Fisheries Research

April 2022, Volume 248 Pages 106211 (9p.)
https://doi.org/10.1016/].fishres.2021.106211
https://archimer.ifremer.fr/doc/00743/85504/

Tag-shedding rates for tropical tuna species in the Atlantic
Ocean estimated from double-tagging data

Gaertner Daniel -2, Guéry Lorelei 12, Gofii N. 3, Amande J. 4, Pascual Alayon P. 5, N'Gom F. 6,
Pereira J. 7, Addi E. 8, Ailloud L. °, Beare D. °

1 Institut de Recherche pour le Développement (IRD), UMR MARBEC, Av. Jean Monnet, CS 30171,
34203 Séte, France

2 MARBEC (Univ Montpellier, CNRS, Ifremer, IRD), Sete, France

3 AZTI, Herrera Kaia Portualdea, 20110 Pasaia, Spain

4 Centre de Recherche Océanographique d’Abidjan, B.P. V-18, Abidjan, Cote d’lvoire

5 Instituto Espafiol de Oceanografia, Centro Oceanografico de Canarias, Apdo. de Correos 1373, 38080
Santa Cruz de Tenerife, Islas Canarias, Spain

6 ISRA, Centre de Recherche Océanographique de Dakar-Thiaroye, B.P. 1286, Dakar, Senegal

7 Universidade dos Acores, 9900 Horta, Portugal

8 Directorate of Fisheries, Marine Fisheries Research Division, P.O. Box BT62, Tema, Ghana

9 |CCAT Secretariat, Calle Corazén de Maria 8, 28002 Madrid, Spain

* Corresponding author : Daniel Gaertner, email address : daniel.gaertner@ird.fr

lorelei.query@ird.fr ; ngoni@azti.es ; m.amande@africanmarineexpertises.com ;
pedro.pascual@ieo.es ; fambaye.sow@isra.sn ; pereira@uac.pt ; addiebenezer@yahoo.com ;
lisa.ailloud@noaa.gov ; doug.beare@gmail.com

Abstract :

An objective of the Atlantic Ocean Tropical tuna Tagging Programme (AOTTP) was to estimate Type-I
(immediate) and Type-Il (long-term) tag-shedding rates for tropical Atlantic tunas from double-tagging
experiments. Historical information on tuna tag-shedding studies conducted in different parts of the world
was incorporated as prior distributions using a Bayesian approach to estimate the new tag-shedding
parameters. Type-l and Type-Il tag-shedding rates were respectively estimated at 0.007 and 0.084/yr for
bigeye tuna, 0.021 and 0.051/yr for skipjack and 0.021 and 0.088/yr for yellowfin tuna. Using realizations
derived from the MCMC posterior distributions, the shedding rate was estimated to reach 50% of the tags
after seven and a half years at sea for yellowfin and after eight years at sea for bigeye tuna. The loss rate
of conventional tags is lower for skipjack. Our results suggested that continuous Type-Il shedding rate is
size-dependant for yellowfin and bigeye (i.e., showing a three-fold increase between individuals less than
45 cm fork length (FL) at release and fishes larger than 65 cm FL). This study reinforces the need to
account for tag-shedding along with other sources of uncertainty, such as reporting rate, in order to
accurately estimate the exploitation and mortality rates derived from tagging data.
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Highlights

» Immediate and long-term tag-shedding rates were estimated with a Bayesian model for tropical tuna
in the Atlantic Ocean. » Beta prior distributions of tag-shedding parameters were elicited from historical
studies found in the literature. » The proportion of tag loss reached 50% for yellowfin and bigeye after
7.5 and 8 years at liberty, respectively. » The long-term tag-shedding rate increased with size at release.
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1. Introduction

The 5-year Atlantic Ocean tropical Tuna TagginggPamme (AOTTP)vasdesigned to improve estimates of key
parameters commonly used as inputs in the stodssas®nts of thinreemain species of tropical tunas: bigeye
(Thunnus obesus), skipjack Katsuwonus pelamis) and yellowfin {. albacares). To date, 119 427 tropical tunas
have been marked and released in different platdbe Eastern Atlantic (Azores, Madeira, Canargrigk,
Senegal, Gulf of Guinea, St Helena, South Africa] an the Western Atlantic (Brazil, Caribbean, W% .with
approximately 15.6% of the released fish recoviéted

