Weather and topography regulate the benefit of a conditionally helpful parasite

Monsinjon Jonathan ^{1, *}, McQuaid Christopher D. ¹, Nicastro Katy R. ^{1, 2, 3}, Seuront Laurent ^{1, 2, 3, 4}, Oróstica Mauricio H. ¹, Zardi Gerardo I. ¹

¹ Department of Zoology and Entomology Rhodes University Grahamstown, South Africa

² CCMAR, CIMAR Associated Laboratory University of Algarve Faro, Portugal

³ Laboratoire d'Océanologie et de Géosciences Univ. Lille CNR SUniv. Littoral Côte d'Opale UMR 8187 LOG Lille ,France

⁴ Department of Marine Resources and Energy Tokyo University of Marine Science and Technology Tokyo ,Japan

* Corresponding author : Jonathan Monsinjon, email address : jonathan.monsinjon@gmail.com

Abstract :

1. Heat-induced mass mortalities involving ecosystem engineers may have long-lasting detrimental effects at the community level, eliminating the ecosystem services they provide.

2. Intertidal mussels are ecologically and economically valuable with some populations facing unprecedented heat-induced mass mortalities. Critically, mussels are also frequently infested by endolithic parasites that modify shell albedo, hence reducing overheating and mortality rates under heat stress.

3. Using a biophysical model, we explored the topographical and meteorological conditions under which endolithically driven thermal buffering becomes critical to survival. Based on meteorological data from a global climate analysis, we modelled body temperatures of infested and non-infested mussels over the last decade (2010–2020) at nine sites spread across c. 20° of latitude.

4. We show that thermal buffering is enhanced where and when heat stress is greatest, that is, on sunexposed surfaces under high solar radiation and high air temperature.

5. These results suggest that new co-evolutionary pathways are likely to open for these symbiotic organisms as climate continues to change, potentially tipping the balance of the relationship from a parasitic to a more mutualistic one. However, endolithically driven reductions in body temperatures can also occur at or below optimal temperatures, thereby reducing the host's metabolic rates and making the interplay of positive and negative effects complex.

6. In parallel, we hindcasted body temperatures using empirical data from nearby weather stations and found that predictions were very similar with those obtained from two global climate reanalyses (i.e. NCEP-DOE Reanalysis 2 and ECMWF Reanalysis v5).

7. This result holds great promise for modelling the distribution of terrestrial ectotherms at ecologically relevant spatiotemporal scales, as it suggests we can reasonably bypass the practical issues associated with weather stations. For intertidal ectotherms, however, the challenge will be incorporating body temperatures over the full tidal cycle.

Keywords : biophysics, ectotherm, heatwave, microhabitat, mussel, mutualism, symbiotic relationship, temperature

37 Introduction

38	Heat-induced mass mortalities are becoming more frequent, longer and more severe in
39	both terrestrial (Meehl & Tebaldi 2004) and marine (Di Lorenzo & Mantua 2016; Oliver et al.
40	2018) environments as climate warming progresses. Heat-related mass mortalities have
41	affected a wide variety of taxa including birds (McKechnie & Wolf 2010), mammals
42	(Welbergen et al. 2008; Pruvot et al. 2019), kelps (Smale 2020), corals (Hughes et al. 2017;
43	Le Nohaïc et al. 2017), and mussels (Harley 2008; Seuront et al. 2019). Such mass mortality
44	events have potentially dramatic cascading effects when they involve ecosystem engineers
45	that provide the biogenic habitat that supports high biodiversity (Smale et al. 2019).
46	Invertebrate body temperatures largely depend on environmental drivers, mediated
47	by body size, shape, positioning, and behaviour, plus intrinsic physical properties (Porter $\&$
48	Gates 1969; Helmuth 1998; Nicastro et al. 2012) that are potentially altered by parasitism
49	(Zardi et al. 2016; Gehman & Harley 2019). Many marine invertebrates are infested by
50	endolithic fungi, algae or cyanobacteria that bore into their hosts' outer layer and alter their
51	physiology, colour, and morphology (Kaehler 1999; Golubic, Radtke & Campion-Alsumard
52	2005; Zardi et al. 2009; Gleason et al. 2017). This is the case for intertidal mussels, which are
53	critical ecosystem engineers (Arribas et al. 2014). In these species, endolithic microbes can
54	cause considerable shell damage, reducing scope for growth by increasing metabolic
55	maintenance costs (Ndhlovu, McQuaid & Monaco 2020), eventually leading to host death
56	through shell collapse (Kaehler & McQuaid 1999). During extreme warming events,
57	however, this symbiotic association can become advantageous (Zardi et al. 2016; Gehman &
58	Harley 2019; Zardi et al. 2021) as discolouration of the shell caused by endolithic activity
59	enhances solar reflectivity so that infested mussels can be 5°C cooler than non-infested

60 individuals, potentially increasing host survival rates during heat waves (Zardi *et al.* 2016;

61 Gehman & Harley 2019).

62	Because the balance between positive and negative effects in host-parasite systems
63	can be context-dependent (e.g., Duncan et al. 2010; Bates et al. 2011; MacLeod & Poulin
64	2016), we can expect it to change over space and time. To address this in the context of the
65	mussel-endolith system, we identified the topographical and meteorological conditions
66	under which endolithic microbes effectively reduce exposure to heat stress. To achieve this,
67	we predicted the body temperature of non-infested (Tb $_{non-infested}$) and infested (Tb $_{infested}$)
68	mussels under a range of topographic orientations (i.e., combinations of aspect and
69	inclination angle of the attachment surface) using a biophysical model. To ensure that a
70	wide range of environmental conditions, including extreme weather events, was covered,
71	we reconstructed mussel body temperatures over the last decade (2010-2020) at nine sites
72	spread across ca. 20° of latitude along the north Atlantic coast (Fig. 1, see Table S1 in
73	Supporting Information). Ideally, one would use empirical data from local weather stations
74	to model body temperatures. However, such data are typically scarce, discontinuous, or
75	simply not available during the full extent of the study period. To overcome these practical
76	issues, we used environmental data from a global climate reanalysis. We assessed the
77	validity of this approach by comparing body temperatures reconstructed using data from
78	nearby weather stations and body temperatures recorded in-situ with biomimetic sensors
79	(thereafter referred to as "robomussels" following Judge, Choi & Helmuth 2018). Then, we
80	evaluated endolithically-driven thermal buffering by calculating the temperature difference
81	between non-infested and infested mussels (Tb $_{non-infested}$ - Tb $_{infested}$), categorizing these
82	differences into two levels of thermal buffering: (1) neutral ($Tb_{non-infested} \approx Tb_{infested}$) and (2)
83	positive (Tb _{infested} < Tb _{non-infested}). Additionally, we calculated the time spent over two critical

84 thermal thresholds to assess under what circumstances endolithically-driven thermal

85 buffering is sufficient to spare infested mussels from heat-related stress or death.

86

- 87 Figure 1. Location of study sites. Mussel body temperatures were predicted for several sites
- 88 in the United Kingdom (green), France (red), and Portugal (blue). Abbreviations: Nebogeo
- 89 (NEB), Bay of Skaill (SKA), Aberffraw (ABE), Wimereux (WIM), Locquémeau (LOC), Pointe
- 90 Saint-Gildas (GIL), Viana do Castelo (VIA), Monte Clerigo (MON), Vilamoura (VIL).

