Supplementary Material for:

Rapidly-migrating and internally generated knickpoints can control submarine channel evolution

by Heijnen et al.

Supplementary figure 1: Bathymetric map of Bute Inlet classified in 20 m intervals.

Supplementary figure 2: Profiles along the seafloor of Bute Inlet in 2008 demonstrating vertical resolution and the system's levees. a) location of cross sections. b-d) profiles of areas that are assumed to not be subject to seafloor change. The variability within the different surveys is up to ~0.5% of the water depth. e) profile through the channel, showing that levees can be completely absent and the system is insiced in the surrounding seafloor. f) profile through channel, showing a particular well developed levee of about 10 m high.

Supplementary figure 3: Overview of areas selected (outlined in green) for volumetric estimates of a) the total erosion in the channel, b) Knickpoint-related erosion, and c) Outer-bend erosion.

Supplementary Tables

Supplementary Table 1: Time lapse bathymetric surveys of subaqueous channel systems				
Location	Key Reference(s)	Notes		
Fraser Delta, BC, Canada	1	Channels on a delta slope. Up to 300 m water depth. 8		
		surveys between 1994 and 2006. Channel is occasionally		
		dredged. Kickpoints (referred to as erosional scarps or		
		schallop shaped depression) are seen. Several other		
		different bedforms are observed.		
Bute Inlet, Knight Inlet and	2	Fjords. Submarine channels fed by fjord head deltas. Up to		
Toba Inlet, BC, Canada		660 m waterdepth. 2 surveys per fjord between 2005 and		
		2010 years. Includes this study area. Knickpoint and		
		associated erosion in Bute Inlet is visible in the figures.		
Squamish Delta, BC, Canada	3–9	Fjord. Recently reset system fed by a fjord head delta. Up to		
		200 m water depth. Single beam and sidescan surveys from		
		1974 onwards. 9 multibeam surveys between 2004 and		
		2009; 93 surveys in 2011, including daily during the summer		
		of 2011. Sub-daily surveys in the summer of 2013. 6 daily		
		surveys in the summer of 2015.		
Monterey Canyon, California,	10–12	Marine. Canyon on continental slope fed by littoral cells. 7		
west coast USA		surveys of the upper 4 km of the canyon between 2002 and		
		2005. 3 more surveys in 2007 using an AUV. 2 surveys cover		
		the system up to 2100m water depth, one in 2002 and a big		
		AUV effort obtained in 2008-2009. 6 more AUV surveys in		
		specific locations between 2015 and 2017. Crescentic		
		shaped bedforms and knickpoints are observed.		
Capbreton Canyon, Bay of	13,14	Marine. Canyon on continental slope. Up to 3500 m water		
Biscay, France		depth. Focus on the canyon head (up to 400 m water depth).		
		10 surveys between 1998 and 2018. Crescentic shaped		
		bedforms and knickpoints are abundant.		
Lake Geneva,	15	Lacustrine. Up to 300 m waterdepth. Surveys in 2000 and		
Switzerland/France		2012. Contains knickpoint and crescentic shaped bedforms.		
Malalay Canyon, Mindoro	16	Marine. Canyon in continental shelf. Up to 350 m water		
Island, the Philippines		depth. 26 surveys between 1997 and 2018, but variable		
		coverage. Canyon-wide surveys at least in 2007, 2008, 2011,		
		and 2018. Crescentic shaped bedforms are common.		
Pearl River Mouth Basin, South	17	Marine, canyons in upper continental slope. 500-1700 m		
China Sea	40	water depth. One survey in 2004/2005 and one in 2018		
Wabush Lake, NL, Canada	18	Lacustrine, system created by tailings. Up to 100 m water		
		depth. Surveys in 1999, 2004, 2006, and 2008. Knickpoints		
	10	are common.		
Pointe Odden, Gabon	19	Marine, several smaller channels in a bay fed by a littoral		
		cell. Up to 75 m water depth 6 surveys between 2004 and		
	20	2009. Channel incision and a landslide.		
Ligurian Margin (incl. Var	20	Marine. Several channels/canyons on an active margin. Fed		
canyon), Mediterranean,		by rivers. Single beam surveys from 1960s and 1970s.		
France		Multibeam surveys from 1991, 1999, 2006, and 2011. Focus		
		on landslide history. Erosional areas in several channels can		
	21	be distinguished.		
Kaikoura Canyon, New Zealand	~1	Marine. Canyon on a continental slope. Over 2000 m water		
		depth. 2 surveys, one before and one after the 2016		
		earthquake. Focus on earthquake triggered mass		
	22	movement.		
Stromboll, Southern Messina		I viarine, canyon on active margin. Up to 400 m water depth.		
Strait and Punta Alice, Italy		I wo surveys between 2005 and 2007. Focus on terrestrial		
	1	debris flows triggering hyperpychal flows.		

