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Abstract. Satellite altimeters routinely supply sea surface height (SSH) measurements, which are key observa-
tions for monitoring ocean dynamics. However, below a wavelength of about 70 km, along-track altimeter mea-
surements are often characterized by a dramatic drop in signal-to-noise ratio (SNR), making it very challenging
to fully exploit the available altimeter observations to precisely analyze small mesoscale variations in SSH. Al-
though various approaches have been proposed and applied to identify and filter noise from measurements, no
distinct methodology has emerged for systematic application in operational products. To best address this un-
resolved issue, the Copernicus Marine Environment Monitoring Service (CMEMS) actually provides simple
band-pass filtered data to mitigate noise contamination of along-track SSH signals. More innovative and suitable
noise filtering methods are thus left to users seeking to unveil small-scale altimeter signals. As demonstrated
here, a fully data-driven approach is developed and applied successfully to provide robust estimates of noise-free
sea level anomaly (SLA) signals (Quilfen, 2021). The method combines empirical mode decomposition (EMD),
used to help analyze non-stationary and non-linear processes, and an adaptive noise filtering technique inspired
by discrete wavelet transform (DWT) decompositions. It is found to best resolve the distribution of SLA vari-
ability in the 30–120 km mesoscale wavelength band. A practical uncertainty variable is attached to the denoised
SLA estimates that accounts for errors related to the local SNR but also for uncertainties in the denoising pro-
cess, which assumes that the SLA variability results in part from a stochastic process. For the available period,
measurements from the Jason-3, Sentinel-3, and SARAL/AltiKa missions are processed and analyzed, and their
energy spectral and seasonal distributions are characterized in the small mesoscale domain. In anticipation of the
upcoming SWOT (Surface Water and Ocean Topography) mission data, the SASSA (Satellite Altimeter Short-
scale Signals Analysis, https://doi.org/10.12770/1126742b-a5da-4fe2-b687-e64d585e138c, Quilfen and Piolle,
2021) data set of denoised SLA measurements for three reference altimeter missions has already been shown to
yield valuable opportunities to evaluate global small mesoscale kinetic energy distributions.

1 Introduction

Satellite altimetry has supported studies related to ocean dy-
namics for more than 25 years, often looking to push the
limits of these observations to capture ocean motions at ever
smaller scales. New paradigms are thus emerging from this
observational effort, among them the distinction between
balanced and unbalanced motions that can lead to charac-
teristic changes in sea surface height (SSH) signal varia-
tions and associated spectrum in the 30–200 km wavelength

range (e.g., Fu, 1983; Le Traon et al., 2008; Dufau et al.,
2016; Tchibilou et al., 2018) or the role of upper-ocean sub-
mesoscale dynamics that is critical to the transport of heat be-
tween the ocean interior and the atmosphere (Su et al., 2018).

One of the main limitations is that altimetry measure-
ments are often characterized by a low signal-to-noise ratio
(SNR), which has a significant impact on geophysical analy-
sis capability at spatial scales smaller than 120 km. The main
sources of noise are induced by instrumental white noise,
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errors related to processing, including the retracking algo-
rithm and corrections, and errors related to the intrinsic vari-
ability of radar echoes in the altimeter footprint that causes
the notorious spectral hump in 20 and 1 Hz data (Sandwell
and Smith, 2005; Dibarboure et al., 2014). Furthermore, be-
cause retrieved parameters are obtained from the same wave-
form retracking algorithm, they have highly correlated er-
rors, i.e., the standard MLE4 processing produces four es-
timated parameters with correlated errors (SSH; significant
wave height, SWH; sigma-0; and off-nadir angle). These er-
rors directly limit the accuracy of the SSH measurement, re-
quiring advanced denoising techniques (Quartly et al., 2021).

Analysis of fine-scale ocean dynamics therefore requires
preliminary noise filtering, and low-pass or smoothing filters
(e.g., Lanczos, running mean, or Loess filter) are frequently
used. These filters effectively smoothen altimeter signals,
but result in the systematic loss of small-scale (<∼ 70 km)
geophysical information, only remove high-frequency (HF)
noise, and can produce artifacts in the analyzed geophys-
ical variability. Considering that a major source of high-
frequency SSH errors is associated with the correlation be-
tween SSH and SWH errors through the retracking algo-
rithm and sea state bias correction, recent approaches pro-
pose deriving a statistical correction to mitigate correlated
high-frequency SSH errors (Zaron and De Carvalho, 2016;
Quartly, 2019; Tran et al., 2021). Both the spectral hump
and white noise variance at 20 Hz are indeed significantly
reduced. Yet, these approaches are based on the assump-
tion that a separation scale between SWH noise and SWH
geophysical information can be defined in order to apply a
low-pass filter on SWH along-track signals and to estimate
the correlated SSH and SWH errors at high frequency. In
practice, a cut-off wavelength of 140 km is used in Tran et
al. (2021). However, this approach has a fundamental caveat,
as wave–current interactions strongly impact surface waves
and current dynamics at short mesoscale and sub-mesoscale
wavelengths (e.g., Kudryavtsev et al., 2017; Ardhuin et al.,
2017; McWilliams, 2018; Quilfen et al., 2018; Quilfen and
Chapron, 2019; Romero et al., 2020; Villas Bôas et al.,
2020). Wave–current interactions are ubiquitous phenomena,
and current-induced SWH variability at scales smaller than
100 km can be expected depending upon the strength of the
current gradient relative to the wavelength and direction of
propagation of surface waves. Applying a correction based
on the assumption that SWH variability is primarily all noise
below 100 km will therefore likely affect small mesoscale
SSH signals in various and complex ways.

To overcome these difficulties, an adaptive noise removal
approach for satellite altimeter measurements has been de-
rived. It is based on the non-parametric empirical mode
decomposition (EMD) method developed to analyze non-
stationary and non-linear signals (Huang et al., 1998; Huang
and Wu, 2008). EMD is a scale decomposition of a discrete
signal into a limited number of amplitude- and frequency-
modulated functions (AM/FM), among which the Gaus-

sian noise distribution is predictable (Flandrin et al., 2004).
Noise removal strategies can then be developed with re-
sults often superior to wavelet-based techniques (Kopsi-
nis and McLaughin, 2009). An EMD-based technique was
successfully applied to altimetry data to more precisely
analyze along-track altimeter SWH measurements to map
wave–current interactions (Quilfen et al., 2018; Quilfen and
Chapron, 2019) known to predominate at scales smaller than
100 km. In particular, the method is suitable for processing
non-stationary and non-linear signals, and thus for accurate
and consistent recovery of strong gradients and extreme val-
ues. Building on local noise analysis, the denoising of small
mesoscale signals is performed on an adaptive basis to the
local SNR. A detailed description of the EMD denoising ap-
proach applied to satellite altimetry data is given in Quilfen
and Chapron (2021).

In this paper, the method is extended to more thoroughly
evaluate an experimental data set of denoised sea level
anomaly (SLA) measurements, from three reference altime-
ters, the Jason-3, Sentinel-3, and SARAL/AltiKa, in order
to capture short mesoscale information. Section 2 provides
a description of the data sets used and Sect. 3 describes
the denoising methodology main principles. In Sect. 4,
which presents the results, examples of denoised SLA sig-
nals are given, and the energy spectral and seasonal distri-
butions of denoised measurements are characterized in the
small mesoscale domain for these three altimeters. Section 5
presents key features for comparison with other distributed
data sets that make our approach more attractive. A discus-
sion follows, analyzing the main results, and a summary is
given. Appendices A and B provide details on the denois-
ing scheme and power spectral density (PSD) calculation,
respectively.

2 Data

The Copernicus Marine Environment Service (CMEMS)
is responsible for the dissemination of various satel-
lite altimeter products, among which the level 3 along-
track SSHs distributed in delayed mode (product identifier:
SEALEVEL_GLO_PHY_L3_REP_OBSERVATIONS_008
_062) are the state-of-the-art product that takes into account
the various improvements proposed in the framework of the
SSALTO/DUACS activities (Taburet et al., 2021). The input
data quality control verifies that the system uses the best al-
timeter data. From these products, which include data from
all altimetry missions, we use the “unfiltered SLA” variable
to derive our analysis of SLA measurements.

