
 

 

1 

 

 

Journal of Geophysical Research: Oceans 

Supporting Information for 

Satellite-based Time-Series of Sea Surface Salinity designed for Ocean and Climate Studies 

J. Boutin1, N. Reul2, J. Koehler3, A. Martin4, R. Catany5, S. Guimbard6, F. Rouffi7, J.L. 

Vergely7, M. Arias5, M. Chakroun7, G. Corato8, V. Estella-Perez1,*, A. Hasson1,†, S. Josey4, 

D. Khvorostyanov1, N. Kolodziejczyk2, J. Mignot1, L. Olivier1, G. Reverdin1, D. Stammer3, 

A. Supply1,2, C. Thouvenin-Masson1, A. Turiel9, J. Vialard1, P. Cipollini10, ‡, C. Donlon10, ‡, 

R. Sabia11, S. Mecklenburg10 

1Sorbonne University, LOCEAN/IPSL Laboratory, CNRS–IRD–MNHN, Paris, France. 

2University of Brest, LOPS Laboratory, IUEM, UBO–CNRS–IRD–Ifremer, Plouzané, France. 

3Institut für Meereskunde, Centrum für Erdsystemwissenschaften und Nachhaltigkeit, Universität 

Hamburg, Germany. 

4National Oceanography Centre, Southampton, UK. 

5ARGANS Ltd, UK. 

6Ocean Scope, France. 

7ACRI-st, France. 

8Adwaiseo, Luxemburg. 

9Barcelona Expert Center (BEC) and Institute of Marine Sciences (ICM), CSIC, Spain. 

10European Space Agency, ECSAT, Harwell, United Kingdom. 

11Telespazio-UK for ESA, ESRIN, Frascati, Italy. 

 

 

Corresponding author: Jacqueline Boutin (jb@locean.ipsl.fr)  

*Now at UL Services Spain SL 

†Now at Mercator Ocean International, France 

‡Now at European Space Agency, ESTEC, Noordwijk, the Netherlands. 

 

 

mailto:jb@locean.ipsl.fr)


 

 

2 

 

Contents of this file  

 

Text S4S1, S2, S3 and S6 

 

Introduction  

This supporting information gives details aboutprovides information on the user survey, about 

the differences between SSS CCI version 1 and version 2 (version 2 is described in the paper), 

abouton SMOS data preprocessing, on the methodology used to build L4 SSS fields, to estimate 

SSS variability and level 2 SSS uncertainties used for the L4 SSS generation, PIMEP validation 

statistics obtained for weekly SSS CCI fields and SSS anomalies computed with ISAS SSS fields. 

All the informationmaterial presented here areis not essential to the comprehension of the 

article but bringprovides more detailed information and details to the reader. 

 

S1. SSS data requirements for ocean and climate studies  

To create an SSS data set that satisfies the needs of climate users, both modeling and Earth-

observing scientists groups, users of satellite SSS data were consulted through various 

approaches: personally, via e-mail, mailing lists, or at meetings. They were invited to participate 

in web surveys and to specify their requirements for satellite SSS data. In our survey, we asked 

specific questions to find out the user’s priorities (typically higher resolution or improved 

uncertainty estimates).  

The survey (available on https://forms.gle/BVDroYrNpVvpxFJu9) gathered 54 answers from 

various countries of origin/fields (Table S1). Most responses were from the USA (28%), followed 

by Germany (19%) and the UK (17%). 

Table S1: Percentage of respondents to the online survey.   
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% 28 19 17 2 4 7 2 2 2 4 2 13 

         

The questionnaire had four different parts, which were 1) User profile information, 2) User dataset 

requirements, 3) User dataset quality information, 4) Other user requirements or suggestions. 

 The majority of users requires global spatial coverage and temporal coverage from at 

least 9 years. The resolution requirements vary according to the studied phenomena. About 33% 

of respondents require data with a temporal resolution of 1-3 days, while, for 35% (28%) of 

respondents, weekly (monthly) averaged data are sufficient (Figure S1a). In terms of spatial 

resolution, 39% of respondents require data on a 0.25° spatial grid, while 28% of respondents 

require data on 1° spatial grid (Figure S1b). The majority of respondents would prefer a data 

product with high spatial and temporal resolution (weekly, 0.25°) on a regular latitude-longitude 

grid. Interestingly, a majority of users would prefer a product with high temporal and spatial 

resolution and a lower accuracy rather than working with a product with high accuracy but a 

lower resolution (Figure S1c). It was also found that the participants are aware of the data set 

limitations and have realistic expectations. 

a)                            

 

 

 

b)            

 

c)                        

 

 

Figure S1: Percentage of required (a) temporal and (b) spatial resolution. c) Preferred SSS product based 

on the user’s spatial and temporal resolution needs.  

