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A B S T R A C T   

Phytoplankton community composition impacts food webs, climate, and fisheries on regional and global scales, 
and can be assessed at coarse taxonomic resolution from biomarker pigments measured using high-performance 
liquid chromatography (HPLC). Presently, satellite ocean color provides unprecedented coverage of the global 
surface ocean and offers reliable estimates of bulk biological properties; however, existing multispectral sensors 
have limited ability to provide information about phytoplankton community composition. Satellite ocean color at 
hyperspectral resolution (e.g., NASA’s upcoming Plankton, Aerosol, Cloud, and ocean Ecosystem sensor, PACE) is 
expected to improve estimates of phytoplankton community composition from space. Phytoplankton impact 
ocean color via contributions to absorption and fluorescence (through phytoplankton pigments) and scattering, 
especially on narrow spectral scales (5–100 nm). Here, a global open ocean dataset of concurrent HPLC pigments 
and hyperspectral remote sensing reflectance (Rrs(λ)) observations is used to model phytoplankton pigment 
composition from optical data. Phytoplankton pigments are reconstructed from Rrs(λ) using optimized principal 
components regression modeling. This work demonstrates that thirteen phytoplankton pigments, representing 
five phytoplankton pigment groups (e.g., diatoms, dinoflagellates, haptophytes, green algae, and cyanobacteria), 
can be modeled from hyperspectral Rrs(λ). Spectral information needed to model each phytoplankton pigment 
concentration is found throughout the entire visible spectrum and the model results are best at high spectral 
resolution (≤5 nm). The resulting model recreates observed relationships among pigment concentrations, 
providing support for the designation of five pigment-based phytoplankton groups for the global open ocean. 
This work represents a step toward developing robust, global spectral models for phytoplankton pigment 
composition. However, more high-quality data from a wide range of ecosystems and environments are still 
needed to achieve this goal.   

1. Introduction 

Phytoplankton community composition has a strong influence on the 
structure of planktic ecosystems, global biogeochemical cycles, and the 
ecosystem services that the oceans provide (Legendre, 1990; Vanni and 
Findlay, 1990; Le Quéré et al., 2005; Falkowski and Oliver, 2007). 
Characterizing the diversity of phytoplankton is crucial to develop ma
rine food web and ocean carbon cycle models with improved accuracy 
(e.g., Legendre, 1990; Siegel et al., 2014). Satellite ocean color sensors 
observe surface ocean properties on unparalleled spatiotemporal scales, 
including parameters relevant to phytoplankton abundance and com
munity composition, such as chlorophyll-a concentration (e.g., O’Reilly 

et al., 1998; Hu et al., 2012), colored dissolved and detrital materials (e. 
g., Siegel et al., 2002; Morel and Gentili, 2009), particulate backscat
tering (e.g., Stramski et al., 2001; Kostadinov et al., 2010), and partic
ulate absorption (e.g., Ciotti and Bricaud, 2006; Chase et al., 2013). 
Many methods have also been developed to characterize phytoplankton 
community composition from ocean color measurements, including 
both phytoplankton abundance-based (e.g., Brewin et al., 2010; Hirata 
et al., 2011) and radiance-based (e.g., Alvain et al., 2008; Bracher et al., 
2009; Uitz et al., 2015; Chase et al., 2017) approaches (see Mouw et al., 
2017 and Bracher et al., 2017 for reviews of these approaches). With the 
upcoming launch of NASA’s Plankton, Aerosol, Cloud, and ocean 
Ecosystem (PACE) mission, the spectral resolution and range of satellite 
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ocean color data will increase dramatically (Werdell et al., 2019). 
Improving the spectral resolution of ocean color measurements from 
multispectral to hyperspectral is expected to provide improved esti
mates of phytoplankton community composition from satellites (Wola
nin et al., 2016; Xi et al., 2017; Werdell et al., 2018; Cael et al., 2020), 
highlighting the need for new phytoplankton community composition 
algorithms that take advantage of this higher spectral resolution. 

