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Abstract: The production of polyunsaturated fatty acids (PUFA) in Tisochrysis lutea was studied using
the gradual incorporation of a 13C-enriched isotopic marker, 13CO2, for 24 h during the exponential
growth of the algae. The 13C enrichment of eleven fatty acids was followed to understand the
synthetic pathways the most likely to form the essential polyunsaturated fatty acids 20:5n-3 (EPA)
and 22:6n-3 (DHA) in T. lutea. The fatty acids 16:0, 18:1n-9 + 18:3n-3, 18:2n-6, and 22:5n-6 were the
most enriched in 13C. On the contrary, 18:4n-3 and 18:5n-3 were the least enriched in 13C after long
chain polyunsaturated fatty acids such as 20:5n-3 or 22:5n-3. The algae appeared to use different routes
in parallel to form its polyunsaturated fatty acids. The use of the PKS pathway was hypothesized
for polyunsaturated fatty acids with n-6 configuration (such as 22:5n-6) but might also exist for n-3
PUFA (especially 20:5n-3). With regard to the conventional n-3 PUFA pathway, ∆6 desaturation of
18:3n-3 appeared to be the most limiting step for T. lutea, “stopping” at the synthesis of 18:4n-3 and
18:5n-3. These two fatty acids were hypothesized to not undergo any further reaction of elongation
and desaturation after being formed and were therefore considered “end-products”. To circumvent
this limiting synthetic route, Tisochrysis lutea seemed to have developed an alternative route via ∆8
desaturation to produce longer chain fatty acids such as 20:5n-3 and 22:5n-3. 22:6n-3 presented a lower
enrichment and appeared to be produced by a combination of different pathways: the conventional
n-3 PUFA pathway by desaturation of 22:5n-3, the alternative route ofω-3 desaturase using 22:5n-6
as precursor, and possibly the PKS pathway. In this study, PKS synthesis looked particularly effective
for producing long chain polyunsaturated fatty acids. The rate of enrichment of these compounds
hypothetically synthesized by PKS is remarkably fast, making undetectable the 13C incorporation
into their precursors. Finally, we identified a protein cluster gathering PKS sequences of proteins that
are hypothesized allowing n-3 PUFA synthesis.

Keywords: long-chain PUFA synthesis; desaturases; elongases; PKS pathway; 20:5n-3 (EPA); 22:6n-3
(DHA); Tisochrysis lutea; 13C artificial enrichment

1. Introduction

Long chain polyunsaturated fatty acids (LC-PUFA) such as 20:5n-3 (EPA) and 22:6n-3
(DHA) are important compounds for most marine metazoans for their growth, reproduc-
tion, and development. They are not able to synthetize them in sufficient quantities and
thus have to acquire them from their diet. On the basis of the food web, protists are the
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main producers of these fatty acids and present a key role in marine ecosystem functioning.
20:5n-3 and 22:6n-3 are also particularly important in human nutrition. They are known
to have beneficial effects on cardiovascular diseases or diabetes. However, due to high
demand for human nutrition and aquaculture of carnivore species, a shortage of these
two compounds found in fish oil is predicted to occur by 2050 [1]. Despite their economic
and ecologic interests, biological and ecological processes responsible for their synthesis
are still under investigation. It is, then, of first concern to understand how 20:5n-3 and
22:6n-3 are produced at the basis of the food webs, and how global changes could affect
their availability at higher trophic levels.

In phytoplankton and microzooplankton, fatty acids are synthetized via different
metabolic pathways [2–4]. The most “conventional” pathway is the fatty acid synthase
(FAS) pathway, followed by the elongation and front-end desaturation steps of the n-3 and
n-6 pathways. Starting with the initial formation of acetyl-CoA and then malonyl-CoA
in aerobic conditions, these pathways produce more complex fatty acids by progressive
addition of two atoms of carbon (elongation steps) or desaturations of precursors such as
16:0 or 18:0 [5–7]. These two pathways can be connected by the so-calledω-3 desaturase (or
methyl end desaturase) pathway. Within the n-3 and n-6 pathways, an alternative route of
∆8 desaturation can also bypass the ∆6 desaturation step and has already been identified in
Haptophyte [8]. These routes allowed the synthesis of 20:5n-3 as well as 22:6n-3 (Figure 1).
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Figure 1. Microalgae fatty acid synthesis pathways. Desaturases are noted with “∆X” (yellow arrows)
and “ωY-des (∆X)” (blue arrows), where X refers to the location of carbon holding the newly formed
double bond from the front end (or carboxyl end) and Y its position from the methyl end. Elo:
elongase, FAS: fatty acid synthase.

An alternative O2 independent pathway, called the polyketide synthase (PKS) path-
way, is responsible of long chain PUFA synthesis such as 20:5n-3 and 22:6n-3 [3,9,10]. It
has been found in bacteria and protists such as thraustochytrids, dinophytes, and hap-
tophytes [11–15]. The PKS pathway relies on the same four basic enzymatic reactions
(condensation, reduction, dehydration, and reduction) as the FAS pathway. Opposed to
the conventional pathway, the PKS pathway is less energy consuming, because it requires
fewer reduction and dehydration steps than “conventional” pathways [3]. The metabolites
used to form the carbon chain are simultaneously desaturated and elongated, creating
long-chain PUFA [3,16,17].

Even if some microalgae species share all or part of O2-dependent n-3 and n-6 path-
ways and O2-independent PKS pathways, PUFA composition of primary producers varies
greatly according to species. Diatoms synthetize more 20:5n-3 as well as C16 PUFA, while
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dinophytes or haptophytes contain more 22:6n-3 or C18 PUFA. Other groups such as
cyanobacteria or some chlorophytes classes are unable to build 20:5n-3 or 22:6n-3 or only in
very low proportions (<1%) [18–21].