 

According to the survey, data should be combined to overcome the weaknesses of 

individual datasets. 50% prefer a combination of satellite and in-situ measurements, whereas 39% 
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require the combination of data from different satellite sensors. However, in the CCI L4 SSS 

products described here, information from in-situ measurements was restricted to a minimum in 

order to work with measurements having homogeneous spatio-temporal resolution and sampling. 

By making available the multiple-sensor datasets on different spatial-temporal grids, the needs of 

different users can be met. The most common requirement is for L4 data (43%), directly followed 

by requirements for L3 (37%). Some potential users, mainly modelers or scientists investigating 

rapid SSS changes, require L2 (20%). L3 and L2 data are already available from the original data 

centers. L2 and L3 datasets including the CCI+SSS systematic corrections are kept as an internal 

CCI+SSS product. 

Uncertainty information for each SSS grid point has to be fully characterized, including 

random noise and systematic uncertainties of the applied adjustments. Information about bias 

(systematic uncertainty) correction is most commonly required by respondents. 46% of the 

respondents would prefer a quality information easy to use, such as a good/bad flag or the 

probability that a value is good/bad.  

User Requirement Survey results show the importance of contacting users and promoting 

communication between the users and potential users of CCI L4 SSS fields. Users will be 

regularly contacted to refine requirements, as well as to check their satisfaction with the CCI L4 

SSS product. The recommendations regarding resolution, format, quality, and additional 

information derived from the user consultation are summarized in the User Requirement 

Document (URD available on https://climate.esa.int/en/projects/sea-surface-salinity/key-

documents/). 

S2. SMOS SSS data pre-processing 

We only consider SMOS SSS satisfying the following criteria (same notations as in (Boutin et al., 

2018)): normalized  of the retrieval,  N < 3, SSS random uncertainty, ESSS_L2 < 3, pixel within 

+/-400 km from the center of the swath, with small number of Tb outliers (level 2 fg_outlier flag), 

uncontaminated by ice (level 2 Dg _suspect_ice=0; this flag removes pixels in cold waters 

(SST<2°C) in which at least one Tb differs by more than 20K from modeled Tb. This is a very 

stringent filtering that is likely to be removed in future versions), with moderate to strong RFI and 

ice contamination as detected using SMOS retrieved pseudo-dielectric constant, Acard (|Acard 

smos – Acard mod|<2 and Acard>42; see more in (Supply et al., 2020b)), wind speed less than 16 

m/s, SSS between 2 and 45. 
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Deficiencies in the dielectric constant model leads us to adjust SMOS SSS with a 

polynomial SST function derived from comparisons between Aquarius SSS (retrieved with  

similar dielectric constant model and atmospheric model as SMOS processing models), and Argo 

SSS (blue dotted curve in Figure 16 of (Dinnat et al., 2019)). A correction for seasonal latitudinal 

varying biases is also applied, similar to what is described in (Boutin et al., 2018): 

SSSobs(t, , ,xswath, xorb)=SSSsmosref (, ,m)–blat(,xswath,xorb,m)    

where SSSobs is the observed SSS, t is the time of the measurement, , and , are 

respectively the latitude and the longitude of the considered pixel over the ocean, xswath 

corresponds to the pixel location across the swath, xorb indicates the satellite orbit direction 

(ascending or descending), blat is a latitudinal correction that varies seasonally as a function of the 

month, m, and SSSsmosref is a reference SMOS SSS taken at a given xswath and xorb, chosen so that 

SSSsmosref interannual variability for the considered month and the corresponding pixel is the 

closest with that of in situ interpolated (In-situ Analysis System, ISAS) SSS after 5° latitudinal 

smoothing. blat is estimated through a least square minimization approach, and through a series of 

iterations. In order to avoid land-sea contamination, blat is derived from SMOS measurements 

further than 1200 km from coast except at the high northern latitudes where the distance to coast 

is reduced to 600km in order to get enough measurements. It is computed over 2012-2018 to 

avoid large RFIs in the North Atlantic in 2010 and 2011. blat is then removed from all SMOS SSS 

whatever their distance to coast and before estimating the land-sea contamination correction. 

