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A B S T R A C T   

The diversity of hundreds of thousands of potential organic pollutants and the lack of (publicly available) in
formation about many of them is a huge challenge for environmental sciences, engineering, and regulation. 
Suspect screening based on high-resolution liquid chromatography-mass spectrometry (LC-HRMS) has enormous 
potential to help characterize the presence of these chemicals in our environment, enabling the detection of 
known and newly emerging pollutants, as well as their potential transformation products (TPs). Here, suspect list 
creation (focusing on pesticides relevant for Luxembourg, incorporating data sources in 4 languages) was 
coupled to an automated retrieval of related TPs from PubChem based on high confidence suspect hits, to screen 
for pesticides and their TPs in Luxembourgish river samples. A computational workflow was established to 
combine LC-HRMS analysis and pre-screening of the suspects (including automated quality control steps), with 
spectral annotation to determine which pesticides and, in a second step, their related TPs may be present in the 
samples. The data analysis with Shinyscreen (https://gitlab.lcsb.uni.lu/eci/shinyscreen/), an open source soft
ware developed in house, coupled with custom-made scripts, revealed the presence of 162 potential pesticide 
masses and 96 potential TP masses in the samples. Further identification of these mass matches was performed 
using the open source approach MetFrag (https://msbi.ipb-halle.de/MetFrag/). Eventual target analysis of 36 
suspects resulted in 31 pesticides and TPs confirmed at Level-1 (highest confidence), and five pesticides and TPs 
not confirmed due to different retention times. Spatio-temporal analysis of the results showed that TPs and 
pesticides followed similar trends, with a maximum number of potential detections in July. The highest de
tections were in the rivers Alzette and Mess and the lowest in the Sûre and Eisch. This study (a) added pesticides, 
classification information and related TPs into the open domain, (b) developed automated open source retrieval 
methods - both enhancing FAIRness (Findability, Accessibility, Interoperability and Reusability) of the data and 
methods; and (c) will directly support “L’Administration de la Gestion de l’Eau” on further monitoring steps in 
Luxembourg.   

1. Introduction 

Human and ecosystem exposure to a broad range of substances, 
including a multitude of new chemicals introduced into the environment 
necessitates careful and increasingly high throughput characterization 

and examination of their effects. (Escher et al., 2020) One substance 
group of high relevance for human health (both via food production but 
also for exposure) is pesticides. Despite their usefulness, they pose po
tential risks to food safety, the environment, and living organisms. 
(Calzada et al., 2021; Mahmood et al., 2016; Hernández et al., 2020) For 
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Diderich@eau.etat.lu (P. Diderich), jiazhang@ncbi.nlm.nih.gov (J. Zhang), thiessen@ncbi.nlm.nih.gov (P.A. Thiessen), bolton@ncbi.nlm.nih.gov (E.E. Bolton), 
emma.schymanski@uni.lu (E.L. Schymanski).   

1 Current affiliation: IFREMER (Institut Français de Recherche pour l’Exploitation de la Mer), Laboratoire Biogéochimie des Contaminants Organiques, Rue de l’Ile 
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this reason, there is an increasing need for approaches to detect and 
identify them in environmental samples. Once pesticides are released to 
the environment, they (parent compounds) may be degraded by biotic or 
abiotic processes into one or more pesticide transformation products 
(TPs). (Somasundaram et al., 1991; Sinclair and Boxall, 2003) Generally 
these compounds are thought to have lower toxicity to biota than the 
parent compounds, however in some instances TPs are more persistent, 
more mobile, and sometimes more toxic than the parent compound it
self. (Sinclair and Boxall, 2003; Olsson et al., 2013) Although parent 
compounds are assessed in detail in many regulatory schemes, the re
quirements for the assessment of TPs are less well developed. (Sinclair 
and Boxall, 2003) While their occurrence and significance are now 
reasonably well-known in research circles, it is still difficult to access 
information on TPs in a central and “FAIR” (Findable, Accessible, 
Interoperable and Reusable) (Sansone et al., 2019) manner, with much 
valuable information documented as detailed reaction schemes (e.g. as 
images) or descriptive text in regulatory reports that are not always 
easily or publicly accessible. In this study, the presence of both pesti
cides and their documented TPs (in openly available information sour
ces) in samples is investigated. 

Previous work by Moschet et al. (Moschet et al., 2013) and Kiefer et 
al. (Kiefer et al., 2019) both characterised the relevance of pesticide 
transformation products in their findings and shared their lists after
wards (SWISSPEST (Moschet, 2017) and SWISSPEST19 (Kiefer et al., 
2020), respectively) on the NORMAN Suspect List Exchange (NORMAN 
-SLE) (NORMAN Suspect List Exchange, 2021), thus making them more 
“FAIR” (Sansone et al., 2019). The SWISSPEST suspect list was a starting 
point for the pesticide suspect list developed in this work, with addi
tional chemicals of local relevance added as described below (note: 
SWISSPEST19 was published in parallel during the early stages of this 
work). 

For the identification of unknown contaminants in the environment, 
a technology that is sensitive, fast, and accurate is required, capable of 
confidently identifying chemical contaminants emerging at trace con
centrations in complex environmental and biological matrices. High 
resolution mass spectrometry (HR-MS) coupled with liquid chromatog
raphy has become an established technique for the monitoring of 
thousands of chemicals in water (and other) samples. (Hollender et al., 
2017; Krauss et al., 2010) Various computational approaches can help 
screen non-target HR-MS measurements for large numbers of suspect 
chemicals using suspect lists and/or mass spectral libraries (Hollender 
et al., 2017; Vinaixa e al., 2016), or to discover and identify new, pre
viously unknown chemicals in the environment. (Hollender et al., 2017; 
Helmus et al., 2021) These two non-targeted analysis strategies are 
called suspect screening and non-targeted screening, respectively. 
(Moschet et al., 2013) Suspect screening, the strategy used in this study, 
uses only the information of the chemical structure and its mass (and/or 
spectrum) a priori and is, therefore, a very promising approach for the 
efficient tentative identification of compounds. (Moschet et al., 2013; 
Moschet et al., 2014) Consequently, suspect screening can be used to 
perform extensive analytical screening for specific chemicals suspected 
to be in the samples without necessarily the need for reference standards 
in advance. (Moschet et al., 2013) 

