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A statistics-based reconstruction 
of high-resolution global terrestrial 
climate for the last 800,000 years
Mario Krapp   1,2 ✉, Robert M. Beyer1, Stephen L. Edmundson1,3, Paul J. Valdes   4 & 
Andrea Manica   1

Curated global climate data have been generated from climate model outputs for the last 120,000 
years, whereas reconstructions going back even further have been lacking due to the high 
computational cost of climate simulations. Here, we present a statistically-derived global terrestrial 
climate dataset for every 1,000 years of the last 800,000 years. It is based on a set of linear regressions 
between 72 existing HadCM3 climate simulations of the last 120,000 years and external forcings 
consisting of CO2, orbital parameters, and land type. The estimated climatologies were interpolated to 
0.5° resolution and bias-corrected using present-day climate. The data compare well with the original 
HadCM3 simulations and with long-term proxy records. Our dataset includes monthly temperature, 
precipitation, cloud cover, and 17 bioclimatic variables. In addition, we derived net primary productivity 
and global biome distributions using the BIOME4 vegetation model. The data are a relevant source 
for different research areas, such as archaeology or ecology, to study the long-term effect of glacial-
interglacial climate cycles for periods beyond the last 120,000 years.

Background & Summary
Studying the ecology and environment throughout past climatic changes often involves environmental recon-
structions that are either based on paleoclimate proxies or on paleoclimate simulations. Unfortunately, even by 
today’s standards, simulating the climate over periods of thousands or hundreds of thousands of years in a con-
tinuous way can still be a costly and time-consuming endeavour. Present or future climate simulations are based 
on comprehensive Global Climate Models (GCMs) that resolve processes at high temporal and spatial resolution, 
such as those used in the fifth IPCC Assessment Report1. Climate model reconstructions for longer, continuous 
periods back in time are, therefore, challenging. They have to span a much longer period and are, thus, compu-
tationally too expensive. Instead, GCMs provide snapshots for a specific time or short transients in the order 
of a few thousand years. For longer, transient simulations of tens or hundreds of thousands of years, we rely on 
simulations from Earth System Models of Intermediate Complexity (EMICs)2,3 but they come at the cost of lower 
spatial resolution and a simplified representation of the climate system4.

Although there are a some high-resolution paleoclimate data sets readily available for download, for example, 
WorldClim5, PaleoClim6, or ecoClimate7, their temporal coverage is limited to a few snapshots of key periods in the 
past, for example, Mid-Holocene (6,000 years before present (BP)) the Last Glacial Maximum (21,000 years BP), 
or the Last Interglacial Period (130,000 years BP). An exception is PaleoView8 which covers the transient period of 
the last deglaciation, but this only goes back 21,000 years. Longer, continuous climate data sets of the past, based 
on HadCM39 snapshots, have become available more recently, for example a Northern Hemisphere data set for 
the last 60,000 years10 or a bias-corrected, high-resolution terrestrial climate data set of the last 120,000 years11.

Here, we used a linear regression model to extend existing HadCM3 climate simulations of the last 120,000 
years to create climate reconstructions of the last 800,000 years. We then applied a bias correction12 of the model 
output using present-day gridded observational data (CRU TS v. 4.0413) to downscale climate output to a final 
horizontal resolution of 0.5°11,13. This new data set is complementary to the aforementioned high-resolution ter-
restrial climate data set of the last 120,000 years11 (which should be preferred for studies of the last glacial cycle, 
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as they are based directly on the GCM output), and it is an extension for readers to explore the climate history for 
earlier periods of the past.

In this paper, we present annual and monthly mean climatologies for the last 800,000 years in 1,000 year time 
steps (Table 1). The data set includes air temperature, precipitation, total cloud cover, 17 bioclimatic variables14, 
as well as biomes and annual and monthly net primary productivity, the latter based on BIOME4 simulations15, 
run on the debiased climatologies. We validated the long-term climate change signal using time series of various 
proxy records.

Methods
Our climate reconstructions are based on a set of linear regression models for each of the HadCM3 model grid 
boxes (N = nlon × nlat = 96 × 73 = 7008). Each linear model predicts a climate variable, which can be either tem-
perature, precipitation, or total cloud cover, i.e., the dependent variable. The independent variables, i.e., the forc-
ing terms, of the model are three orbital parameters, atmospheric CO2, and a surface type mask (land, ocean, or 
land ice), five variables in total.