 

S1.S3. Generation of level 4 SSS 

fields: detailed algorithm 

 

The algorithm is lookingsearching for solutions SSS(t) and bc that both minimize the cost 

function. Each grid node is processed separately. All available SSS data associated with the grid 

node considered are used by the algorithm. The problem is linear., so that to minimize the cost 

function, a classic Raphson-Newton descent is used. 

SSSobs is the observation vector that contains SMOS, SMAP and Aquarius data: 

SSSobs=(
SSSsmos
SSSaqua
SSSsmap

) 

The parameter vector is written: 
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m=(

SSS
bc_smos
bc_aqua
bc_smap

) 

 

bc_smos, bc_aqua,bc_smap are the vectors that contain the biases for each type of acquisition 

(ascending/descending,dwell lines, etc) that can be grouped into a vector bc. We take as a priori 

bc=0 for all sensors and acquisition types. 

The vector parameter a priori is written: 

m_prior=(

SSSprior
0
0
0

) 

SSSprior is the initial SSS value, this value is constant over time. It is taken equal to the SSS of 

the SMOS central dwell line ascending orbits when possible. Otherwise, the median of the 

observed SSS is used.   

We call H, the matrix of partial derivatives: 

 

H=

[
 
 
 
 
 
 
∂SSSsmos

∂SSS

∂SSSsmos

∂bc_smos

∂SSSsmos

∂bc_aqua

∂SSSsmos

∂bc_smap
∂SSSaqua

∂SSS

∂SSSaqua

∂bc_smos

∂SSSaqua

∂bc_aqua

∂SSSaqua

∂bc_smap
∂SSSsmap

∂SSS

∂SSSsmap

∂bc_smos

∂SSSsmap

∂bc_aqua

∂SSSsmap

∂bc_smap]
 
 
 
 
 
 

 

where: SSSsensor=F(m)=SSS-bc_sensor 

with "sensor" = smos (SMOS), aqua (Aquarius) or smap (SMAP).  

This matrix is calculated on the observation points.   

The covariance matrices used are defined as follows: 

- CdCo the error matrix with data uncertainties derived,  

- Cm the matrix of SSS variability and a priori uncertainty on bc, 

- Cr the matrix of representativity uncertainties.  

Cd= [
Cd_smos 0 0

0 Cd_aqua 0
0 0 Cd_smap

] 

Co=[

Co_smos 0 0
0 Co_aqua 0
0 0 Co_smap

] 
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Cm=[
CSSS 0

0 Cbc
] 

 

CSSS is a time smoothing operator that contains the expected variability that is provided as 

auxiliary data. Thus, the covariance of the SSS that links two times t1 and t2 (either between two 

observational times or between an observational time and a sampled time of the OI) is written:  

CSSS(t1,t2)=sigSSS(t1)sigSSS(t2)exp(-
(t1-t2)2

ξ2
) 

with ξ=25 days and 6 days for monthly and weekly products respectively. "sigSSS" is 

interpolated temporally to t1 and t2 from seasonal variability. 

"sigSSS" is interpolated temporally to the acquisition times from seasonal variability. 

"Cbc" is a diagonal matrix that contains the a priori standard deviation of biases. This standard 

deviation is set at 4 pss.  

The Cr matrix corresponds to representativity uncertainties: 

 

Cr= [
Cr_smos 0 0

0 Cr_aqua 0
0 0 Cr_smap

] 

With, in CCI v1 and v2, "Cr_smos" and "Cr_smap" set to 0. 

In addition to measurement uncertainties, representativity uncertainties are added:  

Ct=CdCo+Cr 

Representativity uncertainties are reported monthly. They are interpolated temporally to the 

acquisition times.  

In this formalism the cost function is written for each grid node:  

 

C(SSS,bc)=<SSSobs-F(m)|Ct-1 ∙ (SSSobs-F(m))>+ <m-m_prior|Cm-1 ∙ (m-m_prior) >  

C(SSS,bc) =(SSSobs – F(m))T.Ct-1·(SSSobs – F(m)) + (m – m_prior)T.Cm-1·(m – m_prior) 

with: 

F(m)=SSS-bc 

We look for SSS_est and bc_est that minimizes C (SSS,bc). The solution of minimization is 

written: 

m_est=m_prior+Cm∙HT ∙ (H∙Cm∙HT+Ct)-1Cm'∙𝐻𝑇 ∙ (H∙Cm∙HT+𝐻𝑇+Ct)-1

∙ (SSSobs-F(m_prior)) 
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where "T" indicates the transpose operator., Cm is the matrix of variability operating in the 

observational space and Cm’ the matrix of variability between observational time and regular 

sampled time of the OI. 