Many ocean color models that separate groups of phytoplankton 
target spectral variations in remote sensing reflectance (Rrs(λ)) to 
retrieve information about phytoplankton community composition, 
relying on differences in the shape and magnitude of Rrs(λ) introduced 
by phytoplankton pigment absorption (e.g., Alvain et al., 2005; Torre
cilla et al., 2011; Bracher et al., 2015a; Uitz et al., 2015; Chase et al., 
2017). The shape and magnitude of Rrs(λ) are also dependent on other 
absorbing and scattering components in the ocean, including seawater, 
non-algal particles (NAP), and colored dissolved organic matter 
(CDOM). The optical properties of many of these oceanic constituents 
are either well characterized (i.e., absorption and scattering by 
seawater) or have simple spectral shapes that change over long (≥100 
nm) spectral scales (i.e., absorption by CDOM and NAP, scattering by 
NAP). Conversely, variability in phytoplankton absorption and some 
scattering features occurs on narrower spectral scales (<100 nm; Bidi
gare et al., 1989; Bricaud et al., 2004). Improvements in assessing 
phytoplankton abundance and composition from hyperspectral reflec
tance may be made by first accounting for the broader absorption and 
scattering signals associated with CDOM and NAP, and then isolating 
and enhancing the phytoplankton-specific features in absorption and 
scattering. 

Ocean color modeling approaches to describe phytoplankton com
munities must be carefully constructed to account for both the input 
Rrs(λ) data quality and the phytoplankton community metrics targeted 
(e.g., cell size, pigment composition, functional traits, etc.). In addition 
to the variability in Rrs(λ) shape and magnitude caused by oceanic 
constituents other than phytoplankton, further uncertainty and varia
tion is introduced to satellite-derived Rrs(λ) by atmospheric correction 
(Werdell et al., 2018). Derivative methods that isolate spectral features 
of interest are therefore well suited to high spectral resolution data: 
these methods are less sensitive to the uncertainties in spectral magni
tude introduced by other optically-relevant components of the surface 
ocean and atmosphere and magnify the variations in spectral shape (e.g., 
Tsai and Philpot, 1998; Taylor et al., 2011; Torrecilla et al., 2011; Xi 
et al., 2015; Uitz et al., 2015; Catlett and Siegel, 2018). However, 
spectral derivative methods can also accentuate instrument- and 
dataset-specific noise in bio-optical measurements (Tsai and Philpot, 
1998), emphasizing the need to evaluate the utility of spectral derivative 
methods in approaches to reconstruct phytoplankton pigments and 
assess phytoplankton pigment composition from hyperspectral optics. 

The validation method for any ocean color phytoplankton compo
sition model is also important, as it determines the taxonomic scope and 
resolution of the model. While there are many available methods of 
characterizing phytoplankton community composition in situ, high 
performance liquid chromatography (HPLC) measurements of phyto
plankton pigment concentrations are currently the most globally- 
available, consistent, quality-controlled data for validating phyto
plankton community composition models (Mouw et al., 2017; Kramer 
and Siegel, 2019). HPLC pigment measurements are widespread in the 
global surface ocean relative to other characterizations of phyto
plankton community composition and offer taxonomic information to 
broad group levels (see Kramer and Siegel, 2019). While pigments offer 
limited taxonomic resolution of phytoplankton composition compared 
to other, more taxonomically resolved methods (i.e., quantitative cell 
imaging [Chase et al., 2020], next generation sequencing [Lin et al., 
2019], etc.) and inference of pigment-based taxonomy is not straight
forward, retrieval of phytoplankton pigment concentrations from ocean 
color data is the first step required to assess phytoplankton composition 
from space. 

Here, we quantify phytoplankton pigment concentrations using 
principal components regression modeling applied to a global surface 
ocean dataset of hyperspectral Rrs(λ) spectra. The models are developed 
and validated using a paired dataset of globally-distributed HPLC 
pigment samples. Reflectance residuals were calculated between 
measured Rrs(λ) data and Rrs(λ) constructed from a generic reflectance 
model. The use of residual spectra removes many of the optical features 
that vary on long spectral scales (e.g., absorption and/or scattering by 
seawater, NAP, and CDOM) while enhancing the narrower spectral 
features, which may be associated with variations in absorption and 
scattering for the different pigment-based phytoplankton groups. De
rivative analysis was then performed on the residual spectra to further 
enhance these narrow spectral features. Rrs(λ) residual derivatives were 
used in an optimized principal components regression modeling 
framework to retrieve the concentrations of various phytoplankton 
pigments. This approach reconstructs representative pigment concen
trations from five pigment-based phytoplankton groups and preserves 
the co-variability between and among phytoplankton pigment concen
trations. Ultimately, the phytoplankton pigment composition model 
presented here demonstrates the utility of the spectral gap hypothesis for 
modeling phytoplankton pigments from hyperspectral data. Specifically, 
it shows that phytoplankton pigment concentrations can be successfully 
estimated from hyperspectral Rrs(λ) when the fine-scale features most 
strongly correlated with phytoplankton absorption and scattering are 
isolated and compositional differences from base-state conditions are 
accentuated, while other features that vary on long spectral scales are 
removed. 