Targeted analysis is a more classical approach for quantification 
providing high sensitivity and high selectivity that requires preselection 
of the chemicals in advance and the availability of reference standards. 
Nevertheless, this approach is the only way to verify and quantify the 
tentative candidates in the end. The increasing number of chemicals of 
interest in environmental and exposomics studies makes it practically 
impossible for target analyses dependent on individual standards to 
cover all potentially occurring chemicals. (Moschet et al., 2013) Thus, 
suspect screening methods are therefore developed to reveal a fuller 
picture of occurring chemicals and can be performed with suspect 
chemical lists, (Moschet et al., 2013; Hollender et al., 2017; Krauss et al., 
2010) allowing for eventual prioritization for target analysis and 
confirmation efforts. (Moschet et al., 2013) 

Confidence in HR-MS-based identifications inherently varies be
tween compounds, since it is not always possible or reasonable to syn
thesize each substance or confirm them via complementary methods (e. 
g. nuclear magnetic resonance) at very low environmental concentra
tions and in complex mixtures. (Schymanski et al., 2014) These varying 
levels of confidence and the need for a standardized manner to report 
the results were motivating reasons for a level system that was intro
duced in 2014. (Schymanski et al., 2014) The system contains five 
identification confidence levels, which can be achieved through exper
imental and computational analysis of the compound(s) measured in 
HR-MS experiments, with the objective to achieve the highest possible 
identification level that is realistic with the available evidence. Suspect 
screening can generally be considered to start at an identification con
fidence of Level-3 (tentatively detected candidates following pre- 
screening; see below), and through data analysis compounds can 
obtain the confidence Level-2a, i.e. probable structures via a high- 
quality spectral library match. Should target analysis reveal a suitable 
match with a reference standard measured in house with the same 
method, this results in a Level-1 confirmed identification. 

Since a suspect list is often set up based on a substance class (or 
classes) of interest, there is no guarantee that the suspects are present in 
the sample. Thus, a pre-screening step helps to determine which suspects 
may be present with matching MS1 and MS2 spectra of sufficient quality 
for further data analysis. This step was performed using Shinyscreen 
(https://gitlab.lcsb.uni.lu/eci/shinyscreen/) (Kondic et al., 2020), a 
semi-automated, open-source alternative to vendor software for peak 
inspection, with built in quality control criteria as described recently by 
Lai et al. (Lai et al., 2021) Potential suspects with MS1 and MS2 spectra 
passing the Shinyscreen pre-screening were considered for additional 
identification efforts via MS2 spectra annotation using the open source 
in silico fragmentation approach MetFrag (https://msbi.ipb-halle.de/Me 
tFrag/). (Ruttkies et al., 2016) MetFrag combines compound database 
searching and fragmentation prediction plus other experimental and 
metadata terms for molecule identification using HR-MS2 fragmentation 
information. (Ruttkies et al., 2016) Given a single MS2 spectrum of a 
suspect and the neutral mass of the parent ion, MetFrag first selects 
matching candidates from databases, such as PubChem (https://p 
ubchem.ncbi.nlm.nih.gov/) (Kim et al., 2019) and CompTox (https 
://comptox.epa.gov/dashboard/) (Williams et al., 2017), before each 
of the retrieved candidates is fragmented in silico using a bond- 
disconnection method and ranked using various scoring terms (see 
methods for further details). (Ruttkies et al., 2016) For this study, the US 
Environmental Protection Agency (US EPA) CompTox Chemicals 
Dashboard was used as the main compound database, consistent with 
Lai et al. (Lai et al., 2021), because of its relatively small size (~880,000 
chemicals), and the extensive environmentally-relevant metadata such 
as toxicity, exposure, and presence integrated in CompTox from various 
information sources. (Williams et al., 2017) The recently-released Pub
ChemLite for Exposomics collection (Schymanski et al., 2021), which 
demonstrated very good performance particularly for agrochemicals 
(pesticides) was under development at the time that this work was 
performed. 

The main goals for this study were (a) establishing a new high- 
throughput suspect screening workflow based on open resources 
coupled with semi-automatic screening and annotation steps (b) the 
discovery and FAIRification of TP information based on their parent 
compounds using text-mining methods and (c) application of these 
combined approaches on surface water samples to gain an overview of 
the pesticide and pesticide TP presence in Luxembourgish rivers. The 
resulting suspect lists, classification and permission information were 
uploaded to various open databases and repositories to contribute to 
open and “FAIR” data management for exposomics. 

2. Material and methods 

The high-throughput suspect screening workflow developed here is 
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shown in Fig. 1 and explained in the following sections. 

2.1. Experimental methods 

2.1.1. Sampling and solid phase extraction 
Different river surface water samples, collected throughout 

Luxembourg, were selected by the “L’Administration de la Gestion de 
l’Eau” (the Luxembourgish Water Administration, hereafter AGE) for 
chemical monitoring; pesticides and their TPs are the specific focus of 
these efforts (additional activities are ongoing). Nine different locations 
(Fig. 2 and Suppl. Data Excel File Table S1) covered the various river 
catchments, and the data used in this study were sampled monthly be
tween April 2019 and October 2019 (no sampling in June 2019). 

The surface water samples were filled in 1000 mL amber bottles and 
stored for up to one week at 5 ◦C (±3 ◦C) in darkness until extraction. To 
assess possible contamination from sample handling, ultrapure water 
was analogously enriched and analysed as blank samples. 

For the solid-phase extraction, Atlantic® HLB SPE Disks from Hori
zon (Salem, NH, USA) with a 47 mm diameter were used. The disks were 
conditioned twice for 1 min with acetonitrile, and then twice for 1 min 
with Milli-Q water. 1000 mL of sample was pumped through each disk at 
a flow rate of roughly 30 mL/min, using the SPE-DEX 47900 system 
from Horizon. Sample loading was followed by washing the disks twice 
for 1 min with Milli-Q water and drying by airflow for 15 min. The 
analytes were eluted for 1 min with cyclohexane, followed by an acetone 
elution for 1 min, then 4 times for 1 min with acetonitrile (these were all 
solvent options possible with this set-up, chosen to maximise the com
pounds eluted within the possibilities available). After each elution step, 
the disks were air-dried for 1 min. The combined extracts were dried 
under nitrogen flow in a water bath heated to 40 ◦C. The samples were 
resuspended in 2 mL acetonitrile/water (10/90) by sonication for 5 min 
and remaining particles were removed by passing the extracts through a 
0.7 μm glass-fibre filter (Sartorius, Brussels, Belgium). 

