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Abstract :   
 
Seafood is well recognized as a major source of Long Chain n-3 Polyunsaturated Fatty Acids (LC n-3 
PUFA, especially ecosapentaenoic acid, i.e. EPA and docosaheaxaenoic acid, i.e. DHA) and essential 
trace elements (As, Cu, Fe, Mn, Se, and Zn). It is also a source of non-essential trace elements (Ag, Cd, 
Hg, Pb) that can be deleterious for health even at low concentrations. Edible parts of sixteen species (fish, 
cephalopods, crustaceans and bivalves) of great importance in the Pertuis Charentais region, one of the 
main shellfish farming and fishing areas, were sampled in winter and analyzed to determine their fatty 
acid (FA) composition and trace element concentrations. Based on these analyses, a suite of indices was 
calculated to estimate risk and benefit of seafood consumption: the n-6/n-3 ratio, the atherogenic index, 
the thrombogenic index, the EPA + DHA daily recommended portion, as well as the maximum safe 
consumption. The results showed that fish contributed the most to LC n-3 PUFA supply, while bivalves 
and crustaceans were more beneficial in essential trace elements. Whatever the species, the 
concentrations of non-essential elements were not limiting for seafood consumption, as important 
amounts of the analyzed species can be eaten daily or weekly before becoming deleterious to consumers. 
Yet, concentrations of Hg in dogfish and seabass can become a concern for frequent seafood consumers 
(>three meals a week), confirming that varying seafood items is a key point for consumers to optimize the 
benefits of diverse seafood resources. Considering FA composition, whiting and pilchard are the most 
beneficial fish species for human diet, while surmullet was the least beneficial one. However, using an 
index integrating the relative risk due to Hg content, the surmullet appears as one of the most beneficial. 
This study provides a temporal shot of the quality of marine resources consumed in winter period in the 
studied area and highlights the complexity of a quantitative risk and benefit assessment with respect to 
the biochemical attributes of selected seafood. 
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1. Introduction 47 

 48 

Seafood (i.e. fish, crustaceans and mollusks) is currently a significant component of food 49 

sources for humans worldwide, especially for whose that live in coastal areas (60% of the 50 

world’s population). The average annual intake per capita had increased from 9.0 kg in 1961, 51 

to 20.5 kg in 2017 (FAO, 2018). Seafood is part of a well-balanced human diet with several 52 

recognized benefits because, e.g. they are rich in proteins, vitamins, omega-3 fatty acids (FAs) 53 

and essential elements such as copper (Cu), iron (Fe), or zinc (Zn).  54 

Seafood is particularly recognized as the main source of long chain highly unsaturated fatty 55 

acids of the n-3 series (LC n-3 PUFA, i.e fatty acids with at least 4 double bonds and 20 carbon 56 

atoms), also known as LC omega-3 PUFA (e.g. Afonso et al., 2013). LC n-3 PUFA, and 57 

especially the highly unsaturated ones , are major components of cell membranes but are poorly 58 

synthetized de novo by vertebrates including humans and thus must be supplied by food. 59 

Among these, eicosapentenoic acid (EPA, 20:5n-3) and docosahexanoic acid (DHA, 22:6n-3) 60 

in human diet are sourced mostly from seafood (Astorg et al., 2004). EPA and DHA are the 61 

most beneficial LC n-3 PUFA. Their benefits on human health, and in particular in cerebral, 62 

cardiovascular, and immune functions, are now well-recognized (Gil & Gil, 2015; Mozaffarian 63 

& Rimm, 2006; Pike, 1999; Ruxton et al., 2004; Simopoulos, 1991). For example, regular 64 

intakes of LC n-3 PUFA help in reducing of risk of death from a coronary heart disease through 65 

the reduction of atherogenic and thrombongenic risks (i.e. reduction of the platelet aggregation 66 

and subsequent thrombus and atheroma formation in the cardiovascular system; Valfré et al., 67 

2003). LC n-3 PUFA regular intake also induce a drop of dementia disorders and Alzheimer 68 

symptoms in elderly people (Hu et al., 2002; Morris et al., 2003; Oomen et al., 2000; Ruxton 69 

et al., 2004). The improvement of neuronal development and visual acuity of breast-fed infants 70 

by women who regularly consume marine products has also been demonstrated (Fleith & 71 

Clandinin, 2005; Koletzko et al., 2008; Simopoulos, 1991). As well as a regular LC n-3 PUFA 72 

intake, a balanced dietary n-6/n-3 PUFA ratio between 1:1 and 4:1 has been shown to prevent 73 

the onset of coronary heart disease, as n-3 contribute to anti-inflammatory and anti-thrombus 74 

process, while n-6 contribute to inflammatory process (Simopoulos et al., 2000; Simopoulos, 75 

2002; 2003). 76 

Seafood intake is, as well, one of the main sources of essential trace elements such as arsenic 77 

(As), Cu, Fe, manganese (Mn), selenium (Se) and Zn (e.g. Guerin et al., 2011). In organisms, 78 

these elements are also cofactors of enzymes involved in antioxidant systems, in the DNA 79 
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metabolism, and in the oxygen transport (Ansari et al., 2004; Olmedo et al., 2013a; Uthus, 80 

1992). However, these essential elements may be at risk when too high amounts are ingested  81 

(Ansari et al., 2004; Ersoy & Çelik, 2009; Frieden, 1985; Goldhaber, 2003; Olmedo et al., 82 

2013a; Storelli, 2009), as they become toxic like other contaminants usually found in seafood. 83 

Indeed, mainly fisheries and aquaculture activities occur in coastal waters, where anthropogenic 84 

activities (e.g. agriculture, industry, urbanization, oil extraction) contribute to the enrichment 85 

of waters in essential elements such as As, Cu, Fe, Mn, Se and Zn but also in non-essential 86 

elements like silver (Ag), cadmium (Cd), mercury (Hg) and lead (Pb), which are highly toxic 87 

even at low concentrations (Leblanc et al., 2006; Maher & Butler, 1988; Naser, 2013; Olmedo 88 

et al., 2013b). Some non-essential elements (e.g. Hg or Pb) can also biomagnify along the food 89 

chain, reaching elevated concentrations in marine predators regardless of ambient 90 

contaminations (Anual et al., 2018; Langston & Bebianno, 1998; Maher & Butler, 1988; 91 

Olmedo et al., 2013b, Eagles-Smith et al., 2018). The consumption of seafood contaminated 92 

by these trace elements could thus put humans at risk, potentially leading to neurotoxic, 93 

carcinogenic or cardiovascular issues (Ansari et al., 2004; Ersoy & Çelik, 2009; Goldhaber, 94 

2003; Leblanc et al., 2006). 95 

The coast of Charente-Maritime and its adjacent Pertuis Charentais area hosts the largest 96 

network of intertidal bare mudflats in France, conferring to the area a high primary productivity 97 

of the littoral zone that are advantageous for fisheries and shellfish farming (Blanchard et al., 98 

2001). The Marennes-Oléron bay is the first European basin for oyster farming (Miossec et al., 99 

2009). The Pertuis Charentais area and the onshore Bay of Biscay support artisanal fisheries 100 

targeting local species such as Merluccius merluccius, Merlangius merlangus, Lophius 101 

piscatorius, Sardina pilchardus, Scomber scombrus and Sepia officinalis among others 102 

(FranceAgriMer, 2017). This highly touristic region is also known for its historical Cd, Cu, and 103 

Zn contamination originating from the discharge of a mine treatment wastes upstream from the 104 

Gironde River mouth (Grousset et al., 1999; Miquel, 2001; Miramand et al., 2002). Industrial 105 

wastes are also an important source of Hg in the Charente River which emerges directly in the 106 

Pertuis Charentais (Gagnaire et al., 2003). More recently, an increasing contamination pressure 107 

by Ag used as nanoparticles with antimicrobial properties and as hail clouds dispersive agent 108 

to protect regional wines also has occurred in coastal waters of this area (Salles et al., 2013). 109 

Despite this recurrent and historic contamination, only few studies consider the nutritional 110 

quality of the seafood products from this worldwide important shellfish farming and fishing 111 

area (Guérin et al., 2011). In this context, this study assessed the quality of wild or extensive 112 
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farmed seafood from a unique geographical area, both in terms of FAs and trace elements, and 113 

estimated concomitantly the risk and the benefice of their consumption. A total of sixteen 114 

marine highly consumed species including fish, crustaceans and mollusks were collected within 115 

the Pertuis Charentais area in winter. Their compositions in fatty acids (FA) and trace elements 116 

were determined. Based on these data, the exposure of local seafood consumers to beneficial 117 

FAs and essential elements, and to potentially non-essential metallic contaminants was 118 

assessed. Hazards and benefits related to seafood consumption were characterized using 119 

national and international recommendations and by applying composite metrics. 120 

 121 

2. Materials and methods 122 

 123 

2.1. Ethics statement 124 

The species sampled are not protected or endangered species in the fishing area of the Pertuis 125 

Charentais. No field permits or ethical approvals were required for this study, as all species 126 

originated from commercial fisheries and were already dead when provided to us. Fish were 127 

sacrificed by the commercial fishers at sea using standard fisheries practices (all fish were dead 128 

when landed).  129 

 130 

2.2. Sample collection and preparation 131 

Sixteen marine species were purchased from a local fishmonger between November 2018 and 132 

