
1

Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive
publisher-authenticated version is available on the publisher Web site.

Proceedings Of The 12th International Symposium On Image And
Signal Processing And Analysis (ispa 2021)
2021, Pages 138-144
https://doi.org/10.1109/ISPA52656.2021.9552062
https://archimer.ifremer.fr/doc/00728/83972/

Archimer
https://archimer.ifremer.fr

Robust Deep Simple Online Real-Time Tracking

Belmouhcine Abdelbadie 1, *, Simon Julien 2, Courtrai Luc 3, Lefevre Sebastien 3

1 LTBH - IRISA IFREMER - Université de Bretagne Sud, Vannes, France
2 LTBH IFREMER, Lorient, France
3 IRISA Université de Bretagne Sud, Vannes, France

* Corresponding author : Abdelbadie Belmouhcine, email address : abdelbadie.belmouhcine@ifremer.fr

Abstract :

Simple Online and Real-time Tracking (SORT) and its deep extension (DeepSORT) are simple, fast, and
effective multi-object tracking by detection frameworks. Their main strengths are simplicity and speed.
However, they still suffer from some problems, such as identity switch, instance merge, and many false
positives, which prevent the tracking results from being used for subsequent tasks such as counting. In
this paper, we strengthen and improve the tracking using EfficientDet and DeepSORT. In our approach,
the motion prediction uses appearance, and the appearance embedding uses location. First, we modify
the deep detection network to predict the objects' motion in the next frame by leveraging the attention
between the current image and the next image. Second, an appearance-based metric is used to associate
detection to tracks after false negatives and occlusion. This metric is a learned Mahalanobis distance
between two feature descriptors constructed using EfficientDet and attention given to regions of interest
from their images. Finally, we count only high confidence tracks having a minimum frequency of
apparition. Our approach has been applied to a challenging real-life problem, namely seabed species
tracking and counting. Our experimental results show that Robust DeepSORT reduces identity switches
and merges. Thus, it improves tracking and counting evaluation measures while keeping the simplicity of
the origlnal DeepSORT.

Keywords : Counting, DeepSORT, EfficientDet, MultiObject Tracking, SORT

https://doi.org/10.1109/ISPA52656.2021.9552062
https://archimer.ifremer.fr/doc/00728/83972/
http://archimer.ifremer.fr/
file:///C:/birt/First_Page_Generation/Exports/abdelbadie.belmouhcine@ifremer.fr

Robust Deep Simple Online Real-time Tracking
Abdelbadie Belmouhcine

LTBH - IRISA
IFREMER - Université de Bretagne Sud

Vannes, France
abdelbadie.belmouhcine@ifremer.fr

abdelbadie.belmouhcine@univ-ubs.fr

Julien Simon
LTBH

IFREMER
Lorient, France

Luc Courtrai
IRISA

Université de Bretagne Sud
Vannes, France

Sébastien Lefèvre
IRISA

Université de Bretagne Sud
Vannes, France

I. INTRODUCTION

Multiple object tracking (MOT) is a central problem in
computer vision. It identifies and distinguishes every object in
a frame and tracks them until they leave the scene. In addition
to object detection, which draws rectangular bounding boxes
around objects and indicates their classes, MOT algorithms as-
sign an ID to each box to distinguish the same class instances.
MOT can be treated as a data association problem since the
goal is to associate detections across multiple frames. Indeed,
MOT is typically composed of two steps: detection, i.e.,
locating objects in the image, and data association, i.e., linking
detections across frames to constitute complete trajectories.
There are two types of tracking paradigms: online and batched.
In this work, our interest is in online tracking, which looks
only at the current frame and previous ones, thus targetting
real-time tracking. Note that in real-time tracking, we need to
make a trade-off between running time and performance.

This work was done as a part of the Game of Trawls project. We thank the
European Maritime and Fisheries Fund (contract number 18/2216442) and
France Filière Pêche (contract number 19/1000544) for funding.