Begwan Solo delta, Java,	23	Pro-delta channels on continental shelf. Up to 30 m water	
Indonesia		depth. Surveys in 2008 and 2012.	
Westerschelde, Netherlands	24	Estuary. Up to 25 m water depth. Dredging induced failure	
		of the side of the main estuary channel.	
Lower St. Lawrence Estuary,	25,26	Inner continental shelf. Sediment starved canyons. Up to	
Eastern Canada		325 m water depth. seven surveys between 2007 and 2017.	
		Upstream-migrating crescentic shaped bedforms.	
Eastern Baffin Island, north-	27,28	Mapped 31 fjord-head deltas between 2006 and 2014.	
eastern Canada		Repeat bathymetry is available for several of these fjords.	

Supplementary Table 2: Subaqueous knickpoints in literature					
Location	Setting	Comments	Key Reference(s)		
Wabush Lake, NL,	Lacustrine. Iron	Around 10 main knickpoints. Typical 1–2 m	18,29		
Canada	tailings dumping; 10	high and 10–30 m wide (up to 4 m high and 70			
	km long, up to 100	m wide)			
	water depth.				
Offshore New	Continental slope, up	Eight knickpoints, typically a few tens of	30		
Jersey, east coast	to 2200 m water	meters high. One major knickpoint of 200 m			
USA.	depth.	high. Knickpoints probably formed due to			
		differences in lithology			
Gulf of Alaska, USA	Accretionary prism, up	13 knickpoints, typically 50–150 m high, but	30		
	to 4500 m water	up to 350 m high. Knickpoints have a tectonic			
	depth.	origin (localised vertical movement;			
		anticlines), however fault related knickpoints			
		cannot be ruled out in some cases.	20		
Astoria Canyon,	Canyon on	Six tectonically controlled knickpoints, tens of	50		
offshore Oregon,	accretionary wedge.	meters high.			
west coast USA	Up to 2300 m water				
Con Antonio	depth.	A single 500 1000 m bisk knicks sigt. The	30		
San Antonio	basin Un to EEOO m	A single 500-1000 m high knickpoint. The			
Callyon, onshore	water depth	than usual crossion by turbidity surronts. Also a			
Cline	water depth.	50 m high knickpoint			
Southern Barbedos	Canvons through fold	Knickpoints related to tectonic structures	30,31		
Accretionary Prism	ridges on an	several hundreds of meters high			
Caribbean	accretionary prism 11p	several numercus of meters mgn.			
Caribbean.	to 3500 m water				
	depth.				
Niger Delta.	Continental slope. Up	Five knickpoints, or knickpoint zones of tens of	32,33		
offshore Niger	to 3400 m water	meters high per zone. Related to a fault and			
0	depth. Reconstructed	thrust belt and diapirsim.			
	using seismic surfaces.	·			
Espirito Santo	Continental slope	Five 18-30 m high knickpoints recognized	34		
Basin, offshore	influenced by salt	below present-day seabed depressions.			
Brasil	tectonics.				
	Reconstructed using				
	seismic surfaces				
North Sardinia	Passive margin with	Several smaller (around 10 m) knickpoints and	35		
Slope,	three main channels	two big (around 50 m) knickpoints.			
Mediterranean	reaching up to 1000 m				
	water depth.				
Monterey Canyon,	Continental slope, up	5-10 m high knickpoints are common in the	36,37		
offshore California,	to 3600 m water	upper (up to 1300 m water depth) canyon			
west coast USA	depth.				