2. Materials and methods 

2.1. HPLC dataset construction and quality control 

The global HPLC pigment dataset used in this analysis was con
structed following the criteria defined in Kramer and Siegel (2019). 
Samples from the surface ocean (depths of 7 m or less) were analyzed at 
a small number of labs to reduce lab-dependent variability in the data
set. All samples had a consistent suite of HPLC pigments measured be
tween samples. The initial dataset (from Kramer and Siegel, 2019) 
included 4480 samples. 70 additional surface samples collected as part 
of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) 
North Pacific field campaign in August–September 2018 and analyzed at 
NASA Goddard Space Flight Center (GSFC) following Van Heukelem and 
Thomas (2001) were added to the Kramer and Siegel (2019) dataset for 
4550 samples total. All pigment values below established HPLC method 
detection limits were set to zero (Van Heukelem and Thomas, 2001). If 
replicate samples of HPLC pigments were taken at a given site, an 
average of the replicates was used before the matchup procedure was 
applied. 

The thirteen HPLC pigments used in all subsequent analyses (and 
their abbreviations) include: total chlorophyll-a (Tchla), 19′-hex
anoyloxyfucoxanthin (HexFuco), 19′-butanoyloxyfucoxanthin (But
Fuco), alloxanthin (Allo), fucoxanthin (Fuco), peridinin (Perid), 
zeaxanthin (Zea), divinyl chlorophyll a (DVchla), monovinyl chloro
phyll b (MVchlb), chlorophyll c1 + c2 (Chlc12), chlorophyll c3 (Chlc3), 
neoxanthin (Neo), and violaxanthin (Viola). Several pigments were 
measured in all datasets but not included for analysis, including: pig
ments that were redundant or not useful as taxonomic markers (total 
chlorophyll b, total chlorophyll c, alpha-beta carotene, diatoxanthin, 
diadinoxanthin; Kramer and Siegel, 2019); degradation pigments 
(chlorophyllide, phaeophytin, phaeophorbide); and pigments that were 
not detected or measured below established method detection limits 
(defined following Van Heukelem and Thomas, 2001) in >75% of 
samples in the final matchup dataset (divinyl chlorophyll b, lutein, and 
prasinoxanthin). 

S.J. Kramer et al.                                                                                                                                                                                                                               
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2.2. Hyperspectral Rrs(λ) dataset construction and quality control 

Model development and validation requires concurrent samples of 
HPLC phytoplankton pigments and hyperspectral Rrs(λ) spectra. 
Hyperspectral Rrs(λ) spectra were considered concurrent with HPLC 
samples if measurements were made within ±2 h at the same geographic 
location. Of the 4550 quality-controlled surface ocean HPLC samples, 
178 samples had concurrent observations of hyperspectral Rrs(λ) 
spectra, including spectra from eight oceanographic field campaigns 
(Table 1). 

Details of initial Rrs(λ) data processing can be found in: Chase et al., 
2017 (Tara Oceans, Tara Mediterranean, SABOR, RemSensPOC, 
NAAMES, EXPORTS); Uitz et al., 2015 (BIOSOPE); and Bracher et al., 
2015a (ANT). All spectra were interpolated to 1 nm resolution and 
smoothed using a 5 nm moving mean bandpass filter before subsequent 
analyses. Following this smoothing procedure, the first and last 4 nm of 
all spectra were removed. As some field campaigns measured a wider 
spectral range than others, the range of Rrs(λ) in the final dataset was 
then restricted to 400–700 nm to match the range common to all 
campaigns. 

Following this consistent smoothing approach, each individual Rrs(λ) 
spectrum was visually inspected for quality control. Some Rrs(λ) spectra 
in the original datasets exhibited extremely high noise-to-signal ratios in 
the ~610–660 nm range, where relatively low variance was expected. 
For these spectra, multiple large (e.g., a factor of 2- to 5-fold larger than 
the mean value) departures from the mean Rrs(λ) value over this spectral 
range were observed, and thus these spectra were removed from this 
analysis (Table 1). The number of spectra used in each dataset are 
indicated in Table 1, and the number of spectra removed from each 
dataset is indicated in parentheses; ultimately, 33 of the 178 samples 
were removed following this quality control approach (~19% of the 
initial dataset), resulting in 145 valid matchup samples between HPLC 
and quality-controlled, hyperspectral Rrs(λ). 