2.1.2. LC-HRMS analysis 
Reversed-phase chromatography was accomplished using an Acquity 

Ultra Performance Liquid Chromatography (UPLC) BEH C18 column 
(dimensions: 1.7 μm, 2.1 × 150 mm) from Waters. The flow was set to 
0.20 mL/min using water (0.1% formic acid, A) and methanol (B) as the 
mobile phase. The mobile phase gradient started at 90% of A and 10% of 
B at 0 min and was kept for 2 min before linearly ramping to 100% B at 
15 min. This condition was kept for another 5 min before bringing back 
to starting mobile phase conditions after 21 min. The column was 
allowed to re-equilibrate for 9 min before the next injection. 

The mass spectrometer Q ExactiveTM HF (Thermo Scientific) was 
used in both positive and negative electrospray ionization. The 
following full MS/data dependent (dd) MS2 settings were used: resolu
tion (1.2 × 105 at m/z 200), automatic gain control (AGC) target (1.0 ×
106), maximum injection time (IT): (70 ms), and scan range (m/z =
60–900). For the dd-MS2/ddSIM (data dependent selected ion moni
toring) the following were used: resolution (3.0 × 104 at m/z 200), AGC 
target (5.0 × 105), maximum IT (70 ms), loop count (5), Top N (5), 
isolation window (1.0 Da), (N)CE (30). Lastly the following dd settings 
were used: minimum AGC target (8.0 × 103, intensity threshold (1.1 ×
105), apex trigger (4–6 s), exclude isotopes (On), and dynamic exclusion 
(10 s). The instrument was calibrated and optimized every time an 
analysis was performed using manufacturer settings to ensure consistent 
performance throughout the whole study. 

2.2. Computational methods 

2.2.1. Pesticide substance selection 
The plant protection product list from the Luxembourgish “Admin

istration des Services Techniques de l’Agriculture” (ASTA) (ASTA, 2021) 
and the SWISSPEST list of registered insecticides and fungicides in 
Switzerland (Moschet et al., 2013) were used as starting points for the 
suspect list. Several (multilingual) documents provided by collaborators 
in the Clinical & Experimental Neuroscience group at the Luxembourg 
Centre for Systems Biomedicine as part of previous work (Schymanski 

Fig. 1. The newly created high-throughput suspect screening workflow, including experimental (top, grey) and computational steps. Both suspect and target 
screening were performed. 
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et al., 2019) were also included, as documented in the “LUXPEST” 
dataset available on Zenodo (Krier, 2020) and briefly below. 

The final LUXPEST pesticide suspect list included 386 pesticides, 
(Krier, 2020) classified into different classes along with information 
about their use authorisation in Luxembourg. (European Commission, 
2021; University of Hertfordshire, 2021a, 2021b) Of the 386 pesticides, 
196 are permitted for use in Luxembourg, 128 are not, while for 14 
pesticides and 48 TPs permission information was either not available or 
not applicable, respectively. The classification efforts revealed that most 
of them were fungicides and herbicides (96 and 93 respectively); 49 
were already classified as pesticide TPs (Suppl. Data Figure S1). As a 
part of “FAIRifying” this dataset, the LUXPEST list is openly available on 
the NORMAN-SLE (NORMAN Suspect List Exchange, 2021), PubChem 
(Kim et al., 2019) and CompTox (Williams et al., 2017; Krier, 2021) 
websites, and the detailed classification information was added to the 
PubChem NORMAN-SLE Classification Browser (https://pubchem.ncbi. 
nlm.nih.gov/classification/#hid=101) and into the individual records 
for the pesticides (see Suppl. Data Figures S2 and S3) 

2.2.2. Suspect screening of pesticides and transformation products 

2.2.2.1. Pre-screening with Shinyscreen. Pre-screening was performed 
using Shinyscreen (Kondic et al., 2020) with the following settings for 
extraction and automatic quality control based on the typical Q Exactive 
HF performance: coarse precursor m/z error ± 0.5 Da, fine precursor m/ 
z error ± 2.5 ppm, extracted ion chromatogram m/z error ± 0.001 Da, 
retention time (RT) tolerance ± 0.5 min, an MS1 intensity threshold of 
1.0 × 105 and an MS2 intensity threshold relative to the MS1 peak in
tensity of 0.05. Features that fulfilled the following four criteria were 
considered as passing the quality control: 1) MS1 peak intensity >
1x105, 2) presence of MS2 spectrum, 3) alignment of MS1 and MS2 
peaks within the RT tolerance, 4) signal to noise ratio > 3. The auto
matic quality control procedure is explained in greater detail in Lai et al. 
(Lai et al., 2021), including plots demonstrating “pass” and “fail” 
scenarios. 

2.2.2.2. Candidate identification with MetFrag. The features that passed 

Fig. 2. The Luxembourgish map with the eight selected rivers and nine sampling locations (Alzette has 2 sampling locations) marked. The sampling locations were 
selected by the “L’administration de la gestion de l’eau” (AGE) from Luxembourg as part of their 2019 surface water monitoring efforts. Source: LCSB. 
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the quality control were then analysed using MetFrag (Ruttkies et al., 
2016) coupled to CompTox (Williams et al., 2017; Schymanski, 2019) to 
achieve tentative identifications (Ruttkies et al., 2016), generally 
consistent with Lai et al. (Lai et al., 2021) Candidates were retrieved 
using an exact mass + 10 ppm window, where the exact mass settings 
included the measured ion mass plus adduct species ([M+H]+ for pos
itive and [M− H]− for negative mode, automatically detected from the 
Shinyscreen mode output) for internal correction to neutral mass in 
MetFrag for candidate retrieval. The InChIKey filtering (default setting) 
was left on, i.e., candidates that vary only in the stereochemistry are 
merged in the output, and the highest scoring candidate was considered. 
Several MetFrag scoring terms were included. The two most relevant 
scoring terms for this study are the MetFrag in silico fragmentation score 
(settings: mzabs = 0.001; frag_ppm = 5; adduct setting as per candidate 
retrieval) and the MoNA (MassBank Of North America) score. (Mass
Bank of North America, 2021) While MetFrag compares the experi
mental results with in silico fragmentation results, it also searches the 
experimental data with online mass spectral records from a public 
spectral library, MoNA. The “Exact Spectral Similarity (MoNA)” term 
(hereafter “MoNA Score”) was used, in which all MoNA spectra (if 
available) are retrieved using the InChIKey of the given candidate and 
compared with the experimental spectrum. The best spectral similarity 
score is reported as the result. Several additional metadata terms were 
used in the MetFrag calculation, yielding in the end a maximum score of 
10 where every scoring term has the same weight (10 scoring terms each 
with a weight of 1). The additional scoring terms were TOXCAST_PER
CENT_ACTIVE_BIOASSAYS, PREDICTED_EXPOSURE, PUBME
D_ARTICLES, PUBCHEM_SOURCES, DATA_SOURCES, CPDAT__COUNT, 
KEMIMARKET_EXPO and KEMIMARKET_HAZ. For the sake of 

readability, further information about these scores can be found else
where (Lai et al., 2021), since the MoNA Score became the primary 
decision-making criterion in this work as described further below. 