The present study aims to provide research products, the
SASSA (Satellite Altimeter Short-scale Signals Analysis)
data set, and innovative solutions for better exploitation of
the mesoscale mapping capabilities of altimeters. The anal-
ysis is therefore limited to three current altimeter missions,
Jason-3, Sentinel-3, and SARAL/AltiKa, each carrying an
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instrument with particular distinctive characteristics. The
Jason-3 altimeter is the reference dual-frequency Ku-C in-
strument and is used as the reference mission for cross-
calibration with other altimeters to provide consistent prod-
ucts in the CMEMS framework. The Satellite with ARgos
and ALtiKa (SARAL) mission carries the AltiKa altime-
ter, which makes measurements at higher effective resolution
due to a smaller footprint obtained in the Ka band (8 km di-
ameter vs 20 km on Jason-3) and a higher pulse repetition
rate. The altimeter on board Sentinel-3 is a dual-frequency
Ku-C altimeter that differs from conventional pulse-limited
altimeters in that it operates in delay Doppler mode, also
known as synthetic aperture radar mode (SARM). SARM is
the primary mode of operation, providing∼ 300 m resolution
along the track. The SARM reduces instrumental white noise
and is free of “bump” artifacts, which are caused by sur-
face backscatter variabilities, blooms, and rain-induced in-
homogeneities in the low-resolution mode (LRM) footprint,
adding spatially coherent error to the white noise (Dibar-
boure et al., 2014). Still, current SARM measurements are
affected by colored noise, which is likely attributed to the ef-
fects of swell on SARM observations (Moreau et al., 2018;
Rieu et al., 2021). For the CMEMS data set version avail-
able at the time of this study, the retracking used to process
the data is MLE-4 for Jason-3 and AltiKa and SAMOSA
for Sentinel-3 (Taburet et al., 2021). Each altimeter makes
measurements at nadir along the satellite track, and the stan-
dard CMEMS processing provides data at 1 Hz with a ground
sampling that varies slightly from 6 to 7 km depending on
the altimeter. At this ground sampling, the average noise af-
fecting the range measurements is different for each altime-
ter, with SARAL and Sentinel-3 showing significantly lower
level of noise than Jason-3 (Taburet et al., 2021). The data
set available at CMEMS for the current analysis covers the
period until June 2020 with a beginning in March 2013, June
2016, and May 2016 for AltiKa, Sentinel-3, and Jason-3, re-
spectively.

Although only the quality-controlled CMEMS data are
used as input in our analysis, ancillary data are useful in
supporting the analysis of SLA data. Indeed, since some of
the larger non-Gaussian SLA errors, correlated with high sea
state conditions and rain or slick events, are expected to re-
main after the EMD analysis, SWH and radar cross-section
(sigma-0) are also provided in the denoised SLA products
to allow for further data analysis and editing. These are
provided by the sea state Climate Change Initiative (CCI)
products, developed by the European Space Agency (ESA)
and processed by the Institut Français de Recherche pour
l’Exploitation de la Mer (IFREMER, Dodet et al., 2020).

3 Methods

The proposed denoising technique essentially builds on the
EMD technique (Huang et al., 1998; Wu and Huang, 2004;

Huang and Wu, 2008) and its filter bank characteristics when
applied to Gaussian noise (Flandrin et al., 2004). The tech-
nique was first adapted to process satellite altimeter SWH
measurements (Quilfen et al., 2018; Quilfen and Chapron,
2019; Dodet et al., 2020), and the algorithm is described in
detail in Quilfen and Chapron (2021). For the processing of
the SLA data analyzed in this study, only limited modifica-
tions were made, and the algorithm is only briefly described
below.

Three main elements characterize the properties of the de-
noising algorithm: (1) the EMD algorithm that adaptively
splits the SLA signal on an orthogonal basis without having
to conform to a particular mathematical framework; (2) the
denoising algorithm that relies on high-frequency local noise
recovery and analysis; (3) an ensemble-average approach to
estimate a robust denoised SLA signal and its associated un-
certainty.

3.1 The EMD algorithm

EMD is a data-driven method, often used as an alternative
to wavelets in denoising a wide variety of signals. EMD de-
composes a 1D signal into a set of amplitude- and frequency-
modulated components, called intrinsic modulation func-
tions (IMFs), which satisfy the conditions of having zero
mean and a number of extrema equal to (or different by
one than) the number of zero crossings. IMFs are obtained
through an iterative algorithm, called sifting, which extracts
the high-frequency component by iteratively computing the
average envelope from the extrema points of the input sig-
nal. The sifting algorithm is first applied to the input SLA
signal to derive the first IMF, IMF1, which is removed from
the SLA signal to obtain a new signal on which the process
is repeated until it converges when the last calculated IMF
no longer has a sufficient number of extrema. The original
signal is exactly reconstructed by adding all the IMFs. Fig-
ure 1 shows two sets of IMF for two passages of SARAL
over the Gulf Stream area. Panels (a) and (g) show the two
SLA signals and the associated SWH signals for reference
(red curves), and the other panels display the full set of IMF
(six and four derived IMFs for these two cases, a number that
can vary with signal length and observed wavenumber spec-
trum). Shown in panels (b) and (h), IMF1 genuinely maps
the high-frequency noise in term of amplitude and phase,
which can provide a direct approach to help remove high-
frequency noise from the SLA signal. Local analysis of this
high-frequency noise is used to predict and remove the lower-
frequency noise embedded in other IMFs, as detailed below.
In panel (b), IMF1 is also associated with high-frequency
noise but shows non-stationary noise statistics that are re-
lated to changes in mean sea state conditions. As expected,
the high-frequency noise of SLA increases with SWH. These
two examples are general cases, but IMF1 can also contain
geophysical information in cases where the SNR is locally
very high, for example in the presence of very large geophys-
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ical gradients, or can show the signature of outliers related to
the so-called spectral hump (rain, slicks, etc.). Indeed, de-
pending on the SNR and in specific configurations for the
numerical sifting algorithm, the type of large SLA gradient
signature shown in IMF2 (panel i) can very well show up
in IMF1, in case there are no detectable extrema between
measurements number 2 and 8. Since IMF1 analysis is at
the heart of the denoising strategy described below, careful
preprocessing of IMF1 is necessary before denoising the full
signal.

3.2 The denoising scheme

Flandrin at al. (2004) applied EMD to a Gaussian noise sig-
nal to demonstrate that the IMF1 has the characteristics of
a high-pass filter while the higher-order modes behave sim-
ilarly to a dyadic low-pass filter bank, for which, as they
move down the frequency scale, successive frequency bands
have half the width of their predecessors. Unlike Fourier or
wavelet decompositions for which the noise variance is in-
dependent of the scale, the noise contained in each IMF is
now “colored” with a different energy level for each mode.
Flandrin et al. (2004) deduced that the variance of the Gaus-
sian noise projected onto the IMF basis can be modeled as
follows for the low-pass filter bank:

var(hn (t))∼ 2(α−1)n, (1)

where hn (t) are the IMFs of rank n > 1 and α depends on the
Hurst exponent H of the fractional Gaussian noise. For the
altimeter data set, the white noise assumption is made, fol-
lowing studies showing a quasi-white noise spectrum (Zaron
and De Carvalho, 2016; Xu and Fu, 2012; Sandwell and
Smith, 2005). It corresponds toH = 0.5 and α = 0 in Eq. (1).

Flandrin et al. (2004) then numerically derive, using
Eq. (1) and for different values of H , the relationship be-
tween the IMF’s variance En, for n > 1, and the variance of
IMF1, E1. For a white noise, this gives

En =
E1

0.719
2.01−n. (2)

With the EMD basis, the noise energy decreases rapidly with
increasing IMF rank, ∼ 59 %, 20.5 %, 10.3 %, 5.2 %, 2.6 %,
of the total energy for the top five IMFs, respectively. The
first four IMFs account for ∼ 95 % of the noise energy.