91

92 Material and Methods

93 Biophysical model

We modelled mussel body temperature using the microclimate model implemented in the R 94 95 package NicheMapR v. 3.0.0 (Porter et al. 1973; Kearney & Porter 2017; Kearney 2021) with 96 R v. 4.0.4 (R Core Team 2021). The model computes hourly temperatures at 10 user-97 specified depths based on the physical first principles of heat exchange (i.e., radiation, 98 convection, conduction, and evaporation) and allows the setting of different types of layers. We set two types of layers: a "mussel" layer for the first 5 cm and a "rock" layer below. For 99 100 the first layer, we used thermal properties (thermal conductivity = $0.5681 \text{ W.m}^{-1}\text{K}^{-1}$, specific heat capacity = 3496.3 J.kg⁻¹K⁻¹) derived from experiments on Perna canaliculus (Mateparae 101 102 2003) and other physical properties (density = 1.086 g.m⁻³, water content = 95%) derived from experiments on Mytilus edulis and Mytilus trossulus (Harbach & Palm 2018). For the 103 second layer, we used thermal properties of a type of granite with high porosity in saturated 104 105 conditions (thermal conductivity = $2.99 \text{ W} \cdot \text{m}^{-1}\text{K}^{-1}$, specific heat capacity = $800 \text{ J} \cdot \text{kg}^{-1}\text{K}^{-1}$) 106 derived from engineering geology studies (Cho, S. Kwon & Choi 2009; Cho & Kwon 2010) 107 and other physical properties (density = 2.7 g.m⁻³, water content = 34%) derived from measurements on weathered granite (Kwon et al. 2011; Rouxel et al. 2012). Microclimate 108 was computed at 5-cm height and temperature predictions were obtained at 2.5-cm depth, 109 110 representing internal body temperatures (Tb) at the scale of a large mussel bed. Based on reflectance measurements for Mytilus californianus (Gehman & Harley 2019), we set 111 112 reflectivity at 0.161 and 0.245, respectively for non-infested (darker) and infested (paler) 113 mussels, to compute Tb_{non-infested} and Tb_{infested}. We calculated these values from 350 nm to 1100 nm based on reflectance spectra of eroded and non-eroded shells (previously digitized 114 from Fig. 4A in Gehman & Harley 2019) and the ASTM G-173 standard irradiance spectrum 115 116 for dry air derived from SMARTs v. 2.9.2 (Gueymard 2001) using the formula in Smith et al.

117	(2016). NicheMapR allows the user to predict temperatures of the substratum (or the	
118	organism) during periods of submergence, calculating heat balance via conduction and	
119	convection only (see parameter 'shore' in NicheMapR's help). We selected this option	
120	whenever mussels were expected to be submerged (i.e., when tidal levels were higher than	
121	the mussels' height on the shore). To distinguish between periods of submergence and	
122	aerial exposure, we calculated the Effective Shore Level (ESL), an estimate of intertidal	
123	height using temperature profiles and tidal heights (Harley & Helmuth 2003; Gilman et al.	
124	2006). The method uses sudden drops in logger temperatures and the corresponding tidal	
125	height at this time to estimate when robomussels are first immersed by the returning tide.	
126	We obtained hourly tidal predictions (using the XTide software; https://flaterco.com/xtide/)	
127	for nearby maritime ports (Table S2) and interpolated tidal levels at 30-min intervals (using	
128	na.approx function from the R package zoo; Zeileis & Grothendieck 2005) to match the time	
129	at which robomussels were set to record temperature (see Zardi et al. 2021). We retrieved	
130	all tidal levels that were associated with a temperature drop of > 8°C in 30 min during	
131	incoming tides. This corresponds to a drop of 5.33°C in 20 min, ensuring the reliability of ESL	
132	estimates and maximising the probability of correctly identifying the effects of tidal	
133	emersion (Gilman <i>et al.</i> 2006). For each study site, we then calculated the mean ESL (\pm	
134	standard deviation, SD) using temperature data from all robomussels pooled together	
135	(Table S3). Finally, we ran the model under most possible topographic orientations by	
136	varying the inclination angle ('slope' from 0° to 90° every 10°) and the direction that the	
137	surface faces ('aspect' in degrees North from 0° to 350° every 10°). We assumed moist air	
138	conditions with no shade, no moisture throughout the substratum, no vegetation and no	
139	organic matter or snow cover over the mussel layer. The other parameters were left as	

140 default (see settings in NicheMapR's help for the following functions: microclimate,

141 micro_ncep and micro_era5).

142

143 Meteorological data

144 To predict mussel body temperatures during aerial exposure, we drove the NicheMapR 145 microclimate model using three sources of meteorological data. Air temperature, wind 146 speed, solar radiation, relative humidity, precipitation, and cloud cover were obtained from: 147 (i) nearby weather stations (Table S4), (ii) the NCEP-DOE Reanalysis 2 (Kanamitsu et al. 148 2002) hereafter referred to as NCEP, and (iii) the ECMWF Reanalysis v5 (Hersbach et al. 2019) hereafter referred to as ERA5. Weather station observations in the United Kingdom 149 (Met Office 2019a; Met Office 2019b; Met Office 2019c), France and Portugal were provided 150 151 by the Centre for Environmental Data Analysis (CEDA; http://data.ceda.ac.uk/badc/ukmo-152 midas-open/data/), Météo-France (https://donneespubliques.meteofrance.fr/) and Instituto 153 Portugês do Mar e da Atmosfera (IPMA; https://www.ipma.pt/en/otempo/obs.superficie/), 154 respectively. Note that cloud cover was not available from weather stations and was 155 therefore calculated from the ratio of hourly clear sky solar radiation (previously computed 156 using NicheMapR's microclimate function) compared to the observed hourly global solar 157 radiation measured by weather stations (Kearney et al. 2014; Kearney & Porter 2017). In addition, wind speed was measured at 10-metre height and downscaled to a height of 2 m 158 159 using the formula in Kearney et al. (2014) to match the model's reference height. We computed aerosol attenuation using a global aerosol data set (Koepke et al. 1997) to 160 account for scatter from atmospheric particles (Kearney & Porter 2017). Occasional missing 161 162 data (see Fig. S1 in Supporting Information) were linearly interpolated using na.approx

163	function from the R package zoo (Zeileis & Grothendieck 2005). For three of our sites, we
164	could not predict mussel body temperatures using observations from weather stations
165	because solar radiation data were not available (Fig. S1, Table S4). Alternatively, NCEP and
166	ERA5 global climate reanalyses provide all required data on a continuous time scale from
167	1979 onward (6-hourly and hourly, respectively) at different spatial resolution (2.5° \times
168	2.5° and 0.25° \times 0.25°, respectively). To compute mussel body temperatures from NCEP data,
169	we used NicheMapR's micro_ncep function, which integrates some functions of the R
170	packages microclima (Maclean, Mosedale & Bennie 2018; Mosedale, Bennie & Duffy 2021),
171	elevatr (Hollister 2020), rnooa (Chamberlain 2021), and RNCEP (Kemp et al. 2012) to
172	compute mesoclimate effects such as elevation-associated lapse rates, wind sheltering,
173	coastal influences and cold air drainage (but see Kearney et al. 2020 for details). We used a
174	similar function (micro_era5), which integrates a function of the R package mcera5 (Duffy in
175	prep), to compute mussel body temperatures from ERA5 data. Here, we tested whether
176	accounting for coastal influence due to exposure to the sea improved estimates of mussel
177	body temperature during aerial exposure. To do so, we ran micro_ncep and micro_era5
178	with and without the coastal influence option and compared the output based on goodness-
179	of-fit metrics (see section below). To predict mussel body temperatures during
180	submergence, we drove the model using hourly sea surface temperatures extracted at our
181	study sites from ERA5.
182	

183 Model validation

- 184 To validate the approach and select the most suited source of meteorological data, we
- 185 compared our predictions of Tb_{non-infested} and Tb_{infested} with temperature data recorded *in-situ*

186	using robomussels (Judge, Choi & Helmuth 2018) previously deployed at our nine study sites
187	in summer 2017 and 2018 (Fig. S2 and Table S1, but see Zardi et al. 2021 for details). At each
188	site, three to six pairs of robomussels (one infested and one non-infested using shells of
189	Mytilus galloprovincialis) were deployed within the mid mussel zone on a relatively flat
190	surface (< 20°) and equidistant from each other (ca. 10 cm). In the original study, Zardi et al.
191	(2021) did not measure the exact slope and aspect of the surface where robomussels were
192	placed. Therefore, we chose to infer their topographic orientation by searching for the
193	combination of aspect and inclination angle that best described temperatures recorded in-
194	situ by robomussels during aerial exposure. To do so, we computed Tb _{non-infested} and Tb _{infested}
195	for three possible inclination angles (0°, 10°, 20°) and every possible aspect (from 0° to 350°
196	every 10°), and we selected the topographic orientation individually for each pair of
197	robomussels based on the lowest Root Mean Square Error (RMSE). We also calculated
198	Pearson's correlation coefficient as an additional goodness-of-fit metric, with higher
199	correlation coefficients indicative of a better fit between observations and predictions. We
200	assessed the validity of our approach to predict mussel body temperatures during periods of
201	submergence using the same metrics. Note, however, that the method used here to
202	distinguish between periods of aerial exposure and submergence (i.e., when tidal levels are,
203	respectively, lower or higher than the estimated elevation of mussels on the shore) may
204	introduce some bias. In fact, the ESL is not meant to be fixed. Instead, ESLs can vary
205	between tidal cycles due to surge and wave exposure (Gilman et al. 2006). To overcome
206	this, we followed Lathlean, Ayre and Minchinton (2011) in ensuring that temperature data
207	were correctly attributed to periods of aerial exposure or submergence by applying a buffer
208	zone (mean ESL \pm 0.3 m). We excluded all data that fell within this buffer zone when
209	calculating goodness-of-fit metrics.

