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Abstract :   
 
Over the last years, a very active field of research aims at exploring new data-driven and learning-based 
methodologies to propose computationally efficient strategies able to benefit from the large amount of 
observational remote sensing and numerical simulations for the reconstruction, interpolation and 
prediction of high-resolution derived products of geophysical fields. In this paper, we investigate how they 
might help to solve for the oversmoothing of the state-of-the-art optimal interpolation (OI) techniques in 
the reconstruction of sea surface height (SSH) spatio-temporal fields. We focus on a small region, part of 
the GULFSTREAM and mainly driven by energetic mesoscale dynamics. Based on an Observation 
System Simulation Experiment (OSSE), we will use the NATL60 high resolution deterministic ocean 
simulation of the North Atlantic to generate two types of pseudo altimetric observational dataset: along-
track nadir data for the current capabilities of the observation system and wide-swath SWOT data in the 
context of the upcoming SWOT mission. We briefly introduce the analog data assimilation (AnDA), an up-
to-date version of the DINEOF algorithm, and a new NN-based end-to-end learning framework for the 
representation of spatio-temporal irregulary-sampled data. We evaluate how some of these methods are 
a significant improvements, particularly by catching up the small scales ranging up to 30-40km, 
inaccessible by the conventional methods so far. A clear gain is also demonstrated when assimilating 
jointly wide-swath SWOT and (agreggated) along-track nadir observations. 
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I. INTRODUCTION

Thanks to the ocean surface remote sensing 
data acquired by different altimetric missions

(TOPEX/Poseidon, ERS-1, ERS-2, Geosat Follow-
On, Jason-1, Envisat and OSTM/Jason-2), our
understanding of the ocean circulation has been
considerably improved over the last decades. But
currently, the range of scales over 150km remains
inaccessible to altimetric derived products because of
the limited number of altimetric missions and their
spatio-temporal sampling. In this context, a very active
field of research now consists in taking advantage
of the big amount of data and numerical simulations
available to overcome these limits of conventional
altimetric products, which motivate complementary
developments combining high resolution remote
sensing and numerical simulations.
Over the last years, purely data-driven and artifical
intelligence (AI)-based algorithms have just been
proposed [1], [2], [3], [4], [5] to deal with problems
directly related to data assimilation and operational
oceanography. More specifically, promising preliminary
results have been seen for the sea surface reconstruction
and prediction from partial and noisy satellite
observations.
In this paper, we propose an intercomparison exercise
of several data-driven and learning-based approaches
to help for the reconstruction of altimetric fields.
As a baseline the DUACS operational processing
tool based on well established optimal interpolation
(OI) techniques will be considered. In Section II, we
present the case study and its dataset, developed within
the BOOST-SWOT project framework: the NATL60
high resolution deterministic ocean simulation of the
North Atlantic [6]) is used as reference to simulate
Sea Surface Height (SSH) along-track observations
collected by four nadir, which is typically representative
of the current observational altimetric capabilities. As
an additional feature for the upcoming 2021 SWOT
mission, pseudo-SWOT wide-swath observations also
following realistic orbits are generated based on the
NATL60 simulation. In Section III, we present the
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data-driven approaches used in the intercomparison: 1)
AnDA, a purely data-driven data assimilation scheme
combining a patch-based analog forecasting operator
with Kalman-based ensemble data assimilation, 2)
VE-DINEOF, an EOF-based iterative method to
interpolate in space and time the missing data, and
3) learning-based innovative end-to-end learning
techniques that aims to learn jointly the Neural
Network (NN) representation of the dynamics coupled
with a NN-based solver of the targeted minimization
problem. Last, in Section IV, we give a detailed
evaluation of the results obtained over a small region,
part of the GULFSTREAM and mainly driven by
energetic mesoscale dynamics.

II. CASE STUDY AND DATA

A. NATL60

The Nature Run (NR) used in this work corresponds
to the NATL60 configuration [6] of the NEMO (Nu-
cleus for European Modeling of the Ocean) model.
It is one of the most advanced state-of-the-art basin-
scale high-resolution (1/60◦) simulation available today,
whose surface field effective resolution is about 7km.
In this work, a specific domain of 10◦× 10◦, part of the
Gulf Stream, is selected (Figure 1) to assess the perfor-
mance of the data-driven interpolation methods. Over
this region, the Sea Surface Height (SSH) is mainly
driven by energetic mesoscale dynamics: the resolution
of the nature run is thus downgraded to 1/20◦, which
is enough to capture this dynamical regime, while
avoiding unnecessary heavy computational time. The
NATL60 nature run will then be used as the reference
Ground Truth (GT) in an observing system simulation
experiments (OSSE). The pseudo-altimetric nadir and
SWOT observational datasets will be generated by a
realistic sub-sampling of satellite constellations.