Each linear model uses 72 data points given by the HadCM3 snapshots throughout the past 120 thousand  
years (ka)16,17. These snapshots cover both the Last Glacial Maximum, one of the coldest glacial stages, and the Last 
Interglacial, one of the warmest interglacial stages during the Middle and Late Pleistocene. By applying available 
long-term forcing to the solutions of the linear models, we reconstructed the climate for periods before 120 ka.  
The forcing consists of CO2

18, interpolated to 1 ka intervals for the last 800 ka, orbital parameters, taken from 
numerical solution to the Earth’s orbit around the sun19, and surface type masks based on numerical ice-sheet 

Variable Unit

Dimensional variables

longitude (720) degrees east

latitude (360) degrees north

time (800) years before present

Climatic variables

monthly temperature (Jan-Dec) K

monthly precipitation (Jan-Dec) mm year−1

monthly cloudiness (Jan-Dec) %

minimum annual temperature K

Vegetation variables

monthly net primary productivity gC m−2 month−1

annual net primary productivity gC m−2 year−1

biome categorical

Bioclimatic variables

BIO1: annual mean temperature °C

BIO4: temperature seasonality °C

BIO5: minimum annual temperature °C

BIO6: maximum annual temperature °C

BIO7: temperature annual range °C

BIO8: mean temperature of the wettest quarter °C

BIO9: mean temperature of driest quarter °C

BIO10: mean temperature of warmest quarter °C

BIO11: mean temperature of coldest quarter °C

BIO12: annual precipitation mm year−1

BIO13: precipitation of wettest month mm year−1

BIO14: precipitation of driest month mm year−1

BIO15: precipitation seasonality —

BIO16: precipitation of wettest quarter mm year−1

BIO17: precipitation of driest quarter mm year−1

BIO18: precipitation of warmest quarter mm year−1

BIO19: precipitation of coldest quarter mm year−1

Land/land ice/ocean mask

mask categorical

Table 1.  Available reconstructions of environmental variables. All variables have the dimensions 
720 × 360 × 800 (longitude, latitude, time). Temperature seasonality (BIO4) and precipitation seasonality 
(BIO15) are given by the standard deviation of monthly temperatures and by the coefficient of variation of 
monthly precipitation, respectively. Temperature annual range (BIO7) is given by the difference between 
maximum annual temperature (BIO5) and minimum annual temperature (BIO6). Unit abbreviations: mm 
(millimetres), m (metres), gC (grams carbon).
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model output2 and a global sea-level record20. At this stage, the reconstructed climate of the last 800,000 years has 
the same coarse spatial resolution as the underlying HadCM3 snapshots. In a last step, we applied a bias correc-
tion (including spatial downscaling) for the terrestrial climate to derive a spatially explicit data set that covers the 
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Fig. 1  Flowchart showing how the different data sets have been used as input for the different stages of the 
paleo-climate data generation: A linear regression combines 72 low-resolution (LR) HadCM3 snapshot 
simulations with the external forcings, i.e., CO2, orbital parameters, and surface type masks (ocean, land, land 
ice), which provides the basis of the long-term climate reconstructions using long-term forcings and surface 
type masks. The final bias correction procedure yields the high-resolution (HR), bias-corrected (BC) climate 
data set for the last 800 ka.

Fig. 2  (a) Time series of the four external parameters: CO2 and orbital parameters for the last 800 ka and 
(b) the associated parameter space as scatter plot matrix (blue dots). The continuous CO2 record is from the 
EPICA Dome C ice core in Antarctica18. The orbital parameters are numerical solutions for the Earth’s orbit 
and rotation in terms of eccentricity, precession, and obliquity19. In (b), black lines with black dots represent 
the total 72 parameter sets. Orange dots highlight the parameter sets of the 58 HadCM3 snapshot simulations 
which we used as training data (80% of the total 72) for the linear regression model.
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last 800 ka in 1 ka intervals with a spatial resolution of 0.5° × 0.5°. For each variable, these steps were repeated for 
each monthly mean climatology (Jan–Dec), as well as for the annual mean values (Table 1).

A comprehensive overview of our approach is shown in Fig. 1 and further details of our experimental setup 
are given below.

The HadCM3 climate model.  HadCM3 is a fully coupled global climate model with an atmospheric 
component, HadAM3, which has a horizontal resolution of 3.75° × 2.5°, 19 vertical levels, and a time step of 

Fig. 3  Regression coefficients, i.e., β coefficients, for (a) mean annual temperature, (b) precipitation, and (c) 
total cloud cover. Regions where the respective coefficient is not statistically significant (p < 0.05) are hatched 
and shaded.
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30 minutes. The ocean and sea-ice component of HadCM3 has a horizontal resolution of 1.25° × 1.25° and 20 
vertical levels. HadCM3 simulations were run with a prescribed ice-sheet and continental geometry. We used 
output from the atmospheric component of the 72 available HadCM3 simulations covering the last 120,000 years 
in 2,000-year intervals from 120,000 to 24,000 years BP and in 1,000-year intervals from 22,000 years BP to 
present-day16,17.