 

 

Estimation of monthly SSS 

In order to estimate the monthly SSS, we proceed in 3 steps:  

1) a first estimation of the biases and time series of SSS, is performed spatial grid node by spatial 

grid node is performed, 

2) a 3-sigma filtering of the observed SSS in comparison with the estimated SSS is done. 

 The aim here is to identify any outliers against the returned SSS field. Outliers can be linked to 

intermittent RFIs. It is consideredassumed here that stable RFI contamination can be corrected.  

3) a second estimate of SSS biases and time series after removing outliers. 

The relative biases used to derive monthly SSS are estimated taking the averaged SSS from the 

SMOS central across swath location as a priori.  

Estimation of weekly SSS 

To estimate the weekly SSS, the biases calculated at the monthly SSS generation step are frozen 

(it is assumed that the biases will not be better estimated from a weekly smoothing). We start 

from the monthly SSS as a priori value. We estimate the weekly fluctuations around this a priori, 

taking into account the acceptable SSS variability between weekly and monthly fields that was 

derived as a monthly climatology from the Mercator model. A 3-sigma filter is used in order to 

eliminate outliers that deviate too far from what is expected. Here, 𝜎 =

√𝑒𝑟𝑟𝑜𝑟_𝐿22 + 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦2. The weekly SSS field estimate is done in a single step. 

Absolute SSS correction 

At the end of the inter-sensor bias correction step, the salinities obtained are set on average of the 

SSS of all sensors. However, the SMOS ascending central across swath location that was taken as 

reference can itself be affected by a bias.are obtained in relative values, i.e. they are known within 

one additive constant. This is corrected by adjusting a quantile of the CCI and ISAS SSS 

statistical distributions in each grid node over the period considered. The dynamics of the SSS 
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variability are not affected by this adjustment as only one constant value, grid node per grid node, 

is added for the entire period. In regions where SSS variability is low, we assume that high 

frequency variability better sampled by CCI than by ISAS does not affect significantly the 

median of the SSS and we therefore adjust boththe SSS median (50% quantile). In regions with 

larger variability, given that intermittent freshening is much more frequent than intermittent over-

salting, we expect the high part of the SSS distribution to be less affected by the higher frequency 

sampling by satellite than by ISAS. Hence in case of high weekly variability, we perform the 

calibration of CCI SSS on ISAS SSS, not by using the median but a highhigher quantile, in order 

to promote the calibration on the high SSS values. A high quantile is not used everywhere as in 

case the SSS error is greater than the variability, the high quantile of the satellite SSS is expected 

to differ (be higher) from the one of ISAS. 

If the variability is greater than 0.8, the quantile is taken as 80%. If the variability is between 0.6 

and 0.8, we take a quantile intermediate between 50% and 80% that varies linearly with the SSS 

variability. The map of quantiles used for the absolute calibration of the SSS is given in Figure 

S4.  

 

Figure S4S3: Quantile map used for the SSS absolute calibration. x and y axis units in pixel 

number for longitude and latitude respectively.  



 

 

10 

 

Estimation of SSS uncertainties 

The computation of theoretical uncertainties is obtained directly from the pseudo Hessian matrix. 

Cpost=Cm-Cm∙HT ∙ (H∙Cm∙HT+Ct)-1Cm''-Cm'∙HT ∙ (H∙Cm∙HT+Ct)
-1

∙ 𝐻 ∙ 𝐶𝑚H ∙ Cm′T 

Where single apostrophe (') indicates covariance defined between observational time and regular 

sampled time of the OI. Double apostrophe ('') indicates covariance acting over regular sampled 

time of the OI. 

The problem turnsbecomes into inverting the "H·Cm·HT+Ct" matrix over the entire period, which 

is rather computationally heavy. We therefore prefer to maketake a sliding window over a large 

time interval and invert the matrix on this time domain (the computation being similar to the one 

we could perform over the entire period). 