Tag-return data are commonly used for estimatingatity rates, either in stand-alone models (6Bgownie et
al., 1985; Kleiber et al., 1987; Hoenig et al., 89Bolacheck et al., 2010) or by incorporatingttgging data into
an integrated stock assessment package (e.g., Blarapd Fournier, 2001). The results of taggingistidan,
however, be compromised if tags or data are last (hrough tag-shedding and non-reporting). Batturrences
can lead to underestimations in tag-return ratésctwcreate a negative bias in fishing mortalitiireates, rates
of fishery interactions, and tuna movements (Gaernd Hallier, 2015). Ultimately, this leads tad®d estimates
of stock status. The objective of this paper isise AOTTP double-tagging experiments to estimatetalg-
shedding rates for the three species of tropicagun the Eastern Atlantic Ocean.

There are two types of tag losses (Wetherall, 18&2npton and Kirkwood, 1990): Type-I losses, whietiuce
the number of tags initially put out (immediate-&wedding), and Type-Il losses which occur steaaligr time

(long-term tag-shedding). In this paper, we estinthe Type | and 1l tag-shedding components of tatplosses
for Atlantic Ocean tropical tunas, combining paowledge on these parameters from other regiotisADTTP

release-recapture data from double-tagging expetsngithin a Bayesian framework.

2. Material and Methods

2.1. Data

Double-tagging experiments, “i.e., experiments ol a fish is tagged with two conventional “spatjhéags

simultaneously, were conducted in the Atlantic @ctam 2016 to 2020. The dataset was analysed by RO
staff and after the quality control process a tof€20 009 double-tagged release records remaioead Which 3
095 were recovered (15.5%), which includes 256850.13%) that have lost one of their tagsh(e 1).

2.2. Methods

Calculations to estimate tag-shedding rates fronbletagging experiments rely on the assumptiohttiefirst
and second tags are shed at the same rate, inadgplynaf one another (e.g., Kirkwood, 1981; Wetled082;
Kirkwood and Walker, 1984).

The most appropriate approach to model the tagehggrocess is to use individual exact timestay that
account for differences in the reporting rates adflile and single tags (including differences iredgon rates).
This approach also accounts for differences indsg driven by the choice of insertion point (ileft side or right
side) of each double tag (e.g., Barrowman and MyE996; Xiao, 1996; Lenarz and Shaw, 1997; Cadayah
Brattey, 2006; Smith et al., 2009). Based on previtag-shedding studies (Gaertner and Hallier, ROb&act
time-at-liberty tag-shedding models are formuldigdconstant-rate model as follows. The probab@ggt) of a
tag-typeA being retained at timeafter release can be expressed as:

Q4 (t) = a, e~*a D (Bayliff and Mobrand, 1972),

wherea, is the retention probability of the immediate Tylpghedding rate and, is the continuous Type-II
shedding rate of this tag-type

11 https://www.iccat.int/ AOTTP/en/aottp-tagging.html
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Given this assumption, the probabilRy (t) of observing a fish released with a single A-tetinaet after release
is a combination of the reporting rate and the probabilitQ, (t) of tagA being retained, which can be expressed
as

P{ () = vaQa(t)
A similar expression can be used to determine rdiffees in the proportion of tags returned over fiondish that
were tagged with a different type of tag or at fiedént insertion position. For non-permanent dettdlgging
experiments, the reporting rate did not factor itite above equation because the only recaptureniation
available to estimate shedding rates is whethéhahias retained one or both its tags. If we asdhatewhen a
fish is recovered with two tags, both tags are géw&ported, i.e., there is no loss of one of &ys tdue to non-

reporting, which would then be incorrectly attribdtto shedding, the possible tag combinationscatptere are
two tags (RL), right-tag only (R), and left-tag wiiL), which can be expressed as the following ontes:

(1) PR = Qs ()QL (D)
(2) PEE ()= Qr (O[1—Q, ()]
(3) P () = Q. (H)[1 — Qg ()], respectively

The probability of observing the outcomng.e., one of theecoveredag combination wittm; occurences), for a
fish captured at timg for each of these three possible outcomes isdiye

RL * pri
CRIOTDWRA0

Estimates of the model parameters are obtainedibiynizing the negative log-likelihood of the datanditional
on recapture times (Barrowman and Myers, 1996):

A

The Bayesian information criterion (BIC) was usedabjectively select a model from the set of caatidnodels
considered (Schwarz, 1978).