		Five up to 200 m high steep steps outside	
		main channel, referred to as discontinuous	
		scours. Interpreted to be cyclic steps	
		associated with channel inception.	
La Jolla Canyon,	Continental slope. Up	Seven up to 30 m high knickpoints referred to	38
offshore California,	to 700 m water depth.	as 'distinctive canyon floor scarps' in the axial	
west coast USA.		channel.	
Lake Geneva,	Lacustrine. Up to 300	Upstream migrating incision, and steep steps	15
Switzerland.	m water depth.	in channel profile. Additionally, knickpoint-	
		bound headless channels are present	
South China sea	Continental slope.	Around 40 10-81 m high steps and several	39
	Several	smaller steps in two canyons. Steps are	
	canvons/channels. Un	interpreted as cyclic step bedforms.	
	to 3500 m water		
	depth.		
Knight, Toba, and	Fiords. Up to 650 m	16 up to 40 m high knickpoints in channels in	40
Bute Inlets, BC.	water depth	three different fiords.	
Canada			
Santa Monica and	Continental slope. Un	Six up to 70 m high knickpoints and three	41
Redondo Canvon.	to 800 m water depth.	'distinctive canyon floor scarps'. Large scours	
California, west		(up to 70 m high) are found outside the	
coast USA		channel too.	
Amazon fan.	Continental slope. Up	Single large knickpoint related to channel	42
offshore Brazil	to 3700 m water	avulsion.	
	depth. Reconstructed		
	using seismic surfaces.		
East Breaks, Gulf of	Salt-withdrawal mini-	Fault related knickpoints.	42
Mexico	basins.		
Rhone Fan.	Active margin. Up to	Several knickpoints related to channel	42
offshore France.	2500 m water depth.	avulsion.	
Mediterranean			
Congo Canyon,	Continental slope. Up	Several knickpoints recognised in the channel-	43
offshore	to 5000 m water	levee part of the system and are linked to	
Angola/Republic of	depth.	avulsions.	
the Congo/			
Democratic			
Republic of the			
Congo			
Magdalena	Active margin. Up to	Knickpoints are common and associated with	44
Channel, offshore	3500 m waterdepth.	avulsions.	
Columbia			
Madeira channel	Intra basins channel	Knickpoints bound upstream sides of headless	45
system, Southwest	system on passive	channels. Suggested that knicpoints are the	
of Madeira,	margin. 4400–5400 m	channel initiators	
Atlantic Ocean	water depth.		
Tenryu Canyon,	Active margin canyon.	One steep fault related knickpoint.	46
offshore Japan	up to 4000 m water		
	depth.		
Offshore Angola	Channel surface of an	Avulsion related knickpoints in order of tens of	47
	ancient channel	meters high.	
	system on a passive		
	margin. Reconstructed		
	using seismic surfaces.		

Danube Canyon,	Canyon-channel	One knickpoint, marking the shift between the	48
Black Sea	system up to 1000 m	canyon and channel regime.	
Central Atlantic USA margin	Canyons on passive continental margin. Up to ~1800 m water depth.	Knickpoints are observed and attributed to variability in substrate erodability.	49
Capbreton Canyon, Bay of Biscay, France	Canyon in continental slope. Up to 3500 m water depth. Focus on the canyon head up to 400 m water depth.	Up to 80 potential knickpoints present. Up to 7 m high. Migrate with 90-600 m/yr	14

Supplementary References

- 1. Hill, P. R. Changes in Submarine Channel Morphology and Slope Sedimentation Patterns from Repeat Multibeam Surveys in the Fraser River Delta, Western Canada. in *Sediments, Morphology and Sedimentary Processes on Continental Shelves* 47–69 (2013).
- 2. Conway, K. W., Barrie, J. V., Picard, K. & Bornhold, B. D. Submarine channel evolution: Active channels in fjords, British Columbia, Canada. *Geo-Marine Lett.* **32**, 301–312 (2012).
- 3. Hughes Clarke, J. E., Brucker, S., Hill, P. & Conway, K. Monitoring morphological evolution of fjord deltas in temperate and Arctic regions. in *Rendiconti Online Societa Geologica Italiana* **7**, 147–150 (2009).
- 4. Hughes Clarke, J. E. *et al.* Temporal progression and spatial extent of mass wasting events on the Squamish prodelta slope. in *Landslides and Engineered Slopes: Protecting Society through Improved Understanding Proceedings of the 11th International and 2nd North American Symposium on Landslides and Engineered Slopes, 2012 1091–1096 (2012).*
- 5. Hughes Clarke, J. E., Vidiera Marques, C. R. & Pratomo, D. Imaging active mass-wasting and sediment flows on a Fjord Delta, Squamish, British Columbia. in *Submarine Mass Movements and Their Consequences, 6th International Symposium* 249–260 (2016).
- 6. Hughes Clarke, J. E. First wide-angle view of channelized turbidity currents links migrating cyclic steps to flow characteristics. *Nat. Commun.* **7**, 1–13 (2016).
- 7. Hizzett, J. L. *et al.* Which Triggers Produce the Most Erosive, Frequent, and Longest Runout Turbidity Currents on Deltas? *Geophys. Res. Lett.* **45**, 855–863 (2018).
- 8. Hage, S. *et al.* How to recognize crescentic bedforms formed by supercritical turbidity currents in the geologic record: Insights from active submarine channels. *Geology* **46**, 563–566 (2018).
- 9. Vendettuoli, D. *et al.* Daily bathymetric surveys document how stratigraphy is built and its extreme incompleteness in submarine channels. *Earth Planet. Sci. Lett.* **515**, 231–247 (2019).
- 10. Smith, D. P., Ruiz, G., Kvitek, R. & Iampietro, P. J. Semiannual patterns of erosion and deposition in upper Monterey Canyon from serial multibeam bathymetry. *Geol. Soc. Am. Bull.* **117**, 1123 (2005).
- 11. Smith, D. P., Kvitek, R., Iampietro, P. J. & Wong, K. Twenty-nine months of geomorphic change in upper Monterey Canyon (2002-2005). *Mar. Geol.* **236**, 79–94 (2007).
- 12. Paull, C. K. *et al.* Origins of large crescent-shaped bedforms within the axial channel of Monterey Canyon, Offshore California. *Geosphere* **6**, 755–774 (2010).
- 13. Mazières, A. *et al.* High-resolution morphobathymetric analysis and evolution of Capbreton submarine canyon head (Southeast Bay of Biscay-French Atlantic Coast) over the last decade using descriptive and numerical modeling. *Mar. Geol.* **351**, 1–12 (2014).
- 14. Guiastrennec-Faugas, L. *et al.* Upstream migrating knickpoints and related sedimentary processes in a submarine canyon from a rare 20-year morphobathymetric time-lapse (Capbreton submarine canyon, Bay of