Equation (2) therefore gives the expected noise energy in
each IMF to determine the different thresholds below which
signal fluctuations can be associated with noise. The thresh-
old formulation introduces the constant factor A, which is a
control parameter that can be adjusted for different altimeters
depending on their characteristic noise levels:

Tn = A
√
En, (3)

with n being the rank of the thresholded IMF.

A detailed description of the entire denoising scheme can
be found in Quilfen and Chapron (2021), and the main steps
are given in Appendix A.

Figure 2 provides illustrations of the general approach
taken to denoising SLA signals. They show the PSD of SLA
(black curves), the associated IMFs (blue curves), and the
IMFs of a white noise (red curves) whose standard devia-
tion has been adjusted to fit the SLA background noise be-
tween 30 and 15 km wavelength. It is presented for the Ag-
ulhas Current area, panel (a), and for the Gulf Stream area,
panel (b). For clarity, only the first three IMFs are shown.
As expected, for white noise, the EMD filter bank is com-
posed of a high-pass filter with the IMF1, and a low-pass
filter bank with the higher ranked IMFs. A similar structure
is observed for the IMFs of the SLA signal with identical
cut-off wavelengths, which is the result of the noise shap-
ing the frequency content of the SLA signal. This similar-
ity shows the consistency of separate denoising of each IMF
of rank n > 1 using the estimated noise variance given by
Eq. (2). The IMF1 PSDs of SLA and white noise have a sim-
ilar shape, both containing mostly high-frequency noise, but
with higher SLA PSD values at scales >∼ 20 km, which is a
consequence of the large modulation of the SLA noise by the
varying sea state conditions and the inclusion of geophysical
information such as that related to very large SLA gradients
showing high SNR. These higher PSD values are even more
important in the Gulf Stream area due to larger variety of sea
states encountered and sampled by the altimeter passages.

A is an important factor to adjust because it is directly re-
lated to the improvement obtained in the SNR. Kopsinis and
McLaughin (2009) perform the optimization of the A factor
by simulating a variety of input signals and SNR values. Fol-
lowing these results, first approximate values were tested for
the altimeter data set, with a careful analysis of the obtained
denoised SLA measurements. However, the adjustment of A
for the different altimeters was refined. Indeed, the values of
A showing the best SNR improvement on average may de-
pend on the average SNR of the input signal, which is differ-
ent for each altimeter. Section 4.2 details the practical rule for
determining A that uses an approach to make the denoised
SLA PSD consistent with the mean PSD of the unfiltered
data minus the PSD of the white Gaussian noise (WGN) es-
timated in the range of 15–30 km, and consistent for different
altimeters.

4 Results

4.1 Examples

The two cases (Fig. 1) show AltiKa SLA measurements in
the Gulf Stream area, and Fig. 3 illustrates the EMD denois-
ing principles for these examples. Described in Sect. 3.2,
denoising a segment of SLA data after an initial expansion
into an IMF set is a two-step process: (1) wavelet analysis of
IMF1 to separate and evaluate the high-frequency part of the
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Figure 1. SARAL SLAs (a and g) in the Gulf Stream area for cycle 106 and passes 53 (a–f) and 597 (g–k), and the corresponding IMFs
obtained from the EMD decomposition (b–f and h–k). SWH associated with the SLA is shown in red curves (a and g). All units in meters.

Gaussian noise and any geophysical information embedded
in IMF1; (2) EMD denoising of a set of 20 realizations of
reconstructed noisy SLA series to estimate a mean denoised
SLA series and its uncertainty.

Pass 597, panels (g) to (k), is associated with rather low
sea state conditions with little variability, and IMF1 (black
curve, panel h) has little amplitude modulation, but rather
large phase modulation due to the the high SNR in sev-
eral portions of the segment (minor alternation of minima
and maxima). Because of this relatively large phase modu-
lation, a significant portion of the IMF1 is identified in the
first step as “useful signal” by the wavelet analysis. In the
second step however, this residual IMF1 signal will be al-
most completely removed. Indeed, it is well below the SNR
prescribed by using the high-frequency noise jointly derived
from the IMF1 wavelet processing and the threshold values
set with Eqs. (A1), (2), and (3) (blue lines in Fig. 3). Only
a small modulation between data records 80 and 90 there-
fore shows up in the denoised SLA signal. Figure 3i shows
IMF2, and its associated threshold derived from the IMF1

threshold (i.e., Eq. 2), which maps the large SLA gradient
in the Gulf Stream and mesoscale features near 70 km wave-
length with some eddies appearing well above the threshold
and other smaller amplitude oscillations that will be canceled
in the second denoising step. As shown in Fig. 2, the SNR in-
creases rapidly for IMF2 compared to IMF1. In this case, the
uncertainty attached to the denoised SLA is almost constant
below 1 cm, as shown in Fig. 3h.

AltiKa pass 53 crosses the Gulf Stream 19 d before, but
this is a very different situation. Quite frequently, such a case
corresponds to high and variable sea state conditions with
abrupt changes in SWH, as shown in Fig. 1. Strong westerly
continental winds were present for several days before the
AltiKa passage, which turned to the northwest the day be-
fore. SWH was less than 2 m near the coast between records
80 and 120, then a first large increase occurred on the north-
ern side of the Gulf Stream near record 60, and a second
on its southern side to reach sea state conditions with SWH
> 5 m. Unlike the first case, the IMF1 thus shows a large
modulation in amplitude, and relatively small modulation
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Figure 2. Mean PSD of the first three IMFs (first= solid; sec-
ond= dashed; third= dotted) for white noise (red curves) and
SARAL SLA along-track measurements (blue curves), and mean
PSD of the corresponding noisy (thick black line) and denoised
(thin black line) SLA measurements. The PSD is the average of
PSDs computed over all data segments covering the years 2016–
2018, for the Agulhas (10–35◦W; 33–45◦ S, a) and Gulf Stream
(72–60◦W; 44–32◦ N, b) regions. The green line is for the PSD
of the SLA high-frequency noise estimated from the SLA’s IMF1
(solid blue line).

in phase. Since the phase modulation of IMF1 is primarily
high-frequency for wavelet analysis, it is analyzed as noise,
and the useful signal is almost zero everywhere except for
the largest IMF1 values. Furthermore, because the threshold
value computed from the estimated noise is also larger (than
for the first case), the IMF1 useful signal is completely re-
moved in the second EMD denoising step. This highlights
the potential of the denoising approach to handle variable sea
state conditions. Nevertheless, the IMF2 processing (Fig. 3c)
shows that a modulation of the SLA is found to be significant
near the beginning of the IMF2 record, which may appear

to be associated with larger noise values correlated with the
high SWH values. It will remain an outlier, however, and will
be adequately associated with the largest uncertainty in this
data segment. Indeed, the uncertainty calculated as the stan-
dard deviation of the set of denoised signals increases with
sea state, doubling along this data segment. Overall, these
two examples confirm that the proposed denoising process
adapts well to varying sea state conditions.

In cases where sigma-0 blooms or rain events corrupt lim-
ited portions of a data segment, and for which the data editing
step was not performed, the impact is more difficult to ana-
lyze. It will depend on the magnitude and length of the asso-
ciated errors which can vary greatly. However, the proposed
EMD denoising process is not a data editing process and the
results are certainly still affected by some of the largest er-
rors. It should benefit from improvements in data editing pro-
cedures and retracking algorithms that will be used for future
CMEMS products.