To improve knowledge of the synthesis routes and production of 20:5n-3 and 22:6n-3,
studies have focused on identifying genes coding for the different elongase and desat-
urase [10,22–25]. Moreover, in recent years, the use of 13C substrate allowed monitoring
the incorporation of labelled substrates into targeted organic macromolecules. Different
metabolic intermediates or end products such as fatty acids [26–29] are monitored and
quantified. This has already been applied to E. coli [30], yeast [29], and microalgae [31–35].
The development of technics such as gas chromatography coupled to mass spectrome-
try (GC-c-IRMS) consists of a noticeable improvement in the direct resolution of isotopic
composition of organic macromolecules the so-called compounds specific isotope analysis
(CSIA) including fatty acids [36–39].

The present study aims at investigating the synthesis pathways of essential PUFA
20:5n-3 and 22:6n-3 using stable isotope (13C) labelling experiment of the haptophyte Ti-
sochrysis lutea. T. lutea is intensively used in aquaculture (hatchery) and industry [40]. The
incorporation of 13C was monitored in 11 FA during 24 h at a high temporal resolution (each
0.5 to 2 h). Progressive accretion of the 13C-labelled CO2 into FA (from precursors to PUFA
of interest) allowed us to constrain FAS, elongase/desaturase, and PKS involvement in
20:5n-3 and 22:6n-3 production by Tisochrysis lutea. In parallel to the monitoring of 13C incor-
poration into FA, growth, physiological status, and other cellular parameters (morphology,
viability, esterase activity, and lipid content) were monitored by flow cytometry analysis.

2. Results
2.1. Algae Physiology and Biochemistry during the 24 h Experiment

Cell abundance for Tisochrysis lutea during the 24 h of experiment increased sharply
from t0 to t24. The experiment allowed cell concentration to double for the three balloons
(Figure 2A). Despite the attention given to homogenization at the time of subculture from
inoculum, the second enriched balloon had a cell concentration twice higher than Tl1 and
TlT. This difference remained constant during the entire experiment. Cell abundance varied
from 4.3 × 106 cells·mL−1 to 9.5 × 106 cells·mL−1 for the most concentrated balloon TI2
and from, on average, 2.6 × 106 cells·mL−1 to 6.4 × 106 cells·mL−1 for the two others
(Figure 2A). Despite the concentration differences, the general slopes for the three balloons
were very similar (0.22 cells·mL−1·h−1 for Tl2 and 0.15 cells·mL−1·h−1 for Tl1 + TlT)
(Figure 2A). Bacteria were also found in higher abundance Tl2 (Figure 2B), almost five
times higher than in Tl1 and TlT. However, bacteria increased only by a factor of 1.2 for
Tl2 between t0 and t24 versus a factor 3.5 in average for Tl1 and TlT. Bacteria concentration
was around 6.6 times higher than algae concentration for Tl1 and TlT on average over the
24 h of the experiment. For Tl2, bacteria concentration was 16 times higher than algae
concentration at the beginning of the experiment, but this ratio decreased progressively
until t24 (8.7 times higher) (Figure 2B).

FSC and SSC were, respectively, considered a proxy of cell size and cell complexity,
and FL3 was considered a proxy of chlorophyll content. SSC and red fluorescence (FL3)
did not significantly vary during the entire experiment (Bartlett tests, p > 0.05 and ANOVA
p > 0.05) (Table S1). FSC increased slightly with time for the three balloons (Bartlett test,
p > 0.05 and ANOVA p = 0.03) (Table S1). The percentage of dead microalgae (as measured
by SYTOX staining assay) remained below 7% for the 24h of the experiment (Table S1).

Particulate organic carbon concentration increased similarly to the cell abundance for
the two labelled balloons from 3.6 to 9.0 mmolC·L−1 for Tl1, from 4.5 to 11.6 mmolC·L−1

for Tl2, and from 3.4 to 8.2 mmolC·L−1 for TlT (Figure 3A). Increase in POC, as a function
of experiment duration (R2 = 0.81, p < 0.0001), occurred at a relatively constant rate of
0.2 mmolC·L−1·h−1 for Tl1, Tl2, and TlT considered together. Total fatty acid (TFA) concen-
tration also increased for the three balloons (between 0.26 mmolC·L−1 to 0.60 mmolC·L−1

for Tl1, from 0.25 mmolC·L−1 to 0.80 mmolC·L−1 for Tl2, and from 0.17 mmolC·L−1
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to 0.55 mmolC·L−1 for TlT) (Figure 3B). The slope was 15 µmolC·L−1·h−1 (R2 = 0.72,
p < 0.0001). POC was significantly correlated to cell concentration (R2 = 0.80 p < 0.0001).
The slope of the relation between POC and cell abundance is a proxy of carbon content per
cell for T. lutea, which was, on average for the three balloons, equal to 1.07 fmolC·cell−1

(Figure 3C). TFA concentration was linearly and positively correlated with POC concentra-
tion (R2 = 0.73, p < 0.0001). The slope of the regression between TFA and POC concentration
indicates that TFA represent in average 7.7% of bulk POC (Figure 3D).
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2.2. 13C Atomic Enrichment (AE) of Particulate Organic Carbon and Dissolved Inorganic Carbon

Dissolved inorganic carbon (DIC) progressively enriched in the two balloons with
13CO2 (Figure 4A). The enrichment trends were similar for the two balloons after t4, with an
important increase in the DIC atomic enrichment until t20 (up to 58.1 and 61.1% for Tl1 and
Tl2, respectively). The increase in AE tended to stabilize after t20. Final levels of enrichment
were 61.5 and 64.6% for Tl1 and Tl2, respectively (Figure 4A). Atomic enrichment (AEPOC)
increased sharply after t4 for the two balloons until the end of the experiment. Enrichment
levels at t24 were 25.2 and 34.7% for Tl1 and Tl2, respectively (Figure 4B).
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2.3. Fatty Acid Composition in Neutral and Polar Lipids in T. lutea

Neutral lipids and polar lipids represented, respectively, 37% and 63% of TFA on
average for the three balloons (Figure 5A). The proportions of individual fatty acid in NL
and PL did not vary throughout the experiment. Total bacteria fatty acids (iso15:0, ante15:0,
iso16:0, iso17:0, 15:0, 17:0, 21:0, 15:1n-5—Tables S2–S4) remained below 1% for both NL
and PL fractions during the 24 h. Branched fatty acids were only present in trace amounts
(Tables S2–S4). Concentrations in µg·L−1 and µmolC·L−1 as well as proportions in% of all
identified and quantified FA in neutral and polar lipid fractions according to sampling time
are available in the Supplementary Files (Tables S2–S4).