BIC = =2 LnL (B,7/data) + K Ln (n)

wheren is the number of observation§,is the number of model parameters, ar(qé, y/data ) is the value of
the maximized log-likelihood over the unknown paesens, conditional on the data. The lowest BIC @alu
identifies a posteriori which is the most probamiedel.

However, it is problematic to choose the most pbbdanodel among R candidate modetsen the BIC values

are nearly equal. To account for any uncertaingoeiated with model selection, a Bayesian posteriodel
probability (Pr) was calculated for each candidate madss:

i e (41153 5]

where, ABIC; = BIC; — min BIC, (Burnham and Anderson, 2002).

It is noteworthy that the inferential model weightsm the BIC selection have the same formula as/tkaike
weights (Akaike, 1978), but may be interpreted rababilities of the model, given the data, mods] and prior
model probabilities of each model (Raftery, 1995rham and Anderson, 2004). The above posterioremod
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probabilities are based on assuming that prior inoadabilities are all 1/R. Therefore, the modéhwhe largest
Pr; is the one with the highest probability of being thest model for the data set.

Notice that in the absence of any effect of theiitisn point on the tag loss, i.€f" = PEL, the negative log-
likelihood of the data can be simplified as follows

LL= —Z Ln[PEH(1)/(1 = PEH(0)] - z Ln [PRE(H) /(1 — PE(D))]

with the probabilities of 2 , 1 and no tags beietained at time t after release, respectively as:

PRE@®)=PEE (O = Q*(@); PFE ()= PR+ PFE () =2Q (O [1—Q (O]; PF“(t) = [1 - Q (1)]?
whereQy (t) = Q. (t) = Q (t)

Numerous tropical tuna tagging programs have baemed out for several decades in different oceand,thus
results of previous analyses with a similar setiing available in the literature. Such historicatiadmay provide
information that is relevant to the research qoestiof the current Atlantic tagging program. Fostémce,
including this historical information in the analysf the shedding rate could improve the precisibiine current
estimates. However, historical studies should belgonsidered relevant if there are no reasonslieMe that the
shedding rate parameters in the historical anchadtuuble tagging experiments differ systematicdllyis means
that the same shedding rate model must have beehimshe historical studies and that there ardagations
due to time or local phenomena, even if this dagsmply identical parameter values. Unlike tagegimg rates
which commonly depict large variability betweerhfigy gears, landing ports and over time, it caratsumed
that tuna species tagged and released in similaditons have comparable shedding rates. This gssumis
supported by the very close estimates of type-l gyme-Il shedding rates from previous double taggin
experiments on tunas conducted in different oc€Balsle 2). Based on these estimates, we can reasonablgssxpr
our prior knowledge on tag loss by eliciting a pdéstribution for each parameter of tag-sheddiefpte analyzing
the AOTTP data.

To derive a prior from historical information wesasned that the Beta distributiores a suitable model for
describing the distributions of the immediate amtbtterm shedding rates obtained in the literatieig. 1). Note
that because Lambda is measured in yr’{-1} andrwmsipper limit, a gamma distribution would be aidad
choice. However considering that the observed afloeLambda are lower than 1, for the sake of &uitp we
also used a Beta distribution as the prior distidsufor this parameter. Instead of using the métbhbmoments,
with the sample mean and sample variance, to etgtitha hyperparameters of the Beta distributiois, éasier to
evaluate them indirectly through statements abloaittivo distinct quantiles of the distribution (VBrrp and
Mazzuchi, 2000; Albert, 2009). To find the shapeapzeters that matches best-guess estimates ofuamtikps
of each of the shedding rate distributions, we ushe beta.select() function found in the R
library(LearnBayesy*3

Assuming both independence in tag-shedding (asethanthe Result section) and that double-tag rexes and
single-tag recoveries are reported with the sarabglility, we followed the approach described bya@bers et
al., 2014, 2015) in which the observed double-tpveries were modelled as realizations of a Bdlimandom

variable (1 for both tags recovered, O for a singterecovery) with a success probabiktt) as follows:

m ()= {QMI*/ M} +2Q®I[1 - Q] = Q®)/[2- Q®)]