Surface type mask: Ice-sheet extents, sea level and lakes.  As ice sheet extents for the period out-
side the HadCM3 snapshots, we used model outputs from CLIMBER-2/SICOPOLIS simulations2 for which 
Northern Hemisphere ice sheet extents and heights are available for the last 800 ka in 1 ka-year intervals. For 
the more recent period from 122–0 ka, we used the ice sheet configurations from the ICE-6G data set21 (http://
www.atmosp.physics.utoronto.ca/ peltier/data.php). Changes in the coast lines affecting the land–sea mask 
were derived from a global sea-level record20. We overlaid those changes on top of present-day coast lines, 
taken from the ETOPO1 data set22 (https://ngdc.noaa.gov/mgg/global/global.html), while we preserved inland 
lakes which were taken from the Global Lakes and Wetlands Database23 (https://www.worldwildlife.org/pages/
global-lakes-and-wetlands-database).

Training and test data.  We divided the HadCM3 snapshots into a training (80%) and a test data set (20%). 
The training data set was used to fit the linear model while the test data was used for a comparison to the recon-
structed snapshots. For a 80/20 division of the 72 time slices into training and test data, i.e., 58/14, there are 

= ≈ ×( )( )n
k

72
58 3 1014 possible combinations of snapshots. But instead of randomly dividing the snapshots 

into the training/test data, we followed an approach with the aim to preserve as much variance as possible in the 
training data, i.e. maximise the variance of the predictors. This is best illustrated by the phase plots of the param-
eters, i.e., the predictors (Fig. 2). The training data set covers the edges of each phase plane and thus maximises 
the phase space covered by the linear regression model. This choice of training data ensured that the linear regres-
sion model interpolated within the phase space and did not need to extrapolate for the test data.

The procedure was as follows. We calculated the covariance matrix of the full parameter set (n = 72), Cfull. 
Then, we randomly created a sample training data set (k = 58) for which we computed the covariance matrix 
Csample. If the eigenvalues of Csample were larger than the eigenvalues of Cfull, then the training sample data set con-
tained at least as much variance as the full data set and this sample training data set was marked as a candidate for 
the final training set. After several iterations (N = 10,000), we summed up how many times each time slice had 
appeared within a candidate training set. We then ranked all time slices according to this number. In the final step, 
we picked the 80% top-ranked time slices as training data.

Reconstructed and bias-corrected 800 ka outputs

temp_800ka_jan.nc

…

temp_800ka_dec.nc

temp_800ka_min.nc

temp_800ka_ann.nc

prec_800ka_jan.nc

…

prec_800ka_dec.nc

prec_800ka_ann.nc

tcc_800ka_jan.nc

…

tcc_800ka_dec.nc

tcc_800ka_ann.nc

bio01_800ka.nc

bio04_800ka.nc

bio05_800ka.nc

…

bio19_800ka.nc

BIOME4 800 ka outputs

biome4output_800ka.nc

biome4output_800ka_jan.nc

…

biome4output_800ka_dec.nc

Land/land Ice/ocean masks

icesheets_000-800_cru.nc

Table 2.  List of data sets that can be found in the Open Science Framework repository [28] under the project’s 
data directory.
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Note, the division into training and test data set was made only for the validation of the linear model. For the 
actual climate reconstructions with the linear regression model, we used all 72 snapshots to make full use of the 
complete set of available data.

The linear regression model.  For each HadCM3 grid box, we fitted a linear regression model to a local 
series of each climatic variable of interest (temperature, precipitation, or cloud cover) with the following inde-
pendent variables or forcings: atmospheric CO2 concentrations (as a major greenhouse gas), three variables 
reflecting the orbital forcing19, and the surface type, which is either ocean, land, or land ice. The orbital param-
eters are obliquity ε and two combinations of eccentricity e and precession ω: e · sin ω, henceforth referred to as 
precession index I, and e · cos ω (precession index II), and they are a generally accepted set of orbital forcings24,25. 
We chose temperature T, precipitation P, and total cloud cover C as dependent variables. The independent varia-
bles are given by the normalised forcings.

More formally, let Y(x, t) be a time series of a climate variable in a specific grid box x at time t. Our linear 
model should explain variations of Y(x, t), ΔY(x, t), around a mean value Y x t( , ):

Δ = − .Y x t Y x t Y x t( , ) ( , ) ( , ) (1)

To make the linear model well-conditioned, all independent variables were normalised. The mean was sub-
tracted and the result were then divided by the standard deviation.