211 Thermal buffering

212	Using meteorological data from one of the global climate reanalyses, we reconstructed	
213	$Tb_{non-infested}$ and $Tb_{infested}$ from 2010-01-01 to 2020-01-01 for a wide range of topographic	
214	orientations at our nine study sites. Using these temperature time series, we evaluated	
215	endolithically-driven thermal buffering by calculating the proportion of time spent within	
216	two categories of thermal buffering, one defined as neutral (Tb _{non-infested} \approx Tb _{infested}) and the	
217	other as positive (Tb _{non-infested} < Tb _{infested}). We chose a 0.5°C cut-off to distinguish between	Commenté [JM1]: Error: Tb _{infested} < Tb _{non-infested}
218	these two categories because such a difference in body temperature entails less than 50%	
219	difference in survival when approaching critical thermal limits (Seuront et al. 2019; Ndhlovu,	
220	McQuaid & Monaco 2020). In other words, thermal buffering is considered neutral if the	
221	absolute difference between $Tb_{non-infested}$ and $Tb_{infested}$ is ≤ 0.5 °C or positive if the difference is	
222	> 0.5°C. We used these categories to identify where (topographic orientation) and when	
223	(time of day) thermal buffering is enhanced. On the other hand, we aimed to identify the	
224	meteorological conditions associated with the lowest and highest differences between	
225	Tb _{non-infested} and Tb _{infested} . To do so, we used body temperatures predicted for mussels on a	
226	horizontal surface during aerial exposure and retrieved the data on solar radiation, wind	
227	speed, air temperature, and relative humidity (downscaled at 5-cm height with NicheMapR).	
228	In this case, we categorized endolithically-driven temperature differences as follows:	
229	[minimum, 5 th percentile] and [95 th percentile, maximum], respectively for the lowest and	Commenté [JM2]: within intervals
230	highest ranges of body temperature differences.	

231

232 Critical thermal limits

233	To test whether the change in shell reflectance caused by endoliths provides an effective
234	defence against heat stress, we calculated the time spent over two critical thermal
235	thresholds independently for non-infested and infested mussels. The lethal temperature at
236	which approximately half of individuals are expected to die (LT_{50}) lies between 35°C and
237	38°C based on experiments on Mytilus californianus and Mytilus galloprovincialis (Denny et
238	al. 2011; Sorte et al. 2019) and the lethal temperature at which almost all individuals are
239	expected to die (LT ₁₀₀) is 41°C based on experiments on <i>Mytilus californianus</i> (Denny <i>et al.</i>
240	2011). Therefore, we chose $LT_{50} = 38^{\circ}C$ and $LT_{100} = 41^{\circ}C$ as critical thermal limits for survival.
241	On the other hand, it is possible that endolithically-driven thermal buffering reduces body
242	temperatures even within the optimal range of thermal performances, thus adding a
243	potential cost of endolith infestation if $Tb_{infested}$ falls below optimal temperatures, reducing
244	metabolic rate. To assess this, we retrieved $Tb_{non-infested}$ and $Tb_{infested}$ expected in sun-
245	sheltered and sun-exposed habitats (North-facing at 90° inclination and South-facing at 20° $$
246	inclination, respectively) and compared body temperatures with lethal and optimal thermal
247	ranges. Based on metabolic rate experiments, optimal thermal performances occur roughly
248	between 22°C and 32°C for <i>M. californianus</i> (Monaco, Wethey & Helmuth 2016) and the
249	optimal body temperature (Tb $_{opt}$) lies around 30°C for <i>M. galloprovincialis</i> (Monaco &
250	McQuaid 2018).
251	

252 **Results**

- 253 Model validation
- 254 Overall, using meteorological data from either nearby weather stations or global climate
- reanalyses (NCEP and ERA5) yielded very similar results (Fig. 2, Table S5), albeit the mean

256	RMSE across all sites was slightly lower when using weather stations observations: RMSE <
257	3°C (Fig. 2a) vs RMSE ≈ 3°C (Fig. 2c,e,g,i). Note, however, that the mean RMSE and
258	correlation coefficient calculated across all sites for weather station data (Fig. 2a-b) are not
259	directly comparable to those calculated for climate reanalyses (Fig. 2c-j) because they do
260	not include predictions from three sites (LOC, GIL, and VIA; Fig. 2a-b). At the site level, the fit
261	was sometimes slightly better when using NCEP or ERA5 data instead of weather station
262	observations (Fig. 2, Table S5). Some RMSEs were lower for ABE, MON and VIL (26% of our
263	dataset) when using NCEP data, and for WIM and VIL (16% of our dataset) when using ERA5
264	data (Table S5). Some correlation coefficients were higher for MON and VIL (13% of our
265	dataset) when using NCEP data, and for SKA, ABE, WIM, MON and VIL (32% of our dataset)
266	when using ERA5 data (Table S5). On the other hand, accounting for coastal influences did
267	not improve body temperature predictions during aerial exposure when using either NCEP
268	(Fig. 2e-f) or ERA5 (Fig. 2i-j) data. During submergence, the fit was reasonably good (i.e.,
269	RMSE \leq 3°C and correlation coefficient \geq 0.5) for WIM only (Table S5). Given that the
270	approaches tested here yielded similar outcomes (Fig. 2, Table S5), we selected the less
271	computationally demanding one (i.e., NCEP with no coastal effects) to predict long-term
272	mussel body temperatures and explore the effect of topographic orientation. With a few
273	exceptions, this approach allowed us to reconstruct body temperature trajectories with
274	reasonable accuracy (Fig. S2). During emergence, high robomussel temperatures were
275	slightly underestimated and low temperatures slightly overestimated (Fig. S3), except for
276	one pair of robomussels at one site (third pair of robomussel at LOC) which showed the
277	worst fit. During submersion, high robomussel temperatures were strongly overestimated
278	and low robomussel temperatures strongly underestimated (Fig. S3), with a few exceptions

Commenté [JM3]: weather station observations

- 279 showing the opposite relationship (NEB, SKA, and VIA) or a closer accordance between
- 280 predicted and recorded temperatures (MON, VIL, and the third pair of robomussel at LOC).

283	Figure 2. Model validation. Goodness-of-fit metrics for the prediction of mussel body
284	temperature (Tb) during aerial exposure using either weather station observations (a , b) or
285	global climate reanalyses: NCEP with and without coastal influence (respectively c, d, and e,
286	${f f}$) and ERA5 with and without coastal influence (respectively ${f g},{f h},$ and ${f i},{f j}$). Histograms
287	represent mean RMSEs (left panels) and mean correlation coefficients (right panels) for
288	every site, and error bars are 2.5 th and 97.5 th percentiles. Red lines represent the mean
289	across all sites, and red shaded areas are 2.5 th and 97.5 th percentiles. Predictions of Tb were
290	compared with temperatures recorded <i>in-situ</i> using pairs of robomussels (i.e., biomimetic
291	sensors built with shells of either infested or non-infested mussels). Tb was predicted for
292	specific combinations of aspect and inclination angle for each pair of robomussels (Table
293	S5). Tb was not predicted for LOC, GIL, and VIA because solar radiation was not available
294	from nearby weather stations. From left to right, sites are given north to south (for
295	abbreviations: see Fig. 1).