B. Nadir

To provide the pseudo-nadir dataset, supposed to be
representative of what is a current pre-SWOT observa-
tional altimetric dataset, the groundtracks of 4 altimetric
missions (TOPEX/Poseidon, Geosat, Jason-1 and En-
visat) picked up from the 2003 constellation, are used
to interpolate the NATL60 simulation from October 1st,
2012 to September 29th, 2013, thus covering a whole
year of data. A Gaussian white noise with variance
σ2 = 30cm is then added to the interpolated NATL60
simulation on the nadir coordinates to simulate the
instrumental acquisition noise [7]. Because the space-
time interpolations will focus on a daily-basis temporal

resolution, we also build nadir pseudo-observations
with an additional strategy by accumulating observa-
tions over a time window tk ± d days centered at time
tk in order to increase the daily nadir spatial sampling.
As in [4], we investigate the response of the different
interpolation techniques when parameter d is either set
to 0 or 5, see Figures 2a and 2c.

C. SWOT

In the same line, SWOT-like pseudo observations
are also produced by the swotsimulator tool [8] in its
swath mode with an along-track and across-track 2km
spatial resolution, the same theoretical resolution the
upcoming SWOT mission derived products should be
able to provide. The nadir mode of the generator also
provide pseudo-nadir along track observations though
they are not used here. The simulator also adds instru-
mental noise on the idealized pseudo-SWOT dataset
[9], [10]. This noise potentially exhibit strong space-
time correlations. Thus, the pseudo-SWOT observations
are first preprocessed (citation++) to filter out these
correlated components and avoid major issues in the
assimilation and/or learning process of the interpolation
methods.
Let precise that over this low-latitude GULFSTREAM
domain, the SWOT sampling is irregular leading to
sequences of several days with only pseudo-nadir ob-
servations.

D. DUACS OI products

The DUACS system is an operational production
of sea level products for the Marine (CMEMS) and
Climate (C3S) services of the E.U. Copernicus pro-
gram, on behalf of the CNES french space agency. It is
mainly based on optimal interpolation techniques whose
parameters are fully described in [11]. This method-
ology has been applied on the previously introduced
pseudo along-track nadir and wide-swath SWOT data
to generate regular (0.25◦x0.25◦) daily gridded maps.

III. METHODS

The data-driven methods we are investigating aims
at solving smaller scales than operational OI products,
more adapted to estimate large scale dynamics. Along
this line, we are using in the following a multiscale
decomposition:

x = x + dx + ε (1)

and all the interpolations methods used here will work
on the anomaly field dx, seen as the difference between
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GULFSTREAM

Fig. 1: GULFSTREAM domain

the original field x and the large scales components
provided by the OI. In the end, we hope the effective
resolution estimated for the anomaly field dx to be
better than the OI-based representation of the dynamics.
In what follows, y denotes the observational data cor-
responding to subdomain Ω ⊂ D, Ω denotes the gappy
part of the SSH field and index k refers to time tk.

A. AnDA

The Analog Data Assimilation (AnDA) is a purely
data-driven data assimilation method, that introduces a
statistical operator A as a substitute for the dynamical
model M, leading to the following state-space formu-
lation : {

dxk+1 = Ak+1(dxk) + µk
dyk = Hk(dxk) + εk

(2)

The analog forecasting operator A : dxak−1 7→ dxfk
, where superscripts a and f respectively relies to
analysis and forecast, is built from the K most similar
states to dxak−1 in the available past state dynamics
catalog, supposed to be large enough to describe the
space-time evolution of the processes. More precisely,
dxfk is sampled from the Gaussian prior dxfk |dxak−1 ∼
N (µk,Σk), where the mean µk and the covariance ma-
trix Σk are estimated using the so-called locally linear
model [1], i.e. a weighted linear regression between the
K nearest analogs and their successors.
As in [4], a patch-based version of AnDA coupled
with an EOF-based representation of the individual
patches is used. The anomaly field dx is splitted into
169 vectorized patches p(s, t) of sizes 1◦× 1◦, cor-
responding to 20 pixels × 20 pixels, with overlapping