Precipitation and total cloud cover are bounded variables which can lead to linear model predictions outside 
of physically meaningful ranges. A common procedure to prevent these out of bounds predictions is to apply 
a transformation to the data beforehand. To prevent the linear model from predicting negative precipitation 
values, we therefore applied a logarithmic transformation to precipitation, which maps values from [0, +∞] to 
[−∞, +∞]. Thus, in the case of precipitation, the linear regression coefficients predict the response in terms of 

Fig. 4  Left panel (a,c,e): Root mean square errors (RMSE) as estimators of the goodness of fit (lower is better) 
calculated using the test data. Right panel (b,d,f ): R2 values as estimator for the goodness of the model (higher 
is better) using the training data. Shown are the R2 and RMSEs for (a,b) mean annual temperature, (c,d) mean 
annual precipitation and (e,f) mean annual total cloud cover. Note, that only the values over land and land ice 
areas are relevant for the overall quality of the final data product.
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anomalies in the exponent. For total cloud cover, expressed as fraction between 0 and 1, we choose a logit trans-
formation which maps values from [0, 1] to [−∞, +∞]. Note that the minimum values for precipitation and total 
cloud cover, as simulated by HadCM3, are never exactly zero (or smaller), except at the poles, 90° N/S, which were 
excluded for that reason; therefore, the transformations always yield finite values. The decomposition of temper-
ature T, precipitation P, and total cloud cover C, i.e., the ΔY(x, t) on the left hand side of Eq. (1) is:

� ���� ����
�

= + Δ
=Δ

T x t T x t T x t( , ) ( , ) ( , )
(2)Y x t( , )

= + Δ
=Δ

� ������ ������
�

P x t P x t P x tlog( ( , )) log( ( , )) log( ( , ))
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The linear regression model for each (transformed) anomaly is:
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1
obliquity forcing

2
precession index I forcing

3
precession index II forcing

4 2
greenhouse gas forcing

5
surface type

Here, β1 to β5 are the regression coefficients for the respective predictors (see Fig. 3 for maps of β coefficients). 
Surface type changes are captured by the categorical variable M(x, t) ∈ [ocean, land, land ice]. For example, 
around coastlines land grid boxes can turn into ocean grid boxes when sea level is high. Similarly, expanding ice 
sheets turn land grid boxes into ice-covered grid boxes, and the climate variable Y(x, t) may respond to different 
surface types in different ways. The categorical variables were encoded using Treatment coding. The first level, 

Fig. 5  Spatial covariance matrix of (a) temperature (in units K2), (b) precipitation (in units mm2/a2), and (c) 
total cloud cover (in units of 12) for HadCM3, our linear regression model (LR model), and the difference 
between the two. Each value represents a covariance matrix element from a flattened vector with the length 
of the total number of grid points (n = 7008). The covariance matrices are symmetric and thus are their 
differences.
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ocean, was chosen as a reference level and is by definition zero β5(x) = 0. For the other two levels, land and land 
ice, a different β5(x) was assigned for each—in effect, a different intercept for ΔY(x, t).

We solved the linear model for each transformed variable, applied the extended forcing to generate the 800 ka 
climate reconstructions, and transformed the resulting data back to its original range according to Eqs. (2–4). At 

Fig. 6  (a) Map of the 39 Middle and Late Pleistocene marine sea surface temperature proxies used in this 
study and their respective time series (b,c). Black dots indicate proxy sea surface temperature while blue lines 
indicate mean annual temperature as reconstructed for every 1 ka of the last 800 ka. Proxy–derived and model 
temperature are on the same scale, in). Orange lines are original time series from HadCM3. Grey bars indicate 
glacial stages. The coefficients for the correlation between the reconstructed temperature (blues lines) and the 
proxy record (black dots) can be found in Table 3.
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this stage, we have an extended HadCM3 model output of annual and monthly mean for temperature, precipita-
tion, and total cloud cover, still at the original HadCM3 resolution, for the last 800 ka.