We focus the presentation of the results on the polar lipid fraction, as it is the pre-
dominant fraction containing FA (Figure 5B). During the experiment, thirty two fatty acids
(FA), as listed in the Material and Methods section, were identified and quantified for T.
lutea, with 12 being over 1% of the TFA in PL (14:0, 16:0, 18:0, 16:1n-7, 18:1n-9, 18:1n-7,
18:2n-6, 18:3n-3, 18:4n-3, 18:5n-3, 22:5n-6, and 22:6n-3) (Figure 5A). Although under 1% for
PL, the 16:3n-6, 20:5n-3, and 22:5n-3 were also presented due to their potential synthesis
significance (Figure 5A). PUFA (in average 30%) and SFA (21%) were the main FA categories
for polar lipids (PL) during the 24 h. PUFA n-3 represented 25% of the TFA, PUFA n-6 5%.

In PL, 14:0 and 22:6n-3 (respectively, 21% and 18% on average over the 24 h) were the
most abundant, followed by 18:1n-9, 18:4n-3, and 16:0 (11–13% of TFA). Finally, 18:3n-3,
18:5n-3, and 22:5n-6 ranged from 3 to 4% of the TFA (Figure 5B). Patterns observed for NL
are available in Supplementary Files (Figure S1).
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2.4. Fatty Acid 13C Atomic Enrichment

Figure 6 shows the atomic enrichment (AE) of the eleven fatty acids over time. Despite
the different timing and level of enrichment between the two balloons, the temporal
dynamic of fatty acids enrichment remained similar. The 18:2n-6 and 18:1n-9 + 18:3n-3 had
the highest AE during the entire experiment. 22:5n-6, 16:0, and finally, 20:5n-3 were next.
The less enriched fatty acids in the polar lipid fraction were in decreasing order 22:5n-3,
22:6n-3, 18:4n-3, 18:5n-3, and finally, 18:0 (Figure 6). For the NL (Supplementary Files,
Figure S2), 20:5n-3, 22:5n-6, 18:1n-9, 16:0, and 18:2n-6 were always the most enriched. The
sequence for the other fatty acids remained close to that of polar lipids. It has to be noted
that enrichments of 20:5n-3 and, to a lesser extent, of 22:5n-3 were higher in NL than in PL.

Table 1 explored FA synthesis pathways with regard to their most expected direct
precursor. Most ratios were below 1, except for the 20:5n-3/18:5n-3 ratio, which was above
1. Similar patterns were observed in NL (Supplementary Files, Table S5).

Table 1. Mean ratio of atomic enrichment (AE) for pairs of FA (FAA vs. FAB) in the polar
lipids (PL) (mean ± SD, n = 9 sampling dates t8 to t24) for the two enriched balloons (Tl1, Tl2,
Tl = Tisochrysis lutea).

Polar Lipids
Tl1 Tl2

Fatty Acid B/Fatty Acid A Mean * SD Mean * SD

18:5n-3/18:4n-3 0.78 0.10 0.78 0.14
20:5n-3/18:5n-3 2.00 0.92 1.77 0.51
22:5n-3/20:5n-3 0.98 0.20 0.97 0.06
22:6n-3/22:5n-3 0.88 0.03 0.87 0.02
22:6n-3/20:5n-3 0.86 0.17 0.84 0.03
22:6n-3/22:5n-6 0.61 0.05 0.59 0.06

* If the AE of the product (B) exceeds the AE of the reactant (A), ratio > 1, then it is necessary to consider another
formation process for B. If the ratio is <1, transformation of A into B is considered possible. If the ratio is close to
1, the fatty acids A and B are at the equilibrium in terms of label incorporated, implying B is then synthesized
simultaneously or very rapidly from A.
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2.5. Identification of Candidate Proteins for PKS Synthesis in T. lutea

Thirty sequences of potential candidate proteins involved in T. lutea PUFA syn-
thesis have been identified and are presented in Supplementary File (Table S6). Only
fourteen presented the four main domains potentially coding for the enzymes used in
PKS PUFA synthesis pathways: ketoacyl reductase (KR), polyketide synthase (KS), de-
hydrase/dehydrogenase (DH), and enoyl reductase (ER). Among these sequences, four
sequences (TISO_14962, TISO_14968, TISO_14975, and TISO_14977) were part of the same
cluster (group of homologous proteins) and presented multiple KS, KR, ER, and DH
domains as well as phosphopantetheine (PP)-binding domains (Figure 7). TISO_14962
also possessed methyltransferases and thioesterase domains (Figure 7). TISO_14977 pre-
sented a domain acknowledged to be involved in acetyl-CoA synthesis. Within this
cluster, TISO_14973 was also selected, as it contains an atypical domain, specifically rec-
ognized as being involved in n-3 PUFA synthesis. Nine other sequences (TISO_04539,
TISO_06404, TISO_06537, TISO_08047, TISO_11097 TISO_16495, TISO_27353, TISO_37260,
and TISO_37631) were also found, containing the four main domains (up to 18 for KR in
TISO_08047). Except TISO_37631, these sequences also have thioesterase, sulfotransferase,
or peptide-synthesis-related domains, and thus they might be in charge of the synthesis of
more complex lipids.
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lutea. The name of each protein is annotated with TISO_ (for Tisochrysis lutea) and associated number.
In the legend, the text written in bold italic correspond to domain names as shown in NCBI conserved
domain database, followed by its suspected role.