4.2 EMD denoising calibration by PSD adjustment in the
30–100 km wavelength band

For SLA measurements performed by a given altimeter in-
strument, the mean SNR is expected to vary primarily with
sea state. The mean SNR is then a function of the climatolog-
ical distribution of sea state conditions that are dependent on
ocean basins and seasons. The proposed denoising approach
can efficiently adapt to the local SNR, allowing for a single
global value for the control constant A in Eq. (3). However,
since the noise statistics vary greatly with the average sea
state conditions, it is useful to show how such variability can
impact the results when a single value of A is used in global
SLA processing. A two-step sensitivity study is performed
below, which first determines specific A values for different
regions, and then shows how the use of an overall A value
impacts the results. A few areas are defined corresponding
to different climatological sea state conditions, namely the
Gulf Stream region, the Agulhas Current region, an area in
the southern Indian Ocean, and an area in the central Pacific
Ocean. The precise coordinates of the regions are given in the
legend of Fig. 4. The analysis was then performed using Al-
tiKa measurements, as the AltiKa PSD curve shows a well-
defined, expected white noise plateau in the high-frequency
range, 15–25 km, as shown in Fig. 4, which is not the case for
Jason-3 and Sentinel-3. We see that the height of the noise
plateau depends on the climatological sea state conditions,
with the highest value for the southern Indian Ocean, fol-
lowed by the Agulhas, the Gulf Stream and the central Pacific
Ocean. This is the effect of the dependence of the instrumen-
tal noise, after retracking, on SWH since the hump artifact
does not depend on wave height (Dibarboure et al., 2014).

The two-step analysis for each region then follows.

1. For each region, a set of discreteA values within a range
corresponding to that found in Kopsinis and McLaughin
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Figure 3. SARAL short data segments in the Gulf Stream area for cycle 106 and passes 53 (a–d) and 597 (e–h). Panels (a) and (e): noisy
(black dotted) and denoised (red) SLA; panels (b) and (f): IMF1 (black), useful signal (red) retrieved from wavelet denoising of IMF1, and
thresholds (blue) to be applied in IMF1 EMD denoising; panels (c)) and (g): IMF2 (black) and thresholds (blue) to be applied in IMF2 EMD
denoising; panels (d) and (h): noise (black) retrieved from IMF1 wavelet denoising and uncertainty (red) attached to the denoised SLA. All
units in meters on the y axis; x axis data are the record numbers.

(2009) are used to process the 3-year data set and obtain
an average PSD of denoised measurements for each dis-
crete A value. An optimal A value, for each region, is
then found as the one that gives the best fit between the
observed mean PSD and a mean SLA PSD calculated
as the sum, over the data segments covering 3 years, of
the denoised SLAs and a WGN whose average standard
deviation is calculated to fit the mean observed PSD in
the 15–25 km range. The best fit between PSDs is esti-
mated as the root mean square deviation (RMSD) in the
30–100 km range. A minimum value for the RMSD is
then found in the prescribed range of A. The denoised
SLA PSD corresponding to this optimal value of A is
the theoretical PSD that gives the best fit with the ob-
served PSD for the white noise observed in the 15–
25 km range, and is referred to as the “best fit” PSD
in Fig. 4. The “best fit plus WGN” PSD is in excel-
lent agreement with the observed PSD in three of the
regions. In the central equatorial Pacific, the observed
difference may be related to the so-called hump artifact
that can cause a deviation of the total noise PSD from

a power law in k0. This artifact is caused by backscat-
ter inhomogeneities in the altimeter footprint associated
with sigma-0 blooms and rain cells (Dibarboure et al.,
2014), and it indeed contaminates altimeter measure-
ments much more frequently in tropical regions. Con-
flicting results are discussed in Dibarboure et al. (2014)
regarding the spectral shape of the hump artifact, show-
ing that it can be distributed as white noise or as a dome-
shaped figure depending on the analysis approach. In
practice, it can also depend on the data editing, on the
waveforms retracking, and on the way the PSDs are
computed. Dibarboure et al. (2014) showed that a flat
hump PSD is found when a large amount of long data
segments are used to compute the PSD, which is not
the case in the tropical oceans, where hump artifacts are
frequently edited, and then reduce the length of continu-
ous data segments. The PSD resulting from the classical
analysis (Fu, 1983; Le Traon et al., 2008; Dufau et al.,
2016) performed to estimate the SLA spectral slopes is
also shown in Fig. 4 (referred to as “observed minus
WGN” PSD). It is in good agreement down to 50 km
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with the “fitted PSD” for the three regions for which the
best fit plus WGN PSD also agrees well with the ob-
served PSD. The differences below 50 km wavelength
may be due to the fact that the hump artifact resulting
from contamination of portions of a number of data seg-
ments is not well distributed as white noise for our data
segment collection.

2. An optimal value of A is therefore obtained for each
region, ranging from 1.8 to 2.2. To show the results ob-
tained when the same value of A is used for all regions,
the same value of 1.8 was used to EMD-process sim-
ulated data calculated as the sum of the denoised SLA
data corresponding to the theoretical PSDs of step 1 for
each region (best fit PSD in Fig. 4) and a white noise es-
timated in the 15–25 km range. The PSDs obtained by
processing these simulated data with this single value
of A are called “retrieved” PSDs in Fig. 4 and are very
close to the best fit PSDs in all regions. This indicates
that the process as a whole can provide a set of denoised
measurements with a realistic energy distribution in the
observed wavelength range. Further, any variation in the
prescribed thresholds, which depend on the setting ofA,
is accounted for in the uncertainty parameter attached
to the denoised measurements. Another way to assess
the choice of the setting of parameter A is to perform
a sensitivity study using Monte-Carlo simulations. One
thousand WGN series and associated IMFs were gener-
ated. The IMF1s contain the high-frequency component
of the noise series, whose spectrum is represented by
the red solid line in Fig. 2. For each of the 1000 IMF1
series, the threshold for the EMD denoising process was
computed using Eqs. (A1), (2), and (3), and applied to
test the IMF1s against the expected noise. The results
show that more than 98.5 %, 99 %, and 99.5 % of the
IMF1 data values are below the threshold with A val-
ues of 1.8, 2, and 2.2, respectively, which is the range
of best fit values found in step 1 above for the different
regions. EMD denoising is therefore effective in cases
for which the additive noise is close to the Gaussian,
and is not very sensitive to variations found in A for
the different regions. IMF1 values above the prescribed
threshold can therefore be associated with geophysical
information with good statistical confidence, especially
since their significance will be tested further since de-
noising is achieved with an ensemble average of noisy
processes. To process AltiKa globally, A is set to 1.925,
which is the exact average value found for the four re-
gions analyzed.

The problem to consider further is the presence, in lim-
ited portions of the processed data segments, of out-
liers associated with high waves or artifacts caused by
sigma-0 blooms or rain events. These will likely appear
in IMF1 and IMF2 series and the most energetic events
will not be thresholded since the thresholds are calcu-

lated using the median absolute deviation from zero of
IMF1. For this reason, processing IMF1 using wavelet
analysis is an important step to separate, as much as
possible, the possible useful geophysical signal in IMF1
from outliers, and to estimate the underlying Gaussian
noise.

The reasoning used above to set the control parameter A is
based on the assumption that the measurements are affected
by additive Gaussian noise with a known wavenumber de-
pendence (in this case in k0, as in studies correcting mean ob-
served PSDs from mean white noise), whereas this may not
be the case in many along-track data segments where artifacts
related to sigma-0 blooms, rain events, or high sea state con-
ditions may produce deviations of the noise from a Gaussian
process (as shown in Fig. 1b). Depending on the region, the
“observed PSDs” shown in Fig. 4 may be strongly shaped by
these events, and this may explain the observed differences
between the best fit and “observed – WGN” PSDs, shown in
thin black and green curves, respectively. To further verify
the consistency of the EMD denoising and to show the role
of IMF1 processing, the 3-year data set of denoised SLAs
in the Gulf Stream region (PSD shown in Fig. 4a) was con-
sidered the true geophysical signal of the SLAs, thus pre-
scribing a theoretical PSD. For each data segment of these
“theoretical” SLAs, a white noise of 1.8 cm standard devia-
tion was added to provide a simulated noisy SLA segment.
This data set was then processed with the EMD denoising al-
gorithm. Figure 5 shows that the theoretical, EMD denoised,
and “Noisy – WGN” PSDs are in excellent agreement over
the entire wavelength range, in contrast to what is obtained
with the observed SLA shown in Fig. 4. The same coherence
is obtained regardless of the region analyzed. This means that
the EMD denoising process is fully consistent in the case of
measurements contaminated by a Gaussian noise, which also
suggests that the hump artifact may deviate more or less from
a white noise distribution for our data set.