February 2019, including fish (11 species including 1 cartilaginous and 10 teleost species), 133 

crustaceans (1 species), cephalopods (2 species) and bivalves (2 species; Table 1). Animals 134 

were fished maximum 2 days before being purchased and conserved on ice since fishing. Two 135 

brands (“Spéciale”, i.e. cultured in coastal waters, and “Fine de Claire”, i.e. refined for 136 

minimum 4 weeks in saltmarsh clay ponds) of cupped oyster species coming from a shellfish 137 

farmer of Oléron Island were purchased. All the specimens were weighed and measured (Table 138 

1). On each individual, the edible part (i.e. muscle for fish, cephalopods, crustaceans, and 139 

muscle as well as gonad for the great Atlantic scallops) was collected in duplicate. One replicate 140 

was used for FAs analyses and the other one for trace element analyses. For oysters, the entire 141 

soft edible tissues of two oyster individuals were pooled and split in two subsamples for FAs 142 

and trace element analyses. All samples dedicated to further FA analyses were directly dropped 143 

into liquid nitrogen and then stored at -80°C. Samples dedicated to trace element analyses were 144 

wet weighed (ww) and stored at -20°C. 145 
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 146 

2.3. FAs analysis 147 

The platform “LIPIDOCEAN” (UMR 6539 - Laboratory of Environmental Marine Sciences, 148 

Plouzané, France) fulfilled the determination of FAs qualitative and quantitative compositions 149 

in specimens, according to the protocol described in Mathieu-Resuge et al. (2020), except that 150 

we performed analyses on the total lipid fraction without separating neutral and polar lipids. 151 

Briefly, frozen muscles and soft tissues were firstly homogenized by ball mill in liquid nitrogen. 152 

Total lipids from approximatively 250 mg of tissue powder were extracted in 6 mL of 153 

chloroform-methanol (2:1, v/v). The total lipid extract was then sonicated 5 min at 4°C and 154 

stored at -20°C under N2 gas. An aliquot of the total lipid extract (1 out of 6 mL) was 155 

transmethylated for 10 min at 100°C, after evaporation to dryness and addition of 2.3 μg of an 156 

internal standard (tricosanoic acid C23:0) and 800 µL of methanol/H2SO4 (3.4%; v/v). 157 

Resulting FA methyl esters (FAME) were recovered with 800 µL of hexane and washed 3 times 158 

with 1.5 mL of hexane-saturated distilled water. FAME were then analyzed by gas 159 

chromatography coupled to a flame-ionization detector (GC-FID) on a Varian CP8400 gas 160 

chromatograph equipped with splitless injectors. FAME were separated simultaneously on two 161 

columns, one polar (ZBWAX: 30 m × 0.25 mm ID × 0.2 μm, Phenomenex) and one apolar 162 

(ZB5HT: 30 m × 0.25 mm ID × 0.2 μm, Phenomenex). FAME were identified by comparison 163 

of their retention time on both columns with those of commercial standards or lab-made 164 

standards mixtures (chromatograms are presented in supplementary materials). FA were named 165 

as C :Yn-Z where C is the number of carbon of the aliphatic chain, Y, the number of 166 

unsaturation and Z the position of the 1st unsaturation from the terminal carbon.  167 

The FAs analysis procedure was assessed by comparing the quantities measured with C23:0 168 

with theoretical amount of each FA present in a standard mixture of different FA included into 169 

different lipid classes in different proportions to attest to the eventual impact of potential bias 170 

on the different FA, different class of lipid, proportion considered as well as their initial quantity 171 

(50 µg vs 100 µg vs 150 µg). The repeatability was estimated with 4.2% for the GC and 11.9% 172 

of variation for the whole FA analysis (Sardenne et al., 2021).  A blank was realized for each 173 

sample series (1 blank every 14 samples). Blanks follow exactly the same analytical process as 174 

samples, from lipid extraction to GC analysis. Blank subtraction was performed as they 175 

contained 16:0 and 18:0 traces. The calibration was performed using a FA mixture of known 176 

theoretical mass composition of Supelco® 37 Component FAME Mix. The mass percentage 177 

values calculated for this certified standard was compared to its known certified values and 178 
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remained within the 5% of error for the polar column and 6% of error for the apolar column. 179 

The GC-FID analyses conducted during our experiment can then be considered as suitable to 180 

obtain correct semi-quantitative values for all the fatty acids. 181 

The FAME quantification was made using the standard C23:0 added to each sample before 182 

transesterification. The equation used was the following: 183 

 Quantity FA (g) = (Area FA X Quantity C23:0) / Area C23:0 184 

Concentration of each FA was estimated by considering the mass of tissue extracted, the total 185 

volume of lipid extract and the aliquote volume of the lipid extract used for lipid analyses.  186 

The results of each individual FA were expressed as mass percent of the total FA content (% 187 

TFA) and were also given as concentrations (in mg of FA per g of wet sample, mg g-1 ww). 188 

 189 

2.4. Trace elements analysis 190 

Frozen samples were freeze-dried for 36 to 48 hours (Chris BETA 1-8 LDplus). Then, they 191 

were weighed for dry weight (dw) before being homogenized in a porcelain mortar and pestle. 192 

Aliquots ~ 200 mg dw tissues were microwave digested with a mixture of 3ml of suprapure 193 

nitric acid (VWR/Merck) and 1ml of suprapure chlorhydric acid (VWR/Merck). Trace elements 194 

(Ag, As, Cd, Cu, Fe, Mn, Pb, Se, and Zn) were analyzed using an Inductively Coupled Plasma 195 

Mass Spectrometry (ICP-MS II Series Thermo Fisher Scientific) and an Inductively Coupled 196 

Plasma Atomic Emission Spectrometry (Varian Vista-Pro ICP-AES), as described by 197 

Kojadinovic et al. (2011). The limits of detection (LOD) ranged from 0.01 g g-1 dw (e.g. Ag, 198 

Cd, Pb) to 5 g g-1 dw (Fe). Accuracy and reproducibility were assessed by analyzing 199 

procedural blanks and Certified Reference Material (CRM) (DOLT-5 dogfish liver from 200 

National Research Council, Canada and IAEA-436 tuna fish flesh homogenate from the 201 

International Atomic Energy Agency IAEA). Recovery rates were 96 ± 11 % for DOLT-5 (from 202 

74 % to 118 %) and 103 ± 8 % for IAEA-436 (from 93 % to 120 %).  203 

For Hg analysis, aliquots ranging from 5 to 10 mg dw were analyzed with an Advanced Mercury 204 

Analyser spectrophotometer (Altec AMA 254, LOD of 0.05 ng). The accuracy was checked 205 

using the CRM DOLT-5 with certified Hg concentration: 0.350 ± 0.005 µg g-1 dw. Analyses 206 

were repeated, for each individual, twice or three times until getting a relative standard 207 

deviation (SD) < 10 %. All the trace elements concentrations were obtained in g g-1 dw and 208 

then transformed and expressed in g g-1 ww throughout the manuscript. 209 

 210 

2.5. Data treatment and statistics 211 
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Prior to data analysis, values of trace element concentrations below the limit of detection (LOD) 212 

were replaced by the lowest measured value of the corresponding element multiplied by 0.5 213 

(Guérin et al., 2011; Olmedo et al., 2013ab).  214 

A Principal Component Analysis (PCA) was fulfilled to study relationships between FA and 215 

trace element concentrations in species, using ‘FactoMineR’ (Le et al., 2008) and ‘Factoextra’ 216 

(Kassambara et al., 2017) packages on R. Individuals with non-available value (NA) of trace 217 

elements concentrations were removed from the PCA. PCA was based on correlation matrix 218 

and normalized data, centered and divided by the standard deviation, for each variable.  219 

The comparisons of FA and trace element concentrations between the species were tested using 220 

means comparison tests, using ‘ggrepel’ (Slowikowski, 2019), ‘tidyverse’ (Wickham, 2017), 221 

‘cowplot’ (Wilke, 2019), and ‘multcompView’ (Graves et al., 2015) packages on R. One-way 222 

ANOVA and Tukey’s post-hoc tests were also performed. The conditions of application of 223 

parametric tests were determined a posteriori by checking the normality and homoscedasticity 224 

of data residuals using a Shapiro-Wilk test and a Bartlett test respectively. If these conditions 225 

were not respected, non-parametric tests (Kruskal-Wallis and Wilcoxon signed-rank test 226 

without adjustment method) were used. The significant level of statistical analyses was set at  227 

= 0.05. Species with individuals having trace elements concentrations below the LOD were not 228 

considered for the inter-specific comparison. Results presented with boxplots were arranged in 229 

descending order for each taxon, based on the means. 230 

The nutritional quantity and quality in terms of FA of the studied species was compared using 231 

a hierarchical clustering analyses focusing on (i) two nutritional quantity indices (real DHA and 232 

EPA available quantity in biomass), and (ii) six quality indices (LC n-3 PUFA/TFA, n-6/n-3, 233 

EPA/TFA, DHA/TFA, the atherogenic index (AI) and the thrombogenic index (TI) – see below) 234 

in the different species using ‘Pretty Heatmaps’ (Kolde, 2019) and ‘ColorBrewer Palettes’ 235 

(Neuwirth, 2014) packages on R. 236 

All data analyses and graphical representations were performed with R version 3.5.0 (R Core 237 

Team, 2018).  238 

 239 

2.6. Risk and benefit assessment 240 

Considering essential and non-essential element concentrations, as well as FA composition, 241 

some indices were calculated to estimate risk and benefit of seafood intake. 242 

 243 

2.6.1. n-6/n-3 PUFA ratio 244 
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The ratio between n-6 and n-3 series concentrations, named as n-6/n-3, was determined for each 245 

species. The FA considered were: 16:2n-6, 16:3n-6, 18:2n-6, 18:3n-6, 18:4n-6, 20:2n-6, 20:3n-246 