The Bayesian analysis was conducted in R usinR#jags* package, with informative Beta priors elicitedrfro
previous tag-shedding studies as mentioned prdyiolfowever, to test the sensitivity of the posteri
distributions to their priors, we generated Marlathain Monte Carlo (MCMC) samples with alternativenn
informative Beta(1,1) priors. Final inference waséd on posterior distributions obtained by gemeg&0000
MCMC samples and discarding the first 1000 as lurnFhe convergence of MCMC chains was evaluated
visually by plotting the generated values of theapgeter against the iteration number after runBimfains that

12 https://cran.r-project.org/web/packages/LearnBadek.html
13 https://www.r-bloggers.com/2013/09/the-beta-prigelihood-and-posterior/
14 https://cran.r-project.org/web/packages/R2jagsfirtuen!
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have different starting values and by checking eogence diagnostics: e.g., the potential scalerfg&hat),
known as the Gelman-Rubin convergence statistid, ameasure of effective sample size (n.eff) whschn
estimate of the number of independent draws freenpibsterior distribution of the estimate of intér@elman
and Rubin, 1992).

To assess potential differences in terms of tyfzasllll tag-shedding according to the size (Flipbtase, the tag-
shedding Bayesian model was applied to three sizel@ase categoridsr bigeye and yellowfin (i) <= 45 cm FL,
(i) between 45 and 65 cm FL and (iii) > 65 cm Rhd only two categories for skipjack: <= 45 cm,5>cfn.

3. Results

To investigate the effect of tag position on thg-shedding rate for tropical tuna, we assumedtttepotential
effect of the insertion position on the tag losswealated to the skill of the tagger, the at-seaitions during the
tagging experiment, the tagging place onboardabgihg vessel, etc. These effects were not explicibdelled
for two reasons: 1) a large number of differentse¢s and taggers were used with little overlaggfers across
vessel types, making it difficult, if not impossblto tease out effects; and 2) tagging eventsthdetailed
information on the tagging conditions onboard. &st this effect, we assessed four different madelgich tag-
retention parameters were varied according to tisitipn of the tag.

- Model 1 (A1) assumed that tag position had no éffecag loss;

- Model 2 (A2; three model parameters) allowed biotlandl | to vary as a descriptaf position effect
on the instantaneous rate of long-term tag lass &ssumed unique);

- Model 3 (A3; three model parameters) assumed dipogffect in the probability that a fish retainiésl
tag immediately after tagging{ anda, can differ, bufl is assumed to be independent of the insertion
point(s));

- Model 4 (A4) assumed a specific position estimateafl four parametersig, a, A r, andi ).

To reflect the uncertainty associated with rankang selecting the most plausible modedépict the probability
of observing the various combinations of right- daft-tagged releases possiblge used both the Akaike
information criterion corrected for small samplees (AICc) and BIC.

Although AIC and BIC are both penalized-likelihood criterthgy reflect subtle theoretical differencedC
focuses on the best variance-bias trade-off irt afssandidate models (i.e., the parsimonious madedrms of a
frequentist approach), while BIC identifies the égistrue” model. Consequently, the type of critarsed can
drive some differences in which model is seleckedhis analysis, the BIC-selected model (Al) siggehat tag
position did not affect tag-shedding. For the Al€xgept for the full model, which has the less ewmitk, neither
model dominated the othergable 3). It should be noted that the study conductedhanlhdian Ocean showed
that the tag position did affect Type-1 sheddingbigeye and yellowfin (Gaertner and Hallier, 201&3counting
for this aspect can be relevant in single-taggirgeements, and considering that about 90% of thimdn
population are right hand domindnhttags are likely most-commonly inserted into thehtigide of the fish.
However, this effect was not confirmed with AOTT&aland the simplest model (A1) assuming no taatioe
effect was retained in this study.