297 Under what topographic orientations is thermal buffering enhanced?

298 Thermal buffering was essentially neutral under most topographic orientations (Fig. 3a,c,e). Thermal buffering was, however, sometimes positive (roughly within 5-25% of the time for 299 300 most locations; Fig. 3b,d,f) on horizontal and inclined surfaces with angles increasing from 10° up to 90° as the aspect shifts from 90° to 180° (i.e., clockwise from East to South) or 301 302 from 270° to 180° (i.e., anticlockwise from West to South). This general pattern whereby 303 endolithically-driven thermal buffering can be positive on sun-exposed surfaces was consistent across study sites, albeit with important variations in the maximum proportion of 304 time spent under each category of thermal buffering (Fig. 3, Fig. S4). For instance, thermal 305

306	buffering was almost never positive at two high-latitude sites (NEB and SKA; Fig. S4) but also
307	rarely positive (roughly within 5-10% of the time) at two low-latitude sites (MON and VIL;
308	Fig. S4). Under the same range of topographic orientations, and especially on South-facing
309	surfaces at 20-30° inclination, thermal buffering was positive up to 35% of the time at two
310	distant sites (LOC and VIA) while it did not exceed 20% of the time at relatively closer sites
311	(e.g., GIL and MON, respectively for comparison with LOC and VIA; Fig. S4).
312	During the day, we can expect thermal buffering to be positive at any time but mostly
313	between 08:00 and 21:00 (i.e., when exposed to sunlight) with a peak in frequency
314	occurring between 12:00 and 14:00 (Fig. 4). At this time of day, thermal buffering was most
315	frequently positive on Southeast- and South-facing surfaces as compared to Northwest- and
316	North-facing ones, albeit the difference was invariably minimal at 20° inclination (Fig. S5a).
317	At 90° inclination, however, thermal buffering was almost never positive on surfaces that
318	are sheltered from sunlight during a large part of the day (i.e., Northwest, North, and
319	Northeast) while it was most frequently positive in other cases (Fig. S5b). In these latter
320	cases, thermal buffering can be positive only between 08:00 and 21:00, with a peak in
321	frequency occurring at different times depending on the aspect (Fig. S5b). In fact, the peak
322	occurred at 11:00 and 12:00 on surfaces exposed to morning sunlight and shifted
323	progressively to 15:00 and 16:00 on surfaces exposed to afternoon sunlight (Fig. S5b).

327 of time (% time in colour scale) spent under two categories of thermal buffering: neutral

328 (left panels) if $Tb_{non-infested} \approx Tb_{infested}$ and positive (right panels) if $Tb_{infested} < Tb_{non-infested}$ based

329 on body temperatures predicted between 2010-01-01 and 2020-01-01 for sites in the

330 United Kingdom (**a**, **b**), France (**c**, **d**), and Portugal (**e**, **f**). Letters in bold indicate cardinal

331 directions.

349 speed, high air temperature, and moderate relative humidity (Fig. 5b-e). Under these

350 conditions, non-infested mussels were on average warmer (Tb_{non-infested} = 31.64°C ± 4.37°C)

than infested ones (Tb_{infested} = $29.89^{\circ}C \pm 4.14^{\circ}C$).

353	Figure 5. Differences in body temperature and associated meteorological conditions.
354	Distribution of (a) differences in body temperature ($Tb_{non-infested}$ - $Tb_{infested}$) during aerial
355	exposure and considering a horizontal surface (all study sites pooled together), (b) solar
356	irradiance, (c) wind speed, (d) air temperature, and (e) relative humidity. Coloured areas in
357	panel a encompass the lowest (blue) and highest (red) ranges of differences between Tb_{non-}
358	$_{\mbox{infested}}$ and $\mbox{Tb}_{\mbox{infested}}.$ Colours in the other panels display the distribution of each
359	meteorological variable when $Tb_{non-infested}$ - $Tb_{infested}$ fell within either the lowest (blue) or the
360	highest (red) range.

362 Do endoliths effectively protect their host from overheating?

On surfaces sheltered from the sun most of the time (i.e., steep inclination angles and 363 364 aspects shifting away from the South), neither Tb_{infested} nor Tb_{non-infested} exceeded 38°C (Fig. 6, Fig. S6). In contrast, on more exposed surfaces, $Tb_{non-infested}$ often exceeded 38°C while 365 366 Tb_{infested} remained below this critical threshold. A similar pattern emerged when considering 367 a higher thermal threshold (i.e., 41°C), albeit with a more marked difference between 368 infested and non-infested mussels (Fig. 7, Fig. S7). At sites in the United Kingdom, Tb_{infested} never exceeded 41°C while Tb_{non-infested} exceeded this threshold for a few hours (Fig. 7a-b) at 369 one site (ABE; Fig. S7). At the other sites in France and Portugal, Tb_{infested} sometimes 370 371 exceeded 41°C but less often and under a much narrower range of topographic orientations (i.e., essentially South-facing surfaces with a slight inclination) than values for $Tb_{non-infested}$ 372 373 (Fig. 7c-f, Fig. S7). On a horizontal surface (or for any aspect with a slight inclination) lethal 374 body temperatures were exceeded between 11:00 and 19:00 (Fig. 4, Fig. S5a). On the other 375 hand, lethal body temperatures were never reached on any vertical surfaces (Fig. S5b). In

- 376 fact, when considering a fully sun-sheltered surface, where body temperatures never
- 377 reached any critical threshold, endolithically-driven thermal buffering remained minimal
- 378 (Fig. 8a). In contrast, when considering a fully sun-exposed surface, endolithically-driven
- 379 thermal buffering was progressively enhanced while approaching and exceeding lethal
- temperatures (Fig. 8b). Note that, in such cases, infested mussels could be up to 2°C cooler
- 381 than non-infested ones while Tb_{non-infested} was at the lower limit of optimal body
- 382 temperatures (Fig. 8b).

385 Figure 6. Topographic orientation and time spent over 38°C. Number of hours (in colour

386 scale) spent over 38°C for Tb_{infested} (left panels) and Tb_{non-infested} (right panels) based on body

- 387 temperatures predicted between 2010-01-01 and 2020-01-01 for sites in the United
- 388 Kingdom (**a**, **b**), France (**c**, **d**), and Portugal (**e**, **f**). Letters in bold indicate cardinal directions.

391 Figure 7. Topographic orientation and time spent over 41°C. Number of hours (in colour

392 scale) spent over 41°C for Tb_{infested} (left panels) and Tb_{non-infested} (right panels) based on body

- temperatures predicted between 2010-01-01 and 2020-01-01 for sites in the United
- 394 Kingdom (**a**, **b**), France (**c**, **d**), and Portugal (**e**, **f**). Letters in bold indicate cardinal directions.

396

397 Figure 8. Efficiency of endolithically-driven thermal buffering under two distinct

398 topographic orientations. Temperature difference (Tb_{non-infested} - Tb_{infested}) vs Tb_{non-infested}

based on body temperatures predicted between 2010-01-01 and 2020-01-01 (all study sites

400 pooled together) on a surface sheltered from the sun, i.e., North-facing at 90° inclination (a)

401 and an exposed one, i.e., South-facing at 20° inclination (**b**). Coloured areas cover optimal

402 (blue) and lethal (red) ranges of body temperature (the area in light red covers

403 temperatures at which some individuals may still survive). White circles indicate the optimal

404 temperature (T_{obt}), and grey and black triangles indicate lethal temperatures (LT₅₀ and LT₁₀₀,

405 respectively).

Discussion

408	Our study demonstrates that the thermal buffering effect conferred by parasitic endoliths is
409	mostly neutral for most topographic orientations. Thermal buffering is, however,
410	advantageous when heat stress is greatest, that is, on sun-exposed surfaces, between
411	midday and late afternoon, during hot weather, with clear skies and light winds. The
412	context-dependent protection against harmful temperatures can make a difference during
413	heat waves by giving infested mussels a higher chance of survival (Gehman & Harley 2019;
414	Zardi et al. 2021). This result is particularly relevant for populations of intertidal mussels,
415	which, like most intertidal ectotherms, live at or near the upper limits of their thermal
416	tolerances (Somero 2010). As climate changes, with an increase in solar radiation due to
417	decreased cloud cover (Schneider, Kaul & Pressel 2019), endolithically-driven thermal
418	buffering could prevent the extirpation of important mussel populations and potentially
419	redirect these partners toward a novel co-evolutionary pathway. Such mutualistic
420	relationships may open new ecological opportunities (Wellborn & Langerhans 2015) as they
421	can allow the host to experience less thermal stress at the hottest edges of their small- and
422	large-scale distributional ranges (i.e., the intertidal zone and biogeographic regions,
423	respectively). Our results further suggest, however, that mussels living in sun-sheltered
424	microhabitats (or during mild weather) are not (or much less) exposed to stressful
425	temperatures, in which case infested mussels are clearly at a competitive disadvantage
426	because they suffer only the costs imposed by endoliths, namely considerable shell damage
427	leading to increased metabolic maintenance costs (Ndhlovu, McQuaid & Monaco 2020) and
428	eventually death through shell collapse (Kaehler & McQuaid 1999).