In this simulation, the SNR is close to 1 on average near
50 km wavelength, as shown in Fig. 5, but can be greater than
1 locally in a wavelength range down to 30 km. Such small
mesoscale geophysical information emerging from the noise
level can be retrieved from IMF1 using dedicated wavelet
denoising analysis. As shown in Fig. 5, the average PSD of
IMF1 shows the plateau of high-frequency noise, but also
significant energy content over a wider wavelength range as-
sociated with both lower-frequency noise and geophysical
information. The PSD curves of the IMF1 and the simu-
lated SLA intersect between 50 and 30 km wavelength. After
wavelet decomposition of the IMF1, the wavelet denoising
scheme specifies the maximum level to be retained for geo-
physical signal recovery. In the general case, only the level
containing the finest scales is systematically discarded, and
Fig. 5 shows the PSD of the signal recovered from IMF1 af-
ter using the Huang and Cressie (2000) denoising scheme
(red dashed curve). The wavelet denoising acts as a low-

Earth Syst. Sci. Data, 14, 1493–1512, 2022 https://doi.org/10.5194/essd-14-1493-2022



Y. Quilfen et al.: Towards improved analysis of short mesoscale sea level signals 1501

Figure 4. Mean PSD of SARAL SLA along-track measurements: observed (thick black), best fit (thin black), best fit plus WGN (red),
retrieved (dashed red), and observed minus WGN (green). WGN is estimated as the average in the range of 15–25 km of the mean observed
PSD (bold black curve). The PSD is the average of PSDs computed over all data segments covering the years 2016–2018: the Gulf Stream
(72–60◦W, 44–32◦ N, a), the South Indian (80–110◦ E, 60–40◦ S, b), the Agulhas (10–35◦ E, 45–33◦ S, c), the Central Pacific (170–150◦W,
10◦ S–10◦ N, d) regions.

pass filter with a sharp cut-off near 25 km wavelength and
a significant amount of noise is also filtered out at longer
wavelengths. In this simulation, the processing results in the
recovery (red curve) of the full PSD (thin black curve) of
the simulated signal because the A parameter has been set
to do so (A= 1.65), although in practice, and even though
the SNR was dramatically improved (more than 97 % of the
IMF1 noise canceled), the geophysical signals with the low-
est SNR were also filtered out. In this sense, and as expected,
the SLA signal for the real data will only be partially resolved
in the small mesoscale range. In specific cases, further filter-
ing can be applied by setting a different maximum level for
wavelet denoising of the real data, as outliers can contribute
strongly to the IMF1 in the wavelength range of 10–50 km.
For example, a practical rule can be considered by further
constraining IMF1 denoising when more than a given per-
centage of a processed data segment is associated with high
seas. For outliers associated with sigma-0 blooms and rain

events, there is no simple relation between the noise associ-
ated with the hump artifact and sigma-0 that would allow for
such a practical rule. EMD denoising of real SLA measure-
ments is therefore likely to still be contaminated by outliers
in limited portions of a number of along-track data segments,
and future improvements will depend on better data editing
and implementation of the latest retracking algorithms (Pas-
saro et al., 2014; Thibaut et al., 2017; Moreau et al., 2021).

4.3 Building a multi-sensor data set with consistent PSD

The EMD denoising algorithm is then found to be robust and
consistent in processing the AltiKa measurements. A work-
able rule can be defined to adjust the method to provide a
global data set of denoised SLA measurements whose PSD
are regionally consistent with the expected SLA geophysi-
cal signals. Such an approach is not easily applicable or nu-
merically consistent for the Sentinel-3 and Jason-3 measure-
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Figure 5. Mean PSD of SARAL SLA along-track measurements:
simulated noise-free SLAs (thin black), simulated noise-free SLAs
+ simulated WGN with 1.8 cm SD (thick black), EMD-denoised
SLAs (solid red), IMF1 of SLAs (dotted red), and noise-free por-
tion of IMF1 obtained after IMF1 wavelet processing (dashed red).
The above PSDs are computed as the average of PSDs obtained for
all individual data segments covering the years 2016–2018, and the
Gulf Stream region (72–60◦W; 44–32◦ N). The PSD shown as a
green line is obtained by subtracting from the thick black line the
mean WGN (std= 1.8 cm) shown as the black dashed line (averaged
over 15–30 km).

ments. Their PSDs do not exhibit the expected white noise
plateau in the 10–25 km wavelength range, Fig. 6. The red-
type noise in Sentinel-3 measurements has already been dis-
cussed and analyzed in several studies, and has been shown
to be mainly related to the effects of swell on SARM obser-
vations (Moreau et al., 2018; Rieu et al., 2021). The reason
why the Jason-3 PSD also shows a tilted PSD in the high-
frequency range is more puzzling. One possible explanation
is that it results from poor data editing (especially the rain
flag) for Jason-3. Indeed, while an effective rain flag was
used for AltiKa so that rain has little influence on data quality
(Verron et al., 2021), this is not the case for Jason-3, which
is therefore likely to be more impacted by rain events. As-
sociated errors may shape the noise distribution differently
than white noise, as discussed in the previous section. Indeed,
we found many more short segments of continuous measure-
ments in the AltiKa data set than in the Jason-3 data set, both
of which are distributed in the same CMEMS product, due
to more efficient data editing. Therefore, the adjustment of
the EMD denoising process for Jason-3 and Sentinel-3 was
performed by using the AltiKa results as reference.

For Sentinel-3, Fig. 6 shows that its PSD for all analyzed
regions is in excellent agreement with AltiKa’s PSD over the
entire wavelength range down to 25 km, which is a striking
result, showing that the two altimeters have similar average

noise level and shape above 25 km wavelength. The same
value of A was therefore used to set the noise thresholds for
Sentinel-3, and it yields noise-free measurements PSDs in
near perfect agreement with AltiKa. Note that, unlike AltiKa,
the Sentinel-3 measurements are not sensitive to the hump ar-
tifact, thanks to the SAR processing, and this difference is not
apparent in the overall results shown in Fig. 6. Although the
PSD shape of the Sentinel-3 noise has often been referred to
as red noise, there are no published results showing that this
is the case in the range of interest, i.e., wavelengths> 30 km.
The similarity to the AltiKa PSD in this range might indi-
cate that this is not the case, and this justifies the choice
of retaining the white noise configuration for the Sentinel-
3 EMD processing. However, the processing is capable of
dealing with other Gaussian noise figures, and Fig. 6a shows,
for information, the result obtained for Gaussian noise with
a Hurst exponent of 1, corresponding to a PSD in k−1 rep-
resented by a green solid line in the 15–30 km wavelength
range. The PSD associated with the denoised measurements
is as expected slightly lower than the white noise case in the
range of 30–100 km.

For Jason-3 and the 3-year data set analyzed, the control
constant A was adjusted and set to 2.4 in order to obtain the
best fit of the PSDs of denoised measurements with AltiKa.
Fig. 6 thus shows a high degree of consistency between the
PSDs of the three altimeters, although each one only par-
tially resolves the true geophysical content in the 30–100 km
range, with Jason-3 doing worse than the other two. Indeed,
the similarity of Jason-3 denoised PSD with the other two,
while the noise level is significantly higher, indicates that
the SNR has been less improved. However, this difference
will be taken into account in the uncertainty parameter at-
tached locally to the denoised measurements, as documented
in the next section. Note also that, although the EMD pro-
cess adaptively accounts for the noisier Jason-3 measure-
ments, a higher A threshold is necessary to obtain the best
fit with the other altimeter PSDs. This results from the need
to compensate for the poor data editing (especially rain flag)
of the Jason-3 measurements, as discussed at the beginning
of the section. Indeed, since the outliers affect only limited
portions of an analyzed data segment, they do not affect the
estimation of the EMD denoising thresholds, which are cal-
culated using the median absolute deviation from zero of the
IMF1 noise. The thresholds are more tuned to the instrumen-
tal noise rather than to the total noise, and outliers of large
amplitude are not removed. They have a significant impact
on the denoised PSD, so a larger A is needed to achieve sim-
ilar PSD levels for Jason-3.