The recovery over time of double-tagged individuaith two tags or one tag remaining is presentdeigure 2.
The estimates of the shedding parameters accomlitdifferent approaches or assumptions are pregémiable
4. The trace plot and the density plot for each patar are provided by species in the supplememtatgrial for
the Bayesian model using an informative Bétgres S1 to SR On average, from the frequentist model to the
Bayesian model using informative Beta priors, theran increase of the immediate tag-shedding astisn(i.e.,
1-0) and a decrease in the long-term tag-sheddingiftey) the Bayesian model with informative Betaopri
Type-l and Type-Il tag-shedding rates were estithatie0.007, 0.084/yr for bigeye tuna, 0.021, 0.951dr
skipjack and 0.021, 0.088/yr for yellowfin tunadaare close to the values obtained in previousitagstudies.
Based on these results and using draws from the RI@bkterior distributions, we estimated that thedsting
rate reaches 50% of the tags after seven and gdwai$ at sea for yellowfin and after eight yeaisea for bigeye
tuna. Surprisingly, the loss rate for skipjack Wwaser than for the two other tropical tuna spe¢iesble 5 and
Fig. 3), despite the fact that skipjack are reportedecektremely hardy during the tagging operation ljeial
2004).

15 https://en.wikipedia.org/wiki/Handedness
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To assess potential differences in tag-sheddinky site (FL) at release, the AOTTP double-taggingskt was
divided into 3 size categories for bigeye and yefio and only two categories for skipjack. Estinsatef tag-
shedding were obtained using the Bayesian moddi imfiormative Beta prior. Due to the low number of
recaptures with one tag lost for some combinatiminspecies - size category results must be intergreith
caution. Although there is not a clear change ip€Fy shedding by size categoryaple 6, Fig. 4), the results
suggest that the continuous Type-Il shedding rateeases for larger bigeye and larger yellowfiredtase; e.g.,
between FL<=45cm and FL > 65 cm: from 0.040 t®8.fter year and from 0.051 to 0.163 per year, sy
(Table 6, Fig. 5) This corresponds to a three-fold increase.

4. Discussion

In double-tagging studies, where two temporary tagdost, it is assumed that both tags were stagbendently
of one another (and thus an adjustment is madeteeimaining number of fish assumed to be alive3ituations
where individuals are prone to losing (or retaidibgth their tags in the same event, the assumpmtfaiag
independence may lead to underestimation in tagisvhich has broader implications for the estonaif vital
life-history traits. Given the lack of evidence gagting otherwise, we followed the assumption thsing the
first tag did not affect the probability of losirige second tag (i.e., independent tag sheddingadaéssed the
assumption that both tags have an equal probabflitgtention. Our results did not show evidencar&ffect of
the insertion of the tag on the right, or left safehe body on the loss rate. The same conclusesdrawn by
Vincent et al. (2019) in the Western Pacific. Diffaces in shedding rate due to the location otdgehas also
been reported for some species of marine mammasetbach and Alt, 1998; Bradshaw et al., 2000; Mbbh
and White, 2009; Oosthuizen et al., 2010; Schwar.e2012) and marine turtles (Rivalan et al.020 This
aspect is linked to the behaviour of the tagged/iddals but as far we know that was not observediunas.

Another important point discussed in many douldgitag studies is the presence of a tagger efféet.uhderlying
idea is that less-experimented taggers may incrégge-l1 and Type-ll shedding rates, as noted byrhies al.
(1991), and Chambers et al. (2015) in tagging @nogrtargeting southern Bluefin tuna. However, aftenparing
the parameter estimates with and without less-éaxpesd taggers, Gaertner and Hallier (2015) comadutthat
shedding-rate models applied to tropical tunasélhdian Ocean did not require adding estimatésdifidual
shedding rates associated with each tagger. THigtiser supported by the findings of Hampton (19@ho
reported that, despite identifying an apparent eaggjfect, the subsequent consideration of thiscefin the
shedding-rate model did not significantly improvedal performance. Although estimating a taggerceféa a
variable of interest (e.g., shedding rate, tagg@iigiced mortality) makes sense from a theoretioaltpof view,
uncertainty in the way the tag release data wecerded and the lack of contrast and balance it (i.e.,
some taggers operating only in a few strata)kidyito be problematic. In addition, as mentiongdHoyle et al.
(2015), the efficiency of the tagging assistant® whpply fish to the taggers as well the decisibwiwether or
not to release a fish given its condition, may Hditwonal sources of variation among taggers, whigke it
difficult to isolate the effect of skill when manifating fish during tagging operations.