430 Modulation of thermal buffering

Under solar radiation, low-reflectance individuals gain heat faster and reach higher 431 equilibrium temperatures than their higher-reflectance counterparts (Porter & Gates 1969), 432 433 so that one could expect the evolution of light body pigmentation in hot climates (Gibert et 434 al. 1998). In climates where it is important to gain solar heat as rapidly as possible in order 435 to maximise the time available for foraging or mate-finding, darker ectothermic animals can 436 show better survival and reproductive success than their paler counterparts (Clusella Trullas, van Wyk & Spotila 2007; Clusella-Trullas et al. 2008; Smith et al. 2016). However, reflectance 437 438 also affects the rate of cooling, with dark ectotherms loosing heat faster (Geen & Johnston 2014). All else being equal, the rate of solar heat gain depends on more than just colour 439 (Walsberg, Campbell & King 1978; Walsberg 1983; Turner & Lombard 1990; Helmuth 1998; 440 Umbers, Herberstein & Madin 2013). For instance, the heat budget of small animals is more 441 442 dependent on convective cooling than radiative heating (Turner & Lombard 1990; Helmuth 443 et al. 2011; Umbers, Herberstein & Madin 2013) and this effect can be amplified in dark 444 animals under thin boundary layer conditions (Walsberg, Campbell & King 1978; Walsberg 445 1983). This explains why non-infested mussels were sometimes slightly cooler than infested ones and reinforces the importance of both wind speed and the microhabitat in thermal 446 447 buffering (Seabra et al. 2011; Zardi et al. 2021). In intertidal mussels, orientation relative to the substratum can result in large temperature differences among individuals lying close 448 449 together; such microscale differences can even exceed seasonal variation depending on 450 whether they are sheltered from the sun (e.g., North-facing vertical surfaces in the northern 451 hemisphere) or exposed to direct sunlight during a large part of the day (Harley 2008; Seabra et al. 2011; Choi et al. 2019). Here, we show that topographic orientation and 452 453 exposure to sunlight regulate the thermal buffering effect of endoliths, with infested

454	mussels expected to (i) be more frequently cooler, and (ii) avoid overheating more often
455	than non-infested ones on sun-exposed surfaces (e.g., South-facing at 20° inclination)
456	between roughly midday and late afternoon. These are precisely the times and places when
457	mussels are most likely to be exposed to high air temperatures and direct sunlight, so that
458	non-infested mussels warm up faster and to higher temperatures than infested ones. We
459	predicted that, on a horizontal surface, the lowest differences in body temperature between
460	infested and non-infested mussels would occur under very low solar irradiance and cool air
461	temperature. Such conditions are likely to occur at night or during cloudy days, that is, when
462	overheating is unlikely. Conversely, endolithically-driven thermal buffering is greatest and
463	most likely to enhance survival during heat waves under clear sky conditions, when mussels
464	may come dangerously close to lethal temperatures. Here we show that thermal buffering
465	does indeed allow infested mussels to remain below 38°C or 41°C more often than non-
466	infested ones and under a wider range of topographic orientations, with some variation in
467	the maximum time spent over these critical thresholds across study sites due to differences
468	in latitude but also factors influencing at small scales such as tidal amplitude and time spent
469	under aerial exposure (Helmuth et al. 2006). For instance, our predictions of body
470	temperatures suggest that both infested and non-infested mussels never reached 38°C at
471	two sites in the North of the United Kingdom (at least during our study period) while they
472	reached 41°C more than once on sun-exposed surfaces at other sites. This suggests that
473	endolithically-driven thermal buffering does not necessarily provide an advantage at the
474	coldest edges of the large-scale distributional range of mussels (at least for Mytilus spp. in
475	our case). It is also important to note that thermal preferences and critical thermal
476	thresholds can vary at different levels, from individuals (e.g., via acclimatization) to
477	populations (e.g., via local adaptation; Sanford & Kelly 2011; Thyrring, Tremblay & Sejr

2019). Here, for a more general approach, we used data obtained from the literature for
two distinct species: *Mytilus californianus* and *Mytilus galloprovincialis* (Monaco & McQuaid
2018; Sorte *et al.* 2019). Future studies would be needed to further highlight any potential
intraspecific variation by incorporating population-specific and inter-individual variation in
critical temperatures.

483

484 Balance between parasitism and mutualism

485 In line with previous studies (Zardi et al. 2016; Gehman & Harley 2019), we highlight an example of a symbiotic relationship that switches between parasitism and mutualism, 486 whereby the host mostly suffers from the damage caused by endoliths but sometimes 487 488 benefits from the thermal buffering they provide. On sun-exposed surfaces in most of our 489 study sites, we predicted that non-infested mussels would have experienced lethal temperatures while infested individuals were exposed less often or not at all to stressful or 490 491 lethal body temperatures. This should allow infested mussels to show higher fitness and 492 better survival than non-infested individuals in places where body temperatures approach 493 or reach the species' upper thermal tolerances. In other words, endolithic infestation is 494 potentially increasing the width of the realized thermal niche. However, we also showed 495 that the cost of endolithic infestation is not outweighed by any thermal advantage in sunsheltered microhabitats, and that thermal buffering can sometimes reduce body 496 497 temperatures when the animals are already within their optimum thermal range. Rocky shores are often topographically complex, and thus provide their inhabitants with a huge 498 diversity of thermal microhabitats (Helmuth et al. 2006; Harley 2008; Denny et al. 2011; 499 500 Seabra et al. 2011). In such situations, it is unlikely that all infested individuals will exhibit

501	higher fitness than non-infested ones at the same shore level. In turn, in environments
502	where intertidal mussel beds are located on relatively flat reefs, such as along the French
503	coast of the eastern English Channel, endolithic infestation may provide hosts with much
504	higher fitness than non-infested mussels. In fact, following a mass mortality event during a
505	relatively moderate heat wave (Seuront et al. 2019), the great majority (96% to 100%) of
506	empty mussel shells found on the shore had no sign of endolithic infestation (Seuront,
507	unpublished data). Therefore, in environments lacking topographic complexity, the
508	sustainability of intertidal mussel beds may increasingly depend on the thermal buffering
509	provided by endoliths. On the other hand, endolithic infestation comes with a series of costs
510	which can strongly reduce mussel fitness (e.g., weakening and fracturing of the shell, and
511	reduction of growth and reproductive output due to a shift in resources allocation for shell
512	repair) and can be responsible for a high proportion (> 50%) of total mortality, depending on
513	the severity of infestation (Kaehler & McQuaid 1999; Zardi et al. 2009; Marquet et al. 2013;
514	Ndhlovu, McQuaid & Monaco 2020). Given the costs imposed by endoliths, it seems unlikely
515	that these partners will enter a novel co-evolutionary pathway toward an entirely
516	mutualistic relationship. Nevertheless, most mutualistic relationships may have arisen from
517	successive evolutionary transitions which originated from an interaction with damaging
518	parasites that turned out to be beneficial under certain circumstances (Fellous & Salvaudon
519	2009). Although rare, other examples of parasites providing context-dependent advantages
520	do exist: some parasitic trematodes make marine snails more heat- and acidification-
521	tolerant (Bates et al. 2011; MacLeod & Poulin 2016) and some parasitic bacteria provide a
522	paramecium with protection against osmotic stress (Duncan et al. 2010). Particularly
523	important for further studies would be the evaluation of the fitness of infested individuals
524	relative to non-infested ones across all environments and whether endoliths modify their

hosts' thermal tolerances, for instance by reducing the expression of heat-shock proteins
due to altered resource allocation. The resolution of this specific issue, though of ecological
relevance, lies well beyond the scope of the present study, and warrants the need for
further work to further decipher the role of endolithic infestation on the thermal ecology of
mussels.

