFD models

describing  the  distribution  of  macro-organisms (e.g. plants,  insects,  birds,  fishes)  from small  (<  1  km²)  to

continental scales. Among the 68 reported models, some were unimodal (57%), other bimodal (31%), but the

large majority exhibited a  higher  left  mode (68%),  that  is  a  higher  proportion of  taxa observed in  a  small

proportion of communities than widely distributed. Similar right-skewed OFD have been reported for microbial

taxa, from the microscale [33] to hundreds of km in both marine [31, 32, 71, 72] and soil environments [27, 73].

Here, we found that the OFD of microbial functional gene variants contrast with these general trends reported

for taxa, as they exhibit a stronger right mode with a much higher proportion of variants that were ubiquitously

13

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350



distributed within a site than unique to a single community. This pattern was expected and due to the functional

redundancy among microbes [4–6, 74], i.e. the fact that most microbes share a common set of functional genes

that can detected in any soil sample collected within a given site. Despite this stronger right mode, the observed

OFD were bimodals in the ten studied ecosystems, a pattern known as the Raunkiaer’s law of distribution of

frequencies. It has been suggested that this pattern can emerge from random sampling of biological units from a

lognormal rank-abundance distribution [75], which seems to be the case in our study.

The  combination  of  within-community  abundance  distribution  (RAD)  and  across-communities

occupancy distribution (OFD) corresponds to occupancy-abundance relationships (OAR), and these OAR have

been a reported to be positive for a wide range of macro- and microbial taxa [12, 20–26, 28–34]. Several theories

have been proposed to explain the existence of positive OAR in taxa, including stochastic processes resulting

from neutral dynamics [19] or differences between species interms of ecological niche [76]. However, there is

currently no consensus on the underlying mechanisms of OAR for taxa and no studies for functional genes.

Positive OAR can be seen as a gradient of commonness (or rarity) across a set of communities, with biological

units that are both spatially restricted and locally scarce at one end ( i.e. the satellites), and the biological units

that are widespread and very abundant at the other end (i.e. the core). Here, we observed that some gene variants

were  present  in  a  small  number  of  communities  within  each  site  and  exhibited  low  abundance  in  these

communities, and that other gene variants exhibited high abundance in all the communities from all the sites.

This resulted in positive OAR of microbial functional gene variants within each studied site, and allowed the

identification of rare and common microbial gene variants in soil systems, along with the function they encode.

However, despite the fact that OAR of microbial taxa and gene variants are both positive, they differ greatly

regarding the distribution of biological units along the rarity to commonness gradient. As mentioned, while the

RAD are quite similar the OFD are very different. These differences resulted in taxonomic OAR with many

satellite and few core taxa while functional OAR had only few satellite and many core gene variants (Figure 6).

Interestingly, ecological theories suggest that core taxa are more likely to be generalists while satellite ones are

more likely to be specialists [77, 78], which leads to the question whether core and satellite gene variants encode

general and specialized functions, respectively.
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From gene variants distribution to the functional organization of soil microbial systems

Overall, we found strong differences in the functions encoded by satellite and core gene variants. There

are several possibilities for gene variants to be identified as core. It could be present in the genome of a single

widespread and abundant taxa (generalist), in the genomes of several widespread and low abundance taxa or in

the genomes of many spatially restricted and low abundance taxa (specialists).  Unfortunately,  we could not

quantify the contributions of these different scenarii, as the FGA did not allow to link functional genes with the

identity of the taxa carrying them. Our results show that core functional gene variants correspond mostly to

genes related to the main biogeochemical cycles (C, N, P and S) and support the hypothesis that a wide range of

microorganisms have the abilities to carry out fundamental ecological processes such as degradation of C-based

substrates,  denitrification  or  assimilatory-N-reduction  [79,  80].  This  is  not  surprising  from  a  functional

perspective, as microbial systems are well known for their redundancy in the metabolic capabilities between

organisms [6] and, at larger scale, across communities [4, 5, 81–85].

