Supplementary figures

Figure S1. Time series of distance to the breeding areas for each species. Colours show the separation between the different migratory phases (salmon: outward migration, green: nonbreeding period, blue: return migration). While all individuals of each species are combined on this figure, separation between migratory phases was done separately for each individual. This explains why different migratory phases might overlap in time within a species. Gaps are due to unreliable latitude data around the equinoxes.

Figure S2. Time series of percentage of time spent in flight of an individual taken at random within each species. Colours show the separation between the different migratory phases, as in Fig. S1.

Pterodroma petrels

Puffinus and Ardenna shearwaters

Skuas

Transequatorial

Others

Figure S3. Proportion of time spent in flight during migration (outward and return), for nontransequatorial and transequatorial species, and a selection of example groups of species. Values correspond to averages across individuals, species, and hexagons (see methods).

Figure S4. Effect of the moon (new moon: black dots, moon quarters: grey dots, full moon: white dots), migratory stages (outward migration, NB: non-breeding period, return migration) and day (in red) vs. night (in blue) on the duration of flight bouts in hours. Results are presented as mean $\pm 95 \%$ CI across all individuals.

Figure S5. Effect of the moon (new moon: black dots, moon quarters: grey dots, full moon: white dots), migratory stages (outward migration, NB: non-breeding period, return migration) and day (in red) vs night (in blue) on the percentage of time spent in flight. Results are presented as mean $\pm 95 \%$ CI.

Figure S6. Effect of the moon on flight activity. A) Effect of the moon on nocturnality levels (measured using differences in the Night Flight Index - NFI) against baseline nocturnality (NFI during new moon nights in the non-breeding period); high values on the yaxis mean that the NFI increases markedly during full moon compared with new moon. B) Effect of the moon on flight activity during the day compared with during the night; points above the $x=0$ line represent species which increase their flight time in darkness during full moon, while points below the $\mathrm{y}=0$ line represent species which decrease their flight time in daylight during full moon. All panels represent species averages across individuals and days within each moon phase and migratory stage. Migration panels represent averages of outward and return migrations.

Supplementary tables

Table S1. List of study species and colony locations.

Latin name	Common name	Colony	Reference
Ardenna gravis	Great shearwater	Gough Island ($40.35^{\circ} \mathrm{S}$; $9.88^{\circ} \mathrm{W}$)	
Ardenna grisea	Sooty shearwater	Kidney Island, Falkland Island ($51.62^{\circ} \mathrm{S}$; $57.76^{\circ} \mathrm{W}$)	(Hedd, Montevecchi, Otley, Phillips, \& Fifield, 2012)
Ardenna carneipes	Flesh-footed shearwater	Lord Howe Island ($31.53^{\circ} \mathrm{S}$; $159.08^{\circ} \mathrm{E}$)	
Ardenna tenuirostris	Short-tailed shearwater	Great Dog Island, Tasmania ($40.15^{\circ} \mathrm{S}$; $148.15^{\circ} \mathrm{E}$)	
Puffinus puffinus	Manx shearwater	$\begin{aligned} & \text { Skomer Island } \\ & \left(51.74^{\circ} \mathrm{N} ; 5.30^{\circ} \mathrm{W}\right) \end{aligned}$	(Guilford et al., 2009)
Calonectris borealis Cory's shearwater		Selvagem Grande ($30.15^{\circ} \mathrm{N}$; $15.87^{\circ} \mathrm{W}$)	
Calonectris edwardsii	Cape Verde shearwater	Curral Velho, Cape Verde ($15.97^{\circ} \mathrm{N} ; 22.79^{\circ} \mathrm{W}$)	
		Raso, Cape Verde $\left(16.61^{\circ} \mathrm{N} ; 24.60^{\circ} \mathrm{W}\right)$	
Procellaria aequinoctialis	White-chinned petrel	Antipodes Island ($49.68^{\circ} \mathrm{S} ; 178.8^{\circ} \mathrm{E}$)	
Bulweria bulwerii	Bulwer's petrel	Selvagem Grande ($30.15^{\circ} \mathrm{N}$; $15.87^{\circ} \mathrm{W}$)	
Pterodroma pycrofti	Pycroft's petrel	Great Mercury Island 	(Rayner et al., 2016)
Pterodroma ultima	Murphy's petrel	Henderson Island, Pitcairn Islands (24.37${ }^{\circ}$; $128.33^{\circ} \mathrm{W}$)	(Clay, Phillips, Manica, Jackson, \& Brooke, 2017)
Pterodroma baraui	Barau's petrel	$\begin{aligned} & \text { Reunion Island } \\ & \left(21.12^{\circ} \mathrm{S} ; 55.42^{\circ} \mathrm{E}\right) \end{aligned}$	(Pinet et al., 2011)
Pterodroma cookii	Cook's petrel	Little Barrier Island ($36.19^{\circ} \mathrm{S} ; 175.08^{\circ} \mathrm{E}$)	(Rayner et al., 2008, 2011)
Pterodroma nigripennis	Black-winged petrel	Raoul Island, Kermadec Island ($29.27^{\circ} \mathrm{S} ; 177.93^{\circ} \mathrm{W}$)	Rayner unpublished Bird life tracking database
Thalassarche bulleri	Buller's albatross	North East Island, Snares ($48.01^{\circ} \mathrm{S} ; 166.6^{\circ} \mathrm{E}$)	
Thalassarche melanophris	Black-browed albatross	Bird Island, South Georgia ($54.00^{\circ} \mathrm{S} ; 38.05^{\circ} \mathrm{W}$)	