All the chemicals that achieved a MoNA Score greater than or equal 
to 0.9 (scoring range between 0 and 1) were assigned as Level-2a 
compounds according to the scheme described by Schymanski et al. 
(Schymanski et al., 2014) and as described above. In this study, four 
different MoNA score scenarios were defined in the context of the results 
available, also in line with commonly used thresholds in the community. 
The four scenarios were defined as the following: 1) “very good” de
scribes the cases with a MoNA score equal or greater to 0.9, i.e., a Level- 
2a, 2) “good” describes the cases with a MoNA score between 0.7 and 
0.9, which can be considered in some cases sufficient for Level-2a but 
based on experience not always sufficient; 3) “poor” describes the cases 
with a MoNA score between greater than 0 and smaller than 0.7 and 4) 
“no spectrum” describes the cases with a MoNA score equal to 0. The 
first scenario led to a Level-2a as described above and the three other 
scenarios remained at a Level-3 for further inspection. 

2.2.3. Extracting pesticide transformation product information 

2.2.3.1. Transformations. In a collaborative effort between PubChem 
and the NORMAN-SLE, several lists of chemicals including parent-TP 
information were mapped up into a standardized format and added 
into PubChem as “Transformations”, as described elsewhere (Schy
manski et al., 2021) (see Fig. 3). 

The so-called “parents” were termed “predecessor” to avoid termi
nology clashes (as the term “parent” has a different meaning in Pub
Chem), and the TPs or metabolites were termed “successors” in 

Fig. 3. The “Transformations” section for Terbutylazine-2-hydroxy, CID: 135495928. Source URL: https://pubchem.ncbi.nlm.nih.gov/compound/135495928#s 
ection=Transformations. 
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PubChem. At the time this study was performed, the NORMAN-SLE lists 
included were S60 SWISSPEST19 (Kiefer et al., 2020) and S66 
EAWAGTPS (Schollee and Schymanski, 2020). The deposition of 
“Transformation” information in PubChem is automated through the 
NORMAN-SLE via Zenodo depositions (NORMAN Suspect List Exchange 
(NORMAN SLE) Zenodo Community, 2021) and mapping files in GitLab 
(Environmental Cheminformatics, 2021a). The retrieval of this infor
mation is made possible through PubChem via a structured data query 
(SDQ) per PubChem Compound Identifier (CID), which can be per
formed e.g., through the web interface via the download button (Fig. 3 
top right) or via scripting queries. Custom-made R functions were 
designed to access this as a part of this work. (Environmental Chem
informatics, 2021b) 

2.2.3.2. Hazardous substance database (HSDB) metabolites. A further 
information source of TPs within PubChem is the “Metabolism and 
Metabolites” section which, unlike the table above, are human-readable 
text excerpts from several data sources, including the Hazardous Sub
stance Database (HSDB) from the US National Library of Medicine 
(NLM), recently fully integrated within PubChem. As a pilot project as 
part of this work, a data extraction workflow was designed based on the 
HSDB annotation file (available in JavaScript Object Notation - JSON 
format). In short, text excerpts are automatically screened for recog
nized synonyms PubChem-side and, where detected, hyperlinked 
(shown as blue text in Fig. 4, and recognizable in the annotation file by 
CID). 

This information can be automatically retrieved from the JSON file. 
Additionally, the text also contains many descriptive reactions that are 
not suitable for automated synonym recognition, but interpretable by 
chemists. Thus, information was automatically extracted in a tabular 
form for manual curation (e.g., removal of irrelevant matches, addition 
of new chemicals) with full provenance suitable for conversion into a 
“Transformations” table, coupled with an accompanying structure file to 
deposit new structures in PubChem. Chemical drawing and curation 
were performed in Chemistry Development Kit (CDK) using CDK Depict 
(https://www.simolecule.com/cdkdepict/depict.html) (Willighagen, 
2017; Mayfield, 2021). To describe the challenges visually, the prede
cessor (Fig. 4, atrazine) is circled in purple and was automatically 
extracted, along with two TPs 2-hydroxyatrazine (red; two different 
synonyms mapping to the same structure) and 2- 

hydroxydesethylatrazine (orange, three synonyms; not each synonym 
was recognised fully). Text-mined entries retrieved in this manner are 
circled in full lines. Desethylatrazine was not automatically recognised 
(no blue hyperlink present) but was curated and added in manually 
(blue dotted lines). The synonym “hydroxy” was automatically mapped 
(blue hyperlink, green dashed circle) but removed in the manual cura
tion step as an artefact of the mapping. 

All HSDB TPs extracted in this manner were added to a new suspect 
list S68 HSDBTPS (LCSB-ECI et al, 2020) and full provenance of the 
curation is available on the Environmental Cheminformatics GitLab 
repository (Environmental Cheminformatics, 2021c). 

2.3. Verification and quantification using reference standards 

All the pesticides at a Level-2a were selected for further verification 
via reference standards analysed with the same chromatographic pa
rameters and procedures as for the sample analysis. Several reference 
standards came from the in house available ENTACT mixtures, obtained 
from participation in the EPA’s Non-Targeted Analysis Collaborative 
Trial. (Ulrich et al., 2019) Retention times were considered a match if 
the difference was less than ± 0.2 min. Additional reference standards 
were purchased where possible (Suppl. Data Excel File Table S2). Where 
reference standards were available, the concentration of the pesticides 
and TPs were quantified using an external calibration curve ranging 
from 1 µg/L to 1000 µg/L spanning the linear dynamic range for the 
compounds quantified. Thermo Scientific TraceFinderTM Software 
(version 5.1) was used for automatic peak integration and generation of 
the calibration curve. Concentrations below 1 ng/L (after accounting for 
dilution) were reported to be below the quantifiable range. Since only an 
external calibration was performed, it is not possible to fully correct for 
several factors that may influence the concentrations such as matrix 
effects, and the concentrations reported here should be interpreted 
accordingly. Full quantification of many of these analytes is done in a 
routine targeted manner at AGE, and the results reported below are 
generally comparable. Since the extended screening performed here will 
also inform future targeted monitoring efforts at AGE (as described 
further below), extensive quantification was not the main focus of this 
work. 