6, 20:4n-6, 22:2n-6, 22:4n-6, 22:5n-6 for n-6 series; and: 16:3n-3, 16:4n-3, 18:3n-3, 18:4n-3, 247 

18:5n-3, 20:3n-3, 20:4n-3, 20:5n-3, 21:5n-3, 22:5n-3, 22:6n-3 for n-3 series. A n-6/n-3 ratio in 248 

seafood between 1:1 and 4:1 indicates an improvement in the balance of the contribution of 249 

FAs in the human diet and to prevent the onset of coronary heart disease (Simopoulos, 2002). 250 

 251 

2.6.2. Atherogenic and thrombogenic indices 252 

The dietary factors involved in the onset of coronary heart disease are directly correlated to 253 

qualitative aspects of the lipid fraction. The MUFA and the PUFA of the series n-3 and n-6 254 

seem to have equal role in the prevention of thrombus development, while the n-3 PUFA seem 255 

to be more important in the limitation set atheroma. Long-chain SFA (14:0, 16:0, 18:0) 256 

accelerate thrombus formation, by reducing the production of arterial prostacylin, a strong 257 

antagonist of platelet aggregation, while many studies indicate that long-chain unsaturated fatty 258 

acids slow down intra-arterial occlusion and platelet aggregation. Ulbricht and Southgate 259 

(1991) summed up these numerous effects through equations for the calculations of the index 260 

of thrombogenicity index (TI) and the atherogenicity index (AI). In these indices different 261 

weights are attributed to these categories of FA in relation to their different contribution to the 262 

prevention or promotion of intra-arterial occlusion and platelet aggregation. The atherogenic 263 

(AI) and thrombogenic (TI) potentials of a resource were thus evaluating according to Ulbricht 264 

& Southgate (1991) formula: 265 

 266 

[AI = (12:0 + 4*14:0 + 16:0) / ((n-6 PUFA + n-3 PUFA) + 18:1n-9 + other MUFA)] (in mg g-267 

1), 268 

where 12:0, 14:0, 16:0 are saturated FAs; n-6 PUFA and n-3 PUFA are, respectively, the sum 269 

of the polyunsaturated FAs from n-6 series (16:2n-6, 16:3n-6, 18:2n-6, 18:3n-6, 18:4n-6, 20:2n-270 

6, 20:3n-6, 20:4n-6, 22:2n-6, 22:4n-6, 22:5n-6) and n-3 series (16:3n-3, 16:4n-3, 18:3n-3, 271 

18:4n-3, 18:5n-3, 20:3n-3, 20:4n-3, 20:5n-3, 21:5n-3, 22:5n-3, 22:6n-3); 18:1n-9 is a 272 

monounsaturated FA and MUFA is the sum of all other monounsaturated FAs (14:1n-5, 16:1n-273 

11, 16:1n-9, 16:1n-7, 16:1n-5, 18:1n-11, 18:1n-7, 18:1n-5, 20:1n-11, 20:1n-9, 20:1n-7, 22:1n-274 

11, 22:1n-9, 22:1n-7, 24:1n-9). But the 12:0 was not detected in the present study, so it was not 275 

considered in the formulation. 276 

 277 
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[TI = (14:0 + 16:0 + 18:0) / (0.5*18:1n-9 + 0.5*other MUFA + 0.5*n-6 PUFA + 3*n-3 PUFA 278 

+ (n-3 PUFA / n-6 PUFA))] (in mg g -1),  279 

 280 

where 14:0, 16:0, 18:0 are saturated FAs; 18:1n-9 is a monounsaturated FA; MUFA is the sum 281 

of monounsaturated FAs; n-6 PUFA and n-3 PUFA are the sum polyunsaturated FAs from n-6 282 

and n-3 series respectively, as detailed for the AI. 283 

 284 

2.6.3. Daily recommended portion and maximum safe consumption 285 

A daily recommended portion was determined for each species and corresponded to the intake 286 

(expressed in g per day) needed to achieve the 250 mg EPA + DHA daily dietary requirement 287 

for an adult (FAO/WHO, 2010). It was thus a function of the sum of EPA and DHA 288 

concentrations measured per species. Then, results were compared to the European value of a 289 

serving, i.e. 150 g (Roth & Knai, 2003). 290 

The maximum safe consumption of each species considering their supply in each trace elements 291 

was estimated through the Maximum Safe Consumption calculation (MSC) (Metian et al., 292 

2013), for a trace element A: 293 

 294 

[MSCA = (Wind * JLA) / XA] (in g ww per time unit),  295 

 296 

where Wind is the mean human body weight (bw, average of 70 kg); JLA is the Provisional 297 

tolerable monthly intake (PTMI, in g kg-1 ww bw) or the Provisional Tolerable Weekly Intake 298 

(PTWI, in g kg-1 ww bw) or Provisional Maximum Tolerable Daily Intake (PMTDI, in g kg-299 

1 ww bw) of A; XA is the mean concentration of A (in g g-1 ww) in seafood. Data under the 300 

LOD were not considered in the calculations of indices. 301 

 302 

3. Results 303 

 304 

3.1. FA and trace elements and concentrations in seafood 305 

FAs (TFA, LC n-3 PUFA, DHA, and EPA) and trace elements (Ag, As, Cd, Cu, Fe, Hg, Mn, 306 

Pb, Se, and Zn) concentrations in edible tissues of seafood species studied were included in a 307 

PCA (Fig. 1). The first and the second principal components, with respectively 43% and 26%, 308 

accounted for 69% of the total variation in the analysis. Concentrations of Ag, Cd, Cu, Fe, Mn, 309 

Pb, and Zn contributed the most to the first dimension, while TFA, LC n-3 PUFA, EPA, and 310 
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DHA concentrations contributed the most to the second principal component. The As, Hg, and 311 

Se concentrations were not explained by the two first components according to the correlation 312 

circle (Fig. 1A). No correlation was observed between FAs and trace elements concentrations. 313 

The projection of individuals showed that the majority of the species were gathered at the origin 314 

of the PCA, meaning they were not discriminated by their FA nor trace element contents (Fig. 315 

1B). Nevertheless, the PCA strongly discriminated the cupped oysters “Fine de Claire” (OFC) 316 

and “Spéciale” (OSP), the gonad of great Atlantic scallop (GSG) from the other species 317 

according to the first component because of their high trace element concentrations. In contrast, 318 

the Atlantic mackerel (MKR), the surmullet (SRM), and the European pilchard (PIL) were 319 

discriminated according to their high FA concentrations, explained by the second component 320 

(Fig. 1B). 321 

 322 

3.2. Comparison of fatty acids profile between seafood species 323 

The species with the highest TFA concentrations had the highest LC n-3 PUFA and others FA 324 

concentrations (Fig. 2; for more detailed see Table S1). The mackerel (MKR), the surmullet 325 

(SRM), and the pilchard (PIL) had the highest LC n-3 PUFA concentrations (29.8 ± 14.0 mg g-326 

1, 21.0 ± 8.2 mg g-1, and 10.6 ± 2.7 mg g-1, respectively). In descending order, these species 327 

were followed by the meagre (MGR), the seabass (SBS), and the hake (HAK), for which 328 

concentrations were around 4.5 mg g-1 (Table 1). The black seabream (SBR), the whiting 329 

(WTG), the common sole (SOL), the John Dory (JDO), and the dogfish (DOG) were the fish 330 

with the lowest LC n-3 PUFA concentration (below 1.9 ± 0.3 mg g-1 and up to 0.8 ± 0.1 mg g-331 

1). Concerning cephalopods, the squid (SQD) displayed a higher LC n-3 PUFA content (3.3 ± 332 

0.6 mg g-1) than the cuttlefish (CTF; 1.8 ± 0.1 mg g-1). The LC n-3 PUFA concentration of 333 

spider crab (SPI) was 1.0 ± 0.1 mg g-1, similar to those found in the great scallop (GSM) muscle 334 

(1.1 ± 0.1 mg g-1). Finally, the two oysters (OSP and OFC) and the scallop gonad (GSG) 335 

displayed concentrations of 3.2 ± 1.2 mg g-1, 2.7 ± 1.1 mg g-1, and 4.7 ± 1.2 mg g-1 respectively.  336 

Proportionally to their TFA content, the muscles of whiting (WTG), cuttlefish (CTF), squid 337 

(SQD), and scallop (GSM) were the items with the most important fraction of LC n-3 PUFA 338 

(upper than 45 % of TFA, Fig. 3, Table S2). The fraction of LC n-3 PUFA in the other species 339 

varied between 30.4 ± 5.3 % of TFA in mackerel (MKR) and 38.3 ± 2 % of TFA in John Dory 340 

(JDO). The only exception was surmullet (SRM), which contained the lowest LC n-3 PUFA 341 

relative proportion with only 21.4 ± 2.7 % of TFA.  342 
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EPA and DHA proportions, which represented an important part of the LC n-3 PUFA, varied 343 

with the proportion of LC n-3 PUFA on TFA (Fig. 3, Table S2). Globally, DHA concentrations 344 

were higher than EPA concentrations, except for oysters “Spéciale” (OSP), “Fine de Claire” 345 

(OFC) and spider crab (SPI). The DHA fraction ranged from 9.6 ± 1.3 % of TFA in surmullet 346 

