ESM

Figure S1 : Mean NDSS of WP2 net for the period 2004-2019 (a) and Regent net for the period 1995-2019 (b). The vertical red line represent the minimum number of individuals considered for all the analyses. 
Figure S2 : Biplot of the PCA performed on winter environmental condition (stratification, temperature, salinity and density).  The first principal component of the PCA was considered as the winter water mixing index as in Vandromme et al., (2011).
Figure S3 :  Monthly log density (ind.m-3 +1) of zooplankton groups from 2004 to 2019 in the WP2 net. For each group in the upper panel the monthly time series in black with a 3 years trend extracted with EVF (in blue) and the mean over the whole period (in red). In the lower panel, the contour plot of the monthly densities. Panels in blue box are crustaceans, in red box the gelatinous carnivorous and in green box the gelatinous herbivorous.
Figure S4 : Monthly log density (ind.m-3 +1) of zooplankton groups from 1995 to 2019 in the Regent net. For each group in the upper panel the monthly time series in black with a 3 years trend extracted with EVF (in blue) and the mean over the whole period (in red). In the lower panel, the contour plot of the monthly densities. Panels in blue box are crustaceans, in red box the gelatinous carnivorous and in green box the gelatinous herbivorous.
Figure S5 : Monthly log density (ind.m-3 +1) of crustaceans orders/families from 1995 to 2019 in the Regent net. For each family in the upper panel the monthly time series in black with a 3 years trend extracted with EVF (in blue) and the mean over the whole period (in red). In the lower panel, the contour plot of the monthly densities. Panels in blue box are the Calanoida, and in brown box Eumalacostraca which represent  over 90% of “other Crustacea” incorporated in the box. 
Figure S6 : Functional PCA performed on monthly crustaceans NDSS (scaled to 1 for the first size class) for WP2 net from 2004 to 2019. Monthly time series of the first principal component with the contour plot above in a), wavelet analysis in b), deformation of NDSS along the first principal component with in red the shape of the spectra in extreme positive values of the PC1 and in blue for extreme negative values of PC1 in c) and correlation between the time series of slopes and the PC1 of the PCA in d).
Figure S7 : Functional PCA performed on monthly crustaceans NDSS (scaled to 1 for the first class) for Regent net from 1995 to 2019. Monthly time series of the first principal component with the contour plot above in a), Wavelet analysis in b), deformation of NDSS along the first principal component with in red the shape of the spectra in extreme positive values of the PC1 and in blue for extreme negative values of PC1 in c) and correlation between the time series of slopes and the PC1 of the PCA in d).
[bookmark: _GoBack]Figure S8 : Yearly time series of environmental variables and biological data in regent (blue lines in the 4 bottom panels) and WP2 (black lines in the 4 bottom panels). In Orange, a 3-years trend extracted with EVF and red strait lines represent means over periods identified by breakpoints. For biological data in the 4 bottom panels, dotted lines either for trend and breakpoints are associated for WP2.

Figure S9 : Correlations between yearly environmental variables and yearly biological variables.
Figure S10 : Diagnostic plots of the GLM performed on yearly density of crustaceans in WP2 (a), and Regent (b) and yearly NDSS slopes of Regent (c). The first line of panels represent the residuals of the models versus fitted values and the second line is the fitted values versus observed values. The third line represent the observed values versus the variable retained in each model after model selection.


Figure S11 : Densities in the Regent vs WP2 of individuals measuring at least 1.5mm length for Crustacea (a), gelatinous carnivorous (b) and gelatinous herbivorous (c). The black line represent y=x and the red line is the linear regression.


























Characteristics of monthly NDSS size spectra
To determine the minimum size of samples to consider for analyses, tests of sensibility were performed. For that, analyses were conducted on the half most abundant samples. For each sample, the full spectra was constructed with all crustaceans as well as a spectra based on a subsample randomly selected with first 5% of the total individuals. Then the sum of the squared difference between the subsample spectra and the full spectra was computed and represented the spectra variability. This operation was repeated 20 times. Subsample spectra represented from 5% to 95% of total individuals, by step of 5%. We then represented the sum of the squared difference between the full spectra and the subsample spectra in function of the number of individuals composing the subsample (Figure S1-a for WP2 and S1-b for Regent). The number of individuals to keep was 200 for WP2 and 45 for Regent, considered as the turning point of the curves represented by the vertical red lines.
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Figure S1
To determine the lower limit of NDSS, spectra were computed starting at 200 µm for WP2 and 650 µm for the Regent with a first size class of 50 µm increasing by a factor of 1.3 from a class to another. Then, the position of the mod was identified for each spectra and the distribution of this position was investigated. The lower limit of the spectra for each net was considered as the mod of the mod distribution of all monthly spectra.