areas of 5 pixels. An EOF-based decomposition of each
individual vectorized anomaly patches is then carried
out to deal with the curse of dimensionality. Finally, the
whole AnDA algorithm is performed at the patch-level,
meaning that both the analog prediction and the assim-
ilation are done onto the lower-dimensional space of
their EOF-based representation. A final post-processing
step (denoted as post-AnDA) is used to project the
prediction onto the original space-time domain and
average the overlapping patches to smooth out some
blocky artefacts coming from the patch decomposition.
On this last point, an improvement can be considered
by using a convolutional neural network (CNN) to learn
how to reconstruct the whole domain from the set of
overlapping patches, as in [5].

B. VE-DINEOF

VE-DINEOF is a state-of-the-art interpolation ap-
proach [12] using an EOF-based iterative filling strat-
egy. Typically the large-scale component provided by
the OI is used (or 0 values if working on the anomaly)
as a first guess to fill in the missing data over Ω.
After each iteration and until convergence, the field is
projected onto the N most significant EOF components
of the lower dimensional space and new values for the
missing data are used based on the updated reconstruc-
tion of the field. Finally, the VE-DINEOF algorithm is
here proposed in its patch-based version, in the exact
similar setting proposed for AnDA.

C. End-to-end NN-learning

An end-to-end learning representation has recently
been introduced in [13] to deal with image sequences
involving potentially large missing data rates. In this
framework, an energy-based representation Uθ to min-
imize is introduced :

Uθ(dx) = ‖dx− ψ (dx) ‖2 (3)

where the operator ψ denotes a NN-based representa-
tion of the underlying processes. Typically, two NN-
based energy parametrizations are considered. First,
a classic convolutional auto-encoders (ConvAE) rep-
resentations ψ(·) = φD(φE(·)) where the encoding
operator φE maps the anomaly state dx onto a lower-
dimensional space and the decoder φD has to project
this encoded representation in the original space. Sec-
ond, NN-based Gibbs-Energy (GENN) representations
where dxs, the anomaly observed at location s ∈ D,
is supposed to be explained by the potential function
ψ(dxδs) with δs a predefined neighbourhood of site
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(a) nadir (d=0) (b) nadir (d=0) + swot (c) nadir (d=5) (d) nadir (d=5) + swot

Fig. 2: 0 and 5-days accumulated along-track nadir and wide-swath pseudo-observations for August 4, 2013

s, thus relating this representation to Markovian priors
embedded in CNNs. A low energy-state Uθ(dx) =∫
D Uθ(dxs)ds over the entire domain D ensures to

provide a good state space reconstruction. Based on
this NN-parametrization of operator ψ, a fixed-point
algorithm (FP) is used during the training for solving
the minimization of the reconstruction error for the
observed error. It is parameter-free and easily imple-
mented as a NN in a joint solution with the NN-
parametrization of Uθ for the interpolation problem. Let
precise that during the learning phase, anomaly image
time series dxk±dT = dxk−dT :k+dT are built with time
window dT = 5, centered on time tk.
The two NN-architectures are then refered as FP-
ConvAE and FP-GENN. In [13], an additional NN-
based reinterpretation of an iterative gradient-based
descent solution is proposed to solve the issue of
optimizing the parameters θ in energy Uθ.

IV. EVALUATION

A specific aspect of this work consists in the period
of data available because the NATL60 native run is
only one-year long which is relatively short in com-
parison with the training period typically used in the
previous related work mentioned in Introduction. To
get around this issue, we decide to build four 20-days
long validation period homogeneously distributed along
this one-year dataset (see the starting dates reported
on Figures 3), supposed to be representative of the
different seasonality effects that may be encountered
during the year. We first have to discuss the time
window parameter d related to the aggregation of along-
track data over a specific day tk, see Section II.B. A
same value of this parameter may not be optimal for all
the interpolators: AnDA exhibits a better performance
when considering only along-track nadir data of the
day (d = 0), thus contradicting the previous optimal