(SRM), to 39.1 ± 2.8 % of TFA in whiting (WTG), while the EPA fraction varied from 4.2 ± 347 

0.6 % of TFA in dogfish (DOG) to 23.7 ± 1.6 % of TFA in spider crab (SPI). 348 

For the cupped oysters, the fraction of LC n-3 PUFA was higher in “Fine de Claire” (OFC; 35 349 

± 2.1% of TFA) than in “Spéciale” (OSP; 32.7 ± 1.8 % of TFA). The EPA fraction was not 350 

significantly different between these two brands, but the DHA fraction was higher in the oyster 351 

“Fine de Claire” (OFC; 15.2 ± 1.7 % of TFA) than in the “Spéciale” one (OSP; 13.2 ± 1.2 % of 352 

TFA). 353 

 354 

3.3. Risk and benefit assessment of seafood consumption, regarding fatty acid 355 

content 356 

The daily recommended portion of seafood varied logically according to the concentrations of 357 

EPA and DHA found in edible part of consumed species (Table 2). Among the seafood species 358 

analyzed, only five required more than 240 g of a portion to reach the 250 mg EPA + DHA 359 

daily dietary requirement (i.e. the common sole - SOL, the John Dory - JDO, the dogfish - 360 

DOG, the spider crab - SPI and the scallop muscle - GSM). Contrasting this, only 15.8 ± 19.6 361 

g of the mackerel (MKR), 19.1 ± 16.7 g of the surmullet (SRM), and 28.1 ± 10.0 g of the 362 

pilchard (PIL) were necessary to achieve the recommendation. 363 

The benefit of seafood consumption was assessed through the n-6/n-3 ratio, the AI and the TI 364 

calculations (Fig. 3, Table S3). The spider crab (SPI), the seabream (SBR), the common sole 365 

(SOL), and the surmullet (SRM) displayed the highest n-6/n-3 ratio (ranging from 0.28 ± 0.04 366 

to 0.33 ± 0.15), whereas the values for the other species ranged from 0.11 ± 0.01 (for the 367 

whiting; WTG) to 0.21 ± 0.08 (for the dogfish; DOG). Nonetheless, the pilchard (PIL; 0.10 ± 368 

0.02) and the two cephalopods (SQD; 0.04 ± 0.01 and CTF; 0.08 ± 0.02) had a n-6/n-3 ratio ≤ 369 

0.1. These three species also showed the highest AIs with 0.53 ± 0.07, 0.62 ± 0.03 and 0.45 ± 370 

0.03 for the pilchard, the squid and the cuttlefish, respectively. The lowest AIs were reported 371 

for the spider crab (SPI; 0.12 ± 0.01) and the whiting (WTG; 0.26 ± 0.01), while for the other 372 

species the AI ranged from 0.029 ± 0.05 (OFC) to 0.40 ± 0.04 (SBR). Concerning the TI, the 373 

spider crab (SPI), the whiting (WTG), the cuttlefish (CTF) and the muscle of the scallop (GSM) 374 
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displayed the lowest values (all equal to 0.06 ± 0.01). The other species had TI comprised 375 

between 0.07 ± 0.01 for the squid and 0.25 ± 0.02 for the surmullet. 376 

 377 

3.4. Trace element concentrations in seafood 378 

The trace element concentrations in edible tissues varied in seafood species from less than 0.001 379 

g g-1 for Ag, Cd, and Pb to more than 200 g g-1 for Zn (Fig. 4A and 4B, Table S4). For all 380 

species, the concentrations of non-essential trace elements were lower than the essential ones, 381 

with concentrations ranging such as Zn > Fe > As > Cu > Mn > Se > Ag > Hg > Cd, and Pb, 382 

based on the overall mean.  383 

The concentrations of non-essential trace elements, Ag and Cd, in the muscles of all fish and 384 

cephalopods, were under the limit of detection, and Pb was only significantly measured in the 385 

squid (SQD, 0.004 ± 0.001 g g-1). The highest concentration of Ag was measured in the cupped 386 

oysters “Spéciale” (OSP; 0.66 ± 0.52 g g-1) and “Fine de Claire” (OFC; 0.58 ± 0.68 g g-1) 387 

but was also found in both tissues of the great scallop (GSG; 0.19 ± 0.08 g g-1 and GSM; 0.006 388 

± 0.002 g g-1), and in the spider crab (SPI; 0.07 ± 0.02 g g-1). Cd was detected in the spider 389 

crab (SPI; 0.013 ± 0.003 g g-1) but oysters and scallops had the highest concentrations (OSP; 390 

0.27 ± 0.04 g g-1 > GSG; 0.19 ± 0.16 g g-1 > OFC; 0.18 ± 0.06 g g-1 > GSM; 0.16 ± 0.03 391 

g g-1). The gonad of the great scallop displayed the highest concentration of Pb (GSG; 0.15 ± 392 

0.17 g g-1), followed by the oysters, both “Fine de Claire” (OFC; 0.12 ± 0.03 g g-1) and 393 

“Spéciale” (OSP; 0.07 ± 0.02 g g-1). In a lesser extent, Pb was found in the spider crab (SPI; 394 

0.02 ± 0.003 g g-1) and in the muscle of the scallop (GSM; 0.009 ± 0.012 g g-1).  395 

The highest Hg concentrations were measured in the dogfish (DOG; 0.40 ± 0.12 g g-1) and the 396 

seabass (SBS; 0.29 ± 0.07 g g-1). The flesh of the other fish and cephalopod showed 397 

concentrations of Hg comprised between 0.03 ± 0.01 g g-1 in the pilchard (PIL) and 0.09 ± 398 

0.02 g g-1 in the seabream (SBR). The lowest Hg concentrations were measured in the bivalves 399 

(the both oyster brands and the both scallop tissues) with a maximum of 0.015 ± 0.003 g g-1 400 

found in the “Fine de Claire” oyster (OFC).  401 

Among the six essential trace elements studied, Cu, Mn and Zn were the most present in the 402 

bivalves, especially the oyster “Spéciale” (OSP) and the “Fine de Claire” (OFC) with 18.13 ± 403 

9.19 g g-1 and 9.68 ± 2.99 g g-1 of Cu, respectively, with 7.16 ± 1.87 g g-1 and 4.28 ± 1.83 404 

g g-1 of Mn, respectively, and with 211.7 ± 69.8 g g-1 and 208.6 ± 78.6 g g-1 of Zn, 405 

respectively. The results showed that the concentrations of Fe in the hake, the sole, the whiting, 406 
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and the John Dory were under the LOD, while the highest concentrations of this essential 407 

element were found in the gonad of the great scallop (GSG; 32.5 ± 17.8 g g-1) and in the 408 

oysters (OFC; 29.9 ± 6.6 g g-1 and OSP; 24.5 ± 3.4 g g-1). 409 

It is noteworthy that flesh of the dogfish (DOG) and the spider crab (SPI) displayed the highest 410 

concentrations of As, with 37.00 ± 9.31 g g-1 and 21.10 ± 3.05 g g-1, respectively. Finally, 411 

the spider crab (SPI) and the great scallop (GSG) displayed the most important concentration 412 

of Se, respectively 1.26 ± 0.16 g g-1 and 1.00 ± 0.24 g g-1.  413 

 414 

3.5. Risk and benefit assessment of seafood consumption regarding the trace 415 

element concentration 416 

The Maximum Safe Consumption (MSC) showed that the consumption of some species was 417 

narrowed by the concentrations of some trace elements, when others did not seem to be 418 

restrictive (Table 2). For all the seafood species studied, the MSCs indicated a safe intake of 419 

more than (i) 2.0 ± 0.4 kg per day with respect to the Cu and Fe concentrations in the edible 420 

tissues, (ii) 6.7 ± 1.0 kg per month regarding to the Cd, and (iii) 15.0 ± 3.0 kg per week regarding 421 

to the Pb. The concentrations of Hg were those limiting the most the weekly consumption of 422 

the John Dory at 0.87 ± 1.49 kg, the European seabass at 0.40 ± 0.10 kg, and the dogfish at 0.29 423 

± 0.07 kg. Considering the As concentration, the daily MSCs varied between a consumption of 424 

0.03 ± 0.01 kg of dogfish, and 0.05± 0.01 kg of spider crab, to 1.15 ± 0.50 kg of Atlantic 425 

mackerel. Regarding to the Zn concentration, the daily MSCs of the fish, the cephalopods, and 426 

the muscle of the great scallop were upper than 2.75 ± 0.40 kg, when MSCs were 0.67 ± 0.05 427 

kg for the spider crab, 0.80 ± 0.30 kg for the gonad of the great scallop, 0.25 ± 0.09 kg for the 428 

oyster “Fine de Claire”, and 0.24 ± 0.09 kg for the oyster “Spéciale”. 429 

 430 

4. Discussion 431 

 432 

The consumption of seafood leads to the intake of beneficial and detrimental molecules or 433 

elements. This study demonstrates that the concentrations of essential and/or non-essential trace 434 

elements, as well as of fatty acids, including LC n-3 PUFA, strongly differed among the 435 

different species sampled in the Pertuis Charentais for this study, and were not correlated (Fig. 436 

1). In response to a lack of local data on the seafood quality in one of the most productive and 437 

touristic European coastal area, a non-exhaustive baseline and discussion of the risks and 438 

benefit for local consumers is presented. 439 
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 440 