By contrast, there are fewer possibilities for a gene variant to be identified as a satellite as it must be

present in only spatially restricted and low abundance taxa. Consequently, core variants are expected to represent

the  functions  that  are  shared  by  microorganisms  with  many  different  macroecological  distributions,  while

satellite  variants  represent  the  function  that  are  found  only  in  spatially  restricted  and  low  abundance

microorganisms. We found that satellite gene variants encoded the capabilities of microorganisms to cope with

environmental stresses (e.g. osmotic, oxygen or radiation, cold or heat shocks, sigma factors), withstand nutrient

limitations (N and P) and resist to pollutants or potentially toxic compounds (i.e. heavy metals, antibiotics). This

result could explain why rare microbes that likely carry these variants appears less affected by disturbances and

abiotic changes compared with dominant ones, which tend to respond to a higher number of disturbances and

oscillate in abundance when facing them [86]. A step further, these results support previous observations that the

ecological  strategy  of  some  microorganisms  is  to  maintain  a  low  abundance  and  a  slow  growth,  while

prioritizing  the  expression  of  maintenance  and survival  functions  [87,  88].  Our  results  also  support  recent
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findings  showing  that  rare  microorganisms  are  particularly  important  for  the  adaptation  of  microbial

communities to environmental variation and their  ability to withstand perturbations and maintain ecosystem

functions across spatio-temporal scales [41, 89]. In fact, rare and dominant microorganisms are thought to carry

redundant  metabolic  potential  regarding major  functions (C,  N,  P cycles),  but  the  rare  ones  harbor  distinct

abilities to cope with environmental changes. Hence, they may temporarily thrive and support the functioning at

the community level by replacing dominant taxa that were affected by these changes [90–92].

It  is  worth mentioning that  we characterized the functional  content  of  microbial  communities using

FGA, which was constrained by the array design and represented only a fraction of the gene diversity that can be

assessed using deep shotgun sequencing [93]. This could have resulted in an underestimation of the functional

potential represented by rare genes (and thus the rare biosphere). With the advance in sequencing techniques and

expansion of databases, our ability to detect rare genes is rapidly increasing. It is likely that the differences

observed here between the functional potential encoded by core and satellite genes would have been even greater

using deep shotgun sequencing.  However, the FGA approach also offered several advantages over sequencing

that are particularly relevant for our study, as it provided a level of reproducibility and standardization that could

not be matched by sequencing approaches. Such a standardize microbial data system was recently termed as

“highly needed” for pursuing questions related to ,microbial macroecology [45]. In addition, microarrays are

often more accurate for genes quantification and are more sensitive to rare genes than sequencing approaches

[94, 95], making them particularly well suited for analyzing occurrence and abundance patterns of functional

genes. To conclude, we foresee that the conceptual approach proposed here could be adapted to the analysis of

publicly available metagenomic datasets in order to characterize the distribution of microbial functions across a

wide range of environments.

In this study, we showed that the distribution of microbial gene variants can be adequately described

using concepts and tools derived from the field of macroecology. This approach allowed us to classify gene

variants along a gradient from rarity to commonness, showing that variants with low abundance and limited

spatial distribution encode functions that are distinct from those encoded by variants with high abundance and
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ubiquitous distribution. Common variants encode microbial traits involved in the major biogeochemical cycles

(C, N, P and S) while rare ones encode traits allowing microorganisms to withstand environmental stresses and

nutrient  limitation,  along  with  their  resistance  to  heavy  metals  and  xenobiotics.  Our  results  support  the

hypothesis  that  the  rare  biosphere  carries  different  functional  capabilities  compared  with  more  prevalent

microbes  and that  these capabilities  may determine the  essential  role  of  rare  microbes  in  the  resilience of

microbial communities and their ability to sustain ecological processes across temporal and spatial scales.

ACKNOWLEDGEMENTS

The authors would like to thank all the persons that contributed to sample collection and laboratory analyses.

This synthesis was primarily funded by the U.S. Department of Energy (DOE), Office of Science, Office of Bio-

logical and Environmental Research’s (OBER)  Systems Biology Research to Advance Sustainable Bioenergy

Crop Development (DE-SC0014079), Biological Systems Research on the Role of Microbial Communities in

Carbon Cycling program (DE-SC0004730, DE-SC001057, DE-SC0004601 and DE-SC0010715),  by the U.S.