Oceanodroma leucorhoa	Leach's storm petrel	Baccalieu Island $\left(48.12^{\circ} \mathrm{N} ; 52.8^{\circ} \mathrm{W}\right)$	April Hedd unpubl. data
Phaethon rubricauda	Red-tailed tropicbird	Nosy Ve, Madagascar $\left(23.6^{\circ} \mathrm{S} ; 43.61^{\circ} \mathrm{E}\right)$	(Le Corre et al., 2012)

Table S2: Samples sizes for each species, migratory period and moon phase. For scientific names, see Table 1.

Common name	Transequatorial migrant?	Number of tracked individuals								
		Outward migration			Non-breeding period			Return migration		
		$\begin{aligned} & \text { New } \\ & \text { moon } \end{aligned}$	Quarters	Full moon	New moon	Quarters	Full moon	New	Quarters	Full moon
Great shearwater	Yes	26	28	24	29	29	29	24	26	23
Sooty shearwater	Yes	15	15	11	17	17	17	10	12	11
Flesh-footed shearwater	Yes	16	19	17	23	23	23	13	20	18
Short-tailed shearwater	Yes	29	36	30	39	39	39	28	37	35
Manx shearwater	Yes	21	26	21	29	29	29	28	27	25
Cory’s shearwater	Yes	90	97	91	90	93	92	38	42	34
Cape Verde shearwater	Yes	24	25	22	36	36	36	18	20	23
Whitechinned petrel	No	5	11	11	14	14	14	7	9	7
Bulwer's petrel	Yes	9	6	4	14	14	14	5	6	5
Pycroft's petrel	No	4	4	4	4	4	4	5	6	6
Murphy’s petrel	Yes	8	8	9	15	15	16	5	8	7
Barau's petrel	No	3	9	11	13	13	13	10	10	12
Cook's petrel	Yes	9	8	8	11	11	11	5	4	4
Black-winged	Yes	8	9	8	10	10	10	10	10	10

petrel										
Buller's albatross	No	4	7	7	14	14	14	14	14	
Black-browed albatross	No	11	13	13	21	21	21	7	14	11
Leach's storm petrel	Yes	6	5	4	6	6	6	6	6	6
Red-tailed tropicbird	No	12	12	10	12	12	12	11	10	9
South polar skua	Yes	56	56	56	56	56	56	55	55	55
Long-tailed skua	Yes	14	14	13	11	11	11	12	12	12
Black-legged kittiwake	No	20	19	11	32	32	32	18	26	17

Table S3: Flight increase during migration (ratio of \% flight time during migration over \% of flight time during the non-breeding period for each individual), latitudinal migratory range (absolute latitudinal difference between breeding area and the average latitude during the non-breeding period) and distance between breeding and non-breeding grounds (average distance to the breeding grounds across the non-breeding period).