Spatial downscaling to 0.5° and bias correction.  The CRU TS climate data set.  For the bias correction 
of the extended HadCM3 model output, as predicted by the previously described linear model, we used variables 
from the CRU TS (Climatic Research Unit Timeseries) data set (v. 4.04)013. Before the bias correction step, the 
data set has been bi-linearly interpolated from the spatial resolution of 3.75° × 2.5° to the CRU TS resolution of 
0.5° × 0.5°. CRU TS v. 4.04 contains monthly time series fields of precipitation, daily maximum and minimum 
temperatures, cloud cover, and other variables covering all land areas (except Antarctica) for 1901 to 2019. As 
reference period for the bias correction we chose 1961–1990. We applied the additive “delta” method, which is the 
most effective bias correction with respect to paleoclimate reconstructions12, to all climate variables predicted by 
the linear model (subscript LM) to create the final, bias-corrected climate data set �Y x t( , ):

= + − .�Y x t Y x t Y x Y x( , ) ( , ) [ ( , 0) ( , 0) ] (6)LM CRU TS LM

The BIOME4 vegetation model.  We used the BIOME4 model15 to calculate annual net primary productivity 
(NPP) and to determine the global distribution of biomes. BIOME4 is a coupled biogeography and biogeochem-
istry model that simulates competition of different plant functional types (PFTs). It optimises the leaf area of each 
PFT as a function of NPP. BIOME4 forcing consists of monthly values of temperature, precipitation, and sunshine 
percentage, as well as values of annual minimum temperature and atmospheric CO2 concentrations. Sunshine 
percentage was computed using total cloud cover26. For atmospheric CO2 we used the same data set as described 
earlier18. In its default setup, BIOME4 does not incorporate orbital variations that would affect top-of-atmosphere 

Fig. 7  (a) Map of the 20 Middle and Late Pleistocene terrestrial climate proxies used in this study and their 
respective time series (b). Black dots indicate proxy variables (in different units) while blue lines indicate mean 
annual temperature as reconstructed for every 1 ka of the last 800 ka (in). Orange lines are original time series 
from HadCM3. Grey bars indicate glacial stages. The coefficients for the correlation between the reconstructed 
temperature (blues lines) and the proxy record (black dots) can be found in Table 4.
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(TOA) insolation. Instead, it is approximated by a cosine function representative of present-day insolation only. 
We therefore updated the TOA insolation representation in BIOME4 so that it takes changes in the Earth’s orbit 
into account27. Further inputs, which were kept constant through time, are water holding capacity and percolation 
rate.

Data Records
All data records are publicly available as NetCDF files in the project repository in the data directory28.

Monthly mean and annual mean climatologies.  The climate variables that are part of our data set 
are listed in Table 1 and can be downloaded as NetCDF files (Table 2) from the Open Science Framework data 
repository28. All climate variables are available on a 0.5° × 0.5° resolution, i.e., the same regular grid as the CRU 
TS v4.04 data set13.

Bioclimatic variables.  For ecological applications such as species distribution modelling, bioclimatic vari-
ables are more relevant than the actual climate variables because they capture information about annual and sea-
sonal climate conditions as reflected by temperature and precipitation14, for example coldest/warmest or wettest/
driest quarter averages of precipitation and temperature. Most of the commonly required bioclimatic variables 

core/name lon (°E) lat (°N) corr coeff type reference(s)