National Science Foundation MacroSystems Biology program under the contract (NSF EF-1065844), and by the

Office of the Vice President for Research at the University of Oklahoma, all to J.Z. .  This work was also sup-

ported by the National Natural Science Foundation of China (No.31670614) to Y.Y..

REFERENCES

  

1. Gupta A, Sharma VK. Using the taxon-specific genes for the taxonomic classification of bacterial 
genomes. BMC Genomics 2015; 16. 

2. Gil R, Silva FJ, Pereto J, Moya A. Determination of the Core of a Minimal Bacterial Gene Set. Microbiol
Mol Biol Rev 2004; 68: 518–537. 

3. Mira A, Martín-Cuadrado AB, D’Auria G, Rodríguez-Valera F. The bacterial pan-genome: A new 
paradigm in microbiology. Int Microbiol 2010; 13: 45–57. 

4. Escalas A, Troussellier M, Yuan T, Bouvier T, Bouvier C, Mouchet MA, et al. Functional diversity and 
redundancy across fish gut, sediment and water bacterial communities. Environ Microbiol 2017; 19: 
3268–3282. 

5. Jurburg SD, Salles JF. Functional Redundancy and Ecosystem Function — The Soil Microbiota as a Case
Study. In: Lo Y-H, Blanco JA, Shovonlal R (eds). Biodiversity in Ecosystems - Linking Structure and 
Function. 2015. pp 29–49. 

17

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446
447

448
449

450
451

452
453
454

455
456
457



6. Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, et al. Function and functional 
redundancy in microbial systems. Nat Ecol Evol 2018; 2: 936–943. 

7. Polz MF, Hunt DE, Preheim SP, Weinreich DM. Patterns and mechanisms of genetic and phenotypic 
differentiation in marine microbes. Philos Trans R Soc Lond B Biol Sci 2006; 361: 2009–2021. 

8. Young JPW. Bacteria Are Smartphones and Mobile Genes Are Apps. Trends Microbiol 2016; 24: 931–
932. 

9. Boon E, Meehan CJ, Whidden C, Wong DHJ, Langille MGI, Beiko RG. Interactions in the microbiome: 
Communities of organisms and communities of genes. FEMS Microbiol Rev 2014; 38: 90–118. 

10. Escalas A, Hale L, Voordeckers JW, Yang Y, Firestone MK, Alvarez-Cohen L, et al. Microbial Functional 
Diversity: From Concepts to Applications. Ecol Evol 2019. 

11. Barberán A, Casamayor EO, Fierer N. The microbial contribution to macroecology. Front Microbiol . 
2014. , 5: 1–8

12. Shade A, Dunn RR, Blowes SA, Keil P, Bohannan BJM, Herrmann M, et al. Macroecology to Unite All 
Life, Large and Small. Trends Ecol Evol 2018; 33: 731–744. 

13. Chase AB, Martiny JB. The importance of resolving biogeographic patterns of microbial microdiversity. 
Microbiol Aust 2018; 5–8. 

14. Shoemaker WR, Locey KJ, Lennon JT. A macroecological theory of microbial biodiversity. Nat Ecol 
Evol 2017; 1: e1450v4. 

15. Bachy C, Worden AZ. Microbial ecology: Finding structure in the rare biosphere. Curr Biol . 2014. 
Elsevier. , 24: R315–R317

16. Lynch MDJ, Neufeld JD. Ecology and exploration of the rare biosphere. Nat Rev Microbiol 2015; 13: 
217–229. 

17. Pedrós-Alió C. The Rare Bacterial Biosphere. Ann Rev Mar Sci 2012; 4: 449–466. 

18. Rabinowitz D. Seven forms of rarity and their frequency in the flora of the British Isles. In: Soulé ME 
(ed). Conservation Biology: The Science of Scarcity and Diversity. 1986. Sinauer Associates. 