3. Discussion

This study investigated long-chain PUFA synthesis pathways in the haptophyte Ti-
sochrysis lutea using the incorporation of 13CO2. Addition of 13CO2 did not affect T. lutea
physiology. Cell viability remained above 93% during the experiment, while cell complexity
and chlorophyll content did not vary significantly according to sampling time. Cell size (as
attested by FSC) increased slightly during the 24 h experiment. T. lutea produced FA to a
level of 7% of POC; predominantly in the form of PL (66%).

Major FA of T. lutea were similar in proportions to those found in other prymnesio-
phycea (Haptophytes), i.e., 14:0, 16:0, 18:1n-9, 18:4n-3, and 22:6n-3 [41–45]. As reported
before in Huang et al. (2019) [46], T. lutea had a low content of neutral lipids during exponen-
tial phase, and PUFA were mainly found in the polar fraction. Tisochrysis lutea accumulates
neutral lipids mainly during stationary phase or under nutritive limitations [45].

The final level of atomic enrichment (AE) into the different FA witnessed active
synthesis, as most fatty acids had a higher AE than that of POC (30% on average for the two
balloons). 22:5n-6 was the most enriched long chain PUFA (LC-PUFA) in the PL fraction.
22:5n-6 and 18:2n-6 were the only 13C labelled n-6 fatty acids detectable by GC-c-IRMS.
None of the known synthesis intermediates (18:3n-6, 20:3n-6, 20:4n-6, and 22:4n-6) between
18:2n-6 and 22:5n-6 [4] had measurable 13C-labelling and were below 1% in the FA profile
during our experiment. It is then difficult to hypothesize the pathway used to create 22:5n-6
with this missing information. However, even though the different intermediates were
undetectable, 18:2n-6 and 22:5n-6 atomic enrichments being very close cannot exclude them
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to be related to each other. While studying the existence of an alternative ∆8 desaturase
in Haptophyte, Qi et al. (2002) [8] noticed the absence of intermediates of the n-6 ∆8
desaturase pathway (20:2n-6, 20:3n-6 and 20:4n-6)) in Isochrysis galbana. It was attributed
to relatively high active enzymes that could form the end-product 22:5n-6 with a rapid
flow through these n-6 intermediates. Our results agree with this, as 13C enrichment of n-6
intermediates could not be detected by compound specific isotope analysis. To demonstrate
the existence of these pathways, it would be interesting to combine functional analysis of
desaturases by expression in yeast and GC-c-IRMS monitoring of the intermediates after
13C labelling of their precursors.

However, it is also possible that another pathway not involving “classical” n-6 FA
intermediates exist in T. lutea. Previous studies showed the existence of PKS genes in various
species of the prymnesiophytes including Isochrysis galbana [47], closely phylogenetically
related to Tisochrysis lutea. We identified five candidates; proteins potentially involved in
PKS synthesis pathway in T. lutea. Even if their function has not been verified, it is possible
that at least one of the proteins presented in Figure 7 was responsible for the formation of
n-6 PUFA in the haptophyte. Thus, our hypothesis is that an n-6 PKS pathway might also
exist in T. lutea (Figure 8). Finally, PKS and “classical” n-6 routes might not be completely
independent and could interact in the synthesis of 22:5n-6 in T. lutea.
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Figure 8. Hypothesized pathways for 22:5n-6 synthesis in T. lutea in the PL. Numbers in the boxes
correspond to final AE value. The triangles symbolize the desaturases (front-end in yellow and
methyl-end in purple), the circles the enzymes involved PKS pathway (KR: 3-ketoacyl synthase, KS:
3-ketoacyl-ACP-reductase, DH: dehydrase, 2.2I: 2-trans, 2-cis isomerase, 2.3I: 2-trans, 2-cis isomerase,
ER: enoyl reductase), and the squares the elongases.

Despite being one of the most abundant FA, 18:4n-3 showed a low 13C-enrichment
(23%). The synthesis of 18:4n-3 from 18:3n-3 by ∆6 desaturase had already been described
by Isochrysis sp. [48]. We assume that such activity also exists in Tisochrysis, phylogenetically
close to Isochrysis. However, as 18:3n-3 co-elute with 18:1n-9, it was not possible to measure
its AE and to assess whether this could be a limiting step in n-3 pathway (Figure 9). The
18:5n-3 had the lowest enrichment, and the ratio 18:5n-3/18:4n-3 was below the threshold
value (R = 0.78), indicating a feasible transformation of 18:4n-3 into 18:5n-3. The existence of
∆3 desaturase that could support the production of 18:5n-3 (18:5∆3,6,9,12,15) from 18:4n-3
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(18:4∆6,9,12,15) had been suggested by Joseph (1975) [49] to explain the presence of this
unusual FA in dinophytes. A more recent study by Ahman et al. (2011) [23] showed
in Ostreococcus lucimarinus that a ∆4 desaturase was surprisingly able to add a double
bond in 18:4n-3 at the ∆3 position leading to the formation of 18:5n-3 when the gene was
expressed in yeast cell and supplemented by 18:4n-3 as substrate. With our results and the
discovery of Ahman et al. (2011) [23], we proposed that a ∆4 desaturase of T. lutea might
be able to act as a ∆3 desaturase on 18:4n-3 to produce 18:5n-3 (Figure 9). Desaturation of
18:4n-3 into 18:5n-3 had been previously hypothesized by Kotajima et al. (2014) [50] in the
prymnesiophyte Emiliania huxleyi.