For reference, Fig. 6 shows a k−4 law that indicates steeper
slopes for the Gulf Stream and Agulhas regions, a slope close
to k−4 in the south Indian region, and a flatter slope in the
central Pacific. The variance in the 30–100 km range is the
highest in the Gulf Stream region, followed by the Agulhas,
south Indian, and central Pacific regions, in descending order,
in agreement with the results of Chen and Qiu (2021).
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4.4 Spectral slopes seasonality

Seasonal variations in SSH in the small mesoscale range,
with a wavelength less than about 100 km, are very diffi-
cult to analyze because the noisy SLA spectral slopes are
strongly shaped by errors related to the hump artifact, not
dependent on the sea state, and by the instrumental and pro-
cessing noise which is correlated with sea state conditions.
Although the behavior of the resulting total noise is not well
understood, it is genuinely postulated that the total SLA noise
in the 1 Hz measurements can be considered to be WGN
when a large amount of long segments is used to calculate
the spectrum. This enabled the empirical study of seasonal
variations in SSH by removing an average noise PSD from
the average PSDs of altimeter measurements (e.g., Vergara
et al., 2019; Chen and Qiu, 2021). However, the applicability
of this assumption may not be verified at the regional level,
as suggested by the results presented in Figs. 4 and 5. This
certainly also depends on the performance of the data edit-
ing. Therefore, the adoption of an alternative approach based
on the analysis of the along-track EMD-denoised SLA mea-
surements, rather than on the denoising of the SLA spec-
trum, is likely more suited. It has also been shown that sea
state-related errors are essentially removed by the EMD pro-
cessing. Figure 6 shows that consistent spectral slopes of the
denoised SLA are well obtained for the different altimeters.
Hereafter, we only use AltiKa denoised measurements be-
cause the period covered is much longer for more consistent
analysis of seasonal variations. The data used cover 6 years,
from summer 2013 to winter 2018–2019, and the eight dif-
ferent regions shown in Fig. 7 are defined to cover various
climatological sea state conditions and expected energy lev-
els in the small mesoscale variability of SLA.

For each region, the average SLA spectrum is shown in
Fig. 8 for the boreal summer and winter, for the entire data
set, and for a data set limited to segments having more
than 80 % of measurements with SWH< 4.5 m. This arbi-
trary SWH threshold corresponds to the 90th percentile of
the global data set and is intended to limit the influence of
possible remaining outliers associated with extreme sea state
conditions. In regions of high climatological sea state, this
thresholding will significantly limit the available data seg-
ments used to calculate the spectrum.

Distinct regions can be considered in Fig. 8. The intra-
tropical regions, 2 and 3, show no seasonality, a result in
agreement with previous studies (Vergara et al., 2019; Chen
and Qiu, 2021). In these regions, stable low sea state condi-
tions cannot introduce strong errors in the analyses. In the
rough southern oceans, regions 7 and 8 (the Drake Passage)
show a small apparent increase in small mesoscale energy
in the austral winter, disappearing when the high sea state
threshold is applied. In the latter case and for the Drake Pas-
sage, 130 and 73 AltiKa passes satisfy the criterion and were
used to estimate the mean spectrum for the boreal JJA and
DJF, respectively. This suggests the absence of seasonality, in

agreement with the results of Rocha et al. (2016), who used
acoustic Doppler current profile (ADCP) measurements in
the Drake Passage, and disagrees with Vergara et al. (2019)
and Chen and Qiu (2021), who used the standard approach
applied to altimeter data. As mentioned, high sea conditions
make it difficult to assess the results obtained by the differ-
ent approaches, and better data editing and retracking algo-
rithms (Passaro et al., 2014; Thibaut et al., 2017; Moreau
et al., 2021) would improve the current analysis. The Agul-
has region, number 5, which experiences mixed sea condi-
tions, shows no seasonality, which is in agreement with the
results of Chen and Qiu (2021). Three regions, 1, 4, and 6,
show seasonality, insensitive to the filtering of high sea con-
ditions. Strong seasonality in mesoscale dynamics on scales
of 1–100 km, driven by turbulent scale interactions, are found
in the Gulf Stream area using numerical modeling experi-
ments and in situ observations (Mensa et al., 2013; Callies
et al., 2015), confirming the present altimetry results. Chen
and Qiu (2021) also show this strong seasonality in the Gulf
Stream region and in region 6, west of Australia, as also ob-
tained in our results. Conversely, we find seasonality in the
western tropical Atlantic, region 4, not reported by the Chen
and Qiu (2021) study. Overall, for regions showing season-
ality in the small 30–100 km mesoscale range that is appar-
ently unaffected by high sea states events, SLA variability is
found to be greater in winter of each hemisphere, consistent
with stronger atmospheric being a source of enhanced sub-
mesoscale ocean dynamics (Mensa et al., 2013). For refer-
ence and evaluation of the data, and although different dy-
namics may be at work, a k−4 spectral slope is shown in
Fig. 8 for the 30–120 km wavelength range. It shows that, in
the small mesoscale range, the steepest slope calculated from
the PSD of denoised SLA measurements is found in the Gulf
Stream region with a slope between k−4 and k−5. It is close to
k−4 in the Agulhas region and the high seas 7 and 8 regions.
In other regions related to the intra-tropics, flatter slopes are
found, consistent with increased energy from internal tides
and gravity waves (e.g., Garrett and Munk, 1972; Tchibilou
et al., 2018). Overall, these different results are found to be
consistent with studies using modeling experiments or obser-
vations from altimetry and in situ data.

4.5 Uncertainties in denoised sea level anomalies

For a processed data segment, the resulting denoised SLA
segment is the average of 20 realizations of the denoising
process. An uncertainty ε, which characterizes the expected
error attached to each denoised SLA in the data segment,
is then calculated as the local standard deviation of the set
of denoised SLA profiles corresponding to 20 random real-
izations of the noisy SLAs profiles. Since the noise process
used to generate the set of random realizations is the high-
frequency part of the observed Gaussian noise derived from
IMF1, ε readily accounts for the various errors affecting the
data (i.e., instrumental and processing noise and remaining
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Figure 6. Mean PSD of observed and denoised SLA along-track measurements for Jason-3 (blue), AltiKa (black), Sentinel-3 (red), and four
regions: Gulf Stream (panel a; 72–60◦W, 44–32◦ N), Agulhas (panel c; 10–35◦ E, 45–33◦ S), south Indian (panel b; 80–110◦ E, 60–40◦ S),
and central Pacific (panel d; 170–150◦W, 10◦ S–10◦ N). The PSD is the average of PSDs computed over all data segments covering the years
2016–2018. For illustration, the green curve in panel (a) shows the PSD of denoised Sentinel-3 SLA when processed with EMD and the
hypothesis of a Gaussian noise following a k−1 slope (pink noise, Hurst exponent= 1, shown as a green solid line in the range of 15–30 km).
The dark solid line shows a k−4 slope in the range of 30–150 km.