results of d = 5 found by [4] over the Mediterranean
sea, which may indicate AnDA responds differently to
the along-track aggregation strategy depending on the
energetic dynamical regime of the region. On the other
hand, both FP-ConvAE and FP-GENN interpolators
performs better (not shown here) by aggregating nadir
data over a 5-day time window. As a consequence,
the results presented in what follows will use value
of d = 0 for AnDA and VE-DINEOF and d = 5
for FP-ConvAE and FP-GENN. Next, to evaluate the
behaviour of the different interpolators on both along-
track nadir samplings and their fusion with wide-swath
SWOT datasets and make the comparison possible,
we have to preliminary define which configuration the
NN-based interpolators will be used. Here, a fully
unsupervised version of FP-GENN is used in which
both the input and target are only made of the pseudo-
observations. The DUACS OI product is also used as
a covariate in the inputs, because we think that this
may give a prior information about how the anomaly
field dx is distributed. Regarding FP-ConvAE, because
it generally shows lower performance, probably because
auto-encoders may not be relevant for the reconstruction
of fine-scale processes, it will be used in the follow-
ing as a low-rated NN-scheme among the NN-based
interpolators in its mid-supervised configuration: the
inputs are the pseudo-observations and the gap-free
NATL60 outputs are used as targets. Figure 3 presents
the daily nRMSE of the different interpolators: it can
be seen how FP-GENN significantly outperforms the
conventional OI-based interpolator, but also the other
data-driven algorithms used in the experiment. AnDA
still remains quite efficient at the very beginning of the
four 20-days validation period, which is probably re-
lated to a strong persistence of the mesoscale dynamics
of the SSH over the region. In other words, the one-
year catalog (minus the 80 validation days) obviously
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enable to build a good analog forecasting operator when
knowing the short-term dynamics, but its accuracy
quickly decays afterwards, which may not be fair for
AnDA that probably requires longer simulations-based
catalog in this low-latitude GULFSTREAM region with
large Rossby radius of deformation.

(a) nadir

(b) nadir+swot

Fig. 3: Daily spatial nRMSE computed on the 80-days
non-continuous validation period for OI, (post-)AnDA,
VE-DINEOF, FP-ConvAE and FP-GENN. The spatial
coverage of 0-days accumulated along-track nadir and
wide-swath SWOT data are respectively provided by
the red and green-colored barplots

The Taylor diagram in Figure 4, here calculated over
the 80 validation days and focusing only on small-scale
structures by applying a high-pass filter that spectrally
separates the horizontal scales ranging in the order of
150km, also confirms our first findings.
In Table I, we provide some statistics (median, 5th
and 95th percentile) about the daily spatial SSH and
gradient nRMSE, computed using the 4×10 days at the
center of the 4 validation periods in order to avoid some
SSH persistency-related overrated performances. FP-

GENN clearly stands out from the other interpolators,
which motivate its future use for irregularly-sampled
data with large missing data rates. In addition, because
its reconstruction scores (where pseudo-observations
are available) still remain overall satisfactory, in partic-
ular when considering the joint learning on nadir and
SWOT data, these results are supplementary arguments
on account of this markovian NN-based formulation.

Fig. 4: Taylor diagram computed on the 80-days non-
continuous validation period for OI, (post-)AnDA, VE-
DINEOF, FP-ConvAE and FP-GENN

Last, when computing the radially averaged power
spectra as a spatial domain averaged over the 80-days
validation period and the associated signal-to-noise
ratio for joint use of along-track nadir with SWOT data
(not shown here), we observe that AnDA and FP-GENN
lead to a better constraint of the SSH spectrum com-
pared to the actual OI capabilities. In particular, these
two methods produce a spectrum closer to the ground
truth real spectrum, by catching up the submesoscale
range up to 50km if along-track nadir are only used, a
result improved up to 40km for AnDA and FP-GENN
when considering additional SWOT data. Let note the
importance of the patch-based AnDA post-processing
on its performance: its overestimation by the blocky
patch-based AnDA rough outputs is partly mitigated
thanks to the smoothing produced by averaging the
patches overlapping areas. This result may certainly
be further improved, for instance by training a CNN
rather than using a simple average-based smoothing. To
further enhance the vizualisation of the improvements
brought by the different interpolators, Figure 5 and
Figure 6 depict the SSH and its gradient (module)
reference ground truth as well as the global reconstruc-
tion obtained with the OI, (post-)AnDA, VE-DINEOF,
FP-ConvAE and FP-GENN when using along-track
nadir only on August 4, 2013. Figures 7 and Figure
8 illustrate the same interpolations but considering
additional wide-swath pseudo-observations. To support
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Model type median q0.5 q0.95