This study reinforces the needs to account forstagdding rate with other sources of uncertaintghsas the
reporting rate, in order to estimate exploitation anortality rates derived from tagging data. Fatance, large
variationsin return rates by unloading locations, flags andy&ave been highlighted (Hampton, 1997, Akia et
al. (a) submitted in this issue). Carruthers e{2015) showed that although reporting rates inltickan Ocean
can be high for the European purse seiners (94%yY, were estimated at 26% for baitboats and ontydsen 2
and 16% for different fleets of longliners.

In this paper we focused only on estimating theeTlyand Il tag-shedding components of total losge Tgging-
induced mortality is not estimable by double tagg@xperiments as the entire statistical procedutsased on
selecting individuals that have survived the taggiperation. In analyzing the recapture ratesrgielacale tuna
tagging programs in the Western Pacific and In@aeans, Hoyle et al. (2015) proposed to accouritdgging
failure” by estimating the difference in returneatbetween the “base levels” of mortality and taedsling (i.e.,
fish tagged and release in good condition by areexpgger) and all other situations in which addl effects
were due to factors being less than ideal (i.eoptilmal release condition, lower levels of taggegperience).
Based on low shedding rate estimates, they asstiraethe majority of the high tagging failure esties (20.5%
in the Indian Ocean, and up to 28.4% (skipjack) 4h®% (bigeye and yellowfin) in the western Cdridacific)
may be due to post-release mortality. It shoulchdied that based on this study, stock assessmamtisicted in
the Indian Ocean used larger initial tag I{iss., “For the bigeye tuna, the recent assessments applied an initial
tag loss of 30.5%, based on the initial tag mortality estimate of 20.5% (Hoyle et al. 2015), with a further 10%
increase to account for an assumed level of tag mortality associated with the best (base) tagger” (IOTC, 2020)).
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It is unclear however if these estimates refledy ¢aig-induced mortality, as previous studies sgtgr that the
combination of type 1 tagging mortality and tagdstiag should be low (Kleiber et al., 1987). Thegdxh their
conclusion on the high return rate (> 50%) obseivethe eastern Pacific and on the absence ofrdiifee in
mortality on about 16 tagged and 14 untagged cbekipjacks maintained in captivity for 7 weekskawalo

Basin, Honolulu. In the absence of further quatitiéainformation, they assumed a figure of 10% tfog total

Type-1 losses. However, correcting the tagging lieta to account for these different uncertaintieforie

introducing the tagging information in stock assessts models is fundamental and correcting proesdoave
been proposed (Berger et al., 2014).
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Table 1.Number of tropical tunas double-tagged by the AGTBRd percentage of recaptures made with two tags
(Both) and one tag (Tag 1, assumed to be Left grZrassumed to be Right).

Species Releasdiecovered %Both %Right %lLeft

BET 4872 1172 93.69 3.92 2.39
SKJ 8786 486 90.74 494 432
YFT 6351 1437 90.47 466  4.87
Total 20009 3095

Table 2. Parameter estimates for the constant-rate sheddodgl for different tuna species; bigeye (BET),
skipjack (SKJ), yellowfin (YFT), albacore (ALB), defin (BFT), southern bluefin (SBY) from previousuble-
tagging studies in the world’s oceans.

Species «a 95% C.I. A (per year) 95% C.I. Study

BET 0.993 (0.985-1.000) 0.017 (0.008 - 0.025)Gaertner and Hallier 2015
0.953 <0.001 Hampton 1997

SKJ 0.993 (0.987 - 1.000) 0.028 (0.018 - 0.040)Gaertner and Hallier 2015
0.970 (0.940 - 1.000) 0.220 (0.090 - 0.350)  Acam Kirkwood 2001
0.965 0.086 Hampton 1997
? 0.088 Kleiber et al. 1987

YFT 0.977 (0.968 - 0.986) 0.038 (0.027 - 0.050) aefdner and Hallier 2015
0.934 0.018 Hampton 1997
0.913 (0.852-0.974) 0.278 (0.271-0.285)  Bagld Mobrand 1972

ALB 0.880 0.092 (0.086 -0.098) Laurs etal.a97

BFT 0.973 0.310 Lenarz et al. 1973

BFT 0.960 0.205 Baglin et al. 1980

SBT 0.979 (0.960 - 0.998) 0.066 (0.060 - 0.072) eat et al. 2006

SBT 0.960 (0.900-0.976) 0.170 (0.049 - 0.290) amidton and Kirkwood 1989

Table 3. The different parameterizations of the constai#-shedding model (A1, A2, A3, and A4) consideped
determine how tag position (subscriptsaand g, insertion in the left or right side of the fistespectively)
differentially affects shedding ratds.is the number of model parametamti is the negative log-likelihood, BIC
is the Bayesian information criterioRy; is the Bayesian posterior model probabjli®yCc is thesmall-sample-
size corrected version of the Akaike informatioitecion, andW is theAlCc weight.