Figure 7. Yearly averaged SWH (m) computed over 2016–2018 from the Climate Change Initiative L4 products. Dashed black boxes define
the eight areas analyzed in the section.
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Figure 8. Mean PSD (m2 per cycles per kilometer) of AltiKa denoised SLA in boreal summer (solid black curve, JJA) and in boreal winter
(dashed black curve, DJF). The red curves show the results using a data set limited to segments showing more than 80 % of data with
SWH< 4.5 m. The numbered eight panels correspond to the eight areas shown in Fig. 7. For reference, a PSD law in k−4 is shown in the
wavelength range of 30–120 km, green line.

outliers), but it also represents the uncertainty related to the
local SNR itself via the IMFs thresholding. The larger the lo-
cal SNR, the higher the SLA modulation above the expected
noise threshold and the lower the standard deviation ε, and
vice versa.

The probability density function (PDF) of IMF1, of the
high-frequency noise, and of ε is shown in Fig. 9. Sentinel-
3 displays the best statistics, which is mainly a result of
reduced errors related to the hump artifact in the SARM
processing. Jason-3 has significantly higher levels of noise.
These results are certainly strongly impacted by the different

data editing performed for each instrument. They are how-
ever in agreement with other previous studies (e.g., Dufau et
al., 2016; Vergara et al., 2019).

The uncertainty parameter ε thus characterizes the error at-
tached locally to each denoised SLA measurement, account-
ing for the variations in the SNR but also reflecting the errors
and choices made in the denoising process. Thus, the choice
of imposing similarity on the Jason-3, AltiKa, and Sentinel-
3 PDFs, although the SNR of Jason-3 is significantly lower
on average, implies less improvement in the SNR of Jason-3,
resulting in worse statistics for ε.
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Figure 9. Probability density function (PDF, %) of the absolute values of IMF1 (m, a, solid lines), IMF1 HF noise (m, a, dashed lines), and
ε (m, b), for Jason-3 (blue), AltiKa (black), and Sentinel-3 (red).

The spatial distribution of ε is shown in Fig. 10. It is
mainly characterized by higher values in high-sea regions, in
regions with high probability of rain events such as intertrop-
ical convergence zones, and also in regions for which the
SLA variance is larger in the 30–120 km wavelength range,
associated with a lower SNR. Interestingly, similarities are
found with the altimeter 30–120 km SSH variance map an-
alyzed by Chen and Qiu (2021). A more detailed analysis
of the distribution of ε is beyond the scope of this study but
certainly deserves further investigation.

5 Key elements of comparison with other
distributed products

In this study, we highlight key features that make our ap-
proach to denoising SLA data different and more attractive
than the approaches currently used in other distributed prod-

ucts. It relies on (1) the EMD algorithm that adaptively splits
the SLA signal into a set of empirical functions that share
the same basic properties such as wavelets, but without hav-
ing to conform to a particular mathematical framework; (2) a
denoising algorithm that relies on a thorough and robust anal-
ysis of the local Gaussian noise affecting the SLA data over
the entire wavenumber range; (3) an ensemble-average ap-
proach to estimate a robust denoised SLA signal and its as-
sociated uncertainty; (4) a calibration of the method to pro-
vide a realistic distribution of SLA variability by adjusting
the mean level of the PSD function.

It is therefore useful to compare our approach with the
CMEMS products, but also with the Data Unification and
Altimeter Combination System (DUACS) experimental 5 Hz
products distributed by the Aviso+ center, as the latter prod-
ucts include, among several differences from CMEMS pro-
cessing, high-frequency noise correction (Tran et al., 2019)

Earth Syst. Sci. Data, 14, 1493–1512, 2022 https://doi.org/10.5194/essd-14-1493-2022



Y. Quilfen et al.: Towards improved analysis of short mesoscale sea level signals 1507

Figure 10. Three-year mean value of ε (m) for AltiKa (a), Sentinel-
3 (b), and Jason-3 (c).

that also aims to better retrieve mesoscale information in the
40–120 km wavelength range in preparation for the SWOT
mission. This comparison is limited to highlighting the key
characteristic differences in the filtered products; a more in-
depth comparison would be better addressed in a dedicated
article.

For illustration, a selection of AltiKa passes in the Gulf
Stream region is shown in Fig. 11. Figure 11a shows (the
same pass as in Figs. 1g and 3f) that EMD is best suited for
analyzing strongly nonlinear signals in order to accurately
map the large SLA gradient (more than 40 cm in less than
50 km), while CMEMS shows the expected limitations/arti-
facts due to low-pass filtering, e.g., smoothing of gradients
and poor localization of extrema. Figure 11b and c show two
passes for which small mesoscale features (magnified in the
insets) are recovered, and match well, for the SASSA and
DUACS products, while the ∼ 70 km cutoff applied in the
CMEMS products suppresses this information. Note that the
SASSA denoising approach is based on a local SNR analy-

sis and is therefore associated with a statistical estimate of
the local uncertainty. In panel (c), SWH is also displayed. It
shows that the mesoscale variability in SLA, shown in the
inset, does not appear to be associated with significant vari-
ability in SWH at 40–120 km scale, and thus may well be
of geophysical origin, and not an artifact, in DUACS prod-
ucts, resulting from the high-frequency adjustment (HFA)
correction. Indeed, the HFA correction applied in DUACS
products is based on a statistical relationship between the
SLA and SWH retracking errors, at scales <∼ 120 km for
which SWH variability is assumed to be only noise, in order
to estimate the high-frequency SLA errors to be removed.
Tran et al. (2019) showed that the HFA correction, associ-
ated with that of sea state bias, provides a 35 % reduction in
the noise variance affecting Jason-3 SSH measurements. In-
stead of panel (c), which shows a case in which the denoised
SLAs of DUACS and SASSA agree well, panel (d) shows a
common case where the DUACS result is revealed to con-
tain more errors associated with the HFA correction. Indeed,
a large variability of SWH at the < 120 km scale is observed
in the vicinity of the Gulf Stream front, which is known to be
the result of interactions between surface waves and current
gradients. As a result, the Gulf Stream frontal system dis-
played in DUACS products is strongly offset from the SLAs
observed by AltiKa, which does not seem correct. In these
and many other cases (see left side of panel (d), the HFA
correction likely induces errors in the SLA signature, due
to the wave–current interactions that shape the SWH field
at scales down to a few kilometers (e.g., Kudryavtsev et al.,
2017; Ardhuin et al., 2017; McWilliams, 2018; Quilfen et
al., 2018; Quilfen and Chapron, 2019; Romero et al., 2020;
Villas Bôas et al., 2020). One of the strengths of the EMD fil-
tering approach used for SASSA products is that it does not
rely on any assumption other than a Gaussian distribution of
the noise-contaminating SLA measurements.

Figure 12 shows the PSD for the same AltiKa products and
the Gulf Stream region. For the CMEMS and DUACS prod-
ucts, the low-pass filter applied at about 65 km (CMEMS)
and 40 km (DUACS) wavelengths results in a sharp decrease
in PSD with increasing wavenumber, whereas the SASSA
PSD is in close agreement with the PSD obtained by re-
moving WGN (computed as the average PSD between 15
and 30 km wavelength) from the unfiltered SLAs. The fact
that SASSA products can provide a “realistic/physical” rep-
resentation of the SLA variance distribution over the entire
resolved wavenumber spectrum is a direct result of the cho-
sen approach. For DUACS products, it is unclear whether the
variance between 40 and 120 km wavelength corresponds to
variance of unfiltered data or to variance of both unfiltered
data and errors associated with HFA corrections resulting
from the geophysical variability of SWH at these scales, as
discussed above.
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Figure 11. CMEMS unfiltered (dotted blue), SASSA (black), DUACS 5Hz (red), and CMEMS filtered (green) SLAs (m) for different AltiKa
passes: (a) cycle 106 pass 597, (b) cycle 101 pass 184, (c) cycle 102 pass 941, and (d) cycle 103 pass 655. The magenta curve on the right
axis in panels (c) and (d) shows the SWH from the Sea State Climate Change Initiative products.