Fig. 4. Automatic text mining (top) and manual curation (bottom) of HSDB content using one example from atrazine. Source URL: https://pubchem.ncbi.nlm.nih. 
gov/compound/Atrazine#section=Metabolism-Metabolites. 
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3. Results 

The numbers that will be explained in detail in the next sections are 
summarized in a table (Suppl. Data Excel File Table S3), to provide an 
overview of the number of cases and/or compounds for each step of the 
workflow. 

3.1. Tentatively detected pesticides and MetFrag annotation 

Shinyscreen was run with the 386 LUXPEST (Krier, 2020) suspects 
(Suppl. Data Excel File Table S4) on river water samples from nine lo
cations over six months and for two modes (positive and negative), 
comprising 20,844 cases for the automated quality control protocol. 
Each case corresponds to a unique feature per compound, location, 
month and mode. In total, there were 3006 cases deemed suitable for 
further identification with MetFrag, which corresponded to 162 unique 
compounds (Suppl. Data Excel File Table S5). Fig. 5 illustrates the 
number of compounds for each location and for each month. 

For example, in April 2019 the river “Sûre” in Erpeldange revealed 
44 cases that passed the quality check in Shinyscreen. All 3006 cases 
were subsequently analyzed and annotated with MetFrag to assign an 
identification confidence level. These cases were then categorized into 
four different scenarios depending on their MoNA score, as shown in 
Fig. 6. The following section describes the next steps at a “per com
pound” level (rather than “per case”). 

3.2. Pesticide transformation products suspect list 

Out of the 386 compounds, 162 different pesticides were found 
(tentatively, at Level-2a or Level-3 confidence) in either one or more 
locations over six months. Since the manual curation of HSDB content is 
complex and time-consuming, only the 36 previously selected Level-2a 
pesticides (suspects with a MoNA sore > 0.9) were selected (Suppl. 
Data Excel File Table S6) for further retrieval of TP information from 
PubChem. Of the 36 pesticides, there were 30 that already had infor
mation in the “Transformations” section. In addition, 22 pesticides had 
further information in the HSDB Metabolism and Metabolites section, 
while no information was available for only 3 pesticides. There were 19 

pesticides that had information in both the HSDB and “Transformations” 
section. 

In the end, a new suspect list of 181 transformation products and 
their parent compounds was created, including the 36 parent com
pounds (the Level-2a cases identified earlier) and 173 TPs related to 
these 36 pesticides that were added in this step. Although the parent 
compounds were already analysed previously, they were retained for a 
direct comparison between the presence of the parent compounds and 
their TPs (see discussion). This table is given in the Suppl. Data Excel File 
Table S7. 

After manual curation, the merged data file of TPs extracted from 
HSDB was added to Zenodo as HSDBTPS (LCSB-ECI et al, 2020) and the 
newly generated information was also provided to PubChem as 
“Transformation” tables to update this section as well (also included in 
the Zenodo deposition). The HSDBTPS list is also available in CompTox. 
(US EPA, 2021) 

3.3. Suspect screening for the pesticide TPs 

Shinyscreen was run again for all samples with 181 pre-selected 
compounds (Suppl. Data Excel File Table S7), resulting in a total of 
19,548 cases. Of these, there were 1275 cases in negative mode and 
2159 cases in positive mode that were able to pass the quality check. 
Since some suspects were detected in different locations in positive and 
negative ionization mode, these 3434 cases corresponded to 96 trans
formation products (Suppl. Data Excel File Table S8) and the 36 parent 
compounds (132 different compounds in total). The number of cases for 
each location and month is available in the Suppl. Data Figure S4. 

The MS2 spectra of 132 tentatively identified suspects were then 
processed using MetFrag with the same databases and scoring terms as 
before and the identification confidence levels were determined based 
on the MoNA scores (Suppl. Data Figure S5). Out of the 3434 cases, 
there were 1190 that were able to achieve a MoNA score above 0.9 
corresponding to eight unique additional identifications at Level-2a 
(Suppl. Data Excel File Table S8). The m/z 137.0244 yielded three 
peaks and three Level-2a candidates, salicylic acid (which can be both 
parent and TP in a variety of reactions, including a role as a TP of aspirin 
- a common pharmaceutical and not a pesticide), 3-hydroxybenzoic acid 

Fig. 5. The results of pre-screening with Shinyscreen, showing how many pesticides passed the quality check for each sampling location and per month (positive and 
negative modes are visualized together). 
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and 4-hydroxybenzoic acid (both TPs of benzoic acid). Further TPs 
included succinic acid (TP of 2,4-dichlorophenoxyacetic acid, linuron 
and sulcotrione), deethylterbutryne (TP of terbutryn and irgarol), 
terbutylazine-2-hydroxy (TP of terbuthylazine, terbutryn and terbume
ton), terbutylazine-desethyl-2-hydroxy (a further TP of terbutylazine- 
desethyl and terbutylazine-2-hydroxy and thus also a TP related to the 
parents mentioned above). Finally o-phenylenediamine (TP of benomyl) 
had a high MoNA score for the para-isomer p-phenylenediamine (no TP 
information); neither the ortho- or meta- isomers had spectra in MoNA 
but could be expected to have quite similar spectra. Some of these are 
discussed further below. 

3.4. Verification of the tentative candidates and their quantification 

The 36 Level-2a pesticide identifications were selected for further 
confirmation efforts with reference standards (Suppl. Data Excel File 
Table S9). Of these, 26 of these were verified using single standards and 
10 compounds were verified with reference standards contained in the 
ENTACT mixtures (the work on the TPs had not yet been performed 
when this selection was made). 