4.1. Variations in fatty acid contents among seafood species 441 

For human diet, the highest fish quality in terms of FAs is reflected by a low TFA content, a 442 

high quantity of LC n-3 PUFAs, combined with a low content of undesirable FAs, especially 443 

saturated FAs, like 14:0 and 16:0, that are considered highly atherogenic (Abrami et al., 1992). 444 

Considering the TFA content, this study shows that, not surprisingly, the Atlantic mackerel and 445 

the surmullet can be considered as fat fish, with TFA concentrations comprised between 80 and 446 

100 mg g-1 (Ackman, 1990; Médale, 2009; Sirot et al., 2008). Conversely, the other fish species 447 

as well as crustaceans, cephalopods, bivalves are considered as intermediaries (25 < TFA < 80 448 

mg g-1) or lean species (TFA < 25 mg g-1). Surprisingly, the European pilchard which is usually 449 

considered a fat fish, has in this study a TFA concentration of 28.3 ± 7.2 mg g-1, placing it in 450 

the group of intermediaries. The lipid content of muscle tissue of fat species can fluctuate 451 

according to age, sexual cycle, trophic ecology, or environmental factors, such as temperature 452 

(Médale et al., 2009). As an illustration, pilchard caught in November in the Bay of Biscay 453 

displayed a lower energy density than fish from the English Channel. This may result from 454 

contrasted regional zooplankton productivity and delay in the spawning period (Gatti et al., 455 

2018) that occurs later in autumn (October-November) in the Biscay (Coombs et al., 2006). 456 

More generally, the unique sampling season in winter showed a temporal shot of the lipid 457 

composition of marine resources, hiding seasonal variations, including the effect of 458 

environmental factors on life history traits, that could be significant in fat species (Sirot et al., 459 

2008). Thus, designation of the pilchard of the present study as intermediary fish may be partly 460 

attributed to the sampling of post-spawning individuals depleted in TFA (Aidos et al., 2002).  461 

The TFA quantity determined in the edible parts of the species does not necessarily inform 462 

about the quality of the FAs profile, including the LC n-3 PUFA relative TFA proportion (Fig. 463 

3). The consumption of fat fish such as mackerel and surmullet implies the intake of a high LC 464 

n-3 PUFA content, but also an enhanced intake of other PUFAs, monounsaturated FAs 465 

(MUFAs), and saturated FAs (SFAs). Contrasting to this, the consumption of lean species such 466 

as cuttlefish, squid, and whiting brings an optimal LC n-3 PUFA intake relative to TFA content, 467 

and in turn, a lower intake of SFA, making these species qualitatively and relatively more 468 

beneficial (Abrami et al. 1992). A PUFA/SFA dietary ratio below 0.45 have been often 469 

considered undesirable for the human diet because of their potential to increase cholesterol 470 

concentrations in the blood (Zhang et al., 2020, Ospina et al., 2012). In the present study, this 471 

ratio ranged from 0.88 to 3.07 (mean ± SD: 1.67 ± 0.40, results not shown), indicating that all 472 
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species seems beneficial in terms of PUFA proportion supply, while they provide a great 473 

disparity of quality with respect to their SFA relative proportion. 474 

In this study, LC n-3 PUFAs are predominantly composed of EPA and DHA. The higher 475 

EPA+DHA proportion with respect to the TFA content, the greater the quality of the dietary 476 

lipid source for human diet (Abrami et al., 1992). These FAs are both the main structural 477 

components of human cell membranes, but they do not play the same physiological role: EPA 478 

is mainly involved in immune function and response to stress, while DHA is mostly involved 479 

in the development and function of nervous system and brain, as well as in cardiovascular 480 

function (Narayan et al., 2006). The present study shows that bivalves, crustaceans, and to a 481 

lesser extent, cephalopods, are a greater source of EPA than fish, while DHA is supplied 482 

similarly by all taxonomic groups, except by the spider crab, the oysters and the surmullet, 483 

which showed the lowest DHA proportion. While it has recently been observed that the 484 

EPA/DHA ratio can vary spatially and temporally within a species, and even be reversed, 485 

depending on many factors (trophic in particular, in Sardina pilchardus, F. Le Grand, pers. 486 

com), these results demonstrate the necessity to diversify the consumption of seafood items to 487 

allow complete and beneficial intakes, and to optimize the lipid profile for human consumption.   488 

 489 

4.2. Risk and benefit assessment regarding to the fatty acid composition 490 

Quantitatively, the daily requirement of EPA + DHA has been established at 250 mg, by the 491 

JECFA (Joint FAO/WHO Expert Committee on Food Additives). Considering this, a serving 492 

of 150 g (usual portion size) of the richest EPA and DHA species (i.e. Atlantic mackerel, 493 

surmullet, pilchard, meagre, hake, seabass, squid, cuttlefish, oysters, and even the whiting) is 494 

enough to reach this recommendation. Noteworthy, a serving of 4-5 scallops (~ 130 g including 495 

~100 g of muscles and ~30 g of gonads) contributes to 94% of the daily requirement of EPA + 496 

DHA. However, more than one serving of 150 g of the poorest ones (i.e. spider crab, John Dory, 497 

common sole and dogfish) are necessary (i.e. 275 ± 39 g, 270 ± 120 g, 355 ± 205 g and 391 ± 498 

62 g for these 4 species respectively). Obviously, the recommendations may vary depending on 499 

the target population: for example, the requirements for pregnant, breastfeeding women, or 500 

elderly would be higher (daily requirement of 300 mg of EPA + DHA; FAO/WHO, 2010), due 501 

to the beneficial effects of EPA and DHA on the development of infants or on the decline in 502 

the onset of cardiovascular disease (Hellberg et al., 2012; Ruxton et al., 2004). Therefore, these 503 

populations should preferably eat mackerel, surmullet, pilchard, meagre, great scallop with 504 
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gonads, hake, seabass, squid, or even cupped oyster “Spéciale” because a serving of these 505 

species is sufficient to achieve their daily requirement. 506 

It is noteworthy that the daily recommended portion for mackerel, sardine and surmullet showed 507 

a high variability directly linked to the high inter-individual variability in their FA content. The 508 

sampling winter season is a period of spawning for sardine and mackerel in the Bay of Biscay 509 

(Alheit et al., 2010). Reproductive status (i.e. gonad maturation stage, pre- or post-spawning 510 

status) and sex (and thus the reproductive investment of energy and nutrient in gametes 511 

production) could directly modulate the FA content, including EPA and DHA, among 512 

individuals (Garrido et al., 2007; Caponio et al., 2004). These results raise again the question 513 

of seasonal variability of the resources quality and its associated benefit for human consumers 514 

with respect to the biology of targeted species.  515 

 516 

Western diets are known to be deficient in n-3, and have excessive amount of n-6 (ratio n-6/n-517 

3 between 15:1 and 40:1), while the healthy ratio of n-6/n-3 in the human diet is recommended 518 

to be between 1:1 and 4:1 (Simopoulos et al., 2000; Simopoulos, 2003). This imbalance is due 519 

to a reduced intake of fish, combined with an excessive amount of vegetable oils rich in linoleic 520 

acid (LA; 18:2n-6) (Simopoulos, 2002, 2006). The n-3 and n-6 PUFAs compete for the same 521 

enzymes for eicosanoid synthesis, but do not have the same role: n-3 PUFA-derived metabolites 522 

have an anti-inflammatory effect, while n-6 PUFA-derived metabolites may have an 523 

inflammatory effect (for a review, see Stupin et al. 2019). If the eicosanoid metabolic products 524 

from n-6 PUFAs, such as arachidonic acid (20:4n-6) are formed in larger quantities than those 525 

formed from EPA (20:5n-3), they will contribute to the formation of thrombus and atheromas, 526 

allergic and inflammatory disorders, and cell proliferation. The higher the n-6 /n-3 ratio, the 527 

higher the death rate from cardiovascular disease (Simopoulos, 1991, 2006). In this study, the 528 

ratios were all much lower than the maximum 4:1 recommended, indicating that the sampled 529 

seafood can therefore help to reduce the gap in the total diet by the intake of n-3 PUFA and 530 

thus, help to stave off the cardiovascular or inflammatory diseases (Simopoulos, 2002). 531 

However, this ratio might lead to simplistic dietary advice, as it does not consider the intake of 532 

specific FAs. As mentioned earlier, the highest fish quality is reflected by a simultaneous low 533 

TFA content, a high quantity of LC n-3 PUFAs (especially EPA and DHA), as well as a low 534 

content of undesirable FAs (i.e. SFA, MUFA and n-6 FA; Abrami et al., 1992). For that reason, 535 

the AI and TI indices based on functional effects of FAs were also employed in this study to 536 

conduct a comprehensive evaluation of the nutritional quality of the studied species.  537 
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The AI and TI indices are related to the atherogenicity and thrombogenicity of saturated FAs, 538 

such as 16:0 or 18:0. Higher the AI and TI values, higher the platelet aggregation and 539 

subsequent thrombus and atheroma formation in the cardiovascular system (Valfré et al., 2003). 540 

Among the fish sampled in this study, the whiting and the pilchard can be considered as the two 541 

most beneficial fish species for the human diet: they both have the lowest n-6/n-3 ratio. 542 