Biscay, France). Mar. Geol. 423, 106143 (2020).

- 15. Corella, J. P. *et al.* The role of mass-transport deposits and turbidites in shaping modern lacustrine deepwater channels. *Mar. Pet. Geol.* **77**, 515–525 (2016).
- 16. Sequeiros, O. E. *et al.* How typhoons trigger turbidity currents in submarine canyons. *Sci. Rep.* **9**, (2019).
- 17. Yin, S. *et al.* Continental slope-confined canyons in the Pearl River Mouth Basin in the South China Sea dominated by erosion, 2004–2018. *Geomorphology* **344**, 60–74 (2019).
- 18. Turmel, D., Locat, J. & Parker, G. Morphological evolution of a well-constrained, subaerial-subaqueous source to sink system: Wabush Lake. *Sedimentology* **62**, 1636–1664 (2015).
- 19. Biscara, L. *et al.* Submarine slide initiation and evolution offshore Pointe Odden, Gabon Analysis from annual bathymetric data (2004–2009). *Mar. Geol.* **299**–**302**, 43–50 (2012).
- 20. Kelner, M. *et al.* Frequency and triggering of small-scale submarine landslides on decadal timescales: Analysis of 4D bathymetric data from the continental slope offshore Nice (France). *Mar. Geol.* **379**, 281–297 (2016).
- 21. Mountjoy, J. J. *et al.* Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins. *Sci. Adv.* **4**, (2018).
- Casalbore, D., Chiocci, F. L., Scarascia Mugnozza, G., Tommasi, P. & Sposato, A. Flash-flood hyperpychal flows generating shallow-water landslides at Fiumara mouths in Western Messina Strait (Italy). *Mar. Geophys. Res.* 32, 257–271 (2011).
- 23. Syahnur, Y. Geomatics Best Practices in Saka Indonesia Pangkah Limited (Case Study: Ujung Pangkah Pipeline Integrity). in *Indonesian Petroleum Association* (2018).
- 24. Mastbergen, D. *et al.* Multiple flow slide experiment in the Westerschelde estuary, The Netherlands. in *Advances in Natural and Technological Hazards Research* **41**, 241–249 (2016).
- 25. Normandeau, A. *et al.* Morphodynamics in sediment-starved inner-shelf submarine canyons (Lower St. Lawrence Estuary, Eastern Canada). *Mar. Geol.* **357**, 243–255 (2014).
- 26. Normandeau, A. *et al.* Retreat Pattern of Glaciers Controls the Occurrence of Turbidity Currents on High-Latitude Fjord Deltas (Eastern Baffin Island). *J. Geophys. Res. Earth Surf.* **124**, 1559–1571 (2019).
- 27. Hughes-Clarke, J. E. *et al.* Reconnaissance seabed mapping around Hall and Cumberland peninsulas , Nunavut : opening up southeastern Baffin Island to nearshore geological investigations. *Summ. Act. 2014* 133–144 (2015).
- 28. Normandeau, A. *et al.* Storm-induced turbidity currents on a sediment-starved shelf: Insight from direct monitoring and repeat seabed mapping of upslope migrating bedforms. *Sedimentology* **67**, 1045–1068 (2020).
- 29. Turmel, D. *et al.* Morphodynamic and Slope Instability Observations at Wabush Lake, Labrador. *Submar. Mass Movements Their Consequences* **28**, 435–446 (2010).
- 30. Mitchell, N. C. Morphologies of knickpoints in submarine canyons. Bull. Geol. Soc. Am. 118, 589–605 (2006).
- 31. Huyghe, P., Foata, M., Deville, E., Mascle, G. & Group, C. W. Channel profiles through the active thrust front of the southern Barbados prism. *Geology* **32**, 429–432 (2004).
- 32. Adeogba, A. A., McHargue, T. R. & Graham, S. A. Transient fan architecture and depositional controls from near-surface 3-D seismic data, Niger Delta continental slope. *Am. Assoc. Pet. Geol. Bull.* **89**, 627–643 (2005).
- 33. Heiniö, P. & Davies, R. J. Knickpoint migration in submarine channels in response to fold growth, western Niger Delta. *Mar. Pet. Geol.* **24**, 434–449 (2007).
- 34. Heiniö, P. & Davies, R. J. Trails of depressions and sediment waves along submarine channels on the continental margin of Espirito Santo Basin, Brazil. *Bull. Geol. Soc. Am.* **121**, 698–711 (2009).
- 35. Dalla Valle, G. & Gamberi, F. Slope channel formation, evolution and backfilling in a wide shelf, passive