530

531 Improving body temperature predictions

532	Our predictions of body temperature using meteorological data from a global climate
533	reanalysis were comparable to those obtained with data from nearby weather stations. This
534	holds great promises for the prediction of body temperatures of terrestrial ectotherms (or
535	intertidal ones during emersion) at ecologically relevant spatiotemporal scales, as we may
536	reasonably bypass the practical issues associated with weather stations (e.g., data gaps).
537	Nevertheless, although we could predict mussel body temperature during aerial exposure
538	with reasonable accuracy (roughly within 2-3.5°C in most cases; Table S5), there is scope for
539	improvement. For example, further experiments are needed to assess how body
540	temperature is affected by smaller-scale topographical effects (e.g., the shapes of the
541	mussel itself or nearby boulders). Future research may also be able to account for the
542	effects of mussel aggregation on microclimates, such as evaporative cooling due to gaping
543	behaviour (Nicastro et al. 2012) or conductive heat transfer within multi-layer mussel beds
544	(Mislan & Wethey 2015). Likewise, enhanced evaporative cooling in infested mussels due to
545	higher water retention potential of eroded shells (Gehman & Harley 2019) may be
546	important. Here, we calculated shell reflectivity based on measurements of reflectance
547	within 350-1100 nm of the solar spectrum while the radiation reaching the Earth's surface is

548	non-negligeable until at least 2000 nm (Smith et al. 2016). Measuring shell reflectance of
549	both infested and non-infested mussels using a full-spectrum reflectometer (at least within
550	350-2100 nm) could help to improve body temperature predictions during aerial exposure.
551	Fully characterising the physiological, ecological, and evolutionary consequences of
552	endolithic infestation in natural mussel populations will require accurate estimates of
553	submerged body temperatures and the prediction of body temperatures during complete
554	tidal cycles (i.e., including during high tides when mussels are submerged). There are two
555	reasons that could explain why we could not predict body temperatures during
556	submergence with reasonable accuracy. First, we drove the biophysical model with water
557	temperatures extracted from a climate reanalysis whereas temperatures recorded in-situ
558	with buoys placed at our study sites could have provided better results (Lathlean, Ayre $\&$
559	Minchinton 2011). To overcome this, we must rely on future improvements of climate
560	models that will capture the complexity of near-shore environments better and thus provide
561	estimates more biologically meaningful for subtidal and intertidal organisms. Second, we
562	used predictions of tidal heights obtained from XTide at locations sometimes quite distant
563	from our study sites (within 2.34-72.2 km; Table S2), to distinguish between periods of
564	submergence or aerial exposure. This can be problematic because the actual tidal height can
565	vary locally due to the geomorphology of the coast, the influence of wind, waves, and
566	atmospheric pressure. Not accounting for such sources of variation between predicted and
567	realized tidal levels could have led us to misidentify the times when mussels were emerged
568	or submerged. To overcome this, one could follow (i) Gilman et al. (2006) in accounting for
569	wave action when estimating mussel height on the shore and (ii) Mislan et al. (2011) in
570	tracing periods of emergence and submergence or exposure to surge and splash with water-
571	level loggers combined with temperature loggers.

572	Nevertheless, our main focus here was to evaluate thermal buffering due to differences in
573	shell reflectance, and this is mostly driven by solar radiation (Zardi et al. 2021), that is, when
574	mussels are exposed to terrestrial conditions. Our main conclusion that the moderating
575	effects of endoliths on body temperatures are greatest when and where temperatures are
576	most extreme will not be affected by predictions of body temperatures during
577	submergence.
578	
579	References

- 580 Arribas, L.P., Donnarumma, L., Palomo, M.G. & Scrosati, R.A. (2014) Intertidal mussels as
- 581 ecosystem engineers: their associated invertebrate biodiversity under contrasting

582 wave exposures. *Mar. Biodiv.*, **44**, 203–211.

Bates, A.E., Leiterer, F., Wiedeback, M.L. & Poulin, R. (2011) Parasitized snails take the heat:
a case of host manipulation? *Oecologia*, 167, 613–621.

585 Chamberlain, S. (2021) rnoaa: 'NOAA' Weather Data from R. R package version 1.3.2.

586 Cho, W.-J. & Kwon, S. (2010) Estimation of the thermal properties for partially saturated

587 granite. Engineering Geology, **115**, 132-138.

588 Cho, W.J., S. Kwon & Choi, J.W. (2009) The thermal conductivity for granite with various

589 water contents. *Engineering Geology*, **107**, 167–171.

- 590 Choi, F., Gouhier, T., Lima, F., Rilov, G., Seabra, R. & Helmuth, B. (2019) Mapping physiology:
- 591 biophysical mechanisms define scales of climate change impacts. *Conserv. Physiol.*, **7**,
- 592 coz028.

593	Clusella-Trullas, S., Terblanche, J.S., Blackburn, T.M. & Chown, S.L. (2008) Testing the
594	thermal melanism hypothesis: a macrophysiological approach. Funct. Ecol., 22, 232-
595	238.
596	Clusella Trullas, S., van Wyk, J.H. & Spotila, J.R. (2007) Thermal melanism in ectotherms. J.
597	Therm. Biol., 32, 235-245.
598	Denny, M.W., Dowd, W.W., Bilir, L. & Mach, K.J. (2011) Spreading the risk: Small-scale body
599	temperature variation among intertidal organisms and its implications for species
600	persistence. J. Exp. Mar. Biol. Ecol., 400, 175–190.
601	Di Lorenzo, E. & Mantua, N. (2016) Multi-year persistence of the 2014/15 North Pacific
602	marine heatwave. Nat. Clim. Change, 6, 1042–1047.
603	Duffy, J.P. (in prep) mcera5: Tools to acquire and process ERA5 data for use in microclimate
604	modelling.
605	Duncan, A.B., Fellous, S., Accot, R., Alart, M., Sobandi, K.C., Cosiaux, A. & Kaltz, O. (2010)
606	Parasite-mediated protection against osmotic stress for Paramecium caudatum
607	infected by Holospora undulata is host genotype specific. FEMS Microbiol. Ecol., 74,
608	353–360.
609	Fellous, S. & Salvaudon, L. (2009) How can your parasites become your allies? Trends
610	Parasitol., 25, 62–66.
611	Geen, M.R.S. & Johnston, G.R. (2014) Coloration affects heating and cooling in three
612	colormorphs of the Australian bluetongue lizard, Tiliqua scincoides. J. Therm. Biol.,
613	43, 54–60.
614	Gehman, AL.M. & Harley, C.D.G. (2019) Symbiotic endolithic microbes alter host
615	morphology and reduce host vulnerability to high environmental temperatures.
616	<i>Ecosphere,</i> 10, e02683.

617	Gibert, P.,	Moreteau,	В.,	Moreteau, J.C.,	Parkash, R.	. &	David, J.R. (1998) Light body

618	pigmentation in Indian Drosophila melanogaster: a likely adaptation to a hot and arid
619	climate. J. Genet., 77, 13–20.
620	Gilman, S.E., Harley, C.D.G., Strickland, D.C., Vanderstraeten, O., O'Donnell, M.J. & Helmuth,
621	B. (2006) Evaluation of effective shore level as a method of characterizing intertidal
622	wave exposure regimes. Limnol. Oceanogr. Methods, 4, 448–445.
623	Gleason, F.H., Gadd, G.M., Pitt, J.I. & Larkum, A.W.D. (2017) The roles of endolithic fungi in
624	bioerosion and disease in marine ecosystems. I. General concepts. Mycology, 8, 205-
625	215.
626	Golubic, S., Radtke, G. & Campion-Alsumard, T.L. (2005) Endolithic fungi in marine
627	ecosystems. Trends Microbiol., 13, 229-235.
628	Gueymard, C.A. (2001) Parameterized transmittance model for direct beam and circumsolar

629 spectral irradiance. *Solar Energy*, **71**, 325-346.

630 Harbach, H. & Palm, H.W. (2018) Development of general condition and flesh water content

631 of long-time starved *Mytilus edulis*-like under experimental conditions. *Aquac.*

- 632 Aquar. Conserv. Legis., **11**, 301-308.
- 633 Harley, C.D.G. (2008) Tidal dynamics, topographic orientation, and temperature-mediated
- 634 mass mortalities on rocky shores. *Mar. Ecol. Prog. Ser.*, **371**, 37–46.
- 635 Harley, C.D.G. & Helmuth, B.S.T. (2003) Local- and regional-scale effects of wave exposure,
- 636 thermal stress, and absolute versus effective shore level on patterns of intertidal
- 637 zonation. *Limnol. Oceanogr.*, **48**, 1498–1508.
- 638 Helmuth, B., Broitman, B.R., Blanchette, C.A., Gilman, S., Halpin, P., Harley, C.D.G.,
- 639 O'donnell, M.J., Hofmann, G.E., Menge, B. & Strickland, D. (2006) Mosaic patterns of

640 thermal stress in the rocky intertidal zone: implications for clir	mate change. Ecol.
--	--------------------

641 Monogr., **76**, 461–479.

- 642 Helmuth, B., Yamane, L., Lalwani, S., Matzelle, A., Tockstein, A. & Gao, N. (2011) Hidden
- 643 signals of climate change in intertidal ecosystems: what (not) to expect when you are
 644 expecting. J. Exp. Mar. Biol. Ecol., 400, 191–199.
- 645 Helmuth, B.S.T. (1998) Intertidal mussel microclimates: predicting the body temperature of
- a sessile invertebrate. *Ecol. Monogr.*, **68**, 51–74.
- Hersbach, H., Bell, B., Berrisford, P., Horányi, A., Sabater, J.M., Nicolas, J., Radu, R., Schepers,

648 D., Simmons, A., Soci, C. & Dee, D. (2019) Global reanalysis: goodbye ERA-Interim,
649 hello ERA5. *ECMWF Newsletter*, **159**, 17-24.