The matched HPLC and Rrs(λ) dataset is composed mostly of open 
ocean samples from the Atlantic, Pacific, and Indian Oceans as well as 
the Mediterranean Sea (Table 1). The dataset encompasses a broad range 
of chlorophyll-a concentrations, from 0.019–4.15 mg m− 3 (Fig. 1; 
Table 1); however, the median chlorophyll-a concentration is relatively 
low (0.110 mg m− 3). 

2.3. Hyperspectral reflectance model construction 

A generic hyperspectral reflectance model was developed with the 
goal of enhancing the spectrally narrow phytoplankton signals associ
ated with phytoplankton pigment variability. The generic formulation of 
the hyperspectral reflectance model is based on the quadratic relation
ship between reflectance measured just below the surface (rrs(0− ,λ)), 
absorption (a), and backscattering (bb), developed from radiative 
transfer theory by Gordon et al. (1988): 

rrs(0− , λ) =
∑2

i=1
gi

(
bbw(λ) + bbp(λ)

aw(λ) + aph(λ) + adg(λ) + bbw(λ) + bbp(λ)

)
i (1)  

where rrs(0− ,λ) is related to remote sensing reflectance measured just 
above the surface (Rrs(0+,λ)) following Lee et al. (2002): 

rrs(0− , λ) = Rrs(0+, λ)/[0.52+ 1.7*Rrs(0+, λ) (2) 

In Eq. (1), the gi coefficients are the same as those used in the original 
Gordon et al. (1988) model. The components of backscattering and 
absorption are parameterized as follows. Backscattering by seawater, 
bbw(λ), is computed as in Zhang et al. (2009) using temperature and 
salinity values from the NOAA NODC World Ocean Atlas ¼◦ resolution 
statistical mean climatology (Locarnini et al., 2013; Zweng et al., 2013). 
Pure water absorption, aw(λ), is taken from Mason et al. (2016). 
Phytoplankton absorption, aph(λ), is expressed as a power law function 
of Tchla: 

aph(λ) = A(λ)*TchlaB(λ) (3) 

The A(λ) and B(λ) coefficients were derived from regressions per
formed at each wavelength using a large, global, multispectral (18 
wavelengths) dataset extracted from the NASA SeaBASS bio-optical data 
repository (NOMAD; Werdell and Bailey, 2005) interpolated to 1 nm 
resolution between 350 and 700 nm using cubic spline interpolation. 
The A(λ) and B(λ) coefficients used here are shown between 400 and 
700 nm in Table S6. The NOMAD data used to determine the aph(λ) 
parameterization are independent from the paired Rrs(λ)-HPLC dataset 
constructed here. 

The combined absorption of non-algal particles and dissolved matter, 
adg(λ), is expressed as: 

adg(λ) = adg(443)*exp
(
Sdg(λ − 443)

)
(4) 

where the slope in the exponential term, Sdg, is a linear function of 
the Rrs(490)/Rrs(555) ratio (as in Carder et al., 1999): 

Sdg = − 0.01447+ 0.00033*Rrs(490)
/

Rrs(555) (5) 

This relationship was also obtained from a large dataset of reflec
tance and adg(λ) data from SeaBASS (Werdell and Bailey, 2005). 

Finally, particulate backscattering is expressed as: 

bbp(λ) = bbp(443)*(λ/443)η (6)  

where the exponent, η, is a function of the below-surface rrs(490)/ 
rrs(555) ratio, following Lee et al. (2002). 

The hyperspectral Rrs(λ) model first solves for three parameters in 
reconstructing the measured spectra: chlorophyll-a concentration 
(Tchla), non-algal absorption excluding water at 443 nm (combined 
CDOM and NAP absorption, adg(443)), and particulate backscattering at 
443 nm (bbp(443)) through a non-linear fit between measured and 
modeled reflectance, as in Maritorena et al. (2002). In that process, full 
spectra for bbp(λ), adg(λ), and ultimately Rrs(λ) are reconstructed using 
the expressions described above (Eqs. (1)-(6)). 