DSDP 594 175.0 −45.5 0.58 SST 43,44

DSDP 607 −33.0 41.0 0.48 SST 43,45

GeoB 1105 −12.4 −1.7 0.64 SST 46

GeoB 1112 −10.7 −5.8 0.56 SST 46

HY04 −95.0 4.0 0.30 SST 43,47

MD01-2444 −10.1 37.6 0.69 SST 48

MD02-2529 −84.1 8.2 0.34 SST 49

MD03-2699 −10.7 39.0 0.66 SST 50

MD06-2986 167.9 −43.4 0.71 SST 43,51

MD06-3018 166.2 −22.6 0.42 SST 52

MD85-668 46.0 0.0 0.47 SST 53

MD90-963 73.9 5.1 0.53 SST 54

MD96-2048 36.0 −26.2 0.53 SST 55

MD97-2120 174.9 −45.5 0.74 SST 56

MD97-2140 141.5 2.0 0.56 SST 43,57

ODP 1012 −118.4 32.3 0.60 SST 43,58

ODP 1014 −118.9 32.8 0.81 SST 59

ODP 1020 −126.4 41.0 0.53 SST 43,60

ODP 1077b 10.4 −5.2 0.18 SST 61

ODP 1082 11.8 −21.1 0.45 SST 62

ODP 1087 15.3 −31.5 0.13 SST 63

ODP 1090 8.9 −42.9 0.70 SST 43,64

ODP 1123 −171.5 −41.8 0.37 SST 43,65

ODP 1125 −178.2 −42.6 0.55 SST 66

ODP 1143 113.3 9.4 0.62 SST 43,67

ODP 1146 116.3 19.5 0.53 SST 43,68

ODP 1172 149.9 −44.0 0.32 SST 69

ODP 1239 −82.1 −0.7 0.52 SST 70

ODP 306 −27.9 56.4 0.35 SST 71

ODP 722 59.8 16.6 0.45 SST 43,68

ODP 806b 159.4 0.3 0.57 SST 43,72

ODP 846 −90.8 −3.1 0.53 SST 43,73

ODP 871 172.3 5.6 0.65 SST 74

ODP 882 167.6 50.4 0.10 SST 75

ODP 977 A 0.0 37.5 0.68 SST 48

ODP 982 −15.9 57.5 0.37 SST 43,76

ODP 999 −78.7 12.8 0.14 SST 77

PS75034-2 −80.1 −54.4 0.79 SST 43,78

RC09-166 48.8 12.5 0.36 SST 79

Table 3.  Marine proxy records that have been used in the validation of the climate reconstruction, their 
coordinates, correlation coefficients, types, and respective references.
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can be directly derived from monthly mean temperature and precipitation data, and are thus included in our data 
records (Tables 1, 2). Annual Mean Diurnal Range (BIO2) and Isothermality (BIO3) cannot be calculated from the 
available climate model data (HadCM3) and are therefore not included. For BIO2, we do not have the monthly 
minimum and maximum temperature, and BIO3 depends on BIO2 (BIO3 = BIO2/BIO7 × 100).

Net primary productivity and biomes.  Our data record contains annual and monthly net primary pro-
ductivity as well as categorical biome data, both of which were calculated with the BIOME4 vegetation model, 
using the 800 ka of reconstructed and bias-corrected climate (Tables 1, 2).

Technical Validation
Comparison to original HadCM3 simulations.  We validated our reconstruction from the linear model 
against the original HadCM3 snapshots. As comparison metric, we used R2 values, a goodness of fit estimator that 
measures the proportion of variance explained by the linear model, and the root mean squared error (RMSE), an 
estimator of the goodness of the model that measures how far the linear model predictions are from the HadCM3 
test data (Fig. 4).

Overall, our linear model is a better predictor for temperature than for precipitation and total cloud cover. 
Temperature responds more directly to local forcings than precipitation and cloud cover, because it is determined 
by the energy balance of downward and upward longwave and shortwave radiation and turbulent heat fluxes. The 
downward shortwave radiation depends on incoming solar radiation that is determined by orbital variations, 
whereas downward longwave radiation is determined by greenhouse gases such as CO2 and water vapour, as well 
as cloud cover. Large-scale atmospheric circulation changes have a much smaller effect on temperature. The high 
R2 and low RMSE values in most regions (Fig. 4a,b) mean that temperature is locally well constrained by global 
CO2 and orbital variations and our linear model captures this effect well.

The matter is more complicated for precipitation and cloud cover. Both variables are directly affected by the 
hydrological cycle which itself depends on large-scale atmospheric dynamics, such as monsoonal systems in the 
tropics and subtropics, or mid-latitude storm systems. Local interactions between the atmosphere and the sur-
face, such as evaporation and transpiration over the ocean, or deep convection over the tropics, matter to a lesser 
extent. Instead, processes and circulation features like moisture transport or the atmospheric Hadley cell dynam-
ics determine the non-local response of precipitation (and cloud cover) to CO2 or orbital variations to a much 
larger extent. Because of the larger dynamical component of the hydrological cycle, precipitation and cloud cover 
are much less constrained by the forcing than temperature. As a result, the linear model shows less predictive skill 
for precipitation and total cloud cover (Fig. 4c–f).

Our reconstruction represented only long-term climatologies of past climate changes, similar to other GCM 
snapshot of the past11,16. Therefore, the data set does not contain sub-millennial scale variability.

The spatial and temporal covariance of the model output.  Our climate reconstructions are based on 
a pixel-specific linear model, one for each of the HadCM3 grid boxes. By design, spatial autocorrelation is not an 
issue, which it would be if we were to analyse all points simultaneously. In that case, spatial autocorrelation would 
invalidate the linear model as the residuals would be spatially autocorrelated.

core/name lon (°E) lat (°N) corr coeff type reference(s)