Mar. Drugs 2022, 19, x 11 of 20 
 

 

Figure 8. Hypothesized pathways for 22:5n-6 synthesis in T. lutea in the PL. Numbers in the boxes 
correspond to final AE value. The triangles symbolize the desaturases (front-end in yellow and me-
thyl-end in purple), the circles the enzymes involved PKS pathway (KR: 3-ketoacyl synthase, KS: 3-
ketoacyl-ACP-reductase, DH: dehydrase, 2.2I: 2-trans, 2-cis isomerase, 2.3I: 2-trans, 2-cis isomerase, 
ER: enoyl reductase), and the squares the elongases. 

Despite being one of the most abundant FA, 18:4n-3 showed a low 13C-enrichment 
(23%). The synthesis of 18:4n-3 from 18:3n-3 by Δ6 desaturase had already been described 
by Isochrysis sp. [48]. We assume that such activity also exists in Tisochrysis, phylogenet-
ically close to Isochrysis. However, as 18:3n-3 co-elute with 18:1n-9, it was not possible to 
measure its AE and to assess whether this could be a limiting step in n-3 pathway (Figure 
9). The 18:5n-3 had the lowest enrichment, and the ratio 18:5n-3/18:4n-3 was below the 
threshold value (R = 0.78), indicating a feasible transformation of 18:4n-3 into 18:5n-3. The 
existence of Δ3 desaturase that could support the production of 18:5n-3 (18:5Δ3,6,9,12,15) 
from 18:4n-3 (18:4Δ6,9,12,15) had been suggested by Joseph (1975) [49] to explain the pres-
ence of this unusual FA in dinophytes. A more recent study by Ahman et al. (2011) [23] 
showed in Ostreococcus lucimarinus that a Δ4 desaturase was surprisingly able to add a 
double bond in 18:4n-3 at the Δ3 position leading to the formation of 18:5n-3 when the 
gene was expressed in yeast cell and supplemented by 18:4n-3 as substrate. With our re-
sults and the discovery of Ahman et al. (2011) [23], we proposed that a Δ4 desaturase of 
T. lutea might be able to act as a Δ3 desaturase on 18:4n-3 to produce 18:5n-3 (Figure 9). 
Desaturation of 18:4n-3 into 18:5n-3 had been previously hypothesized by Kotajima et al. 
(2014) [50] in the prymnesiophyte Emiliania huxleyi. 

The 18:5n-3 was also described as an intermediate of 22:6n-3 synthesis by PKS path-
way [4]. However, its low enrichment, as compared to 22:6n-3, appeared not compatible 
with a hypothetical production through this pathway. Nevertheless, one may speculate 
that there are two separated PKS pathways, one for the 22:6n-3 and one for the 18:5n-3, as 
these two PUFA are localized in different cell compartments. The 18:5n-3 is generally as-
sociated with chloroplastic glycolipids, while the 22:6n-3 is predominant in the other cel-
lular compartments [51–53]. 

 
Figure 9. Hypothesized pathways to produce 18:5n-3 in T. lutea. Numbers in boxes correspond to final mean AE value, 
and number in the yellow box the mean value of ratio of the two surrounding fatty acids. The triangles symbolize the 
desaturases (front-end in yellow and methyl-end in purple), the circles the enzymes involved PKS pathway (KR: 3-ke-
toacyl synthase, KS: 3-ketoacyl-ACP-reductase, DH: dehydrase, 2.2I: 2-trans, 2-cis isomerase, 2.3I: 2-trans, 2-cis isomerase, 
ER: enoyl reductase). The directions with dashed arrows cannot be proven with the enrichment dynamics. 

Figure 9. Hypothesized pathways to produce 18:5n-3 in T. lutea. Numbers in boxes correspond to final
mean AE value, and number in the yellow box the mean value of ratio of the two surrounding fatty
acids. The triangles symbolize the desaturases (front-end in yellow and methyl-end in purple), the
circles the enzymes involved PKS pathway (KR: 3-ketoacyl synthase, KS: 3-ketoacyl-ACP-reductase,
DH: dehydrase, 2.2I: 2-trans, 2-cis isomerase, 2.3I: 2-trans, 2-cis isomerase, ER: enoyl reductase). The
directions with dashed arrows cannot be proven with the enrichment dynamics.

The 18:5n-3 was also described as an intermediate of 22:6n-3 synthesis by PKS path-
way [4]. However, its low enrichment, as compared to 22:6n-3, appeared not compatible
with a hypothetical production through this pathway. Nevertheless, one may speculate
that there are two separated PKS pathways, one for the 22:6n-3 and one for the 18:5n-3,
as these two PUFA are localized in different cell compartments. The 18:5n-3 is generally
associated with chloroplastic glycolipids, while the 22:6n-3 is predominant in the other
cellular compartments [51–53].

Surprisingly, 20:5n-3 in PL was more enriched than 18:4n-3, its precursor in the n-
3 pathway [4]. As AE of 20:5n-3 is higher than AE of 18:4n-3, it seems very unlikely
that 20:5n-3 was produced via the pathway involving 18:4n-3 elongation and 20:4n-3 ∆5
desaturation. The existence of the alternative ∆8 desaturase pathway have been studied
before in Isochrysis galbana and Pavlova lutheri [8,54,55]. However, as for the n-6 PUFA,
intermediates (20:3n-3 and 20:4n-3) of the alternative ∆8 pathway were not detected by fatty
acid analysis of Isochrysis galbana [8]. Similarly, in our study, intermediates (20:3n-3 and
20:4n-3) of this pathway to synthesize 20:5n-3 have not been found in sufficient amount to
be measured by CSIA. As proposed by Qi et al. (2002) [8] for Isochrysis galbana, the synthesis
of 20:5n-3 via 20:3n-3 and 20:4n-3 by Tisochrysis lutea might be very rapid, explaining why
these two intermediates were only found in trace amounts (0.12% and 0.02% in PL and
0.05% and 0.33% in NL, respectively).
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Due to their lower enrichments, 18:4n-3 and 18:5n-3 seemed unlikely involved in long
chain PUFA synthesis such as 20:5n-3 and 22:6n-3. Based on the enrichment dynamics,
elongation of 20:5n-3 into 22:5n-3 and further desaturation into 22:6n-3, respectively, by ∆5
elongase and ∆4 desaturase could be possible in Tisochrysis lutea. Ratio 22:5n-3/20:5n-3 in
PL was within the threshold, indicating a simultaneous enrichment of both 20:5n-3 and
22:5n-3 in T. lutea. Such enzymes have been evidenced in haptophytes [54,56,57].