na
di

r

OI 0.14 0.10 0.17
AnDA 0.14 0.10 0.17

VE-DINEOF 0.14 0.10 0.17
FP-ConvAE 0.14 0.10 0.18
FP-GENN 0.09 0.06 0.11

na
di

r
+

SW
O

T OI 0.12 0.08 0.17
AnDA 0.11 0.08 0.15

VE-DINEOF 0.12 0.09 0.17
FP-ConvAE 0.13 0.09 0.16
FP-GENN 0.08 0.05 0.10

Model type median q0.5 q0.95

na
di

r

∇OI 0.52 0.40 0.64
∇AnDA 0.52 0.41 0.62

∇VE−DINEOF 0.53 0.41 0.65
∇FP−ConvAE 0.56 0.43 0.70
∇FP−GENN 0.41 0.33 0.48

na
di

r
+

SW
O

T ∇OI 0.49 0.35 0.66
∇AnDA 0.45 0.33 0.61

∇VE−DINEOF 0.52 0.40 0.67
∇FP−ConvAE 0.54 0.41 0.65
∇FP−GENN 0.38 0.30 0.45

TABLE I: Daily SSH and SSH gradient field median nRMSE and associated 5th and 95th percentile computed
using the 4×10 days at the center of the 4 validation periods for OI, (post-)AnDA, VE-DINEOF, FP-ConvAE
and FP-GENN for both nadir use only and joint assimilation/learning with wide-swath SWOT data

what has already been said through the performance
analysis previously discussed, FP-GENN using 5-days
accumulated nadir observations appears closer to the
ground truth SSH field than the reconstruction obtained
with FP-ConvAE using a similar solver but a simple
auto-encoder representation of the dynamics. The latter
clearly oversmoothes the true field and also exhibits
some unnecessary artefacts on the SSH gradient thus
explaining the noisy-related small scale energies on
the spectra. The same artefacts appears on the VE-
DINEOF mapping which exhibits discontinuities be-
tween the known wide-swath-informed areas and the
filled missing data. Last, AnDA also behaves well,
especially because the wide-swath SWOT data coverage
on this specific day is important, getting its performance
closer to FP-GENN than the day without the 2D-
SWOT information. Besides methodological aspects,
the use of additional 2D wide-swath swot informa-
tion significantly improves the gradient reconstruction,
which is clearly apparent for AnDA and FP-GENN
when looking at Figures 6c/f and Figures 8c/f.

V. CONCLUSION

In this short paper, we described a selection of
data-driven and learning-based methodologies to ap-
ply on altimetric along-track nadir and wide-swath
SWOT datasets for the reconstruction of SSH fields. We
quantify the potential gain provided by the upcoming
SWOT mission on this approaches and demonstrate the
great potential of well-designed NN-based method that
gives here the best results and seems to open a future
research avenue in data assimilation related issues for
the learning of geophysical dynamics.
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(a) Ground Truth (SSH) (b) OI (c) Post-AnDA

(d) VE-DINEOF (e) FP-ConvAE (f) FP-GENN

Fig. 5: Global SSH field reconstruction (August 4, 2013) obtained by OI, (post-)AnDA, VE-DINEOF, FP-ConvAE
and FP-GENN using along-track nadir data only

(a) Ground Truth (∇SSH) (b) OI (c) Post-AnDA

(d) VE-DINEOF (e) FP-ConvAE (f) FP-GENN

Fig. 6: Global SSH gradient field reconstruction (August 4, 2013) obtained by OI, (post-)AnDA, VE-DINEOF,
FP-ConvAE and FP-GENN using along-track nadir data only
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(a) Ground Truth (SSH) (b) OI (c) Post-AnDA

(d) VE-DINEOF (e) FP-ConvAE (f) FP-GENN

Fig. 7: Global SSH field reconstruction (August 4, 2013) obtained by OI, (post-)AnDA, VE-DINEOF, FP-ConvAE
and FP-GENN for a joint assimilation/learning of along-track nadir with wide-swath SWOT data

(a) Ground Truth (∇SSH) (b) OI (c) Post-AnDA

(d) VE-DINEOF (e) FP-ConvAE (f) FP-GENN

Fig. 8: Global SSH gradient field reconstruction (August 4, 2013) obtained by OI, (post-)AnDA, VE-DINEOF,
FP-ConvAE and FP-GENN for a joint assimilation/learning of along-track nadir with wide-swath SWOT data

View publication statsView publication stats

https://www.researchgate.net/publication/344413704