19. McGeoch MA, Gaston KJ. Occupancy frequency distributions: Patterns, artefacts and mechanisms. Biol 
Rev Camb Philos Soc 2002; 77: 311–331. 

20. Blackburn TM, Cassey P, Gaston KJ. Variations on a theme: Sources of heterogeneity in the form of the 
interspecific relationship between abundance and distribution. J Anim Ecol 2006; 75: 1426–1439. 

21. Buckley HL, Freckleton RP. Understanding the role of species dynamics in abundance-occupancy 
relationships. J Ecol 2010; 98: 645–658. 

22. Gaston KJ, Blackburn TM, Greenwood JJD, Gregory RD, Quinn RM, Lawton JH. Abundance-occupancy
relationships. J Appl Ecol 2000; 37: 39–59. 

23. Miranda LE, Killgore KJ. Abundance–occupancy patterns in a riverine fish assemblage. Freshw Biol 
2019; 64: 2221–2233. 

18

458
459

460
461

462
463

464
465

466
467

468
469

470
471

472
473

474
475

476
477

478
479

480

481
482

483
484

485
486

487
488

489
490

491
492



24. Suhonen J, Jokimäki J. Temporally stable species occupancy frequency distribution and abundance-
occupancy relationship patterns in urban wintering bird assemblages. Front Ecol Evol 2019; 7. 

25. Webb TJ, Barry JP, McClain CR. Abundance–occupancy relationships in deep sea wood fall 
communities. Ecography 2017; 40: 1339–1347. 

26. Amend AS, Oliver TA, Amaral-Zettler LA, Boetius A, Fuhrman JA, Horner-Devine MC, et al. 
Macroecological patterns of marine bacteria on a global scale. J Biogeogr 2013; 40: 800–811. 

27. Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence 
patterns in soil microbial communities. ISME J 2012; 6: 343–351. 

28. Barnes CJ, Burns CA, van der Gast CJ, McNamara NP, Bending GD. Spatio-temporal variation of core 
and satellite arbuscular mycorrhizal fungus communities in Miscanthus giganteus. Front Microbiol 2016; 
7: 1–12. 

29. Fillol M, Auguet JC, Casamayor EO, Borrego CM. Insights in the ecology and evolutionary history of the
Miscellaneous Crenarchaeotic Group lineage. ISME J 2016; 10: 665–677. 

30. Jeanbille M, Gury J, Duran R, Tronczynski J, Agogué H, Saïd O Ben, et al. Response of core microbial 
consortia to chronic hydrocarbon contaminations in coastal sediment habitats. Front Microbiol 2016; 7: 
1–13. 

31. Lindh M V., Sjöstedt J, Ekstam B, Casini M, Lundin D, Hugerth LW, et al. Metapopulation theory 
identifies biogeographical patterns among core and satellite marine bacteria scaling from tens to 
thousands of kilometers. Environ Microbiol 2017; 19: 1222–1236. 

32. Logares R, Audic SS, Bass D, Bittner L, Boutte C, Christen R, et al. Patterns of Rare and Abundant 
Marine Microbial Eukaryotes. Curr Biol 2014; 24: 813–821. 

33. Michelland R, Thioulouse J, Kyselková M, Grundmann GL. Bacterial Community Structure at the 
Microscale in Two Different Soils. Microb Ecol 2016; 72: 717–724. 

34. Unterseher M, Jumpponen A, Öpik M, Tedersoo L, Moora M, Dormann CF, et al. Species abundance 
distributions and richness estimations in fungal metagenomics - Lessons learned from community 
ecology. Mol Ecol 2011; 20: 275–285. 

35. Grime JP. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J Ecol 1998; 
86: 902–910. 

36. Grime JP. Dominant and subordinate components of plant communities: implications for succession, sta- 
bility and diversity. In: Gray AJ, Crawley MJ (eds). Colonization, Succession and Stability. 1984. 
Blackwell Scientific Publications, Oxford, pp 413–428. 

37. Hanski I. Dynamics of Regional Distribution: The Core and Satellite Species Hypothesis. Oikos 1982; 
38: 210. 

38. Magurran AE, Henderson PA. Explaining the excess of rare species in natural species abundance 
distributions. Nature 2003; 422: 714–716. 