[image: C:\Users\gfeuillo\Documents\These\article 2 zooplancton ptB\final\NDSS\figures papier\supplément\ACP winter statif.png]
Figure S2
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Figure S3
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Figure S5

Size spectra analysis: functional principal component
[bookmark: __Fieldmark__1007_927028187][bookmark: __Fieldmark__667_1030408368][bookmark: __Fieldmark__470_861037719][bookmark: __Fieldmark__1153_325465115]Temporal changes in size spectra were analysed by the mean of the functional principal component analysis (FPCA) (Nerini & Ghattas, 2007; Ramsay & Silverman, 1997). FPCA is a statistical methodology that treats an entire sequence of measurements for an individual as a single functional entity rather than a set of discrete values and that investigates the dominant modes of variation of the functional data. Treating the data as functions preserve all of the information contained in the data. This method allowed comparing spectra based on the entire shape instead of defined characteristics such as the maximum value or the slope of the spectra. As we aimed at depicting temporal variations in size spectra independently of changes in abundance, all spectra were transformed, subtracting to each size class the density of the first size class minus 1. This allowed to start all the spectra to a density of 1 and to compare them only by their differences in slope. Then, scaled spectra were fitted with a linear combination of 8 B-spline functions (B-splines constituting an orthonormal eigenvector basis). The number of B-splines was chosen so as to ensure the error between the empirical and reconstructed spectra to be lower than 0.1%. Coefficients of this linear combination of B-splines were stored in a matrix and a PCA analysis was performed on the variance-covariance matrix of these coefficients. The values of the first principal component were analysed (further called PC1size) as well as the deformation of the spectra along this first axis. Long-term variability in size distribution was estimated using the EVF decomposition with a 3-years window, and inter-annual variability by means of breakpoints analyses. To investigate discontinuities in the monthly PC1 time series, breakpoints analyses were performed. To do this, the “strucchange” R package and an algorithm testing structural changes in time series was used (Kleiber et al., 2002). Optimal number of segment partitions was based on BIC criterion in order to compute only the most relevant changes.
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Figure S6: 

The 2 first axis of the functional PCA performed on monthly NDSS of crustaceans in the WP2 accounted for 91,7% (75,2% and 16,5%). The first axis represented changes in the slope of the spectra as observed in Figure S6-c and the correlation between the PC1 and the monthly time series of NDSS slope was strong (r=0.92, p<0.001 Figure S6-d). Indeed, higher positive values of PC1 were associated to flatter NDSS (red spectrum in Figure S6-c) while negative values of PC1 were associated to steeper NDSS (blue spectrum in Figure S6-c). The same breakpoint as for the analyses of slopes was found in 2015 and the same seasonal pattern was identified in the shape of the spectra, with steeper spectra in spring and flatter spectra in summer and autumn (Figure S6-a). 
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Figure S7: 
Concerning the size variability in the Regent, the 2 first axis of the functional PCA performed on monthly NDSS of crustaceans accounted for 96,5% (87% and 9,5%). The first axis represented changes in the slope of the spectra as observed in Figure S7-c. As for the WP2, the correlation with the monthly time series of NDSS slope was also strong (r=0.87, p<0.001 ESM-Fig S7-d). Higher positive values of PC1 were associated to flatter NDSS (red spectrum in Figure S7-c) while negative values of PC1 were associated to steeper NDSS (blue spectrum in Figure S7-c). The breakpoint analyses showed the same results as for the slopes, with breaks in 2003, 2011 and 2016. Finally, as for the time series of slopes, no seasonality was observed but rather inter-annual changes (Figure S7-a). 
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Figure S8: 
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Figure S9
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Figure S10
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Figure S11
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