Moreover, the whiting, which is a lean fish with high LC n-3 PUFA fraction, presented the 543 

lowest AI and TI indices and covers the EPA+DHA supply in one single meal. In contrast, the 544 

pilchard, considered as a fat fish with a lower LC n-3 PUFA proportion is a 5-fold higher source 545 

of DHA and EPA, but it presented the highest AI among fish, and one of the highest TI among 546 

the studied species. The surmullet, despite providing a high EPA+DHA supply, considered as 547 

fat with the lowest LC n-3 PUFA and DHA fraction on TFA, has the highest n-6 /n-3 ratio and 548 

the highest TI value, indicating a lower beneficial intake of this species. Concerning other taxa 549 

studied here, the squid and the cuttlefish could be considered as beneficial, as they are lean 550 

species presenting a high proportion of LC n-3 PUFA (including DHA and EPA), the lowest n-551 

6/n-3 ratio, a low TI, while they also stand out with the highest AI.  552 

 553 

4.3. Variation factors of trace element concentrations 554 

The concentration of trace elements varied widely between species, and usually depend on (i) 555 

the accumulation pathways (accumulation through contaminated prey consumption versus 556 

seawater dissolved contaminant bioconcentration), (ii) the individual characteristics (e.g. sex, 557 

age), as well as (iii) environmental conditions (i.e. seawater temperature) (Rainbow, 1997; 558 

Sokolova & Lannig, 2008). The high trace element concentrations found in bivalves is linked 559 

to the presence of gills, digestive gland, and gonads, that are known to efficiently concentrate 560 

trace elements (Bustamante & Miramand, 2004; Metian et al., 2008) in the edible tissues (El 561 

Moshely et al., 2014; Ersoy & Çelik, 2009; Geffard et al., 2001). Also, the gonads of scallop 562 

are 1.2-fold more concentrated in Cd to 36-fold more concentrated in Ag than their muscle 563 

tissue. Thus, seafood consumed as a whole organism contributes globally much more than 564 

muscular flesh of fish, cephalopods and crustaceans to trace elements (except Hg) intake for 565 

consumers. Secondly, the filter-feeders such as cupped oysters tend to accumulate more trace 566 

elements than other species because they directly filter large volumes of water that can be rich 567 

in trace elements from suspended particulate matter (El-Moselhy et al., 2014). Interestingly, 568 

the concentration of Cd, Cu, Fe, Mn, and Pb vary significantly among the two brands of cupped 569 

oysters and may be attributed to different farming methods. While the oyster “Spéciale” grows 570 
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up in the open ocean, the “Fine de Claire” finishes its growth in shallow clay ponds in marshes 571 

dependent on the arrival of freshwater from the watershed with the presence of navicular 572 

microalgae greening the oysters from Marennes-Oléron area. Our results raised the question of 573 

the influence of these contrasting environmental conditions on the trace element concentrations 574 

in cultured oysters.  575 

It is noteworthy that muscle of carnivorous fish, cephalopods and crustaceans displayed higher 576 

concentrations in Hg than bivalves, consistent with Hg biomagnification along the trophic webs 577 

(e.g. Storelli et al., 2007; Coelho et al., 2010; Ersoy & Çelik, 2009), and to the tropism of 578 

methylmercury (MeHg) that binds tightly to the sulfhydryl groups of muscular proteins (Bloom, 579 

1992). Thus, seabass showed the second highest Hg concentrations (0.289 ± 0.071 µg g-1), due 580 

to its high trophic position (e.g. Chouvelon et al., 2012). Surprisingly, the Hg concentrations in 581 

the meagre, i.e. a predator in the same trophic position, remained relatively low in comparison 582 

(0.065 ± 0.007 µg g-1). Although seabass and meagre individuals were of similar size (475 ± 12 583 

mm and 431 ± 11 mm, respectively), the meagre specimens were considered younger than 584 

seabass ones (1 yr vs. 5-6 yr old, respectively). Hg concentrations tend to increase with fish age, 585 

generally proxied by size (Storelli et al., 2007; Abreu et al., 2000; Chouvelon et al., 2012), as 586 

a result of a longer dietary exposure and a poor excretion of assimilated Hg. In addition, young 587 

meagre display a trophic regime based on crustaceans, i.e. poor Hg prey (Hubans et al., 2017) 588 

before switching towards a piscivorous diet (i.e. Hg enriched fish prey), limiting again the Hg 589 

intake in these individuals. These results raise the question of maximum Hg concentrations 590 

recorded in bigger seabass and meagre that could be usually found in seafood markets. In 591 

addition, the dogfish showed the highest Hg concentrations, as already observed in the literature 592 

(Storelli et al., 2005a; Chouvelon et al., 2012). This species, such as other benthic species living 593 

in close association with sediment in which they bury and from where they mainly feed, is more 594 

exposed to Hg and MeHg sediment-associated contamination than pelagic species (Storelli et 595 

al., 2003c; 2006a). Nevertheless, the general higher Hg concentrations found in 596 

Chondrichthyan in comparison with Actinopterygian suggest the influence of metabolic factors, 597 

such as specific detoxication mechanisms (Chouvelon et al., 2012). 598 

Finally, it is worth noting that the highest As concentrations were found in benthic and 599 

nektobenthic species, i.e. the dogfish, the spider crab, the common sole, the seabream, the 600 

surmullet and the cuttlefish. These values are comparable to those reported in previous studies 601 

for marine benthic species (Storelli et al., 2005a; Sirot et al., 2009). Such concentrations likely 602 

result from their diet based on bottom living invertebrates (Storelli et al., 2005a; Wu et al., 603 
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2014), which are enriched by the As trapped in sediment. They also confirm that seafood is an 604 

important source of As in human diet. Indeed, in France, seafood contributes to more than 60% 605 

of the total dietary As supply (Leblanc et al., 2006). 606 

 607 

4.4. Risk and benefit regarding to the presence of trace elements 608 

The International and European Regulation publishes the maximum concentrations (i.e. 609 

maximum permissible levels) of Cd, Hg and Pb that regulates the commercialization and 610 

consumption of seafood (EFSA, 2014). These limits established differ among taxa and species. 611 

Regarding Cd, the concentrations could not exceed 0.5 µg g-1 in crustaceans and 1.0 µg g-1 in 612 

bivalves and cephalopods. In fish muscle, Cd is permitted at a maximum of 0.25 µg g-1 in 613 

pilchard, 0.1 µg g-1 in mackerel and 0.05 µg g-1 in the other species (EC, 2014). None of the 614 

individual samples analyzed in this study exceed these limits, with the exception of one scallop 615 

gonad that reached 0.52 µg g-1. Concerning Hg, the highest concentration found in dogfish (i.e. 616 

0.60 µg g-1) is well below the maximum levels of 1 µg g-1 permissible for sharks. Likewise, the 617 

seabass individual displaying a Hg concentration of 0.39 µg g-1 in muscle did not exceed the 618 

0.5 µg g-1 threshold fixed for fish (EC, 2008; EC, 2011). Finally, the value of 0.61 µg g-1 Pb 619 

recorded in scallop gonad is also below the maximum levels of 1.5 µg g-1 authorized for 620 

bivalves (EC, 2015). 621 

 While seafood is a well-recognized source of proteins and FAs for humans, it also 622 

contributes to the chronic intake of potentially harmful trace elements leading the JECFA to 623 

establish endpoints representing the permissible human daily, weekly or monthly exposure to 624 

both essential and non-essential elements, i.e. As, Cd, Cu, Fe, Hg, Pb, and Zn. Based on these 625 

recommendations, the calculations of the maximum safe consumption (MSC) indicate a safety 626 

intake with respect to essential Cu, Fe and Zn allowing fish and cephalopod meals of more than 627 

3 kg per day until reaching the established limits. It is noteworthy that frequent seafood 628 

consumers could still reach the MSC for Zn when eating ~ 240 g of oyster flesh that corresponds 629 

approximatively to two dozen of oysters. In addition, the very high MSCs for Cd and Pb 630 

highlighted that local seafood is safe for consumers with respect to these both non-essential 631 

metals.  632 

Although it is assumed that As plays an essential role for human health (Mayer et al., 1993), 633 

the JECFA established a PTWI at 15 µg kg-1 bw, limiting at first glance the consumption of 634 

seabream, common sole, dogfish, surmullet, cuttlefish, and spider crab to less than one portion 635 

per week (< 150 g). However, this recommendation refers to the toxicity of the inorganic As 636 
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(Ansari et al., 2004; Hughes, 2002; Neff, 1997), whereas As found in marine organisms are 637 

predominantly organic arsenical compounds (i.e. arsenobetaine) known to be far less toxic 638 

(Borak & Hosgood, 2007; EFSA, 2009; Olmedo et al., 2013b). Seafood should be thus 639 

considered safe for consumers, whereas there is still a lack of data on toxicity of some organic 640 

compounds, e.g. As-sugars found in seaweeds, bivalves and crustaceans, and their metabolites 641 

produced during the digestive process (Taylor et al., 2017). 642 

This previous point highlights that regulation and recommendation with respect to 643 

contaminated seafood is based on the total concentration of contaminant and does not consider 644 

its metabolic bioavailability in tissue. Indeed, the subcellular distribution of metals in cytosolic 645 

(i.e. metal free in the cytosol) and organelles fractions (e.g. metal bound to metalloproteins, or 646 

entrapped in metal rich-granules) drives the proportion of elements available for absorption at 647 

the intestinal level, defined as bioaccessibility for consumers (Wallace and Luoma, 2003). 648 

Experimental work demonstrated that the bioaccessible fraction rarely exceed 80% of the total 649 

concentration for Zn and ranged from 50 to 90% for Cd in raw mussels and oysters (Metian et 650 

al., 2009; Gao and Wang, 2014). Consequently, this oral bioaccessibility could help unravel 651 

risk associated with consumption of contaminated seafood (Gao and Wang, 2014).  652 