continental margin (Northeastern Sardinia slope, Central Tyrrhenian Sea). Mar. Geol. 286, 95–105 (2011).

- 36. Fildani, A., Normark, W. R., Kostic, S. & Parker, G. Channel formation by flow stripping: Large-scale scour features along the Monterey East Channel and their relation to sediment waves. *Sedimentology* **53**, 1265–1287 (2006).
- 37. Paull, C. K., Caress, D. W., Ussler, W., Lundsten, E. & Meiner-Johnson, M. High-resolution bathymetry of the axial channels within Monterey and Soquel submarine canyons, offshore central California. *Geosphere* **7**, 1077–1101 (2011).
- Paull, C. K. *et al.* Anatomy of the La Jolla Submarine Canyon system; offshore southern California. *Mar. Geol.* 335, 16–34 (2013).
- 39. Zhong, G., Cartigny, M. J. B., Kuang, Z. & Wang, L. Cyclic steps along the South Taiwan Shoal and West Penghu submarine canyons on the northeastern continental slope of the South China Sea. *Geol. Soc. Am. Bull.* **127**, 804–824 (2015).
- 40. Gales, J. A. *et al.* What controls submarine channel development and the morphology of deltas entering deep-water fjords? *Earth Surf. Process. Landforms* **44**, 535–551 (2019).
- 41. Tubau, X. *et al.* Submarine canyons of Santa Monica Bay, Southern California: Variability in morphology and sedimentary processes. *Mar. Geol.* **365**, 61–79 (2015).
- 42. Pirmez, C., Beaubouef, R. T., Friedmann, S. J. & Mohrig, D. C. Equilibrium Profile and Baselevel in Submarine Channels: Examples from Late Pleistocene Systems and Implications for the Architecture of Deepwater Reservoirs. in *Deep-Water Reservoirs of the World: 20th Annual* 782–805 (2000).
- 43. Babonneau, N., Savoye, B., Cremer, M. & Klein, B. Morphology and architecture of the present canyon and channel system of the Zaire deep-sea fan. *Mar. Pet. Geol.* **19**, 445–467 (2002).
- 44. Estrada, F., Ercilla, G. & Alonso, B. Quantitative study of a Magdalena submarine channel (Caribbean Sea): implications for sedimentary dynamics. *Mar. Pet. Geol.* **22**, 623–635 (2005).
- 45. Stevenson, C. J. *et al.* The flows that left no trace: Very large-volume turbidity currents that bypassed sediment through submarine channels without eroding the sea floor. *Mar. Pet. Geol.* **41**, 186–205 (2013).
- 46. Soh, W. & Tokuyama, H. Rejuvenation of submarine canyon associated with ridge subduction, Tenryu Canyon, off Tokai, central Japan. *Mar. Geol.* **187**, 203–220 (2002).
- 47. Gee, M. J. R. & Gawthorpe, R. L. Submarine channels controlled by salt tectonics: Examples from 3D seismic data offshore Angola. *Mar. Pet. Geol.* **23**, 443–458 (2006).
- 48. Popescu, I. *et al.* The Danube submarine canyon (Black Sea): morphology and sedimentary processes. *Mar. Geol.* **206**, 249–265 (2004).
- 49. Mitchell, N. C. Form of submarine erosion from confluences in Atlantic USA continental slope Canyons. *Am. J. Sci.* **304**, 590–611 (2004).