Note that the a posteriori uncertainty is necessarily lower than the variability introduced in the 

operator Cm. In the monthly case, this variability corresponds to the expected monthly 

fluctuations with respect to the whole time series. In the weekly case, the variability is calculated 

relative to the monthly field. The latter is generally lower than the monthly variability. The a 

posteriori uncertainty obtained on the weekly fields should therefore be lower than that obtained 

on the monthly fields. However, this is only true if the weekly fields are derived from noise-

corrected monthly fields, which is not the case. The propagation of uncertainties on the weekly 

fields must therefore take into account uncertainties on the monthly field. Thus, for the monthly 

fields, we have: 

Cpost_month=Cm_month-Cm_month∙HT∙(H∙Cm_month∙HT+Ct)-1 ∙ 𝐻 ∙ 𝐶𝑚month 

Cpostmonth=Cmmonth
′′ -Cmmonth

′ ∙HT∙(H∙Cmmonth∙HT+Ct)-1 ∙ H ∙ Cmmonth
′ T  

and for the weekly fields: 

Cpost_week=Cpost_month+Cm_week-Cm_week∙HT ∙ (H∙Cm_week∙HT+Ct)-1 ∙ 𝐻 ∙ 𝐶𝑚week 

Cpostweek=Cpostmonth+Cmweek
′′ -Cmweek

′ ∙HT ∙ (H∙Cmweek∙HT+Ct)-1 ∙ H ∙ Cmweek
′ T  

with "Cm_monthCmmonth", the monthly variability and "Cm_weekCmweek" the weekly variability 

relative to the monthly variability.  

The a posteriori uncertainties on the monthly and weekly fields are therefore obtained as follows: 

𝜎𝑆𝑆𝑆𝑚𝑜𝑛𝑡ℎ=√diag(Cpost_month) 

 

𝜎𝑆𝑆𝑆𝑤𝑒𝑒𝑘=√diag(Cpost_week) 

σSSSmonth=√diag(Cpostmonth) 



 

 

11 

 

 

σSSSweek=√diag(Cpostweek) 

The number of outliers is also calculated on this same basis as well as the number of data 

available. The window sizes used are respectively +/- 30 days and +/- 10 days for monthly and 

weekly products respectively. 

 

 

 

 

 

 

S6. SSS random uncertainties of L2 satellite SSS 

 

The SMAP random uncertainties are derived from the std of the difference between SSS retrieved 

from fore and aft acquisitions (Figure S6.1, red). They are very close to a modeled error with a 

0.45K radiometric noise.  

The Aquarius random uncertainties are derived from comparisons of SSS sampled at successive 

(7-day intervaldays apart) Aquarius SSS measurements and are fitted with an SST dependency. 

  (Figure S6.1, blue).  

The SMOS random uncertainties are taken from the theoretical error multiplied by the Chi of the 

retrieval provided in SMOS L2 files which are found to giveprovide a reasonable estimate (Figure 

S6.2). 

In the above estimates, only pixels further than 800 km from coast have been considered in order 

to avoid land-sea contamination and very large representativity uncertainties. 

 

Figure S6.1. SSS uncertainties derived for SMAP (red) and Aquarius (blue) as a function of SST.  
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We check the reasonable behavior of estimated random errors, σ𝑆𝑆𝑆, by looking atconsidering 

the statistical distribution of the centered reduced SSS, SSSc: 

𝑆𝑆𝑆𝑐 =(SSSobs-𝑆𝑆𝑆𝑟𝑒𝑓)/σ𝑆𝑆𝑆      ( 1 ) 

where SSSobs is the retrieved SSS possibly corrected from systematic uncertainties, SSSref is a 

reference SSS. Figure S6.2 shows an example obtained with SMOS data further than 800 km 

from coast compared with a 20-day SSS average. In that case SSSc is quite close to the expected 

Gaussian law. The slightly large value of std(SSSc) (1.25 instead of 1) is partly due to the 

presence of outliers.  

 

Figure S6.2. Example of the distribution of the centered reduced SSS for grid points in open 

ocean (further than 800 km from coast) in March 2012.  SSScorr represents SMOS L2 SSS 

corrected from systematic uncertainties. meanSSS is an estimation of the true SSS obtained by 

averaging SSScorr over a 20day period.  

Closer to the coast, std(SSSc) deviates more significantly from 1. Part of this difference can be 

associated with the variability of the salinity. In order to verify this, we sought to quantify 

std(SSSc) in regions with low variability. For grid nodes with variability lower than 0.2 on 

SMOS-CCI SSS rmsd, we compute a robust std, and we observe it to increase towards the coast. 

We apply the same process to SMAP and Aquarius data. We then derive multiplicative factors 

which are function to the distance to the coast, f(dcoast), that will be applied to σ𝑆𝑆𝑆 of each 

instrument (Figure S6.3), so that the reduced random variables normalized with the L2 random 

uncertainties multiplied by these factors, have a standard deviation equal to 1.    
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Figure S6.3: Multiplicative factor applied to the σ𝑆𝑆𝑆 as a function to the distance to the coast. 

 

 