- 650 Hollister, J.W. (2020) elevatr: Access Elevation Data from Various APIs. R package version
- 651 0.3.1.
- 652 Hughes, T.P., Kerry, J.T., Álvarez-Noriega, M., Álvarez-Romero, J.G., Anderson, K.D., Baird,
- A.H., Babcock, R.C., Beger, M., Bellwood, D.R., Berkelmans, R., Bridge, T.C., Butler,
- 654 I.R., Byrne, M., Cantin, N.E., Comeau, S., Connolly, S.R., Cumming, G.S., Dalton, S.J.,
- 655 Diaz-Pulido, G., Eakin, C.M., Figueira, W.F., Gilmour, J.P., Harrison, H.B., Heron, S.F.,
- 656 Hoey, A.S., Hobbs, J.-P.A., Hoogenboom, M.O., Kennedy, E.V., Kuo, C.-y., Lough, J.M.,
- 657 Lowe, R.J., Liu, G., McCulloch, M.T., Malcolm, H.A., McWilliam, M.J., Pandolfi, J.M.,
- 658 Pears, R.J., Pratchett, M.S., Schoepf, V., Simpson, T., Skirving, W.J., Sommer, B.,
- Torda, G., Wachenfeld, D.R., Willis, B.L. & Wilson, S.K. (2017) Global warming and
 recurrent mass bleaching of corals. *Nature*, 543, 373-377.
- 661 Judge, R., Choi, F. & Helmuth, B. (2018) Recent Advances in Data Logging for Intertidal
- 662 Ecology. Frontiers in Ecology and Evolution, **6**, 213.

663	Kaehler, S. (1999) Incidence and distribution of phototrophic shell-degrading endoliths of
664	the brown mussel Perna perna. Mar. Biol., 135, 505-514.
665	Kaehler, S. & McQuaid, C.D. (1999) Lethal and sub-lethal effects of phototrophic endoliths
666	attacking the shell of the intertidal mussel Perna perna. Mar. Biol., 135, 497-503.
667	Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.K., Hnilo, J.J., Fiorino, M. & Potter, G.L.
668	(2002) NCEP–DOE AMIP-II REANALYSIS (R-2). Bulletin of the American Meteorological
669	Society, 83, 1631-1644.
670	Kearney, M. (2021) NicheMapR: R implementation of Niche Mapper software for biophysical
671	modelling. R package version 3.0.0.
672	Kearney, M.R., Gillingham, P.K., Bramer, I., Duffy, J.P. & Maclean, I.M.D. (2020) A method for
673	computing hourly, historical, terrain-corrected microclimate anywhere on earth.
674	Methods Ecol. Evol., 11, 38–43.
675	Kearney, M.R. & Porter, W.P. (2017) NicheMapR – an R package for biophysical modelling:
676	the microclimate model. <i>Ecography</i> , 40 , 664-674.
677	Kearney, M.R., Shamakhy, A., Tingley, R., Karoly, D.J., Hoffmann, A.A., Briggs, P.R. & Porter,
678	W.P. (2014) Microclimate modelling at macro scales: a test of a general microclimate
679	model integrated with gridded continental-scale soil and weather data. Methods
680	<i>Ecol. Evol.,</i> 5, 273–286.
681	Kemp, M.U., van Loon, E.E., Shamoun-Baranes, J. & Bouten, W. (2012) RNCEP: global
682	weather and climate data at your fingertips. Methods in Ecology and Evolution, 3, 65-
683	70.
684	Koepke, P., Hess, M., Schult, I. & Shettle, E.P. (1997) Global Aerosol Data Set. Max-Planck-
685	Institut für Meteorologie, Hamburg, Report No. 243.

686	Kwon, S., Kim, J.S., Lee, C.S. & Cho, W.J. (2011) The thermal and mechanical properties rock	
687	mass around an underground research tunnel in granite body. Harmonising Rock	
688	Engineering and the Environment (eds Q. Qian & Y. Zhou), pp. 2048 pp. CRC Press,	
689	London.	
690	Lathlean, J.A., Ayre, D.J. & Minchinton, T.E. (2011) Rocky intertidal temperature variability	
691	along the southeast coast of Australia: comparing data from in situ loggers, satellite-	
692	derived SST and terrestrial weather stations. Mar. Ecol. Prog. Ser., 439, 83–95.	
693	Le Nohaïc, M., Ross, C.L., Cornwall, C.E., Comeau, S., Lowe, R., McCulloch, M.T. & Schoepf, V.	
694	(2017) Marine heatwave causes unprecedented regional mass bleaching of thermally	
695	resistant corals in northwestern Australia. Sci. Rep., 7, 14999.	
696	Maclean, I.M.D., Mosedale, J.R. & Bennie, J.J. (2018) Microclima: An R package for modelling	
697	meso-and microclimate. Methods Ecol. Evol., 10, 280–290.	
698	MacLeod, C.D. & Poulin, R. (2016) Parasitic infection: a buffer against ocean acidification?	
699	<i>Biol. Lett.</i> , 12 , 20160007.	
700	Marquet, N., Nicastro, K.R., Gektidis, M., McQuaid, C.D., Pearson, G.A., Serrão, E.A. & Zardi,	
701	G.I. (2013) Comparison of phototrophic shell-degrading endoliths in invasive and	
702	native populations of the intertidal mussel Mytilus galloprovincialis. Biol. Invasions,	
703	15, 1253–1272.	
704	Mateparae, K.M. (2003) Optimisation of the Thermal Processing of Mussels. Master of	
705	Technology, Massey University.	
706	McKechnie, A.E. & Wolf, B.O. (2010) Climate change increases the likelihood of catastrophic	
707	avian mortality events during extreme heat waves. Biol. Lett., 6, 253–256.	
708	Meehl, G.A. & Tebaldi, C. (2004) More Intense, More Frequent, and Longer Lasting Heat	
709	Waves in the 21st Century. Science, 305, 994-997.	

710	Met Office (2019a) MIDAS Open: UK hourly	rainfall data, v201908.	Centre for Environmental
-----	-------------------	-------------------------	-------------------------	--------------------------

- 711 Data Analysis, 30 October 2019.
- 712 Met Office (2019b) MIDAS Open: UK hourly solar radiation data, v201908. Centre for
- 713 Environmental Data Analysis, 30 October 2019.
- 714 Met Office (2019c) MIDAS Open: UK hourly weather observation data, v201908. *Centre for*
- 715 Environmental Data Analysis, 30 October 2019.
- 716 Mislan, K.A.S., Blanchette, C.A., Broitman, B.R. & Washburn, L. (2011) Spatial variability of
- 717 emergence, splash, surge, and submergence in wave-exposed rocky-shore
- r18 ecosystems. *Limnology and Oceanography*, **56**, 857–866.
- 719 Mislan, K.A.S. & Wethey, D.S. (2015) A biophysical basis for patchy mortality during heat
- 720 waves. *Ecology*, **96**, 902-907.
- Monaco, C.J. & McQuaid, C.D. (2018) Applicability of Dynamic Energy Budget (DEB) models
 across steep environmental gradients. *Scientific Reports*, 8, 16384.
- 723 Monaco, C.J., Wethey, D.S. & Helmuth, B. (2016) Thermal sensitivity and the role of
- behavior in driving an intertidal predator–prey interaction. *Ecological Monographs*,
 86, 429-447.
- 726 Monsinjon, J.R., McQuaid, C.D., Nicastro, K.R., Seuront, L., Oróstica, M.H. & Zardi, G.I. (2021)
- 727 Data from: Weather and topography regulate the benefit of a conditionally helpful
- 728 parasite. Dryad Digital Repository.
- Mosedale, J., Bennie, J. & Duffy, J. (2021) microclima: microclimate modelling with R. R
 package version 0.1.0.
- 731 Ndhlovu, A., McQuaid, C.D. & Monaco, C.J. (2020) Ectoparasites reduce scope for growth in
- a rocky-shore mussel (*Perna perna*) by raising maintenance costs. *Sci. Total Environ.*, **753**, 142020.