Common name	Ratio of flight increase (mean \pm SD)	Latitudinal migratory range (mean \pm SD)	Distance between breeding and nonbreeding grounds
Great shearwater	2.98 ± 1.15	$91 \pm 5^{\circ}$	$10,700 \pm 400 \mathrm{~km}$
Sooty shearwater	3.48 ± 0.78	$98 \pm 2^{\circ}$	$11,000 \pm 200 \mathrm{~km}$
Flesh-footed shearwater	2.45 ± 0.71	$63 \pm 5^{\circ}$	$7,400 \pm 600 \mathrm{~km}$
Short-tailed shearwater	4.63 ± 1.01	$89 \pm 5^{\circ}$	$10,300 \pm 1,000 \mathrm{~km}$
Manx shearwater	3.09 ± 0.75	$93 \pm 3^{\circ}$	$11,700 \pm 400 \mathrm{~km}$
Cory's shearwater	2.40 ± 0.78	$63 \pm 4^{\circ}$	$7,900 \pm 500 \mathrm{~km}$
Cape Verde shearwater	3.94 ± 1.22	$46 \pm 3^{\circ}$	$5,900 \pm 200 \mathrm{~km}$
White-chinned petrel	2.51 ± 0.86	$18 \pm 6^{\circ}$	$8,400 \pm 600 \mathrm{~km}$
Bulwer's petrel	1.25 ± 0.11	$25 \pm 13^{\circ}$	$3,200 \pm 1,300 \mathrm{~km}$
Pycroft's petrel	1.72 ± 0.16	$43 \pm 2^{\circ}$	$6,300 \pm 300 \mathrm{~km}$
Murphy's petrel	1.97 ± 0.27	$68 \pm 3^{\circ}$	$8,100 \pm 600 \mathrm{~km}$
Barau's petrel	1.71 ± 0.14	3 ± 1 。	$3,500 \pm 500 \mathrm{~km}$
Cook's petrel	2.08 ± 0.35	$68 \pm 4^{\circ}$	$9,000 \pm 600 \mathrm{~km}$
Black-winged petrel	1.39 ± 0.14	$54 \pm 5^{\circ}$	$6,300 \pm 600 \mathrm{~km}$
Buller's albatross	2.45 ± 0.72	$18 \pm 5^{\circ}$	$9,400 \pm 500 \mathrm{~km}$
Black-browed albatross	1.31 ± 0.78	$25 \pm 5^{\circ}$	$5,300 \pm 1,200 \mathrm{~km}$
Leach's storm petrel	1.30 ± 0.16	$53 \pm 13^{\circ}$	$7,500 \pm 1,900 \mathrm{~km}$
Red-tailed tropicbird	1.31 ± 0.23	$15 \pm 10^{\circ}$	$4,200 \pm 600 \mathrm{~km}$
South polar skua	3.13 ± 0.94	$99 \pm 17^{\circ}$	$12,100 \pm 2,400 \mathrm{~km}$
Long-tailed skua	1.89 ± 0.28	$98 \pm 11^{\circ}$	$11,100 \pm 1,200 \mathrm{~km}$
Black-legged kittiwake	1.16 ± 0.14	$30 \pm 3^{\circ}$	$3,900 \pm 400 \mathrm{~km}$

Table S4: Percentage of flying bouts longer than $24 \mathrm{~h} /$ percentage of time spent in bouts longer than 24 h (number of individuals involved). For scientific names, see Table 1.

Common name	Outward migration	Return migration	Non- breeding period
Great shearwater	-	$0.01 \% /$	
$3.2 \%(1)$	-		
Sooty shearwater	-	-	-
Flesh-footed shearwater	-	-	-
Short-tailed shearwater	-	$0.31 \% /$	$0.01 \% /$
Manx shearwater	-	-	-
Cory's shearwater	-	-	-
Cape Verde shearwater	-	-	-
White-chinned petrel	-	-	-
Bulwer's petrel	-	-	-
Pycroft's petrel	-	-	-
Murphy's petrel	-	-	-
Barau's petrel	-	-	-
Cook's petrel	-	-	-
Black-winged petrel	-	-	-
Buller's albatross	-	-	-
Black-browed albatross	-	-	-
Leach's storm petrel	-	-	-
Red-tailed tropicbird	-	-	-
South polar skua	-	$0.02 \% /$	-
Long-tailed skua	-	-	-
Black-legged kittiwake	-	-	-

Table S5: Percentage of time spent in wet bouts > 1h, over a $24-\mathrm{h}$ period. For scientific names, see Table 1.