Finally, Hg remains the element of most concern for consumers, and more particularly the 653 

MeHg which is the dominant and toxic form in seafood (Andersen & Depledge, 1997; Storelli 654 

et al., 2005b). The MSCs calculated on the basis of the PTWI of 1.6 µg kg-1 bw of MeHg 655 

(JECFA) highlighted that less than 400 g (i.e. lower than three portions, ~ 450 g) per week for 656 

the European seabass, as well as for the dogfish is enough to exceed a safety intake. Thus, the 657 

consumption of these two species may be at risk for high seafood consumers, also considering 658 

that the Hg intake might be enhanced when bigger seabass (> 1 kg) are eaten. The essential 659 

metal Se is known as a protective antagonist against Hg toxicity (e.g. Burger & Gochfeld., 660 

2011), implying that the Se:Hg molar ratios exceeding 1 are protective for adverse Hg effects 661 

(Ralston, 2008). The flesh of dogfish and seabass displayed Se in excess in relation to Hg with 662 

Se:Hg ratios of 2.6 ± 0.9 and 4.1 ± 1.3, respectively (data not shown), but these values are the 663 

lowest compared to those of the other foodstuffs that have a ratio between 13 and 206 (i.e. 664 

mackerel and scallop gonad, respectively). Even if the mechanisms of Hg toxicity neutralization 665 

by Se are clearly known for consumers, these results might indicate the nutritional importance 666 

of seafood that would provide enough Se benefit to balance the Hg harm (Ralston, 2008).  667 

 668 

4.5.  Application to a concrete case 669 
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Literature reports that MeHg can counteract the cardioprotective effects of fish consumption 670 

(Guallar et al., 2002; Salonen et al., 1995) mainly brought by the LC n-3 PUFAs. Considering 671 

simultaneously the LC n-3 PUFA and Hg concentrations, two constituents that have a 672 

mechanistic basis for influencing cardiovascular outcome, the present analysis makes one to 673 

use an index integrating these two parameters in the same calculation to illustrates both the risk 674 

and benefit of seafood consumption. In this line, the index of net risk/benefit for cardiovascular 675 

endpoints was calculated on a species-specific basis according to Ginsberg & Toal (2009). The 676 

method subtracts risk of adult cardiovascular heart disease due to MeHg (23% higher risk/1 677 

ppm hair Hg) from the benefit thanks to PUFA (14.6% lower risk/100 mg EPA+DHA). The 678 

calculated index for each species (Fig. 5) showed that the relative risk of consumption increases 679 

for species with the highest Hg concentrations, i.e. the lesser-spotted dogfish and the European 680 

seabass. Surprisingly, the consumption of seabass provides very little benefit, even if consumed 681 

as a single portion per week. Fat species, like the Atlantic mackerel or the surmullet seem to 682 

provide the best benefit because of their high LC n-3 PUFA concentrations and their low Hg 683 

concentrations. However, this index must be considered carefully, as it does not consider the 684 

proportion of LC n-3 PUFAs, nor the specific functional role of FAs, making it contradictory 685 

to the n-6/n-3 ratio or AI and TI index that could count down the benefit. This is particularly 686 

evident concerning the surmullet that we have previously considered not to be beneficial 687 

considering only their FA composition and the calculation derived therefrom. 688 

 689 

5. Conclusion 690 

 691 

The present study highlights the benefit and risks of consuming different seafood varieties from 692 

the “Pertuis charentais” area of France, a well-known region for seafood production in Europe.  693 

In terms of the FA profile, all species presented a PUFA/SFA ratio, as well as a n-6/n-3 ratio 694 

much lower than the threshold from which the rate of cholesterol and cardiovascular disease 695 

increase. Considering all of the FA indicators measured in this study, whiting and pilchard 696 

appear as the most beneficial fish species for the human diet, while the surmullet is least 697 

advantageous. However, using an index that integrates the relative risk due to Hg content, the 698 

surmullet and mackerel appear as the seafood with the best effects on the prevention of 699 

cardiovascular disease in adults. Overall, the concentration of trace elements with respect to 700 

seafood safety recommendations, are such that significant amounts of seafood can be safely 701 

eaten on a daily or weekly basis. Yet, levels of Hg in dogfish and seabass can become a concern 702 
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for frequent seafood consumers (> three meals a week), confirming that diversity in seafood is 703 

key for consumers to optimize the benefit of seafood resources. 704 

It is important to note that the risk/benefit assessment for the seafood consumers is strongly 705 

believed to vary with season as the lipid content and trace element concentrations may depend 706 

on the nutrient availability, the physiological and the reproductive status of marine organisms 707 

(Aidos et al., 2002;  Lozano-Bilbao et al., 2020). It is also necessary to consider food 708 

preparation, as cooking is known to i) damage the LC n-3 PUFAs (Türkkan et al., 2008, 709 

Gladyshev et al., 2006, Sardenne et al., 2021), and ii) decrease the bioaccessibility of trace 710 

elements (He & Wang, 2011; Houlbrèque et al., 2011), including the levels of other organic 711 

contaminants (i.e. PCBs, PAHs). In addition, heightened anthropogenic activities may be 712 

responsible for increased trace elements concentrations including other contaminants such as 713 

persistent organic pollutant (e.g. DDT or PCBs) in the environment (Storelli, 2008). Also, 714 

global change, through warming, acidification or deoxygenation alter the assemblages and 715 

physiology of marine microalgae, leading to an overall reduction in the production of LC n-3 716 

PUFAs at the base of the marine food web (Galloway, 2015, Hixson and Arts 2016). This may 717 

have consequences on upper trophic organisms, including seafood species and humans, that 718 

may be unable to synthesize these molecules (Hixson & Arts, 2016; Pethybridge et al., 2015). 719 
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Table 1. Scientific and common names, acronym, number (n), length (mm, mean ± SD) and weight (g, mean ± SD), date of procurement of the 

studied organisms: fish, crustaceans, cephalopods, bivalves from fisheries (white lines) and bivalves from aquaculture (grey lines). 

 

afork length, bmantle length, ccarapace length, dshell length, esoft tissue weight (without the shell), f individuals were bought gutted, g individuals were bought not 

gutted, hentire individuals was bought. * The Genus Crassosstrea was preferred to Magallana in these study because of the current controversy about the designation 

of the species (Bayne et al., 2017). 

Taxa Order Scientific name Common name Acronym n Length (mm) Weight (g) 
Date of 

procurement Comment 

Fish 

Clupeiformes Sardina pilchardus European pilchard PIL 10 170 ± 9 a 53 ± 10 11/2018 not gutted g 

Gadiformes Merluccius merluccius European hake HAK 9 434 ± 29 a 538 ± 116 11/2018 gutted f 

Gadiformes Merlangius merlangus Whiting WTG 10 316 ± 16 a 240 ± 32 11/2018 gutted f 

Perciformes Scomber scombrus Atlantic mackerel MKR 10 245 ± 20 a 142 ± 33 11/2018 not gutted g 

Perciformes Spondyliosoma cantharus Black seabream SBR 10 220 ± 15 a 280 ± 24 02/2019 not gutted g 

Perciformes Dicentrarchus labrax European seabass SBS 10 475 ± 12 a 1223 ± 128 11/2018 not gutted g 

Perciformes Argyrosomus regius Meagre MGR 10 431 ± 11 a 820 ± 55 11/2018 not gutted g 

Perciformes Mullus surmuletus Surmullet SRM 10 227 ± 10 a 206 ± 37 11/2018 not gutted g 

Pleuronectiformes Solea solea Common sole SOL 10 302 ± 8 a 223 ± 39 11/2018 not gutted g 

Zeiformes Zeus faber John Dory JDO 10 362 ± 21 a 620 ± 159 11/2018 gutted f 

Carcharhiniformes Scyliorhinus canicula Lesser-spotted dogfish DOG 5 641 ± 199 a 1149 ± 117 02/2019 not gutted g 

Crustacean Decapoda Maja brachydactyla 
Atlantic spinous spider 

crab 
SPI 5 139 ± 4 c 693 ± 66 11/2018 not gutted g 

Cephalopod 
Myopsida Loligo vulgaris European squid SQD 10 214 ± 17 b 241 ± 34 11/2018 not gutted g 

Sepiida Sepia officinalis Common cuttlefish CTF 10 106 ± 7 b 159 ± 38 11/2018 not gutted g 

Bivalve 
 

Ostreida 
Crassostrea gigas * 
"Fine de Claire" (green) 

Cupped oyster OFC 20 / 8 ± 2 e 02/2019 full h 

Ostreida 
Crassostrea gigas * 

"Spéciale" 
Cupped oyster OSP 20 / 8 ± 1 e 02/2019 full h 

Pectinida Pecten maximus (gonad) Great Atlantic scallop GSG 10 111 ± 4 d 3 ± 1 02/2019 full h 

Pectinida Pecten maximus (muscle) Great Atlantic scallop GSM 7 111 ± 5 d 9 ± 2 02/2019 full h 
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Table 2. Daily recommended species consumption (in g wet weight per day, mean ± SD) based on the eicosapentaenoic acid (EPA) + the 

docosahexanoic acid (DHA) requirement (250 mg per day) by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) (FAO/WHO, 

2008), considering EPA and DHA concentrations of each studied species (see Table S1 for the EPA and DHA content of each species) and 

Maximum Safe Consumption (MSC) of trace elements concentrations (expressed in kg per month for Cd; in kg per week for As, Hg, and Pb; in kg 

per day for Cu, Fe, and Zn), based on provisional tolerable daily, weekly or monthly intake of studied species recommended for an adult of 70 kg 

body weight. 
 