Simple Online and Real-time Tracking (SORT) [1] is a
simple tracking approach that applies Kalman filtering [2] for
object motion estimation and the Hungarian algorithm [3],
with an association metric that measures bounding box over-
lap, i.e., Intersection over Union (IoU), for object association.
While simple, SORT, with a robust detector, provided good
performances at high frame rates [4] on the MOT challenge
dataset [5]. Although SORT achieves an overall good tracking
precision and accuracy, it suffers from a relatively high number
of identity switches [4] due to the low accuracy of the Kalman
filter when the uncertainty is high. Therefore, when detection
is missing due to occlusion or a false negative, the algo-
rithm becomes defective. In addition, it can also be defective
at the beginning of tracks. DeepSORT [4] reduced identity
switches by applying an appearance-based metric computed
from bounding box embeddings obtained using a third-party
Siamese network trained for similarity learning. Even though
this extension allows SORT to continue associations through
occlusion and false negatives, it does not improve associations
at the beginning of trajectories. Improving associations at the
beginning can further reduce identity switches.

In this paper, we propose a novel tracking and counting
method inspired by the SORT workflow: 1) We use a con-
volutional neural network for object detection and modify
the network to predict the object’s motion in the next frame
by leveraging the attention mechanism [6], [7]. 2) We use
an appearance-based Mahalanobis distance [8] to support the
Kalman filter in detection to track connection after missing
detections and occlusion. 3) The Hungarian algorithm per-
forms data association to complete the tracks. 4) We use high
confidence tracks with a minimum occurrence frequency to
count the targets.

Our main contributions are: 1) The use of appearance im-
plicitly in motion prediction by 2) the incorporation of motion
prediction in EfficientDet [9]. We use attention between two
images to make a more robust detection and motion prediction.
We also 3) extract feature descriptors for bounding boxes
explicitly and directly from EfficientDet to make associations
through occlusion and missing detections by leveraging at-
tention given to regions of interest from their corresponding
images. This way, the location is implicitly incorporated when
computing object descriptors.

We aim to reduce the use of the Kalman filter to make

SORT stronger. DeepSORT integrates a deep network to learn
a similarity metric. However, it relies only on Kalman filtering
for motion prediction and does not use deep learning in that
part. The Kalman filter is known to be inaccurate when the
uncertainty is high, either at the beginning of a track or when
detections are missing due to occlusion or false negatives. So,
we propose to integrate frame to (following) frame motion
prediction in the EfficientDet [9] detector to have a more
accurate position in the next frame.

MOT has many real-world applications. In this work, we
identify and count seabed species in real-time, using a camera
placed in front of a sledge to catch only desired varieties.

Our paper is organized as follows; We review related work
and emphasize our contributions in Sec. II. We then detail
our proposal in Sec. III, before providing the experimental
validation in Sec. IV. We finally conclude the paper in Sec. V.

II. RELATED WORK

Multi-object tracking approaches can be divided into
detection-based-tracking (DBT) and detection-free-tracking
(DFT) based on initialization methods [10]. DFT methods
require targets to be manually identified and then track them in
subsequent frames [11], [12]. However, in most MOT real-time
applications, we do not have prior knowledge of targets. DBT
methods build tracks by detecting objects in each frame and
completing the tracks as the video is playing [1], [4]. Hence,
DBT methods are more suitable for MOT. According to the
processing mode, MOT methods can be divided into online
and offline approaches. Online methods only use the current
and previous frames [1], [4] and are thus, more suitable for
real-time applications.

SORT [1] relies on two classical but efficient methods:
Kalman filtering [2] for motion prediction and the Hungarian
algorithm [3] for data association. First, a detector is used
to provide bounding boxes for each object present in the
frame. Then, the inter-frame movement of each object is
approximated by a linear constant velocity model. Whenever
a detection is associated with a track, the detection is used to
update the track state by optimally solving the velocity using
the Kalman filter. The association between detections and
tracks is done by estimating the target bounding box geometry
in the current frame using the motion model. A cost matrix
is constructed by computing the intersection over union (IoU)
between every new detection and estimated bounding boxes of
all existing tracks. Based on this cost matrix, the association
is done via the Hungarian algorithm. Associations having an
overlap less than IoUmin are rejected. Tracks live during
a particular time and are deleted if they are not associated
with any detection for TLost frames. Removing tracks after a
specific time is helpful because as a track stays without any
update, the Kalman filter’s uncertainty rises.