Common name	Outward migration	Non- breeding period	Return migration
Great shearwater	50.0	62.7	52.7
Sooty shearwater	32.4	54.2	48.5
Flesh-footed shearwater	39.9	50.6	36.7
Short-tailed shearwater	44.3	53.9	44.5
Manx shearwater	49.5	48.9	51.3
Cory's shearwater	54.5	58.0	55.3
Cape Verde shearwater	74.5	82.6	73.3
White-chinned petrel	44.2	64.8	43.2
Bulwer's petrel	15.8	30.4	7.5
Pycroft's petrel	30.0	54.1	44.8
Murphy's petrel	23.0	59.4	35.4
Barau's petrel	40.0	48.3	46.4
Cook's petrel	20.8	34.0	29.2
Black-winged petrel	30.8	34.0	29.2
Buller's albatross	39.7	51.8	50.0
Black-browed albatross	78.3	84.0	84.6
Leach's storm petrel	31.7	49.5	47.7
Red-tailed tropicbird	53.5	58.5	68.5
South polar skua	55.2	70.7	69.1
Long-tailed skua	28.1	32.3	35.9
Black-legged kittiwake	57.3	46.2	42.7

Table S6. Baseline nocturnality (Night flight index during the non-breeding period) averaged across days and individuals simultaneously.

Latin name	Common name	Baseline nocturnality (mean \pm SD)
Ardenna gravis	Great shearwater	-0.1 ± 0.6
Ardenna grisea	Sooty shearwater	-0.6 ± 0.4
Ardenna carneipes	Flesh-footed shearwater	-0.5 ± 0.4
Ardenna tenuirostris	Short-tailed shearwater	-0.8 ± 0.3
Puffinus puffinus	Manx shearwater	-0.8 ± 0.3
Calonectris borealis	Cory's shearwater	-0.6 ± 0.4
Calonectris edwardsii	Cape Verde shearwater	-0.8 ± 0.4
Procellaria aequinoctialis	White-chinned petrel	0.2 ± 0.6
Bulweria bulwerii	Bulwer's petrel	0.8 ± 0.2
Pterodroma pycrofti	Pycroft's petrel	-0.1 ± 0.4
Pterodroma ultima	Murphy's petrel	-0.5 ± 0.4
Pterodroma baraui	Barau's petrel	-0.2 ± 0.6
Pterodroma cookii	Cook's petrel	-0.1 ± 0.5
Pterodroma nigripennis	Black-winged petrel	0.4 ± 0.3
Thalassarche bulleri	Buller's albatross	-0.4 ± 0.5
Thalassarche melanophris	Black-browed albatross	-0.2 ± 0.6
Oceanodroma leucorhoa	Leach's storm petrel	0.7 ± 0.2
Phaethon rubricauda	Red-tailed tropicbird	-0.1 ± 0.5
Stercorarius maccormicki	South polar skua	-0.8 ± 0.4
Stercorarius longicaudus	Long-tailed skua	-0.1 ± 0.6
Rissa tridactyla	Black-legged kittiwake	-0.8 ± 0.3

Table S7: Results of the following linear models: Moon effect ~ NFI during moonless nights, with Moon effect $=\mathrm{NFI}_{\text {full }}$ moon $-\mathrm{NFI}_{\text {new moon }}$. Each data point corresponds to mean species values (across days then individuals).