Out of the 36 parent compounds, there were 31 chemicals that 
achieved a Level-1, while five could not be confirmed (different reten
tion times, see Suppl. Data Excel File Table S9). Of the 31 Level-1 
compounds, only 20 were present at quantifiable amounts (within the 
scope here), as presented in Fig. 7 (see also Suppl. Data Excel File 
Table S10 and Table S11). 

The classification and Luxembourgish permission information for the 
20 quantified compounds are summarized in Suppl. Data Figure S6. 

3.5. Spatial and temporal distribution 

Fig. 8 visualizes: (A) the nine different river locations that were 
selected with the average number of detections; and (B) the number of 
detections over the six months. The green lines show the pesticide sus
pects (Level-1 through Level-3), the yellow the TP suspects (Level-1 
through Level-3) and the red lines indicate the confirmed identifications 
(all 20 Level-1 compounds that were additionally quantified). 

4. Discussion 

This work aims for a more dynamic experience of suspect screening 
in non-target environmental HR-MS measurements, using open chem
informatics approaches and tentative detections in samples, while using 
Luxembourgish river samples as an example. The discussion will look 
into how the coupling of parent and TP information can support inter
pretation using the example of terbutylazine, then look at the overall 
implications of these results for Luxembourg, before delving into the 
FAIRification of TP data and the implications for further efforts. 

4.1. Example of Pesticide-TP Screening: Terbutylazine 

The following example of terbutylazine and three TPs visualizes how 
the coupling of suspect screening for pesticides and transformation 
products can be automated and visualized in Shinyscreen. Fig. 9 shows 
three different plots belonging to one parent compound (terbutylazine, 
top, suspect list ID N◦ 3) with three TPs, 2-hydroxyterbutylazine (ID N◦

11), desethyl-2-hydroxyterbutylazine (ID N◦ 4), and desethylterbutyla
zine (ID N◦ 2). 

The parent compound was found in the months May, July and 
September at the identification Level-2a, retention time of ~ 17.41 min, 
with two isobars found at ~ 16.00 and 14.63 min. These isobars are 
speculated to be other compounds in this case; MetFrag suggested for 
both the compound propazine, due to highest metadata scores with the 
selected scoring terms in CompTox (specifically due to higher toxicity 
concerns and some higher reference counts); propazine was also re
ported as a suspect by many in the 2015 NORMAN Collaborative Trial 
(Schymanski et al., 2015), although it has not been permitted for use for 
many years. Interestingly, the use of PubChemLite with the optimized 
default scoring terms (Schymanski et al., 2021) resulted in terbutylazine 
appearing ahead of propazine in the metadata ranking; further addition 
of the “agrochemicals” category (Schymanski et al., 2021) helps up- 
prioritize the potentially most relevant alternative isobars for further 
consideration at a later stage (e.g. sebutylazine). The importance of the 
choice of the various CompTox metadata terms and the resulting con
sequences in interpretation are discussed in detail in Lai et al. (Lai et al., 
2021) and thus not discussed further here. 

Fig. 6. The results of MetFrag spectra annotation. The graph represents the 3006 cases (162 pesticides) regrouped according to the four MoNA score scenarios for the 
six months (positive and negative mode together). 
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One of the main TPs, desethylterbutylazine (ID N◦ 2, 4th chro
matogram in the Fig. 9) involves the loss of the ethyl group and is 
detected at 15.6 min at high intensity in July and October. Since one 

ethyl is lost, a lower (but not dramatically lower) retention time than the 
parent would be expected on a reverse phase column, thus the detection 
at 15.6 min is considered more plausible than other peaks reported at 

Fig. 7. Boxplots showing the range of log (10) concentrations (original concentration units: ng/L) for the different pesticide and transformation products across all 
months and sampling locations in 2019. Compounds on the x-axis are sorted in ascending order of median log (10) concentration. Concentration values that were 
below the respective quantification range were excluded. All compounds were measured in positive mode except for those marked with an asterisk, which were 
measured in negative mode. 

Fig. 8. The spatial (A) and temporal (B) distribution of the tentatively detected pesticides and transformation products as well as for the verified and quantified 
compounds. No samples were available for June. 
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9.0 min for other months. The fact that the TP peak does not occur at the 
same time as the parent rules out the possibility of an in-source frag
mentation from the parent. After the verification with reference stan
dards, it became clear that the retention time of desethylterbutylazine is 
indeed 15.67 min (the isobar, simazine, was confirmed at RT of 15.24 
min, see Suppl. Data Excel File Table S9). The third TP, desethyl-2- 
hydroxyterbutylazine (ID N◦ 4) is detected at 9 min in May, July, 
August and September (at Level-3), which coincides with parent de
tections plus another month where the parent was not detected. Since 
the chlorine has been replaced by an oxygen, combined with the ethyl 
group, the dramatic reduction of retention time relative to the parent is 
plausible, as both transformations increase the polarity and thus reduce 
the retention time. The last TPs of terbutylazine is terbutylazine-2- 
hydroxy (ID N◦ 11) containing an oxygen instead of a chorine as well. 
This compound was found for all months and since this TP can be a 
degradation compound from different parent compounds (e.g. terbuty
lazine found at Level-3 and terbutryn found at Level-1 amongst others, it 
could be present due to the transformation from both, see https://pubch 
em.ncbi.nlm.nih.gov/compound/135495928#section=Transf 

ormations). 

4.2. Pesticides and TPs in Luxembourgish surface waters 

The occurrence of detected and quantified suspects that are not 
permitted for use in Luxembourg (see Suppl. Data Figure S6) will be 
investigated further by AGE. Several reasons could contribute to this: 
either these pesticides were allowed in the past and their presence is due 
to historical use; or these pesticides are applied without permission 
(considered unlikely based on the results here). Five of the entries were 
TPs that have no direct permission information. Looking at the 
permission information of their parent compounds revealed that for 
some TPs (e.g. 2-hydroxyatrazine) the parent compound is not permitted 
(atrazine), but for others (e.g. desethylterbutylazine) the parent com
pound is permitted (terbutylazine). As an example, the low levels of 
atrazine detected here (<100 ng/L) are likely to be due to historical 
applications still seeping into the surface waters; fresh applications 
would likely yield higher levels. 

As shown in Fig. 7 (all the concentrations are available in the Suppl. 