SORT suffers from the problem of a high number of identity
switches. An identity switch happens when a ground truth
trajectory is covered by multiple predicted tracks, which means
that the ground truth changes IDs during the tracking process.
For this reason, an extension of SORT, called DeepSORT [4],

Fig. 1: The architecture of a Non-Local Block.

integrates both motion and appearance information into the
association problem. Object appearance has a vital role in
track-detection association. It helps to reduce ID switches.
DeepSORT extracts crops of images corresponding to detec-
tions and trains a Siamese network to compute an appearance
descriptor r. Furthermore, for each track k, DeepSORT keeps
the last Lk associated appearance descriptors to compute
the cosine similarity between detections and tracks in the
appearance space. Besides, the motion model is also essential
since it reduces the search area. In DeepSORT, the authors
used Mahalanobis distance between the predicted Kalman
filter state and detections; this metric is thresholded at 95%
confidence interval computed from the inverse χ2 distribution.
However, DeepSORT cannot eliminate ID switches at the be-
ginning of tracks when the association is still done exclusively
based on the Kalman filter’s estimation.

In SORT and DeepSORT methods, the Kalman filter is used
for motion prediction and propagates a target identity into the
next frame. Indeed, a linear constant velocity model approxi-
mates the inter-frame displacement of each object. This model
does not consider the camera motion and object appearance
and supposes that the velocity is constant and the distribution
of object positions in the same trajectory is Gaussian. Thus,
the Kalman filter becomes weak when both the camera and
objects move or when the velocity is not constant and changes
suddenly. Kalman filter can also make wrong predictions when
the object makes an unusual movement. Moreover, the Kalman
filter usually makes inaccurate predictions at the beginning of
a track when its uncertainty is still very high, leading to many
identity switches. For this reason, SORT and DeepSORT give a
high number of identity switches. Hence, reducing uncertainty
at the beginning of a track can further reduce the number of
identity switches.

III. PROPOSED METHOD

When applying only the Kalman filter, objects’ appearance
is not considered, making association inaccurate in occlusion
cases. DeepSORT solves this by incorporating an appearance-
based similarity learned using a Siamese network [13]. How-
ever, the appearance metric is not accurate at the beginning
of the track since it does not contain enough appearance
information, and the initialization of a track can be wrong.
Thus, we propose extending DeepSORT to an end-to-end deep
learning solution, including appearance description and motion
prediction, and replacing the Kalman filter with the network
prediction when possible. Furthermore, we make location
prediction use appearance implicitly since it is generated

Fig. 2: The architecture of the modified EfficientDet (EfficientTrack).

Fig. 3: EfficientDet based feature representation of bounding boxes.

using the detector’s feature space. Also, we make appearance
description use location implicitly by incorporating long-range
dependencies between pixels of two successive frames.

A. Detection

For detection, we used EfficientDet [9], which is a strong
high performing object detection network. It is an anchor-
based detector that is similar to RetinaNet [14], except that
it uses EfficientNet [15] as a backbone instead of ResNet [16]
and Bidirectional Feature Pyramid Network (BiFPN) rather
than Feature Pyramid Network (FPN) [17]. From the pyramid

of features, five feature maps with different spatial resolutions
are extracted, as shown in Fig. 2. Each feature map is passed
through two task-specific networks: a classification head and a
regression head. The classification head predicts each anchor’s
class, and the regression head outputs an offset from each
anchor.

EfficientDet uses RetinaNet’s focal loss to overcome the
problem of imbalance between foreground and background.
This loss uses a parameter γ to exponentially weight easy
examples, which have high classification probability, with a
smaller weight, to allow the optimization process to focus on

more challenging examples having low classification probabil-
ities.