19

493
494

495
496

497
498

499
500

501
502
503

504
505

506
507
508

509
510
511

512
513

514
515

516
517
518

519
520

521
522
523

524
525

526
527



39. Newton R, Shade A. Lifestyles of rarity: understanding heterotrophic strategies to inform the ecology of 
the microbial rare biosphere. Aquat Microb Ecol 2016; 78: 51–63. 

40. Shade A, Jones SE, Caporaso JG, Handelsman J, Knight R, Fierer N, et al. Conditionally rare taxa 
disproportionately contribute to temporal changes in microbial diversity. MBio 2014; 5: e01371-14. 

41. Shade A, Gilbert JA. Temporal patterns of rarity provide a more complete view of microbial diversity. 
Trends Microbiol 2015; 23: 335–340. 

42. Koch AL. Oligotrophs versus copiotrophs. BioEssays 2001; 23: 657–661. 

43. Cobo-Simón M, Tamames J. Relating genomic characteristics to environmental preferences and ubiquity 
in different microbial taxa. BMC Genomics 2017; 18: 1–11. 

44. Tu Q, Yu H, He Z, Deng Y, Wu L, Van Nostrand JD, et al. GeoChip 4: A functional gene-array-based 
high-throughput environmental technology for microbial community analysis. Mol Ecol Resour 2014; 14:
914–928. 

45. Xu X, Wang N, Lipson D, Sinsabaugh R, Schimel J, He L, et al. Microbial macroecology: In search of 
mechanisms governing microbial biogeographic patterns. Glob Ecol Biogeogr 2020; 29: 1870–1886. 

46. Reich PB, Knops J, Tilman D, Craine J, Ellsworth D, Tjoelker M, et al. Plant diversity enhances 
ecosystem responses to elevated CO2 and nitrogen deposition. Nature 2001; 410: 809–812. 

47. Field CB, Chapin FS, Chiariello NR, Holland EA, Mooney HA. The Jasper Ridge CO2 Experiment: 
Design and Motivation. Carbon Dioxide and Terrestrial Ecosystems. 1996. pp 121–145. 

48. Luo C, Rodriguez-R LM, Johnston ER, Wu L, Cheng L, Xue K, et al. Soil microbial community 
responses to a decade of warming as revealed by comparative metagenomics. Appl Environ Microbiol 
2014; 80: 1777–1786. 

49. Mauritz M, Bracho R, Celis G, Hutchings J, Natali SM, Pegoraro E, et al. Nonlinear CO2 flux response 
to 7 years of experimentally induced permafrost thaw. Glob Chang Biol 2017; 23: 3646–3666. 

50. Natali SM, Schuur EAG, Mauritz M, Schade JD, Celis G, Crummer KG, et al. Permafrost thaw and soil 
moisture driving CO2 and CH4 release from upland tundra. J Geophys Res Biogeosciences 2015; 120: 
525–537. 

51. Yang Y, Gao Y, Wang S, Xu D, Yu H, Wu L, et al. The microbial gene diversity along an elevation 
gradient of the Tibetan grassland. ISME J 2014; 8: 430–440. 

52. Yang Y, Wu L, Lin Q, Yuan M, Xu D, Yu H, et al. Responses of the functional structure of soil microbial 
community to livestock grazing in the Tibetan alpine grassland. Glob Chang Biol 2013; 19: 637–648. 

53. Zhang Y, Cong J, Lu H, Li G, Xue Y, Deng Y, et al. Soil bacterial diversity patterns and drivers along an 
elevational gradient on Shennongjia Mountain, China. Microb Biotechnol 2015; 8: 739–746. 

54. Zhang Y, Cong J, Lu H, Deng Y, Liu X, Zhou J, et al. Soil bacterial endemism and potential functional 
redundancy in natural broadleaf forest along a latitudinal gradient. Sci Rep 2016; 6. 