Fig. 9. The spectra of the parent compound terbutylazine (top, suspect 3) with its three TPs 2-hydroxyterbutylazine (next, suspect 11), desethyl-2- 
hydroxyterbutylazine (next, suspect 4) and desethylterbutylazine (bottom, suspect 2) in positive mode (screenshots from Shinyscreen). The structures are shown 
to the right. 
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Data Excel File Table S10), the pesticide TP succinic acid was found in 
highest concentrations (maximum concentrations found 774 ng/L) in 
the river samples. This high concentration is most probably due to the 
fact that this chemical has several “roles” in the environment and can 
come from both natural and anthropogenic sources. For instance, suc
cinic acid is involved in several processes in the body (e.g., generated in 
mitochondria via the citric acid cycle) and is also a food additive 
(PubChem, 2021); thus alternative sources are likely to be much higher 
contributors to the overall concentrations than this being a documented 
TP of the pesticides sulcotrione (present in the LUXPEST list but did not 
pass the pre-screening) and linuron (not present in the LUXPEST list). 
This shows the importance of having information about the multiple 
roles of chemicals available in an easily accessible and readable manner. 
The overall lowest concentrations were found for the compounds dese
thylatrazine, 2-hydroxyatrazine and simazine (minimal concentrations 
around 1 ng/L). Returning to the example from the section before 
(Section 4.1), desethylterbutylazine was confirmed in 8 out of 9 river 
samples (except for the river Alzette from Mersch-Berschbach), in all the 
6 months (Suppl. Data Excel File Table S10). 

As shown in Fig. 8, the overall lowest average number of compounds 
were found in the rivers Eisch and Sûre, which is reassuring in the 
context of Luxembourg as about one-third of the drinking water origi
nates in the river Sûre. (Grand Duchy of Luxembourg, 2021) 

The temporal patterns (Fig. 8B) show that there is a spike in de
tections in late spring/beginning of the summer, with an additional 
smaller spike in September. The overall lowest average number of 
compounds was found in April, reflecting the expected seasonality of the 
pesticide application. All screening results presented here have been 
communicated with AGE for consideration in their subsequent moni
toring efforts; while this article presents the results from April-October 
2019, these collaborative non-target screening efforts are also still 
continuing. 

4.3. Pre-screening and annotation workflow 

During pre-screening, all the files were loaded into Shinyscreen, 
corresponding to a total of 41,688 cases and graphs (386 pesticides 
times two modes times six months times nine locations: 386 × 2 × 6 × 9 
= 41,688) that were analysed. The manual inspection revealed that for 
the majority of cases, an empty graph was obtained leading to the 
conclusion that most suspects were not present in the samples. This 
demonstrates the need for such a semi-automated procedure, since it 
makes visualizing and checking the experimental data very efficient and 
easy. In the end, there were 3006 cases that passed the quality checks, 
leading to a final set of 162 different tentatively identified compounds. 
This means that 42% (162 tentatively detected compounds/386 sus
pects = 42%) of the compounds that were screened with Shinyscreen 
may be present in at least one of the samples. 

Some of these 162 compounds were detected in multiple locations 
and the comparison between the retention times for the different loca
tions revealed two general trends. The first trend shows a subtle dif
ference (e.g., ±0.5 min) in the retention times, which is probably the 
consequence of fluctuations in the liquid chromatography. The second 
trend shows wide differences in retention times (several minutes) 
leading to the conclusion that only one of these signals could potentially 
belong to the suspect, whereas the other signals most likely belong to 
different (isobaric, i.e., same mass) substances. For example, Shi
nyscreen suggested that the compounds 3-hydroxybenzoic acid and 4- 
hydroxybenzoic acid (both isobaric) are present in the samples and 
the automatic retrieved retention time was equal to 14.89 min (default 
behaviour extracts the retention time of the most intense peak). How
ever, in the end, through the verification with reference standards, the 
results showed that the compound in the sample was salicylic acid since 
only the reference standard for this compound had a retention time of 
14.9 min and the ones from 3-hydroxybenzoic acid and 4-hydroxyben
zoic acid differed (12.04 min and 10.83 min respectively). 

Shinyscreen has subsequently been upgraded to offer more extensive 
isobar handling during pre-screening (release 1.0.0, 2nd April 2021); the 
MetFrag post-processing has also been correspondingly updated and, as 
discussed above, the metadata scoring terms integrated into PubChem
Lite have also made data interpretation of relevant isobars both easier 
and more powerful (Schymanski et al., 2021). 

During the analysis of the MetFrag results, the months, modes and 
locations were considered together. At first, the MoNA score is investi
gated and out of the 3006 cases: 719 cases obtained a very good, 118 a 
good, and 663 a poor MoNA score. Additionally, in 1506 cases the MoNA 
score was equal to 0 (no spectrum matching or available in the library). 
In consequence, for 719 cases an identification of Level-2a can be ach
ieved and for the remaining 2287 cases, a Level-3 is attained (Fig. 6). 
When looking at the level of unique pesticides, out of the 162 pesticides, 
there are 140 that remain at an identification of Level-3, while 36 ob
tained a Level-2a based on MoNA scores and further metadata analyses 
(Suppl. Data Excel File Table S5). 

For the TPs, 19,548 cases and graphs (181 pesticides times two 
modes times six months times nine locations) were analyzed. Out of 
these, there were 3434 cases that passed the quality check and kept for 
further analysis. This leads to a final number of 96 newly identified 
compounds (132 compounds in total − 36 known pesticides = new 
compounds 96). When excluding the 36 parent compounds, this led to 
eight TPs with a very good, two with a good, and eleven with a poor 
MoNA score. The remaining 75 pesticides (out of 96) had no spectrum 
available in MoNA, showing the importance of additional community 
contributions to open resources to help fill these data gaps in the future. 

For the tentative identification with MetFrag, only the spectral-based 
scoring terms were investigated here, namely the MetFrag in silico 
fragmentation and primarily the MoNA similarity score. None of the 
additional metadata scores were used, as prioritization was done purely 
based on achieving a very good MoNA score for highest confidence. The 
work described here also helped contribute to the conceptual design of 
the PubChemLite for Exposomics collection, where the category of 
chemical (e.g. agrochemical/pesticide or pharmaceutical) can be used in 
interpretation and even scoring. The performance described elsewhere 
(Schymanski et al., 2021) demonstrated that the interpretation of results 
can be improved with this additional information, achieving up to 90% 
annotation success for the agrochemicals (pesticides) in the bench
marking set. Efforts are underway to streamline the coupling of suspect 
+ TP screening together with Shinyscreen, MetFrag and PubChemLite in 
a smooth workflow on the foundation of the work described here, 
including the collapsing of many “Cases” into unique compounds much 
earlier in the workflow. 