We modified EfficientDet to make object detection on the
target image, leverage features, and, more specifically, atten-
tion received from the next frame. We call our modified model:
EfficientTrack. We explain it in the following subsection
(III-B).

B. Motion prediction
To make a more accurate motion prediction, we modified

EfficientDet to take, as input, two successive images. Those
two images pass through the same backbone and BiFPN, and
each gives five feature maps of different spatial resolution. To
fuse each pair of feature maps of the same size, belonging to
adjacent frames t and t+1, we follow the idea of Non-Local
Blocks [6]. Let xt be a feature map of image t and xt+1 be
a feature map of image t + 1. Both have a size of C × N ,
where N is the resolution and C is the depth. We compute two
feature representations yt|t+1 = attn1(xt, xt+1) and yt+1|t =
attn2(xt+1, xt), that model the relationship between the two
feature maps xt and xt+1, called attention feature maps [7].
yt|t+1 is the attention feature map of xt based on xt+1 and
yt+1|t is the opposite. Indeed, as shown in Fig. 1, to compute
the attention feature map of an input a based on an input b, we
first compute an affinity between each position i in a and each
position j in b using a function f(ai, bj) =< θ(ai), φ(bj) >,
where θ : RC → RC

8 and φ : RC → RC
8 perform a 1 × 1

convolution. Then, we use an unary function g : RC → RC

that computes a representation for the input at position j using
a 1×1 convolution. The attention feature map of a based on b
(attn(a, b)) computes each position i of a using all positions
j of b such as:

attn(ai, b) =
1

C(ai)

∑
∀j

f(ai, bj)g(bj) (1)

with C(ai) a normalization constant.
The Non-Local Block for an input a based on attention

given by an input b is defined as:

Z(ai) = ai + ω × attn(ai, b) (2)

As stated in [6], [7], we initialize the learned parameter ω
to 0 to not break the initial behavior of the network, which
initially does not contain Non-Local Blocks. By training, the
network will figure out how much importance should be given
to attention feature maps.

For each head, we use two Non-Local Blocks, one for each
image. Then outputs of the same resolution are concatenated
depth-wise and passed to the classification head, which outputs
a class vector for each anchor according to the first image,
and another class vector for each anchor according to the
second image. Concatenated feature maps are also passed to
the regression head, which outputs now boxes coordinates
in the first image (w.r.t. anchors) and box positions in the
second image (w.r.t. boxes of the first image). Fig. 2 shows
the modified EfficientDet architecture, which we call Efficient-
Track. Indeed, the network uses the object’s position in the

current frame to predict its position in the next frame and
implicitly uses the object’s appearance. It allows the motion
prediction to be more accurate at the beginning of tracks
than when using only the Kalman filter, whose uncertainty
is very high at the beginning of trajectories. However, when
detections are missing due to occlusion or false negatives, the
Kalman filtering will still be needed. If the object does not
reappear for a long time, the uncertainty will grow, leading to
many ID switches. Indeed, as the absence last, the uncertainty
grows with it. The association between predicted location and
detection is done using Intersection over Union (IoU) [18]
and is only accepted if the overlap is at least t1. Also,
the connection is not made when a candidate object for an
association to a track has a different category than the track’s
one.

C. Appearance explicit description

Since the network only predicts frame to following frame
motion, we use the Kalman filter to carry on motion prediction
when the network misses a detection or when occlusion occurs.
However, as evoked before, the Kalman filter’s uncertainty
grows as the track is not updated. To this end, we employ a
CNN similar to the one applied in DeepSORT, which was
used for person re-identification [19]. We use it for deep
Mahalanobis distance [8] learning. We chose Mahalanobis
distance because it does not have negative values as cosine
distance and considers the correlations between vectors com-
ponents. This distance is used for association only when no
detection is associated with the track in the previous frame. In
that case, the motion prediction is carried on by the Kalman
filter, and we use a radius r to limit the association area.
The difference with the original DeepSORT model is that a)
we reused features extracted from EfficientDet, rather than a
resized crop of an image, and b) we employed Mahalanobis
distance rather than cosine similarity. Mahalanobis distance
between two descriptors di and dj is given as follows:

D(di, dj) =
√

(di − dj)TS(di − dj) (3)

The matrix S is learned while training the network and
initialized by the identity matrix so that the training begins
by using the Euclidean distance. The network then learns the
correlation between elements of the descriptors.