The resulting modeled Rrs spectra (Rrs, mod(λ); Fig. 2B) were sub
tracted from the measured Rrs spectra (Rrs, meas(λ); Fig. 2A) to create the 
Rrs(λ) residual: δRrs(λ) (Fig. 2C). The second derivative of the Rrs(λ) re
sidual, δRrs " (λ), was used in subsequent analyses to maximize the 

Table 1 
Summary table for the eight field campaigns represented in the matched HPLC and Rrs(λ) dataset. All data are cited in Kramer et al. (2021); campaign-specific citations: 
1Bracher et al. (2015b), 2Behrenfeld et al. (2014a), 3Cetinić (2013), 4Behrenfeld et al. (2014b), 5Boss and Claustre (2009), 6Boss and Claustre (2014), 7Claustre and 
Sciandra (2004) and Casey et al. (2019), 8Behrenfeld et al. (2018).  

Cruise name # samples (# removed) Geographic region Chl range (mg m− 3) Median chl (mg m− 3) Mean chl (mg m− 3) 

ANT1 26 (28) Atlantic 0.033–4.15 0.232 0.648 
NAAMES2 11 (1) Northwest Atlantic 0.094–0.987 0.496 0.540 
RemSensPOC3 27 Northwest Atlantic & equatorial Pacific 0.049–1.09 0.090 0.173 
SABOR4 9 Northwest Atlantic 0.070–1.31 0.252 0.471 
Tara Oceans5 16 (3) Global 0.021–0.950 0.168 0.194 
Tara Med6 29 Mediterranean Sea 0.026–0.170 0.055 0.064 
BIOSOPE7 23 (1) Southeast Pacific 0.019–1.47 0.069 0.326 
EXPORTS8 4 Northeast Pacific 0.172–0.292 0.224 0.228  
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narrow spectral features most related to phytoplankton absorption and 
scattering. As in Catlett and Siegel (2018), δRrs " (λ) spectra were 
calculated using a second-order finite difference approximation. 

2.4. Hierarchical clustering and empirical orthogonal function (EOF) 
analysis of HPLC data 

Hierarchical cluster analysis of thirteen HPLC phytoplankton acces
sory pigment ratios to Tchla was performed following Catlett and Siegel 
(2018) and Kramer and Siegel (2019), using Ward’s linkage method (the 
inner squared distance) and the correlation distance (1-R, where R is 

Pearson’s correlation coefficient between phytoplankton pigment ra
tios). The dendrogram for all pigment ratios was then divided into 
distinct taxonomic clusters using a linkage cutoff distance of 0.65. The 
same linkage and distance methods were used to cluster the modeled 
pigments. The taxonomic utility of groups of phytoplankton pigments 
was assumed following Catlett and Siegel (2018) and Kramer and Siegel 
(2019). 

Empirical orthogonal function (EOF) analysis was also performed 
following Kramer and Siegel (2019) and Kramer et al. (2020). Briefly, 
this analysis aims to decompose the data into the dominant orthogonal 
functions that describe the major modes of variability in the dataset. 

Fig. 1. Global distribution of 145 matched HPLC and hyperspectral Rrs(λ) samples, colored by chlorophyll-a concentration (Tchla).  

Fig. 2. (A) Measured (Rrs, meas(λ)) and (B) modeled (Rrs, mod(λ)) hyperspectral Rrs(λ) spectra and (C) the residual spectrum (δRrs(λ)) between measured and modeled 
Rrs(λ). All spectra are colored by source (red = ANT, orange = NAAMES, yellow = RemSensPOC [RSPOC], green = SABOR, blue = Tara, purple = BIOSOPE, black =
EXPORTS). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

S.J. Kramer et al.                                                                                                                                                                                                                               



Remote Sensing of Environment 270 (2022) 112879

5

Here, the EOF loadings, which describe the correlation between each 
mode of variability and ratios of phytoplankton pigments to Tchla, are 
considered. Phytoplankton pigment concentrations were normalized to 
Tchla concentration, then mean-centered and normalized by their 
standard deviation before the EOF analysis was performed. The same 
approach was repeated for the modeled pigment dataset. 