Baoji, China 107.1 34.4 0.61 rainfall 80

Bittoo 77.8 30.8 −0.40 δ18O 81

Chanwu 107.7 35.2 0.60 δ18O 82

Clearwater 114.9 4.1 −0.49 δ18O 83

Dead Sea 35.0 30.5 −0.63 lake level 84

Devil’s Hole −116.3 36.4 0.67 δ18O 85

Duhlata 23.2 42.5 0.40 ODL 86

EPICA Dome C 123.4 −75.0 0.88 temperature 87

Kesang 81.8 42.9 −0.36 δ18O 88

Lake Baikal 108.4 53.7 −0.15 Bio. sil. 89

Lake El’gygytgyn 172.0 67.5 0.18 mag. susc. 90

Negev 34.8 30.6 −0.68 δ18O 91

Peqiin 36.0 32.6 −0.60 δ18O 92

Sanbao-Dongge 110.4 31.7 0.12 δ18O 93

Soreq 36.0 31.4 −0.71 δ18O 92

Tenaghi Philippon 24.2 41.0 0.67 arb. pollen 43,94

Tzavoa 35.2 31.2 −0.59 δ18O 95

Weinan 109.6 34.4 0.49 temperature 96

Xifeng loess 107.6 35.7 0.60 Fed/Fet 82

Yimaguan Luochuan 108.5 35.8 0.60 mag. susc. 43,97

Table 4.  Terrestrial proxy records that have been used in the validation of the climate reconstruction, their 
coordinates, correlation coefficients, types, and respective references.
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However, HadCM3 exhibits a certain spatial structure, and such a pixel-by-pixel approach, where spatial grid 
cells are treated independently, cannot guarantee that this spatial structure, or covariance, is preserved. We can 
nevertheless show that the reconstructed climate fields exhibit the same spatial structure as the original HadCM3 
model output. First of all, the regression coefficient maps (Fig. 3) indicate that the climate response to exter-
nal forcings is spatially coherent. We calculated this spatial coherence in terms of the spatial covariance matrix 

Fig. 8  Scatter plot of the 39 Middle and Late Pleistocene marine proxies (x-axis) used in this study versus 
reconstructed mean annual temperature (y-axis). The respective correlation coefficient is shown on the top right 
in each plot and information about each proxy can be found in Table 3. The dashed diagonal line represents the 
hypothetical 1-1 for a perfect model.
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(Fig. 5). It consists of the covariance between the time series of any two grid points, i.e., it is a 7008 × 7008 matrix 
(= 96 × 73 (nlon × nlat) = 7008) of covariances over the 72 snapshots.

For both HadCM3 and the linear model, the covariance matrices are similar in structure and magnitude, and 
their differences are relatively small (Fig. 5). The covariance matrices are much more similar for temperature than 
for precipitation and total cloud cover, because the linear regression works better for temperature than for the 
other two climate fields. Overall, the covariance matrices of the linear model reconstructions are so similar to 
HadCM3 that we can conclude that the spatial structure is indeed preserved.

For any time series of observations (for example, as shown in Figs. 6, 7), we can assume that data points of that 
time series are temporally autocorrelated because of possible lag effects that derive from non-equilibrium climate 
dynamics. However, our reconstructions are based on snapshot simulations that are assumed to be in equilibrium, 
and any such lags are therefore omitted. The relationship between outputs of snapshots and their forcings can thus 
be treated as independent data points with no temporal autocorrelation.

Comparison to marine and terrestrial proxies.  We compared the reconstructed climate data with 
marine proxies (before the downscaling/bias-correction step) as a means of highlighting how well the recon-
structed long-term climatologies compare to empirical reconstructions.

Marine sediment cores are valuable archives of past sea surface temperature (SST) records. Because their asso-
ciated bio-geochemistry is relatively straightforward, marine proxies can be utilised as paleo-thermometers and 
are thus well suited for a direct proxy–model comparison. For these proxies, we compared model-derived mean 
annual temperature (MAT) time series directly with proxy-derived SST time series and calculated the correlation 
between the two. Note that MAT and SST are not the same climatological quantities; SST is the temperature of the 
ocean surface and has a lower limit of about −1.8°C, the freezing point of saltwater. While we expect MAT and 

Fig. 9  Scatter plot of the 20 Middle and Late Pleistocene terrestrial proxies (x-axis) used in this study versus 
reconstructed mean annual temperature (y-axis). The respective correlation coefficient is shown on the top right 
in each plot and information about each proxy can be found in Table 4.
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SST to co-vary in low and mid-latitudes, at higher latitudes, seasonal or perennial sea ice cover makes a compar-
ison between both variables problematic.

Although terrestrial proxies are rarely available as direct temperature estimates, we could still calculate the 
correlation between the model-derived and the proxy-derived time series. However, the interpretation of terres-
trial proxies from a climate perspective can be problematic. For example, pollen-based vegetation reconstructions 
are suggested to be less reliable as climate proxies, particularly for interglacials29. Other land-based proxies such 
as dust deposits integrate long-term climatic changes over large regions and hence do not necessarily capture 
climatic effects at their specific location.

For the comparison of our climate reconstructions with proxy reconstruction, we assembled long-term marine 
SST and terrestrial climate proxy reconstructions (Figs. 6, 7, 8, 9) that cover a period of at least 150 ka during the 
last 800 ka (Tables 3 and 4).