Siamese networks trained with cropped images of objects
provide a location-independent appearance description of those
objects. So, when we crop an object, we lose location infor-
mation. Thus, to get the object location involved in feature
extraction, we use a Non-Local Block to compute attention
maps of pooled regions of interest, using the whole image
characteristics. For example, let us take the two objects in
Fig. 4. The Siamese network taking cropped images provides
similar representations for two similar objects even though
they are distinct (cosine similarity is 0.993526). However, if
we use the whole image to compute a feature representation
using our proposed approach, the representation will implicitly
use information about the object’s location. As a result, the

Mahalanobis distance between the two similar but different
instances is 1.1403774.

Fig. 4: Two distinct instances, having similar appearance.

When we want to extract features representing an object in
an image, we first perform a Region of Interest (ROI) [20]
pooling between each of the five feature maps and the ob-
ject’s bounding box. Then we compute attention ROIs, using
attention given by the whole image to those ROIs. The model
will use long-range dependencies and leverage information
about object locations. Resulted attention ROIs are fed to
a description network in a cascade way. This network is
a wide residual network [16] with two convolutional layers
followed by four residual blocks. First, we feed the first
feature map to the convolutional layers. Then the output is
concatenated channel-wise with the second feature map and
fed to the first residual block. We continue the same way with
the three remaining feature maps and residual blocks. Fig. 3
illustrates the box feature extraction part. The association
between tracks and new detections is done by calculating
the mean of Mahalanobis distance between descriptors of
detections covered by the track in the past s frames and the
new detection. Note that the association is permissible only if
the Mahalanobis distance value is at least t2 and the object to
be associated with a track has the same category as the track.

D. Object counting

We propose a counting procedure based on tracking. First,
we keep only detections having a score greater than c1. Then,
an object is counted when it has an associated track and
appears in the track at least m times with a detection score
greater than c2. Thus, objects are only counted once in case
of false positives.

IV. EXPERIMENTAL EVALUATION

A. Experimental setup

We used a dataset of seabed species. The challenge with
that dataset is that individuals may have similar appearances in
the same video and the same frame. Moreover, objects appear
and leave at any frame, not only on the first and last frame.
Therefore, to evaluate our model, we need a dataset with a
sufficient number of images containing ground truth object
ids, multiple categories, and high visual similarity between
objects of the same class.

We used images captured by a front-down camera placed at
the entrance of a sledge to evaluate the detection, tracking,
and counting performance of the proposed algorithm. As
a detection and tracking dataset, our data is composed of
46 videos issued from a French campaign conducted by

IFREMER1 in 2019, and two other different videos issued
from an Irish campaign. The frame rate of video recordings
is 12 fps, and image resolution is 2048 × 1152. First, we
used 43/46 videos for training, which gives 13,074 annotated
images, including 16,264 bounding boxes with 960 individual
identities. Second, we validated the approach with one video
containing 7,597 images with 586 objects and 32 individuals.
Finally, we utilized the two remaining videos and the Irish
videos for testing, which gives us 31,674 images containing
8,930 bounding boxes and 458 instances. We used Irish data
only in tests to objectively evaluate the tracking and counting
system and assess its generalization ability since videos were
recorded in a different place, with different lighting conditions,
and by different persons. All the data were annotated manually
by experts in IFREMER to allow the evaluation of our
contributions. The dataset contains 5 classes with enough data;
Nephrops norvegicus, Pennatulacea, Actiniaria, Munida, and
Actinopterygii.