2.5. Principal components regression model 

A number of statistical methods were considered to model pigments 

from Rrs(λ), including hierarchical cluster analysis of spectra (as in 
Torrecilla et al., 2011; Uitz et al., 2015) and network-based community 
detection approaches (as in Kramer et al., 2020). Ultimately, following 
the approach of Catlett and Siegel (2018), a principal components 
regression model was constructed. Here, the model used the second 
derivative of the Rrs(λ) residual (δRrs " (λ)). Principal components 
regression modeling was selected as this method accounts for the high 
degree of collinearity across phytoplankton bio-optical signatures that 
arises due to the co-variability among phytoplankton groups and 
accessory pigments (e.g., Massy, 1965; Catlett and Siegel, 2018). This 

Fig. 3. Hierarchical cluster analysis of thirteen pigment ratios to Tchla. (A) Results for measured HPLC pigments: using a linkage distance of 0.65 (red dashed line), 
five distinct groups emerge and are annotated here with their assumed taxonomic representation: haptophytes (dark blue), diatoms (brown), dinoflagellates (gold), 
green algae (green), and cyanobacteria (light blue). (B) Results for principal components regression modeled pigments from δRrs " (λ): using a linkage distance of 0.80 
(red dashed line), the same five pigment groups identified in (A) emerge. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 
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approach reduced the inter-relatedness of the datasets (that is to say, the 
high correlations between pigment concentrations and δRrs " (λ)) prior to 
modeling. Many other principal components regression models were 
tested, including models reliant on both the first and second derivatives 
of the measured hyperspectral reflectance (Rrs, meas 

′ (λ) and Rrs, meas " (λ)) 
and models that varied the spectral resolution of the input data (see 
Supporting Information for details regarding these model constructions 
and results). The performance of the best of these models was similar, 
and thus we chose to highlight the results of the model constructed using 
δRrs " (λ) at 1 nm, which had excellent performance and one spectral 
input. 

Optimized principal component regression coefficients were deter
mined following Catlett and Siegel (2018) and transformed into spectral 
coefficients for δRrs " (λ). Pigment concentrations were modeled as: 

p̂m =
∑N

i=1
Am(λi)*δRrs˝(λi)+Cm (7)  

where Am(λi) is the wavelength-specific coefficient applied to δRrs " (λi) at 
the ith wavelength (λ) for a given pigment concentration (p̂m), and Cm is 
an intercept. Resulting pigment values were constrained to be positive 
values (or zero) before computing goodness-of-fit statistics. 

We employed the cross-validation-based model optimization and 
validation procedures described in Catlett and Siegel (2018), with some 
adjustments. The modeling approach was validated using a 100-fold 
cross-validation procedure for each pigment. 75% of the dataset was 
used for model training, while 25% of the dataset was used for model 
performance evaluation. Principal components are computed from 
standardized (z-scored; mean-centered and divided by the variance) 
δRrs " (λ) spectra included in the training set. Principal components 
regression models are then optimized based on the training set by 
minimizing the mean absolute difference (MAD) following Seegers et al. 
(2018) and McKinna et al. (2021): 

MAD =
1
N

∑N

i=1

⃒
⃒p̂m,i − pm,i

⃒
⃒ (8)  

where N is the number of samples in the model training dataset (25% of 
145, or 36 samples), pm, i is the measured HPLC pigment concentration, 
and p̂m,i is the corresponding modeled pigment concentration, each for 
the ith observation. This approach differs from Catlett and Siegel (2018) 
where models were optimized by maximizing Pearson’s squared corre
lation coefficient (R2). 

Pigment concentrations were reconstructed for the entire dataset 
(see Figs. 3 and 6 below). For this exercise, the 100 quasi-independent 
sets of optimized coefficients (Am(λi) and Cm) determined from the 100 
cross-validations were applied to all δRrs " (λi) spectra used here, 
following Eq. (8). The median pigment value of those 100 modeled 
values was used in further analyses. Any modeled pigment values that 
were below the standard HPLC pigment detection limits (Van Heukelem 
and Thomas, 2001) were again set to zero before subsequent analyses. It 
should be noted that the goodness-of-fit statistics are expected to 
improve in this exercise relative to those determined from the 100-fold 
cross-validation procedure employed above since the training and 
validation datasets are not independent in this step. 

3. Results 

3.1. HPLC pigments 

The relationships between and among phytoplankton pigment ratios 
to Tchla in the measured HPLC pigment dataset constrain the number of 
distinct groups that can be identified from any subsequent modeling 
using the Rrs(λ) data (Kramer and Siegel, 2019; Kramer et al., 2020). In 
this HPLC dataset, hierarchical cluster analysis separates five distinct 
phytoplankton pigment groups (Fig. 3A), each of which can be distin
guished by one biomarker pigment (with assumed taxonomic 

representation): Fuco (diatoms), Perid (dinoflagellates), HexFuco 
(haptophytes), MVchlb (green algae), and Zea (cyanobacteria). 