Model a ar oL A AR AL K nll BIC Pri AICc W

Al 0.992 NA NA 0102 NA NA 2 424,923 864.549.950 853.854 0.529
A2 0.992 NA NA NA 0.098 0.106 3 424.880 871800.025 855.755 0.202
A3 NA 0.9920.992 0.102 NA NA 3 424923 0.024 855.861 0.194

A4 NA 0.992 0.993 NA 0.098 0.107 4 424.8729886 0.001 857.769 0.075




565  Table 4 Parameter estimates with 95% C.I. (bootstrappetidance intervals for the frequentist model
566 and MCMC credible intervals for the Bayesian modef)the constant shedding rate model for the 3
567  main tropical tuna species in the Atlantic Ocea2 &hd N.1 represent the number of recaptures2vith
568 or 1 tags), respectively. Note that Type-I shedding isol -

569

570

571 Species o 95% C.I. A (peryea) 95% C.I. N.2 N.1 Model

572

573 BET 0.999 (0.995-1.000) 0.096 (0.080-0.108) 685 35 Frequentist approach

574 BET  0.997 (0.991 - 1.000) 0.095 (0.063 -0.134) 5685 Bayesian prior non informative
575 BET 0.993 (0.986 - 0.998) 0.087 (0.056 - 0.122) 5685 Bayesian prior calculated

576

577 SKJ 0.988 (0.972 - 1.000) 0.062 (0.000 - 0.120) 27283 Frequentist approach

578 SKJ 0.985 (0.965 - 0.998) 0.068 (0.010-0.143) 27283 Bayesian prior non informative
579 SKJ 0.980 (0.964 - 0.992) 0.059 (0.016 -0.116) 27283 Bayesian prior calculated

580

581 YFT  0.985 (0.972 - 0.996) 0.108 (0.048-0.166) 067 56 Frequentist approach

582 YFT  0.984 (0.970 - 0.994) 0.110 (0.052-0.176) 7066 Bayesian prior non informative
583 YFT  0.980 (0.968 - 0.990) 0.094 (0.047 - 0.146) 7066 Bayesian prior calculated

584

585

586

587

588  Table 5. MCMC simulated yearly breakdown of proportions afg lost, beginning immediately post-
589 tagging and up to ten years post-release, estimatieg the Bayesian constant-rate shedding model
590 incorporating informative Beta priors.

591

592

593 Year(s) post-release 0 1 2 3 4 5 6 7 8 9 10

594

595 BET 0.007 0.089 0.164 0.233 0.296 0.354 0.406 0.85®9 0.539 0.576

596 SKJ 0.020 0.075 0.127 0.175 0.221 0.263 0.302 03394 0.407 0.437

597 YFT 0.020 0.107 0.185 0.256 0.321 0.379 0.432 0.8&25 0.564 0.601

598

599

600

601 Table 6. MCMC parameter estimates (with informative Beta priensdl credible intervals (95% C.I.)
602  for the constant shedding rate model by size cayefigo the 3 main tuna species in the Atlantic Gcea
603 N.2 and N.1 represent the number of recaptures @itr 1 tags), respectively. Note that Type-I
604  sheddingis (1 «).

605

606 Species/size a 95% C.I. A (peryear)  95% C.I. N.2 N.1
607

608 BET <=45cm 0.984 (0.964 - 0.996) 0.039 (0.007101) 72 0
609 BET 45-65cm 0.989 (0.978 - 0.996) 0.071 (0.087113) 336 20
610 BET>65cm  0.987 (0.971-0.997) 0.128 (0.066202) 158 15
611

612 SKJ<=45cm 0.979 (0.958-0.993) 0.064 (0.004139) 99 4
613 SKJ > 45 cm 0.976 (0.954 - 0.991) 0.057 (0.0142p) 129 8
614

615 YFT <=45cm 0.974 (0.949 - 0.992) 0.052 (0.000124) 65 3
616 YFT 45-65cm 0.976 (0.962 - 0.989) 0.065 (0.0R0126) 377 27
617 YFT>65cm  0.981 (0.962 - 0.994) 0.163 (0.0D7255) 262 26
618