20

528
529

530
531

532
533

534

535
536

537
538
539

540
541

542
543

544
545

546
547
548

549
550

551
552
553

554
555

556
557

558
559

560
561



55. Paula FS, Rodrigues JLM, Zhou J, Wu L, Mueller RC, Mirza BS, et al. Land use change alters functional 
gene diversity, composition and abundance in Amazon forest soil microbial communities. Mol Ecol 2014;
23: 2988–2999. 

56. Rodrigues JLM, Pellizari VH, Mueller R, Baek K, Jesus EDC, Paula FS, et al. Conversion of the Amazon
rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc Natl Acad 
Sci U S A 2013; 110: 988–93. 

57. He Z, Deng Y, Van Nostrand JD, Tu QC, Xu MY, Hemme CL, et al. GeoChip 3.0 as a high-throughput 
tool for analyzing microbial community composition, structure and functional activity. Isme J 2010; 4: 
1167–1179. 

58. He Z, Gentry TJ, Schadt CW, Wu L, Liebich J, Chong SC, et al. GeoChip: A comprehensive microarray 
for investigating biogeochemical, ecological and environmental processes. ISME J 2007; 1: 67–77. 

59. Li X, He Z, Zhou J. Selection of optimal oligonucleotide probes for microarrays using multiple criteria, 
global alignment and parameter estimation. Nucleic Acids Res 2005; 33: 6114–6123. 

60. Tu Q, He Z, Deng Y, Zhou J. Strain/species-specific probe design for microbial identification 
microarrays. Appl Environ Microbiol 2013; 79: 5085–5088. 

61. Wu L, Liu X, Schadt CW, Zhou J. Microarray-based analysis of subnanogram quantities of microbial 
community DNAs by using whole-community genome amplification. Appl Environ Microbiol 2006; 72: 
4931–4941. 

62. Xiao X, Thibault K, J. Harris D, Baldridge E, White E. macroecotools: v0.3 (Version v0.3). 2016. 

63. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara R. Vegan: community ecology 
package. R Package. 2016.

64. Anderson MJ, Bueno AS. A new method for non-parametric multivariate analysis of variance. Austral 
Ecol 2001; 26: 32–46. 

65. Crow EL, Patil GP. Applications in Ecology. In: Cros E, Shimizu K (eds). Lognormal Distributions. 
1988. Marcel Dekker, New York and Basel, pp 303–330. 

66. Ser-Giacomi E, Zinger L, Malviya S, De Vargas C, Karsenti E, Bowler C, et al. Ubiquitous abundance 
distribution of non-dominant plankton across the global ocean. Nat Ecol Evol 2018; 2: 1243–1249. 

67. Wu L, Ning D, Zhang B, Li Y, Zhang P, Shan X, et al. Global diversity and biogeography of bacterial 
communities in wastewater treatment plants. Nat Microbiol 2019; 4: 1183–1195. 

68. Locey KJ, Lennon JT. Scaling laws predict global microbial diversity. Proc Natl Acad Sci 2016; 113: 
5970–5975. 

69. Louca S, Mazel F, Doebeli M, Parfrey LW. A census-based estimate of Earth’s bacterial and archaeal 
diversity. PLoS Biol 2019; 1–30. 

70. Tokeshi M. Dynamics of distribution in animal communities: Theory and analysis. Res Popul Ecol 
(Kyoto) 1992; 34: 249–273. 

21

562
563
564

565
566
567

568
569
570

571
572

573
574

575
576

577
578
579

580

581
582

583
584

585
586

587
588

589
590

591
592

593
594

595
596



71. Logares R, Deutschmann IM, Junger PC, Giner CR, Krabberød AK, Schmidt TSB, et al. Disentangling 
the mechanisms shaping the surface ocean microbiota. Microbiome 2020; 8: 55. 

72. Azovsky A, Mazei Y. Do microbes have macroecology? Large-scale patterns in the diversity and 
distribution of marine benthic ciliates. Glob Ecol Biogeogr 2013; 22: 163–172. 

73. Noguez AM, Arita HT, Escalante AE, Forney LJ, García-Oliva F, Souza V. Microbial macroecology: 
Highly structured prokaryotic soil assemblages in a tropical deciduous forest. Glob Ecol Biogeogr 2005; 
14: 241–248. 

74. Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue 
reveals Earth’s multiscale microbial diversity. Nature 2017; 551: 457–463. 

75. Papp L, Izsák J, Papp L, Izsak J. Bimodality in Occurrence Classes: A Direct Consequence of Lognormal 
or Logarithmic Series Distribution of Abundances- A Numerical Experimentation. Oikos 1997; 79: 191. 

76. Verberk WCEP, van der Velde G, Esselink H. Explaining abundance-occupancy relationships in 
specialists and generalists: A case study on aquatic macroinvertebrates in standing waters. J Anim Ecol 
2010; 79: 589–601. 

77. Liao J, Cao X, Zhao L, Wang J, Gao Z, Wang MC, et al. The importance of neutral and niche processes 
for bacterial community assembly differs between habitat generalists and specialists. FEMS Microbiol 
Ecol 2016; 92: fiw174. 

78. Slatyer RA, Hirst M, Sexton JP. Niche breadth predicts geographical range size: A general ecological 
pattern. Ecol Lett 2013; 16: 1104–1114. 

79. Fierer N, Barberán A, Laughlin DC. Seeing the forest for the genes: Using metagenomics to infer the 
aggregated traits of microbial communities. Front Microbiol 2014; 5: 1–6. 

80. Rivett DW, Bell T. Abundance determines the functional role of bacterial phylotypes in complex 
communities. Nat Microbiol 2018; 3: 767–772. 

81. Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Guillaumaud N, et al. Decline of soil microbial 
diversity does not influence the resistance and resilience of key soil microbial functional groups 
following a model disturbance. Environ Microbiol 2007; 9: 2211–2219. 

82. Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Freitag T, et al. Maintenance of soil functioning 
following erosion of microbial diversity. Environ Microbiol 2006; 8: 2162–2169. 

83. Mendes LW, Tsai SM, Navarrete AA, de Hollander M, van Veen JA, Kuramae EE. Soil-Borne 
Microbiome: Linking Diversity to Function. Microb Ecol 2015; 70: 255–265. 

84. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of 
the global ocean microbiome - SM. Science 2015; 348: 1261359–1261359. 

85. Wohl DL, Arora S, Gladstone JR. Functional redundancy supports biodiversity and ecosystem function in
a cloased and constant environment. Ecology 2008; 85: 1534–1540. 

86. Kurm V, Geisen S, Gera Hol WH. A low proportion of rare bacterial taxa responds to abiotic changes 
compared with dominant taxa. Environ Microbiol 2019; 21: 750–758. 

22

597
598

599
600

601
602
603

604
605

606
607

608
609
610

611
612
613

614
615

616
617

618
619

620
621
622

623
624

625
626

627
628

629
630

631
632



87. Bergkessel M, Basta DW, Newman DK. The physiology of growth arrest: Uniting molecular and 
environmental microbiology. Nat Rev Microbiol . 2016. , 14: 549–562

88. Hofer U. Life in the slow lane. Nat Rev Microbiol 2019. 

89. Baho DL, Peter H, Tranvik LJ. Resistance and resilience of microbial communities - Temporal and spatial
insurance against perturbations. Environmental Microbiology . 2012. 

90. Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, et al. Where less may be more: How 
the rare biosphere pulls ecosystems strings. ISME J . 2017. , 11: 853–862

91. Aanderud ZT, Jones SE, Fierer N, Lennon JT. Resuscitation of the rare biosphere contributes to pulses of 
ecosystem activity. Front Microbiol 2015; 6: 1–11. 

92. Lawson CE, Strachan BJ, Hanson NW, Hahn AS, Hall ER, Rabinowitz B, et al. Rare taxa have potential 
to make metabolic contributions in enhanced biological phosphorus removal ecosystems. Environ 
Microbiol 2015; 17: 4979–4993. 

93. Zhou J, He Z, Yang Y, Deng Y, Tringe SG, Alvarez-Cohen L. High-throughput metagenomic technologies
for complex microbial community analysis: Open and closed formats. MBio 2015; 6: e02288-14. 