4.4. Open pesticide and transformations data 

Out of the 386 selected pesticides, 196 are permitted and 128 are 
forbidden in Luxembourg (Suppl. Data Excel File Table S4) and could be 
classified into six main categories (Suppl. Data Figure S1). This infor
mation can be browsed in PubChem under LUXPEST at https://pubche 
m.ncbi.nlm.nih.gov/classification/#hid=101 (Suppl. Data Figure S2) 
and this information is incorporated into the individual records in 
PubChem (Example in the Suppl. Data Figure S3). This information flow 
helps create the annotation categories that form the PubChemLite for 
Exposomics collection (see Schymanski et al. (Schymanski et al., 2021) 
Fig. 1) and provide PubChem users with additional expert knowledge for 
interpretation of their results. Ensuring this continual flow of informa
tion is a major motivating factor for increasing the FAIRness of datasets 
and thus the upload of the datasets to different open access databases 
(CompTox, PubChem) and repositories (NORMAN-SLE, Zenodo), as well 
as the integration of the classification (Suppl. Data Figure S2) and 
regulation information in Luxembourg into PubChem. Since the 
NORMAN-SLE compound lists are “FAIR” due to the Zenodo deposition 
with explicit license declaration, they can be used by PubChem directly 
to create automatic workflows to build the Transformations section; 
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other users and resources are also able (and encouraged) to re-use this 
data as they wish. By adding chemical identifiers to the historical in
formation retrieved from the HSDB via text-mining methods and adding 
this as a new suspect list to the NORMAN-SLE, the original source 
(HSDB) can be credited, and the value-added data fed back into Pub
Chem as transformations for improved automated retrieval in future 
screening activities, so that this information is now available in both 
human and machine-readable forms. 

Several transformations tables have now been added to PubChem, 
including HSDBTPS as a part of this work. The manual curation involved 
with the text-mined information was the most time-consuming part of 
this process and was thus only performed on the 36 Level-2a pesticides 
that were selected from the first analysis due to their very good MoNA 
score. Of these, it was possible to generate transformation products for 
33 compounds (no compounds were found in HSDB or the “Trans
formation” table in PubChem for the remaining three compounds). In 
the end, there were 22 entries from HSDB extracted and manually 
curated (files available from GitLab (Environmental Cheminformatics, 
2021)), resulting in 226 new transformation reactions with full litera
ture provenance, and five new structural records in PubChem (CIDs 
146035700, 146035701, 146035702, 146035703 and 146037633). In 
the end, a total of 145 transformation products were added to the 36 
pesticides, which resulted in a suspect list of 181 compounds. Since this 
work was performed several other datasets have been added to the 
Transformations tables including MetXBioDB (Djoumbou-Feunang 
et al., 2020) from BioTransformer (Djoumbou-Feunang et al., 2019) and 
it is highly likely that the numbers of pesticide TPs retrieved for 
screening would be higher now. 

The role of certain chemicals as a “parent” or “predecessor” versus a 
“TP” or “successor” is not always clear. Several entries in the original 
LUXPEST list are in fact themselves TPs, while several TPs can also be 
further transformed (for example desethylterbutylazine) such that they 
can become predecessors themselves. The data retrieval method used 
here returns any CIDs related by a Transformation to the searched CID, 
be they predecessor or successor, such that any “successor” in LUXPEST 
would result in a “predecessor” being screened in the second round. For 
the sake of readability of this article, this point is not belaboured in the 
above content. However, this information is included in Suppl. Data 
Excel File Table S7 for those interested in investigating this further. Of 
the 36 Level-2a “parents”, 22 were predecessors, 6 were successors and 8 
could be both. Of the 145 retrieved “TPs”, 13 were predecessors, 126 
were successors and 6 could be both (according to the information 
sources used here). 

This work was only possible through the exchange of information 
between the NORMAN-SLE and PubChem and, at this pilot stage, will
ingness on both sides to develop unconventional workflows not origi
nally foreseen for either resource. While the R scripts developed are 
certainly functional, several optimizations are possible. In hindsight, the 
created workflow with this integrated script helped the authors discover 
and upload relationships between pesticides and their TPs to PubChem 
as well as identifying areas to improve the information flow in the 
future. Future efforts are already underway to streamline this further 
based on this pilot project, to develop even more automated forms of this 
workflow and to ensure easy, fast and accurate suspect and TP list 
generation from their parent compounds. All data transfer between the 
NORMAN-SLE and PubChem includes full provenance to the original 
literature sources. Since all “Transformations” entries were based on 
existing suspect lists or resources, it is quite resource intensive to add 
existing knowledge involving only a few entries. As a result, a new list, 
REFTPS (Schymanski, 2020) (currently only with very few entries) has 
been created to provide a pathway to add single or small numbers of 
transformations resulting from individual studies, such as 6PPD-quinone 
from Tian et al. (Tian et al., 2021) Overall, these pilot efforts have 
already caught the interest of several other workflows and are being 
integrated into the open source HR-MS workflow patRoon (Helmus 
et al., 2021), amongst others. 

5. Conclusion 

This study describes open cheminformatics approaches to screen for 
emerging contaminants (in this case pesticides) and their TPs in non- 
target HR-MS measurements. The coupling of major open resources 
such as the environmental knowledge within the NORMAN-SLE with the 
largest open chemical database PubChem has enabled the exchange and 
enhancement of information on pesticides and their TPs both in the 
context of Luxembourg and in the context of dynamic suspect screening 
(i.e., the automated retrieval of TPs related to suspects detected at a 
Level-2a or more for subsequent screening and recognition). Through 
the detailed annotation content added to PubChem, it would now also be 
feasible to perform this in reverse, i.e., form a suspect list purely on 
known TPs for screening proactively in samples, without the explicit 
presence of the parent, expanding the window beyond what was done 
here. The coupling of extensive suspect lists with an efficient pre- 
screening method such as Shinyscreen with tentative annotation ap
proaches such as MetFrag will pave the way for higher throughput 
screening of exposomics samples in many contexts, as showcased here 
for pesticides. 

In terms of local outcomes, these efforts (and parallel efforts inves
tigating other substances classes) are continuing and the results are 
being exchanged with AGE to help improve monitoring efforts and thus 
human and environmental health in Luxembourg, above and beyond the 
current EU requirements. 
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