The connections between and among the phytoplankton pigment 
groups that emerge here are very similar to those identified in the global 
analysis by Kramer and Siegel (2019); conclusions drawn there would be 
applicable to this subset of their data. The groups identified here also 
broadly separate along (widely-assumed) phytoplankton size class lines, 
with diatoms and dinoflagellates mostly comprising the micro- and 
nano-sized phytoplankton groups, while haptophytes, green algae, and 
cyanobacteria mostly comprise the nano- to pico-sized groups. The same 
phytoplankton pigment groups emerged from the EOF analysis 
(Fig. S1A–D), with the first mode separating cyanobacterial pigments 
from all other groups, the second mode separating haptophyte pigments 
from green algal pigments, the third mode separating diatom pigments 
from all other groups, and the fourth mode separating dinoflagellate and 
cyanobacteria pigments from all other groups. 

3.2. Hyperspectral reflectance spectra 

The hyperspectral reflectance modeling used here aims to reproduce 
the spectral shape and magnitude of the Rrs, meas(λ) data (Fig. 2A) using a 
generic, data- and literature-based parameterization of the model 
components. The Rrs, mod(λ) data (Fig. 2B) match the range of spectral 
shapes and magnitudes of the Rrs, meas(λ) data quite well. The broadly 
similar patterns in spectral shape and relatively low magnitude of the 
residual spectra (δRrs(λ)) show that most of the differences between the 
measured and modeled Rrs(λ) are in the blue and red wavelengths 
(Fig. 2C), where phytoplankton accessory pigment absorption is highest 
and most variable in shape, and in the red, where chlorophyll fluores
cence is active. The δRrs(λ) spectra are relatively flat in the ~520–550 
and ~ 600–660 regions. The similarity in the shapes of the δRrs(λ) 
spectra qualitatively validates the approach taken here, to remove much 
of the signal from Rrs(λ) that varies on broader spectral scales (e.g., 
aNAP(λ), aCDOM(λ), bbp(λ)) and preserve the signal that varies on narrower 
spectral scales (e.g., due to PCC differences). 

The performance of the hyperspectral reflectance model was further 
evaluated by comparing the model retrieval of Tchla with measured 
HPLC Tchla (Fig. 4). 

Measured Tchla was compared to both Tchla derived from the OC4v6 
chlorophyll algorithm (Fig. 4A; O’Reilly et al., 1998) and from the 
hyperspectral reflectance model used here (Fig. 4B). While both models 
produce Tchla concentrations that are well correlated with the measured 
HPLC Tchla (R2 = 0.75 and 0.86, respectively), the performance of the 
hyperspectral reflectance model improves upon the OC4v6 algorithm 
performance both in terms of the model fit to the measured data and its 
adherence to the 1:1 line (slope = 0.96 vs. slope = 0.87). This result is 
consistent with previous findings showing that multispectral Tchla 
models perform better if the effects of bbp(λ) and adg(λ) are accounted for 
(i.e., Siegel et al., 2005, 2013). 

3.3. Correlations between δRrs(λ) and HPLC pigments 

In order to assess the nature of phytoplankton pigment signals con
tained in δRrs(λ) spectra, correlations were examined between the δRrs(λ) 
spectra and pigment concentrations (Fig. 5A&D diatom and cyanobac
teria pigments; Fig. S2 all other pigments), the first derivative of δRrs(λ) 
and pigments (δRrs 

′ (λ), Fig. 5B&E; Fig. S3), and the second derivative of 
δRrs(λ) and pigments (δRrs " (λ), Fig. 5C&F; Fig. S4). 

Correlations were considered between δRrs(λ) and Tchla and between 
δRrs(λ) and each of the five groups of biomarker pigments that broadly 
describe the five major pigment groups based on the results of the hi
erarchical cluster analysis presented in Fig. 3A. For δRrs(λ), δRrs 

′ (λ), and 
δRrs " (λ), high correlations (|R| ≥ 0.5) were found between reflectance 
spectra and pigments across the range of wavelengths considered in this 
analysis. 