734 Nicastro, K.R., Zardi, G.I., McQuaid, C.D., Pearson, G.A. & Serrão, E.A. (2012) Love Thy

- 735 Neighbour: Group Properties of Gaping Behaviour in Mussel Aggregations. *PLoS One,*
- 736 **7**, e47382.
- 737 Oliver, E.C.J., Donat, M.G., Burrows, M.T., Moore, P.J., Smale, D.A., Alexander, L.V.,
- 738 Benthuysen, J.A., Feng, M., Gupta, A.S., Hobday, A.J., Holbrook, N.J., Perkins-
- 739 Kirkpatrick, S.E., Scannell, H.A., Straub, S.C. & Wernberg, T. (2018) Longer and more
- frequent marine heatwaves over the past century. *Nat. Commun.*, **9**, 1324.
- 741 Porter, W.P. & Gates, D.M. (1969) Thermodynamic Equilibria of Animals with Environment.
- 742 Ecol. Monogr., **39**, 227-244.
- 743 Porter, W.P., Mitchell, J.W., Beckman, W.A. & DeWitt, C.B. (1973) Behavioral implications of
- mechanistic ecology: Thermal and behavioral modeling of desert ectotherms and
 their microenvironment. *Oecologia*, **13**, 1–54.
- 746 Pruvot, M., Cappelle, J., Furey, N., Hul, V., Heng, H.S., Duong, V., Dussart, P. & Horwood, P.
- 747 (2019) Extreme temperature event and mass mortality of insectivorous bats. *Eur. J.*748 *Wildl. Res.*, 65, 41.
- R Core Team (2021) R: A language and environment for statistical computing. R Foundation
 for Statistical Computing, Vienna, Austria.
- 751 Rouxel, M., Ruiz, L., Molénat, J., Hamon, Y., Chirié, G. & Michot, D. (2012) Experimental
- 752 Determination of Hydrodynamic Properties of Weathered Granite. *Vadose Zone*
- 753 *Journal,* **11**, vzj2011.0076.
- Sanford, E. & Kelly, M.W. (2011) Local Adaptation in Marine Invertebrates. *Annual Review of Marine Science*, **3**, 509-535
- 756 Schneider, T., Kaul, C.M. & Pressel, K.G. (2019) Possible climate transitions from breakup of
- 757 stratocumulus decks under greenhouse warming. *Nat. Geosci.*, **12**, 163–167.

758	Seabra, R.	., Wethey, D.S., Santo	s, A.M. & Lima,	, F.P. (2011) Side	matters: Microhabitat
-----	------------	------------------------	-----------------	--------------------	-----------------------

- 759 influence on intertidal heat stress over a large geographical scale. J. Exp. Mar. Biol.
- 760 *Ecol.*, **400**, 200–208.
- Seuront, L., Nicastro, K.R., Zardi, G.I. & Goberville, E. (2019) Decreased thermal tolerance
 under recurrent heat stress conditions explains summer mass mortality of the blue
 mussel *Mytilus edulis. Sci. Rep.*, 9, 17498.
- Smale, D.A. (2020) Impacts of ocean warming on kelp forest ecosystems. *New Phytol.*, 225,
 1447–1454.
- Smale, D.A., Wernberg, T., Oliver, E.C.J., Thomsen, M., Harvey, B.P., Straub, S.C., Burrows,
 M.T., Alexander, L.V., Benthuysen, J.A., Donat, M.G., Feng, M., Hobday, A.J.,
- 768 Holbrook, N.J., Perkins-Kirkpatrick, S.E., Scannell, H.A., Gupta, A.S., Payne, B.L. &
- Moore, P.J. (2019) Marine heatwaves threaten global biodiversity and the provision
 of ecosystem services. *Nat. Clim. Change*, **9**, 306–312.
- 771 Smith, K.R., Cadena, V., Endler, J.A., Porter, W.P., Kearney, M.R. & Stuart-Fox, D. (2016)
- Colour change on different body regions provides thermal and signalling advantages
 in bearded dragon lizards. *Proc. R. Soc. B*, 283, 20160626.
- 774 Somero, G.N. (2010) The physiology of climate change: how potentials for acclimatization
- and genetic adaptation will determine 'winners' and 'losers'. J. Exp. Biol., **213**, 912-
- 776 920.
- 777 Sorte, C.J.B., Bernatchez, G., Mislan, K.A.S., Pandori, L.L.M., Silbiger, N.J. & Wallingford, P.D.
- 778 (2019) Thermal tolerance limits as indicators of current and future intertidal
- zonation patterns in a diverse mussel guild. *Mar. Biol.*, **166**, 6.
- 780 Thyrring, J., Tremblay, R. & Sejr, M.K. (2019) Local cold adaption increases the thermal
- 781 window of temperate mussels in the Arctic. *Conservation Physiology*, **7**, coz098.

782 -	Turner, J. & Lombard, A	(1990) Body color ar	nd body temperature in	white and black Namib
-------	-------------------------	----------------------	------------------------	-----------------------

783 desert beetles. J. Arid Environ., **19**, 303–315.

- 784 Umbers, K.D.L., Herberstein, M.E. & Madin, J.S. (2013) Colour in insect thermoregulation:
- 785 Empirical and theoretical tests in the colour-changing grasshopper, *Kosciuscola*786 *tristis. J. Insect Physiol.*, **59**, 81–90.
- 787 Walsberg, G.E. (1983) Coat color and solar heat gain in animals. *Bioscience*, **33**, 88-91.
- 788 Walsberg, G.E., Campbell, G.S. & King, J.R. (1978) Animal coat color and radiative heat gain:
- 789 A re-evaluation. J. Comp. Physiol. B, **126**, 211-222.
- 790 Welbergen, J.A., Klose, S.M., Markus, N. & Eby, P. (2008) Climate change and the effects of
- 791 temperature extremes on Australian flying-foxes. *Proc. R. Soc. B*, **275**, 419–425.
- 792 Wellborn, G.A. & Langerhans, R.B. (2015) Ecological opportunity and the adaptive
- 793 diversification of lineages. *Ecol. Evol.*, **5**, 176–195.
- 794 Zardi, G.I., Monsinjon, J.R., McQuaid, C.D., Seuront, L., Oróstica, M.H., Want, A., Firth, L.B. &
- 795 Nicastro, K.R. (2021) Foul-weather friends: Modelling thermal stress mitigation by
- symbiotic endolithic microbes in a changing environment. *Global Change Biology*, 27,
 2549-2560.
- 798 Zardi, G.I., Nicastro, K.R., McQuaid, C.D. & Gektidis, M. (2009) Effects of Endolithic
- 799 Parasitism on Invasive and Indigenous Mussels in a Variable Physical Environment.
- 800 PLoS One, **4**, e6560.
- Zardi, G.I., Nicastro, K.R., McQuaid, C.D., Ng, T.P.T., Lathlean, J. & Seuront, L. (2016) Enemies
 with benefits: parasitic endoliths protect mussels against heat stress. *Sci. Rep.*, 6,
- 803 31413.
- Zeileis, A. & Grothendieck, G. (2005) zoo: S3 Infrastructure for Regular and Irregular Time
- 805 Series. Journal of Statistical Software, **14**, 1–27.

807 Acknowledgements

- 808 This work is based upon research supported by the National Research Foundation of South
- 809 Africa (Grant number 64801). The work was also financially supported by a Pierre Hubert
- 810 Curien PESSOA Program, projects UIDB/04326/2020 from the Fundação para a Ciência e
- 811 Tecnologia (FCT-MEC, Portugal), and by Rhodes University.

812 Conflict of interest

813 The authors declare no conflict of interest.

814 Authors' contributions

- 315 JRM initiated the project and conducted the data analysis. JRM conceived the manuscript
- 816 with contributions from CDM, GIZ and KRN. GIZ, KRN, MO, and LS collected field data. JRM
- 817 wrote the manuscript with contributions from all authors.
- 818 Data availability
- 819 Robomussel data are available from the Dryad Digital Repository:
- 820 https://doi.org/10.5061/dryad.79cnp5hwg (Monsinjon et al. 2021).

821 Code availability

- 822 The modelling code used in the present study is available upon reasonable request from the
- 823 corresponding author.

824 Supporting information

Additional supporting information may be found in the online version of this article.

826 FEMonsinjonSF1to7&ST1to5.docx [Supplementary Material (Figures S1-7 and Tables S1-5)]

Commenté [JM4]: pdf