94. Zhou J, Wu L, Deng Y, Zhi X, Jiang YH, Tu Q, et al. Reproducibility and quantitation of amplicon 
sequencing-based detection. ISME J 2011; 5: 1303–1313. 

95. Shi Z, Yin H, Van Nostrand JD, Voordeckers JW, Tu Q, Deng Y, et al. Functional Gene Array-Based 
Ultrasensitive and Quantitative Detection of Microbial Populations in Complex Communities. mSystems 2019; 
4: 99–117. 
 

23

633
634

635

636
637

638
639

640
641

642
643
644

645
646

647
648

649
650
651
652

653

654

655

656

657

658

659

660

661

662



FIGURE AND TABLES

Figure 1. Analytical framework used in this study
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Figure 2. Rank-abundance relationship of functional gene variants within each studied community. 

For  each  community  (i.e. sample),  we  fitted  four  rank-abundance  models  (Logseries,  Poisson  lognormal,

Negative binomial and Zipf) using maximum likelihood estimation (MLE). Each subplot corresponds to one site

and each gray line represents the RAD of variants within a sample (logged hybridization signal intensity). The

thick lines correspond to the average model for each site. 
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Figure 3.  Occupancy-frequency relationship of microbial gene variants within each studied site

Colored lines correspond to the best model describing the relationship. The color of data points corresponds to

the colors used in Figure 1. The p values of the MOS test of bimodality along with the F values associated with

the test of the presence of local maxima at low and high occupancy are depicted.
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Figure 4. Occupancy-abundance relationships of microbial gene variants within soil ecosystems

In each site, the occupancy of the 39,681 gene variants present on the FGA was estimated as the proportion of

samples  in  which it  was detected.  Their  abundance was estimated as  the  average abundance across  all  the

samples  from  the  site.  Black  lines  represent  the  best  linear  models  describing  the  occupancy-abundance

relationship.
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Figure 5. Distribution of genes weight across rank of occupancy-abundance bins

For each of the 194 genes, we fitted linear models describing the relationship between the weight of genes in

each occupancy-abundance bin and the rank of the bin (1 to 6). Negative relationships (significant negative

slopes) corresponded to genes over-represented in rare gene variants whereas positive ones (significant positive

slopes) corresponded to genes over-represented in abundant variants, when the slope of the linear model was not

significant the case was classified as “no relation”. (A) Relative proportions of genes across broad categories for

the models with non-significant (n = 22), negative (n = 91) and positive (n = 81) relationships. (B) Slopes of the

models classified by broad categories. (C-D) In each of the ten studied sites, satellite and core variants were

defined as those from the extreme occupancy-abundance bins (B1 and B6, respectively). Boxplots represent the

weight of ecological processes in bins from each of the ten sites for satellite (C) and core (D) variants. Gene

families were ranked according to their average weight in core variants across the ten sites. Colors represent

different broad categories of functions as depicted in the legend in (D).
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Table 1 – Comparison of the functional composition of abundance and occupancy bins across sites

We tested the effects of sites and rank on the composition of abundance and occupancy bins. This was performed

at  three  levels  of  functional  classification  (broad categories,  gene  families  and  genes)  using  permutational

multivariate  analysis  of  variance (PERMANOVA; adonis  function in  the  R package vegan)  on Bray-Curtis

dissimilarity.

30

Abundance bins Occupancy bins

Functional level Factor Df F value p value F value p value

Broad categories Rank 5 92.90 18.6 0.84 0.001 *** 14.35 13.3 0.57 0.001 ***

Sites 9 5.01 0.08 0.001 *** 1.08 0.08 0.352

Gene families Rank 5 70.62 8.3 0.74 0.001 *** 8.81 4.9 0.42 0.001 ***

Sites 9 8.53 0.16 0.001 ** 1.81 0.15 0.003 **

Genes Rank 5 28.85 8.1 0.65 0.001 *** 4.77 5.4 0.31 0.001 ***

Sites 9 3.57 0.15 0.001 *** 0.88 0.10 0.828

Frank / Fsite R2 Frank / Fsite R2
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