619

620

621

622

623



624  Table 7. MCMC simulated yearly estimated breakdown of prtipns of tags lost for different size class
625 categories at release, beginning immediately @aggihg until ten years-at-liberty, by the Bayesianstant-rate
626 shedding model incorporating informative Beta wior

627
628 Year after release 0 1 2 3 4 5 6 7 8 9 10
629
630 BET <= 45 cm 0.016 0.054 0.090 0.125 0.157 0.1881D 0.245 0.272 0.297 0.321
631 BET 45 - 65 cm 0.011 0.079 0.142 0.200 0.254 0.80z50 0.393 0.433 0.470 0.505
632 BET > 65 cm 0.013 0.131 0.235 0.325 0.403 0.472833.0.586 0.633 0.674 0.710
633
634 SKJ <=45cm 0.020 0.081 0.137 0.189 0.236 0.28P2D 0.360 0.395 0.428 0.459
635 SKJ > 45 cm 0.024 0.078 0.129 0.175 0.219 0.261®8.0.334 0.367 0.399 0.428
636
637 YFT <= 45 cm 0.026 0.074 0.120 0.162 0.202 0.23874 0.307 0.338 0.367 0.394
638 YFT 45 - 65 cm 0.024 0.085 0.142 0.195 0.244 0.P8%32 0.371 0.408 0.442 0.474
639 YFT > 65 cm 0.020 0.166 0.289 0.392 0.479 0.55319.0.668 0.714 0.752 0.785
640
641

642
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Online supplementary material for “Tag-shedding estimates for tropical tuna species
in the Atlantic Ocean from AOTTP data”

Gaertner D., Guéry L., Gofii N., Amande J., Pascual Alayon P., N'Gom F., Pereira J., Addi
E., Ailloud L., Beare D.,

List of Figures

S1 Traces and density MCMC outputs for the constant rate tag-shedding model for
the Atlantic bigeye

S2 Traces and density MCMC outputs for the constant rate tag-shedding model for
the Atlantic skipjack

S3 Traces and density MCMC outputs for the constant rate tag-shedding model for
the Atlantic yellowfin

The MCMC outputs were done with the library (MCMCVvis): Youngflesh, C. (2018)
MCMCuvis: Tools to visualize, manipulate, and summarize MCMC output. Journal of
Open Source Software, 3(24), 640, https://doi.org/10.21105/j0ss.00640
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712 S1 Traces and density MCMC outputs for the constant rate tag-shedding model for the
713 Atlantic bigeye. Rhat is the Gelman-Rubin convergence statistic used to evaluate the
714  degree of convergence of a random Markov Chains (Values for Rhat near 1 suggest
715  convergence); n.eff is the effective sample size and is an estimate of the number of
716 independent draws from the posterior distribution of the estimate of interest. The %
717  overlap (PPO - prior posterior overlap) between the priors (dashed line in red) and
718  posteriors (solid line in black) indicates how large the effect of the prior is on the
719  posterior distribution.
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S2 Traces and density MCMC outputs for the constant rate tag-shedding model for the
Atlantic skipjack. Rhat is the Gelman-Rubin convergence statistic used to evaluate the
degree of convergence of a random Markov Chains (Values for Rhat near 1 suggest
convergence); n.eff is the effective sample size and is an estimate of the number of
independent draws from the posterior distribution of the estimate of interest. The %
overlap (PPO - prior posterior overlap) between the priors (dashed line in red) and
posteriors (solid line in black) indicates how large the effect of the prior is on the
posterior distribution.
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S3 Traces and density MCMC outputs for the constant rate tag-shedding model for the
Atlantic yellowfin. Rhat is the Gelman-Rubin convergence statistic used to evaluate the
degree of convergence of a random Markov Chains (Values for Rhat near 1 suggest
convergence); n.eff is the effective sample size and is an estimate of the number of
independent draws from the posterior distribution of the estimate of interest. The %
overlap (PPO - prior posterior overlap) between the priors (dashed line in red) and
posteriors (solid line in black) indicates how large the effect of the prior is on the

posterior distribution.