Fig. 10  Model bias for (a) annual mean temperature, (b) annual mean precipitation, and (c) annual mean 
total cloud cover, as differences between the linear model reconstruction for 0 ka and present-day (average of 
1961–1990) CRU TS data.

hadcm3_000-120_jan_regression_temp_co2-ecospre-esinpre-obl.nc

hadcm3_000-120_feb_regression_temp_co2-ecospre-esinpre-obl.nc

…

hadcm3_000-120_dec_regression_temp_co2-ecospre-esinpre-obl.nc

hadcm3_000-120_ann_regression_temp_co2-ecospre-esinpre-obl.nc

hadcm3_000-120_jan_regression_prec_co2-ecospre-esinpre-obl.nc

hadcm3_000-120_feb_regression_prec_co2-ecospre-esinpre-obl.nc

…

hadcm3_000-120_dec_regression_prec_co2-ecospre-esinpre-obl.nc

hadcm3_000-120_ann_regression_prec_co2-ecospre-esinpre-obl.nc

hadcm3_000-120_jan_regression_tcc_co2-ecospre-esinpre-obl.nc

hadcm3_000-120_feb_regression_tcc_co2-ecospre-esinpre-obl.nc

…

hadcm3_000-120_dec_regression_tcc_co2-ecospre-esinpre-obl.nc

hadcm3_000-120_ann_regression_tcc_co2-ecospre-esinpre-obl.nc

Table 5.  List of diagnostic regression results that can be found in the Open Science Framework repository28 
under the project’s data/coeffs directory. These files contain useful statistical summary information such as 
R2, standard errors, or residuals for the individual, pixel-based linear regression models.
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In locations where we have empirical proxies, both on land and over the ocean, our regression-based climate 
reconstructions match the original HadCM3 simulations well. These reconstructions can therefore be considered 
as representative of the simulated HadCM3 climate. As a consequence, any differences with respect to the proxies 
records will persist in our reconstructions and, therefore, needs to be removed.

Model bias.  Because the linear model was fitted to match HadCM3 model outputs, the resulting bias of our 
reconstructions is similar to the HadCM3 model bias. The bias of reconstructed temperature and precipitation 
with respect to the CRU TS data set has a similar spatial pattern (Fig. 10) and is as large as the bias shown for 
HadCM3 climate reconstructions of the last 60 ka10. This is also why our long-term reconstructions show the 
same bias towards the assembled paleo-climate proxy records as the original HadCM3 simulations (Figs. 6, 7). 
From this, we concluded that this similarity means that our present-day climate reconstruction is of the same 
quality as the original HadCM3 simulation it is based on. As discussed earlier, the bias was removed from our 
climate reconstructions using the “delta” method12.

Informed user notice.  Our final dataset is just as good as i) the goodness of the applied linear regression 
model, and ii) the underlying climate model, HadCM3 in our case. How well the linear regression model per-
forms for different variables and different regions can be seen in Fig. 4. It works usually better for temperature 
and thus for temperature derived bioclimatic variables (see Table 1). For precipitation and total cloud cover, we 
suggest to carefully assess Fig. 4 if the region of interest is well represented by the statistics-based reconstruction. 
The actual numbers for the goodness of the fit and the model, R2 and RMSE, can be found in the diagnostic files 
listed in Table 5.

The quality of the underlying climate model, HadCM3, can be assessed in two ways. First, by looking at the 
model bias (Fig. 10), and second, by looking how well HadCM3 compares to proxy records that go well back in 
time and show the longer-term climatic changes happening on glacial–interglacial time scales (Figs. 6, 7, 8, 9). 
However, most geological proxies are useful for quantitative temperature comparisons, and only few, terrestrial 
proxies exist for precipitation, and they mostly reflect qualitative changes, e.g., wetter vs. drier periods. For cloud 
cover no such geological proxies exist.

Usage Notes
Examples on how to access the NetCDF files of the reconstructed climate using Python or R are provided in the 
examples directory of the project repository28.

Code availability
Model code for the linear regression as well as the code for the analysis and visualisation of figures is publicly 
available in the project repository28. NetCDF files have been processed using cdo30. We used the Python language 
for most of our scripts with a few bash scripts as wrappers. The workflow for the data generation process is 
managed by Snakemake31. The linear regression is based on the statsmodels package32. All visualisations are 
made with matplotlib33 using cartopy34 for maps. Other Python packages used are (in alphabetical order): 
adjustText35, BeautifulSoup4 (https://www.crummy.com/software/BeautifulSoup/), netCDF436, 
numpy37, pandas38,39, scipy40, scikit-image41, and tqdm42.
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