Considering the diversity of PKS gene in haptophytes [47], the possibility of produc-
tion of 22:6n-3 directly by PKS PUFA synthesis pathway might be possible, as previously
shown with thraustochytrids [10,58]. Synthesis of 22:6n-3 by PKS pathway might be at
play in parallel with the n-3 pathway. Indeed, we identified a protein cluster gathering
the four main domains potentially coding for the enzymes used in PKS PUFA synthesis
pathways: ketoacyl reductase (KR), polyketide synthase (KS), dehydrase/dehydrogenase
(DH), and enoyl reductase (ER). Protein clusters are groups of similar proteins that most
likely shared the same or similar functions [59]. By considering this cluster (candidate
proteins TISO_14962, TISO_14968, TISO_14968, TISO_14973, TISO_14975, and TISO_14977,
Figure 8), it could be possible that these proteins act together and allow n-3 PUFA synthesis
via PKS pathway. Interestingly, protein TISO_14973, while possessing only two of the four
domains of interest (KS and DH), presented a specific n-3 domain. This protein might
act concomitantly with the other proteins of the same cluster and allow the access to the
missing reductase activities (KR and ER). Finally, the ratio 22:5n-6/22:6n-3 was below the
threshold value making possible the conversion of 22:5n-6 into 22:6n-3 if we assumed that
ω3-desaturase might exist in haptophyte. Synthesis of 22:6n-3 by both n-3 and n-6 pathway
might be feasible in Tisochrysis lutea (Figure 10). These different ways to produce 22:6n-3
might contribute to betaine lipids synthesis. Indeed, betaine lipids are generally highly
unsaturated in C20 and C22 PUFA, especially in 22:6n-3 in haptophytes [60–63].
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Figure 10. Hypothesized pathways to produce DHA in T. lutea. Numbers in boxes correspond to final
mean AE value, and number in the yellow box is the mean value of ratio of the two surrounding fatty
acids. The triangles symbolize the desaturases (front-end in yellow and methyl-end in purple), the
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squares the elongases.
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4. Material and Methods

4.1. Algal Culture and 13C Labelling

This study was conducted following the experimental design described by Remize et al.
(2020) [34]. The marine prymnesiophyte Tisochrysis lutea (T-iso, CCAP 927/14) was cultured
in 2 L batch condition in balloons under continuous light (24 h light cycle, 100 µmoles
photons m−2·s−1) at 20 ◦C and with pH regulation at 7.50 ± 0.05 by CO2 injection. Filtered
seawater was previously enriched with Conway medium [64] and inoculated with T. lutea
preculture in a growing stage (exponential phase, four days old). The experimental setup
was composed of two cultures (Tl1 and Tl2) receiving the labelling 13C-CO2 gas (Sigma-
Aldrich, <3%atom 18O, 99.0%atom 13C) and one culture (TlT) receiving petrochemical CO2
gas. 13C-incorporation in Tl1 and Tl2 began after inoculation (t0) and was maintained for
24 h (t24).

During the first hours of the experiment, the 13CO2 injection tube of balloon TI1 had
been temporarily disconnected from the system. Consequently, balloon Tl2 received earlier
the 13CO2 and thus started to incorporate 13C before balloon Tl1.

4.2. Samples Collection

Sampling was performed as described in Remize et al. (2020) [34], i.e., at 30 min,
1 h, 2 h, 3 h, 4 h, and then every 2 h. A total of 16 samples was collected during the 24 h
monitoring. At each sampling time, a total volume of 30 to 70 mL was collected for (i)
flow cytometry analysis of cellular parameters, (ii) bulk isotopic analysis of particulate
organic carbon (13C-POC) and dissolved inorganic carbon (13C-DIC) by EA-IRMS, (iii)
fatty acid (FA) analysis in neutral lipids (NL) and polar lipids (PL) by GC-FID, and (iv)
compound specific isotope analysis (CSIA) of FA (13C-FA) by GC-IRMS, as described in the
following paragraphs.

4.3. Flow Cytometry Analysis

Algae growth cellular variables were measured using an Easy-Cyte Plus 6HT flow
cytometer (Guava Merck Millipore®, Darmstadt, Germany) equipped with a 488 nm blue
laser, detectors of forward (FSC) and side (SSC) light scatters, and three fluorescence
detectors: green (525/30 nm), yellow (583/26 nm), and red (680/30 nm). The protocol, the
variables studied, and the probes used for this cytometry following are described in Remize
et al. (2020) [34]. Briefly, forward scatter (FSC), side scatter (SSC), and red fluorescence (FL3,
red emission filter long pass, 670 nm) are used to study, respectively, cell size, complexity,
and chlorophyll content. The fluorescent probe (SYTOX, Molecular Probes, Invitrogen,
Eugene OR, USA, final concentration of 0.05 µM) was used to assess cell viability on FL1
detector (green fluorescence). The concentration of bacteria was also monitored by using
SYBR®Green (Molecular Probes, Invitrogen, Eugene, OR, USA, #S7563) on FL1 detector.
Concentrations of algae and bacteria were given cells per mL, and cellular variables were
expressed in arbitrary units (a.u).