 
EPA + DHA Non-essential trace elements Essential trace elements 

Taxa Species Daily recommended consumption MSCCd MSCHg MSCPb MSCAs MSCCu MSCFe MSCZn 

Fish 

Atlantic mackerel 15.8 ± 19.6 1224 1.6 1152 1.150 46 12 10 

Black seabream 156.7 ± 29.0 1576 1.3 1172 0.141 81 23 9.1 

Common sole 354.5 ± 204.5 1540 1.6 1540 0.106 68 22 11 

European hake 68.7 ± 21.8 1758 3.4 1758 0.548 105 64 12 

European pilchard 28.1 ± 10.0 1235 4.8 1096 0.416 33 5.3 8.7 

European seabass 76.1 ± 45.4 1594 0.402 1594 1.340 77 26 11 

John Dory 269.5 ± 119.7 1571 0.874 1571 1.240 72 24 11 

Lesser-spotted dogfish 390.8 ± 62.2 1137 0.294 1351 0.030 114 24 4.4 

Meagre 61.4 ± 8.8 1601 1.8 1601 0.838 81 29 11 

Surmullet 19.1 ± 16.7 1310 1.6 1168 0.163 65 21 11 

Whiting 152.0 ± 20.3 1336 39 1197 0.331 42 9.7 9.4 

Crustaceans Atlantic spinous spider crab 274.8 ± 39.1 142 2.4 98 0.051 6.8 21 0.673 

Cephalopods 
Common cuttlefish 145.8 ± 10.9 1574 4.2 1574 0.116 25 33 3.7 

European squid 81.0 ± 21.5 1450 2.6 458 0.245 27 21 3.6 

Bivalves 

Cupped oyster « Fine de 

Claire » 
131.9 ± 92.8 11 8.0 15 0.310 3.9 2.0 0.246 

Cupped oyster « Spéciale » 106.8 ± 68.8 6.7 8.4 28 0.353 2.5 2.3 0.239 

Great Altantic scallop 

(gonad) 
62.0 ± 19.0 17.8 9.8 26 0.408 14 2.4 0.799 

Great Atlantic scallop 

(muscle)  
242.8 ± 22.3 11.2 11 394 0.653 78 14 2.75 
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Figure Captions 

 

Figure 1. PCA-derived projection of variables and individuals. Variables were defined as the 

concentrations of Ag, As, Cd, Cu, Fe, Hg, Mn, Pb, Se, and Zn (all expressed of g g-1 wet weight) and the 

concentrations of total fatty acids (TFA), long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), EPA, 

and DHA (all expressed in mg g-1 wet weight) in edible parts of fishes, crustacean, cephalopods and 

bivalves. A) Correlation circle showing the distribution of each variables on the first two components and 

B) Grouping of all individuals by species (acronym indicated in the white rectangle) on the first two 

components. Studied species were: for fishes: DOG (lesser-spotted dogfish, n = 5), HAK (European hake, 

n = 9), JDO (John Dory, n = 10), MGR (meagre, n = 10), MKR (Atlantic mackerel, n = 10), PIL (European 

pilchard, n = 10), SBR (black seabream, n = 10), SBS (European seabass, n = 10), SOL (common sole, n = 

10), SRM (surmullet, n = 10), WTG (whiting, n = 10); for crustacean: SPI (Atlantic spinous spider crab, n 

= 5); for cephalopods: CTF (common cuttlefish, n = 10), SQD (European squid, n = 10); for bivalves: GSG 

(great Atlantic scallop gonad, n = 7), GSM (great Atlantic scallop muscle, n = 6), OFC (cupped oyster 

« Fine de Claire », n = 10), OSP (cupped oyster « Spéciale », n = 10). 

Figure 2. Total fatty acid (TFA, total histogram bars) concentrations (mg g-1 wet weight) composed of LC 

n-3 PUFA (in light grey), others PUFAs (in grey) and others fatty acids (in black) comprising saturated 

fatty acids, monounsaturated fatty acids, branched fatty acids, and dimethyl acetal fatty acids in edible parts 

of fishes (blue), crustacean (purple), cephalopods (yellow) and bivalves (red). Studied species were: for 

fishes: DOG (lesser-spotted dogfish, n = 5), HAK (European hake, n = 9), JDO (John Dory, n = 10), MGR 

(meagre, n = 10), MKR (Atlantic mackerel, n = 10), PIL (European pilchard, n = 10), SBR (black seabream, 

n = 10), SBS (European seabass, n = 10), SOL (common sole, n = 10), SRM (surmullet, n = 10), WTG 

(whiting, n = 10); for crustacean: SPI (Atlantic spinous spider crab, n = 5); for cephalopods: CTF (common 

cuttlefish, n = 10), SQD (European squid, n = 10); for bivalves: GSG (great Atlantic scallop gonad, n = 7), 

GSM (great Atlantic scallop muscle, n = 6), OFC (cupped oyster « Fine de Claire », n = 10), OSP (cupped 

oyster « Spéciale », n = 10). 

 

Figure 3. Clustered heatmap showing LC n-3 PUFA/TFA, EPA/TFA, DHA/TFA, n-6/n-3 ratio, 

atherogenic (AI) and thrombogenic (TI) indices in edible parts of fishes, cephalopods, crustacean and 

bivalves. Studied species were: for fishes: DOG (lesser-spotted dogfish, n = 5), HAK (European hake, n = 

9), JDO (John Dory, n = 10), MGR (meagre, n = 10), MKR (Atlantic mackerel, n = 10), PIL (European 

pilchard, n = 10), SBR (black seabream, n = 10), SBS (European seabass, n = 10), SOL (common sole, n = 

10), SRM (surmullet, n = 10), WTG (whiting, n = 10); for cephalopods: CTF (common cuttlefish, n = 10), 

SQD (European squid, n = 10); for crustacean: SPI (Atlantic spinous spider crab, n = 5); for bivalves: GSG 

(great Atlantic scallop gonad, n = 7), GSM (great Atlantic scallop muscle, n = 6), OFC (cupped oyster 

« Fine de Claire », n = 10), OSP (cupped oyster « Spéciale », n = 10). For all indices, the higher the value, 

the darker the green. 

 

Figure 4. Boxplots showing A) non-essential (Ag, Cd, Hg, and Pb) and B) essential (As, Cu, Fe, Mn, Se, 

and Zn) trace element concentrations (expressed in µg g-1 wet weight) in edible parts of fishes (blue), 

crustaceans (purple), cephalopods (yellow) and bivalves (red). Studied species were: for fishes: DOG 

(lesser-spotted dogfish, n = 5), HAK (European hake, n = 9), JDO (John Dory, n = 10), MGR (meagre, n = 

10), MKR (Atlantic mackerel, n = 10), PIL (European pilchard, n = 10), SBR (black seabream, n = 10), 

SBS (European seabass, n = 10), SOL (common sole, n = 10), SRM (surmullet, n = 10), WTG (whiting, n 

= 10); for crustaceans: SPI (Atlantic spinous spider crab, n = 5); for cephalopods: CTF (common cuttlefish, 

n = 10), SQD (European squid, n = 10); for bivalves: GSG (great Atlantic scallop gonad, n = 10 except for 

Hg n = 9 and for Mn, and Zn n = 8), GSM (great Atlantic scallop muscle, n = 7 except for Zn n = 6), OFC 

(cupped oyster « Fine de Claire », n = 10), OSP (cupped oyster « Spéciale », n = 10). Non-parametric 
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Kruskal-Wallis tests showed for all elements p-values < 0.05 (Ag: 2 = 33.749, df = 4; Cd: 2 = 20.791, df 

= 4; Hg: 2 = 143.54, df = 17; Pb: 2 = 41.48, df = 5; As: 2 = 150.75, df = 17; Cu: 2 = 155.09, df = 17; 

Fe: 2 = 103.5, df = 13; Mn: 2 = 145.31, df = 17; Se: 2 = 118.5, df = 17; Zn: 2 = 143.34, df = 17). 

Different letters denote significant differences in trace element concentrations between species (Wilcoxon 

signed rank tests, without adjust method, p-value < 0.05). Blanks correspond to element contents under the 

limit of detection. 

 

Figure 5. Estimated effect (in %) of Hg and EPA+DHA on cardiovascular heart disease risk, considering 

one (in black) or two (in grey) 150 g seafood servings per week of the edible parts of fish (blue), crustacean 

(purple), cephalopods (yellow), and bivalves (red). Studied species were: for fish: DOG (lesser-spotted 

dogfish, n = 5), HAK (European hake, n = 9), JDO (John Dory, n = 10), MGR (meagre, n = 10), MKR 

(Atlantic mackerel, n = 10), PIL (European pilchard, n = 10), SBR (black seabream, n = 10), SBS (European 

seabass, n = 10), SOL (common sole, n = 10), SRM (surmullet, n = 10), WTG (whiting, n = 10); for 

crustacean: SPI (Atlantic spinous spider crab, n = 5); for cephalopods: CTF (common cuttlefish, n = 10), 

SQD (European squid, n = 10); for bivalves: GSG (great Atlantic scallop gonad, n = 7), GSM (great Atlantic 

scallop muscle, n = 6), OFC (cupped oyster « Fine de Claire », n = 10), OSP (cupped oyster « Spéciale », 

n = 10). 
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