6 Data availability

The SASSA data set https://doi.org/10.12770/1126742b-
a5da-4fe2-b687-e64d585e138c (Quilfen and Piolle,
2021) is freely available on the CERSAT website at ftp:
//ftp.ifremer.fr/ifremer/cersat/data/ocean-topography/sassa
(last access: 28 March 2022). The altimetry observations
used are obtained from the Copernicus Marine Envi-
ronment Service and are available at https://resources.
marine.copernicus.eu/product-detail/SEALEVEL_GLO_
PHY_L3_MY_008_062/INFORMATION (Taburet et al.,
2021). Ancillary data are provided by the Sea State Cli-

mate Change Initiative products processed at the Institut
Français de Recherche pour l’Exploitation de la Mer
(IFREMER) and are available on the ESA CCI website at
ftp://anon-ftp.ceda.ac.uk/neodc/esacci/sea_state/data/ (last
access: 28 March 2022, Dodet et al., 2020).

7 Code availability

The MATLAB code used to generate the SASSA data
set is freely available on the CERSAT website at
https://doi.org/10.17882/86455 (Quilfen, 2021).
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Figure 12. Mean PSD of SARAL SLA along-track measurements:
CMEMS unfiltered (blue), SASSA (black), DUACS 5 Hz (red),
CMEMS filtered (green), and CMEMS unfiltered minus a mean
WGN computed over 15–30 km wavelength. The PSDs are com-
puted as the average of PSDs obtained for all individual data seg-
ments covering the year 2017 and the Gulf Stream region (72–
60◦W, 44–32◦ N).

8 Summary

Satellite altimetry is certainly ideally suited to statistically
characterize ocean mesoscale variability thanks to its global,
repeat and long-term sampling of the ocean. In particular, the
estimation of sea surface height wavenumber spectra is a key
unique contribution of satellite altimetry. However, below a
wavelength of about 100 km, along-track altimeter measure-
ments can be affected by a dramatic drop in the SNR ra-
tio. It thus becomes very challenging to fully exploit altime-
ter observations for analysis of SLA distributions, especially
within the small mesoscale 30–120 km range.

To overcome these difficulties, and to extend previous ef-
forts to characterize spectral distributions, an adaptive noise
removal approach for satellite altimeter sea level measure-
ments is proposed. It essentially builds on the non-parametric
EMD method developed to analyze non-stationary and non-
linear signals. It further exploit the fact that a Gaussian noise
distribution becomes predictable after EMD. Each altimeter
segment can then be analyzed to adjust the filtering process.

Applied, this data-driven approach is found to consistently
resolve the distribution of the SLA variability in the 30–
120 km wavelength band. A practical uncertainty variable is
then attached to the denoised SLA estimates that takes into
account errors in the altimeter observations as well as uncer-
tainties in the denoising process.

Here, measurements from the Jason-3, Sentinel-3, and
SARAL/AltiKa altimeters have been processed and ana-

lyzed, and their energy spectral and seasonal distributions
more unambiguously characterized in the small mesoscale
domain. In particular, the data-driven methodology helps to
more consistently adjust the approach to local sea state con-
ditions. Anticipating data from the upcoming Surface Water
and Ocean Topography mission (e.g., Morrow et al., 2019),
these denoised SLA measurements for three reference al-
timeter missions have already yielded valuable opportuni-
ties to assess global small mesoscale kinetic energy distribu-
tions, as well as to study possible correlation between SLA
high-resolution measurements with sea state variability con-
ditions.

Appendix A: Denoising scheme

Data denoising is performed on data segments of 128 contin-
uous measurements to limit large variations in noise statis-
tics due to high sea state conditions. No gap filling is per-
formed for missing values. In addition to the data editing
performed for CMEMS products, additional outlier detection
is performed to remove the largest isolated SLA peak val-
ues. For each data point in a segment, the difference in SLA
with neighboring values is tested, within a sliding window of
five points, and its SLA value is replaced by the average of
neighboring values if the difference is greater than 4.5 times
the standard deviation of the IMF1 of the segment. For each
data segment, a reference high-frequency noise energy level,
E1, is estimated from the first IMF in order to derive the ex-
pected noise energy in each IMF of rank greater than 1 from
Eq. (2). E1 is computed using the robust estimator given by
the absolute median deviation (MAD) from zero, as follows:

E1 = (median |n1 (t)|/0.6745)2, (A1)

where n1 is an estimation of the noise contained in IMF1
rather than IMF1 itself. Indeed, although the MAD is ex-
pected to be robust in cases where the analyzed IMF1 sig-
nal contains residual values associated with a small amount
of geophysical information or outliers (Mallat, 2009), it can
nevertheless fail to be reliable in cases such as the one il-
lustrated in the Fig. 1a–f. This is because Eq. (A1) assumes
normality of the distribution, and while it is close to being
true in most cases, a large variability in sea state conditions
makes it less absolutely true.

The IMF1 processing used to estimate the high-frequency
Gaussian noise is however necessary and useful in two differ-
ent parts of the denoising algorithm: (1) as discussed above,
to compute E1 verifying Eq. (A1) and then En verifying
Eq. (2) in order to compute the thresholds with Eq. (3) for
denoising each IMF; (2) to obtain the high-frequency noise
series similar to that of the IMF1 of a WGN, which will be
used to generate a set of noisy signals and associated de-
noised signals whose average and standard deviation finally
provides the denoised SLA signal and its associated uncer-
tainty, respectively.
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Figure 2 show the PSDs of the high-frequency noise esti-
mated from the SLA IMF1 (green curves), which show very
good agreement with the PSDs of the white noise IMF1s.
The IMF1 processing has been tested using different wavelet
denoising algorithms available in the MATLAB package,
but the best result was obtained using the wavelet shrinkage
method of Huang and Cressie (2000). These authors devel-
oped a Bayesian approach to denoising various signals, as-
suming that it can be the sum of the underlying targeted sig-
nal composed of a piecewise-smooth deterministic part and
a stochastic part, plus a noise as a zero-mean stochastic part.
The Symlet 8 function was used as the wavelet basis func-
tion.

To schematize, the EMD-based denoising algorithm is ap-
plied to each data segment as follows, with an iterative part
of k iterations (actually 20) to perform the ensemble-average
process:

1. perform an EMD expansion of the noisy signal x(t);

2. perform the IMF1 wavelet denoising to separate the
IMF1 stochastic noise, n1(t), from possible geophysical
signal and outliers;

3. perform a reconstruction of signal xs(t) by adding the
IMF1 geophysical signal with higher-order IMFs;

4. randomly modify the positions of the noise n1(t) in suc-
cessive windows of length k (about 120 km) to obtain
a new noise realization nk(t) and a new noisy signal
xb(t)= xs(t)+ nk(t);

5. perform an EMD expansion of xb(t);

6. carry out the denoising of IMFs by hard thresholding
with Eqs. (A1), (2), and (3), and reconstruct a denoised
signal xk(t);

7. iterate k times steps 4 to 6 in order to obtain a set of
denoised signals;

8. make an ensemble average of the xk(t) to obtain a robust
denoised signal and an uncertainty estimate calculated
as the standard deviation of xk(t).

Noise removal for each IMF is done with a hard thresholding
approach which is widely used in the field of wavelet denois-
ing. The advantage of hard thresholding is that it preserves
strong gradients (Kopsinis and McLaughin, 2009). Its adap-
tation to IMF thresholding is illustrated in Fig. 5 of Quilfen
and Chapron (2021). In practice, for each IMF of rank n, the
modulation intervals that are below the prescribed threshold
Tn, given by Eq. (3), are set to 0.

Appendix B: Power spectral density calculation

The SLA wavenumber spectra are calculated in regions of
different sizes using fast Fourier transforms (FFTs), after de-
trending and applying a 50 % cosine taper window (Tukey

window), for overlapping ground track segments of 128 con-
tinuous measurements. This corresponds to segment lengths
of about 800 km or more, which is adequate for our study
for which we focus primarily on the wavelength range be-
low 120 km. Each mean spectrum is computed as the average
of the individual spectra over at least the 2016–2018 period
common to all three altimeters, which ensures that a suffi-
ciently large number of segments are used.
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