4.4. POC Concentration and Bulk Carbon Isotopic Composition

For particulate organic carbon (POC) and stable isotopic composition measurements,
30–70 mL of samples were filtered through pre-combusted 0.7 µm nominal pore-size glass
fiber filters (Whatman GF/F, Maidstone, UK). The filter was processed, subsampled, and en-
capsulated as described in Remize et al. (2020) [34]. POC concentrations of all samples were
measured using a CE Elantech NC2100 (ThermoScientific, Lakewood, NJ, USA) according
to protocol by Remize et al. (2020) [34]. Bulk carbon isotopic composition (13C-POC) was
analyzed by continuous flow on an Elemental Analyzer (EA, Flash 2000; Thermo Scientific,
Bremen, Germany) coupled to a Delta V+ isotope ratio mass spectrometer (Thermo Sci-
entific). Calibration was performed with international standards and in-house standard
described in Table 2.
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Table 2. List of international and in-house standards used for EA-IRMS and GB-IRMS analysis.

Description Nature Analysis δ13C (
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4.5. DIC Concentration and Bulk Carbon Isotopic Composition

Samples for dissolved inorganic carbon (DIC) concentration and stable isotopic com-
position were collected from the filtrate of POC samples and processed as described in
Remize et al. (2020) [34]. Analyses were conducted in a gas bench coupled to a Delta Plus
mass spectrometer from Thermo Fisher Scientific, Bremen, Germany (GB-IRMS).

4.6. Isotopic Data Processing

We used the atomic proportion of 13C in percent (%atom of 13C) to express the results
instead of the δ notation due to 13C-labelling. Conversion between δ notation and%atom13C
notation can be done as follow [65]:

%atom13C = 100 ×
(δ

13C
1000 + 1)× (

13C
12C )

VPDB

1 + (δ
13C

1000 + 1)× (
13C
12C )

VPDB

(1)

where (13C/12C)PDB = 0.0112372, the ratio of 13C to 12C in the international reference
VPDB standard.

Atomic enrichment (AE) of POC and DIC is then calculated from atom%13C-POC
correction by POCcontrol values (i.e., corrected by 1.08%) and from atom%13C DIC corrected
by control values (DICcontrol = 1.12%), respectively, according to the following equations:

AEPOC = %atom13C − POCcontrol (2)

AEDIC = %atom13C − DICcontrol (3)

4.7. Fatty Acids Analysis
4.7.1. Fatty Acids Analysis by Gas Chromatography Flame Ionisation Detector (GC-FID)

Lipid extraction, separation of neutral and polar lipid fractions, and transesterification
processes are described elsewhere [34]. Fatty acids methyl esters (FAME) samples were
analyzed by gas chromatography on a Varian CP8400 gas chromatograph (Agilent, Santa
Clara, CA, USA) and separated concomitantly on two columns: one polar (ZB-WAX:
30 mm × 0.25 mm ID × 0.2 µm, Phenomenex, Torrance CA, USA) and the other apolar
(ZB-5HT: 30 m × 0.25 mm ID × 0.2 µm, Phenomenex, Torrance CA, USA). The FAME of
T. lutea were quantified using C23:0 as an internal standard (2.3 µg in each lipid fraction
prior transmethylation) and were identified by comparison of their retention times with
commercial standards (Supelco 37 component FAME mix, the PUFA No. 1 and No. 3
and the Bacterial Acid Methyl Esther Mix from Sigma-Aldrich, Darmstadt, Germany) and
in-house standards mixtures. FA concentrations were reported as µg C·L−1 and as % of
total fatty acids from each lipid fraction. Thirty two fatty acids (FA) were thus identified
and quantified: iso15:0, anteiso15:0, 14:0, 15:0, 16:0, 18:0, 22:0, 24:0, 14:1n-5, 16:1n-9, 16:1n-7,
17:1n-1, 18:1n-9, 18:1n-7, 16:2n-7, 16:2n-4, 16:4n-3, 18:2n-6, 18:3n-6, 18:3n-3, 18:4n-3, 18:5n-3,
20:2n-6, 20:3n-6, 20:4n-6, 20:4n-3, 20:5n-3, 22:2n-6, 22:4n-6, 22:5n-6, 22:5n-3, and 22:6n-3.
Individual fatty acid and total fatty acid concentrations (as the sum of both fractions,
named thereafter TFA) obtained in µg·L−1 by GC-FID were also expressed in µmolC·L−1
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(µg·L−1/molecular weight of individual fatty acid × carbon number of individual fatty
acid) to ease the comparison with POC concentrations expressed in µmolC·L−1 as well.

4.7.2. Fatty Acid Compound-Specific Isotope Analysis and Processing

Samples for compound-specific isotope analyses (CSIA) of FAME were performed on a
Thermo Fisher Scientific GC ISOLINK TRACE ULTRA (Bremen, Germany) using the same
apolar column as mentioned above for FAME analysis. Only the fatty acids with the highest
concentrations, as measured by GC-FID analyses, were considered for CSIA (namely 14:0,
16:0, 18:0, 18:1n-9, 18:2n-6, 18:3n-3, 18:4n-3, 18:5n-3, 20:5n-3, 22:5n-6, 22:5n-3, and 22:6n-3).
The other FA presenting a too low signal amplitude (<800 mV) on the GC-c-IRMS did
not allow precise isotope ratio analysis. Additionally, 18:1n-9 and 18:3n-3 co-eluted for
GC-c-IRMS on the apolar column, but most of the isotopic signature for neutral lipids (NL)
is attributed to 18:1n-9. However, in the polar fraction (PL), 18:1n-9 and 18:3n-3 are in
relatively similar proportion and so were considered together. Additionally, 13C enrichment
of 18:5n-3 could only be measured in the polar lipid fraction, but its concentration was too
low in neutral lipid fraction to measure its isotope composition.

To evidence FA conversion of fatty acid A into fatty acid B in T. lutea, we calculated the
AEFA ratio (R) of product B over expected precursor A. R was defined with a confidence
interval calculated at α = 0.1 (defined arbitrarily) as follows:

R =
AEFA(B)

AEFA(A)
(4)

where A is the fatty acid hypothesized to be a precursor to fatty acid B, and AEFA(A) and
AEFA(B) are their respective atomic enrichments at each sampling time.