To improve the algorithm’s generalization ability, we ap-
plied several data augmentations during the training, i.e., ran-
dom gamma correction, random HSV adjustment, random JPG
compression rate, the use of random brightness and contrast,
random Gaussian noise addition, random cut off, random
vertical and horizontal flips, and random affine transformation.
Moreover, we used random mosaic image combinations for
training the detector.

To evaluate the tracking performance, we used the most
popular evaluation metrics : Multi-object tracking accuracy
(MOTA), Multi-object tracking precision (MOTP), Identity
switches (IDSW), Merge, Fragmentation (FM) and ID met-
rics [21].

The counting algorithm is evaluated using precision (P),
recall (R), F1-Score, and mAP@0.5. Note that, as we have
multiple categories, we used two types of F1 averaging;
micro-F1 computed using global class agnostic precision and
recall, and macro-F1 calculated by averaging F1 of different
categories.

An EfficientDet [9] D1, pre-trained on COCO [22], was
fine-tuned on our dataset in two phases for 250 epochs (200
epochs with a frozen efficientNet backbone, then 50 epochs
with an all trainable model starting from the best model
obtained using a frozen backbone) by applying stochastic
gradient descent (SGD). For all experiments, the thresholds
for detection’s non-maximal suppression (NMS) are c1 = 0.3
and IoUmin = 0.3. The tracking is performed on detections,
then when the track to detection association is completed, the
detections having a score less than c3 = 0.7 are discarded.
An individual is counted if it appears on at least m = 2
frames with a confidence score greater than c2 = 0.7. Note
that (c1 ≤ c2 and c1 ≤ c3). We must mention that although
the counting mAP is independent of c2 and c3 scores, it
is calculated using c1 = 0.3. The threshold for appearance
metrics is t2 = 25, the threshold for box overlaps is t1 = 1, the
association radius is r = 25, and the number of frames after

1https://wwz.ifremer.fr/

which a track dies when no association is done is TLost = 20.
All those parameters were fixed using the validation video.

B. Results and discussion

As we see in Table I, in comparison to DeepSORT, our
method enhances MOTA even though it raises the number
of false-positive detection. Besides, robust DeepSORT further
reduces the number of identity switches by 96.67% w.r.t
DeepSORT without raising the number of merged ground
truths, which stays null. However, the algorithm looks at two
images simultaneously, propagating false-positive detections
and increasing ID’s false positives. Nevertheless, the improve-
ment in ID’s true positives is more significant, providing a
4.89% progress in IDF1. As DeepSORT w.r.t. SORT, our
adjustment increases the number of fragmentations; this is due
to the reduction of identity switches at the beginning of tracks,
which encourages maintaining identities through occlusion and
missing detections.

From Table II, we see that the use of counting thresholds
leads to fewer counting false positives w.r.t. ID false positives
while keeping an increase in counting true positives. This is
because the counting threshold helps discard all duplicated
tracks caused by identity switch and tracking uncertainty at
the beginning of trajectories.

Our method performs well in the case of crossovers. For
example, in Fig. 5, it keeps track of identities even though
the Actinopterygii occludes the Munida in the middle frame,
as opposed to DeepSORT, which results in an identity switch
and merge.

After training, the algorithm learns the parameter ω of the
Non-Local Blocks. It gives more importance to attention fea-
ture maps in classification (−0.1253, 0.79) than in regression
(−0.0002, −0.0042). Fig. 6 shows the contribution of the
second frame features to the point marked in red on the first
frame, according to the classifier’s first attention block. We
see that the most stronger attention is received from the object
(Munida) area within the second frame.

With our adjustment, we kept the ability of the algorithm
to run in real-time. The robust DeepSORT, implemented using
Pytorch2, processes, on average, nine frames per second on
Nvidia GeForce RTX 2060.

V. CONCLUSION

This paper proposes an improvement of tracking based on
EfficientDet by using attentions between two successive im-
ages and extend DeepSORT to a method that does not rely only
on the Kalman filter for motion prediction but also uses the
deep detection network for that part. The robust DeepSORT
uses the detection network, i.e., EfficientDet, to predict motion
and compute appearance similarity by leveraging long-range
dependencies modeled by Non-Local Blocks. This adaptation
improved tracking performances and reduced the number of
ID switches and merges. It has also improved the counting
performances. Furthermore, the tracking framework remains
simple and runs in real-time.