Model I - migration				
	Estimate	Standard error	t-value	p-value
Intercept	0.160	0.048	3.32	0.003
Slope	-0.183	0.087	-2.09	0.048
Model II - non-breeding period				
	Estimate	Standard error	t-value	p-value
Intercept	0.146	0.056	2.59	0.017
Slope	-0.035	0.102	-0.34	0.733

Supplementary references

Clay, T., Phillips, R., Manica, A., Jackson, H., \& Brooke, M. (2017). Escaping the oligotrophic gyre? The year-round movements, foraging behaviour and habitat preferences of Murphy's petrels. Marine Ecology Progress Series, 579, 139-155. doi: 10.3354/meps12244

Frederiksen, M., Moe, B., Daunt, F., Phillips, R. A., Barrett, R. T., Bogdanova, M. I., ... AnkerNilssen, T. (2012). Multicolony tracking reveals the winter distribution of a pelagic seabird on an ocean basin scale. Diversity and Distributions, 18(6), 530-542. doi: 10.1111/j.14724642.2011.00864.x

Gilg, O., Moe, B., Hanssen, S. A., Schmidt, N. M., Sittler, B., Hansen, J., ... Bollache, L. (2013). Trans-Equatorial Migration Routes, Staging Sites and Wintering Areas of a High-Arctic Avian Predator: The Long-tailed Skua (Stercorarius longicaudus). PLOS ONE, 8(5), e64614. doi: 10.1371/journal.pone. 0064614

Guilford, T., Meade, J., Willis, J., Phillips, R. A., Boyle, D., Roberts, S., ... Perrins, C. M. (2009). Migration and stopover in a small pelagic seabird, the Manx shearwater Puffinus puffinus: Insights from machine learning. Proceedings of the Royal Society of London B: Biological Sciences, 276(1660), 1215-1223. doi: 10.1098/rspb.2008.1577

Hedd, A., Montevecchi, W., Otley, H., Phillips, R., \& Fifield, D. (2012). Trans-equatorial migration and habitat use by sooty shearwaters Puffinus griseus from the South Atlantic during the nonbreeding season. Marine Ecology Progress Series, 449, 277-290. doi: 10.3354/meps09538

Kopp, M., Peter, H.-U., Mustafa, O., Lisovski, S., Ritz, M. S., Phillips, R. A., \& Hahn, S. (2011). South polar skuas from a single breeding population overwinter in different oceans though show similar migration patterns. Marine Ecology Progress Series, 435, 263-267. doi: 10.3354/meps09229

Le Corre, M., Jaeger, A., Pinet, P., Kappes, M. A., Weimerskirch, H., Catry, T., ... Jaquemet, S. (2012). Tracking seabirds to identify potential Marine Protected Areas in the tropical western Indian Ocean. Biological Conservation, 156, 83-93. doi: 10.1016/j.biocon.2011.11.015

Pinet, P., Jaquemet, S., Pinaud, D., Weimerskirch, H., Phillips, R. A., \& Corre, M. L. (2011). Migration, wintering distribution and habitat use of an endangered tropical seabird, Barau's petrel Pterodroma baraui. Marine Ecology Progress Series, 423, 291-302. doi: 10.3354/meps08971

Rayner, M. J., Carlile, N., Priddel, D., Bretagnolle, V., Miller, M. G. R., Phillips, R. A., ... Torres, L. G. (2016). Niche partitioning by three Pterodroma petrel species during non-breeding in the equatorial Pacific Ocean. Marine Ecology Progress Series, 549, 217-229. doi: 10.3354/meps11707

Rayner, M. J., Hauber, M. E., Clout, M. N., Seldon, D. S., Van Dijken, S., Bury, S., \& Phillips, R. A. (2008). Foraging ecology of the Cook's petrel Pterodroma cookii during the austral breeding season: A comparison of its two populations. Marine Ecology Progress Series, 370, 271-284.

Rayner, M. J., Hauber, M. E., Steeves, T. E., Lawrence, H. A., Thompson, D. R., Sagar, P. M., ... Shaffer, S. A. (2011). Contemporary and historical separation of transequatorial migration between genetically distinct seabird populations. Nature Communications, 2(1), 332. doi: 10.1038/ncomms1330
van Bemmelen, R., Moe, B., Hanssen, S., Schmidt, N., Hansen, J., Lang, J., ... Gilg, O. (2017). Flexibility in otherwise consistent non-breeding movements of a long-distance migratory seabird, the long-tailed skua. Marine Ecology Progress Series, 578, 197-211. doi: 10.3354/meps12010