If the AE of the product (B) exceeds the AE of the reactant (A), ratio > 1, then it is
necessary to consider another formation process for B, since any molecule formed from
A would have the same AE as A or below. If the ratio is <1, transformation of A into B is
considered possible. If the ratio is close to 1, the fatty acids A and B are at equilibrium in
terms of label incorporated, implying B is then synthesized simultaneously or very rapidly
from A.

4.8. Identification within the in Silico Proteome of T. lutea of PKS Enzymes Involved
PUFA Synthesis

The in silico proteome generated from last annotated version of the genome of T.
lutea was used to identify putative proteins involved in n-3 PUFA PKS pathways [66]. We
used the PKS previously identified in the haptophyte Chrysochromulina tobin as query for a
BLASTp analysis, using e-value <10−3 as threshold [67]. Analysis of conserved domain
was performed using the NCBI CD database V3,18 with e-value <10−2 as threshold. The
genome location of genes encoding selected proteins was identified to evaluate genes’
proximity and occurrence of gene clusters. Proteins and cluster of proteins containing the
four domains ketoacyl reductase (KR), dehydrase/dehydrogenase (DH), enoyl reductase
(ER), and polyketide synthase (KS) were selected as candidates.

4.9. Statistical Analysis

To assess the potential effect of time and difference between balloons during algae
development and of 13CO2 incorporation, Bartlett tests and ANOVA were performed on
physiological and biochemical parameters, as well as PERMANOVA analysis on FA per-
centage separately in NL and PL. All statistical analyses were performed using R software.

5. Conclusions

The synthesis of long-chain PUFA in Tisochrysis lutea appeared to involve multiple
pathways (Figures 8–10). First, the assumption of the use of PKS pathway for 22:5n-6
(DPA-6) was attested regarding the fast enrichment observed for this FA as well as the
absence of detectable intermediates more or equally enriched. PKS pathway appeared to
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be particularly efficient in T. lutea and induced a strong incorporation of the 13C-marker.
However, the possibility of use of the conventional n-6 PUFA pathway should not be
excluded, as 18:2n-6 presented a similar level of enrichment as 22:5n-6. It would only
endorse that following desaturation and elongation steps to form 22:5n-6 were particularly
dynamic and thus did not allow the accumulation of the 13C-label into n-6 intermediates.
Within n-3 PUFA pathway, the ∆6-desaturase route seemed slower than the n-6 pathway
in T. lutea in producing the two C18 polyunsaturated fatty acids 18:4n-3 and 18:5n-3. We
assumed 18:4n-3 and 18:5n-3 were unlikely synthesis intermediates of 20:5n-3 and 22:6n-3,
as their enrichments were lower than the latter. Although 22:6n-3 was present in higher
proportion than 22:5n-6, it was not enriched as fast, possibly because its synthesis may be
more complex. Indeed, 22:6n-3 could be synthesized by Tisochrysis lutea via a combination
multiples pathway: from 22:5n-6 via ω-3 desaturase pathway, from desaturation and
elongation of 20:5n-3 and 22:5n-3, and via PKS pathway. Further studies are needed
to better constrain the plausible routes taken by this prymnesiophyte to produce long
chain PUFA.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/md20010022/s1, Table S1: Cellular parameters of Tisochrysis lutea (morphology (FSC
and SSC), viability (FL1-SYTOX), and chlorophyll content (FL3) using flow cytometry analysis
(mean ± SD of the 3 balloons). Values for SYTOX are in%, values for FL3/SSC/FSC in arbitrary unit
(a.u), Table S2: Concentrations in µg·L−1 of all identified and quantified FA in neutral and polar
lipid fractions according to sampling time, Table S3: Concentrations in µmolC·L−1 of all identified
and quantified FA in neutral and polar lipid fractions according to sampling time, Table S4: Con-
centrations in% of all identified and quantified FA in neutral and polar lipid fractions according to
sampling time. Table S5: Mean ratio of atomic enrichment (AE) for pairs of FA (FAA vs. FAB) in the
neutral lipids (NL) (mean ± SD, n = 9 sampling dates t8 to t24) for the two enriched balloons (Tl1,
Tl2, Tl = Tisochrysis lutea). If the ratio is equal to or close to 1, A and B are assumed at equilibrium,
and B is synthesized quickly from A; if the ratio is below 1, the transformation of B from A is possible
but slow. Finally, if the ratio is above 1, A is not a main precursor of B, which has to be synthesized by
a different pathway. Table S6: List of the potential candidate protein sequences involved in Tisochrysis
lutea PKS synthesis pathway. The suspected function of each protein has been assumed using the
NCBI conserved domain database (CDD) (Marchler-Bauer et al., 2017) by identifying the role of each
domain recognized in the sequence. In columns KS/KR/DH/ER are written the number of domain
corresponding to these functions in the studied sequences. ACS: acetyl-CoA synthetase, A_NRPS:
adenylation domain of the non-ribosomal peptide synthetase (NRPS), Croto: crotonase/enoyl-CoA
hydratase, EntF: enterobactin non-ribosomal peptide synthetase or thioesterase domain of Type I
PKS, FAAL: fatty acyl-AMP ligase, GrsT: alpha/beta hydrolase, HM: hydroxymethylglutaryl-CoA
synthase, MT: methyltransferase, PP: phosphopantetheine-binding (=“swinging arm”), Sulf: sulfo-
transferase, Thio: thioesterase. Figure S1: Proportions (%) of NL vs. PL (A) and proportions (%)
of fifteen fatty acids in the NL fraction in average over the 24 h (B). Figure S2: Atomic enrichment
of 11 main fatty acids in the polar lipid (NL) fraction during a 24h 13C labelling experiment. Tl:
Tisochrysis lutea. Reference [68] is cited in the supplementary materials.
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