2https://pytorch.org/

We will integrate information from different modalities in
future work to enhance detection and tracking, even if objects
in the image are occluded or hard to identify. We will also try
to make the tracking problem more based on learning rather
than treating it as an association problem.

REFERENCES

[1] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online
and realtime tracking,” in 2016 IEEE International Conference on Image
Processing (ICIP), pp. 3464–3468, IEEE, 2016.

[2] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” 1960.

[3] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[4] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime
tracking with a deep association metric,” in 2017 IEEE international
conference on image processing (ICIP), pp. 3645–3649, IEEE, 2017.

[5] L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler, “Motchal-
lenge 2015: Towards a benchmark for multi-target tracking,” arXiv
preprint arXiv:1504.01942, 2015.

[6] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural net-
works,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 7794–7803, 2018.

[7] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention
generative adversarial networks,” in International conference on machine
learning, pp. 7354–7363, PMLR, 2019.

[8] P. C. Mahalanobis, “On the generalized distance in statistics,” National
Institute of Science of India, 1936.

[9] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient
object detection,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10781–10790, 2020.

[10] M. He, H. Luo, B. Hui, and Z. Chang, “Pedestrian flow tracking and
statistics of monocular camera based on convolutional neural network
and kalman filter,” Applied Sciences, vol. 9, no. 8, p. 1624, 2019.

[11] W. Hu, X. Li, W. Luo, X. Zhang, S. Maybank, and Z. Zhang, “Single
and multiple object tracking using log-euclidean riemannian subspace
and block-division appearance model,” IEEE transactions on pattern
analysis and machine intelligence, vol. 34, no. 12, pp. 2420–2440, 2012.

[12] L. Zhang and L. van der Maaten, “Structure preserving object tracking,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1838–1845, 2013.

[13] G. Koch, “Siamese neural networks for one-shot image recognition,”
2015.

[14] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, pp. 2980–2988, 2017.

[15] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International Conference on Machine
Learning, pp. 6105–6114, 2019.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[17] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 936–944,
IEEE Computer Society, 2017.

[18] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese,
“Generalized intersection over union: A metric and a loss for bound-
ing box regression,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 658–666, 2019.

[19] L. Zheng, Z. Bie, Y. Sun, J. Wang, C. Su, S. Wang, and Q. Tian, “Mars:
A video benchmark for large-scale person re-identification,” in European
Conference on Computer Vision, pp. 868–884, Springer, 2016.

[20] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, pp. 1440–1448, 2015.

[21] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking
performance: The clear mot metrics,” EURASIP Journal on Image and
Video Processing, vol. 2008, no. 1, pp. 1–10, 2008.

[22] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision, pp. 740–755,
Springer, 2014.

Approach MOTA MOTP IDSW Merge FM IDTP IDFP IDFN IDP IDR IDF1
SORT 0.475 0.772 89 0 1378 4867 775 4060 0.863 0.545 0.668
DeepSORT 0.481 0.772 30 2 1388 4916 726 4011 0.871 0.551 0.675
Robust DeepSORT (ours) 0.498 0.767 1 0 1786 5439 993 3488 0.846 0.609 0.708

TABLE I: Tracking performance.

Approach TP FP FN P R mAP@0.5 Micro-F1 Macro-F1
SORT 321 64 137 0.834 0.701 0.732 0.762 0.729
DeepSORT 336 78 122 0.812 0.734 0.752 0.771 0.737
Robust DeepSORT (ours) 357 111 101 0.763 0.779 0.794 0.771 0.743

TABLE II: Counting performance.

Fig. 5: Problem of identity switch and merge due to occlusion/crossover.

Fig. 6: Attention received from the second frame to the point marked by the red cross in the first frame.