Strongly positive or negative relationships were not restricted to 
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wavelengths where δRrs(λ) was necessarily more positive or negative (e. 
g., blue and red wavelengths; Fig. 2C); rather, nearly all pigments were 
significantly correlated with δRrs(λ) and its first and second derivatives 
across the visible spectrum (Figs. 5A&D, S2). Generally, correlations 
were high in the blue, through the green, and into the red part of the 

spectrum for most pigment groups (excluding cyanobacterial pigments). 
Some of the strongest correlations (both positive and negative) between 
δRrs(λ) (or its derivatives) and pigments were in the red, where chloro
phyll both absorbs and fluoresces, which has an impact on the spectral 
shape and magnitude of both measured and modeled Rrs(λ). The 

Fig. 4. Correlation between measured Tchla and Tchla modeled according to (A) the OC4 chlorophyll algorithm and (B) the hyperspectral GSM-like model used here. 
Samples are colored by source (red = ANT, orange = NAAMES, yellow = RemSensPOC [RSPOC], green = SABOR, blue = Tara, purple = BIOSOPE, black = EX
PORTS). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Pearson’s correlation coefficients (R) between (A & D) δRrs(λ) spectra and pigments, (B & E) δRrs 
′ (λ) spectra and pigments, (C & F) δRrs " (λ) spectra and 

pigments, grouped based on the results of hierarchical cluster analysis (Fig. 3): (A, B, C) diatom pigments and (D, E, F) cyanobacterial pigments. Grey bars indicate 
wavelengths at which the correlation coefficients for all pigments are significantly different from zero. The correlation with Tchla (in red) is included on each panel 
for comparison. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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correlation spectra for some pigment groups (for instance, diatom pig
ments; Fig. 5A-C) were almost identical to that of Tchla; however, there 
were differences in the ranges of wavelengths for which these pigments 
are most strongly correlated with δRrs(λ), indicated by the regions in 
which pigment correlations are significantly different from zero. Other 
pigment groups (such as cyanobacterial pigments; Fig. 5D-F) have cor
relation spectra that vary in spectral shape and magnitude from that of 
Tchla, often presenting an inverse correlation to that of Tchla. Ulti
mately, the strong correlations between most pigments and δRrs(λ) (and 
its derivative spectra) across nearly all wavelengths suggested that 
hyperspectral reflectance residuals are well suited to pigment modeling 
using all measured wavelengths. 

3.4. Modeling phytoplankton pigments from hyperspectral δRrs " (λ) 

The concentrations of all thirteen phytoplankton pigments consid
ered here were estimated from the δRrs " (λ) principal components 
regression modeling approach with relatively high accuracy and low 
error (Table 2; Fig. 6; R2 ≥ 0.5 for all pigments except Zea and the green 
algal pigments). Given the large differences in concentration of Tchla 
and each accessory pigment, the MAD presented in Table 2 was 
normalized to the average retrieved pigment concentration for each 
pigment to facilitate comparison of the model performance between 
pigments. 

The mean model summary statistics from the 100-fold cross- 
validation exercise (Table 2) provide estimates of the central tendency 
of the model performance when extrapolated to novel observations (e.g., 
the randomly selected 25% of the dataset used for testing model per
formance for each cross-validation). The normalized mean absolute 
difference (MAD) was lowest for Tchla and red algal and cyanobacterial 
pigments and higher for green algal pigments. The relationships be
tween measured and modeled pigments were quite strong when the 
entire pigment dataset was reconstructed from median modeled values 
across the 100 cross-validations (Fig. 6): the slopes of the relationship 
between measured and modeled pigments for Tchla and five of the 
major biomarker pigments (excluding Zea) are close to 1 (0.74–0.94), 
while the R2 values for these linear fits are also high (0.51–0.73). There 
were no clear relationships between the data source (e.g., the individual 
field campaign) and the pigment reconstruction (Fig. 6). Specifically, the 
relationships between and among pigments were conserved through this 
modeling exercise and the same five pigment clusters found in the 
measured pigment dataset (Fig. 3A) are also identified from hierarchical 
cluster analysis of the modeled pigment dataset (Fig. 3B). 

Five phytoplankton pigment groups can generally be distinguished 
by the co-variability between the ratios of five biomarker pigments to 
Tchla (Fig. 3). These same five pigment groups emerged from analyses of 

both the measured and modeled pigment analyses. The modeled pig
ments showed reasonably good correspondence with the measured 
pigments for most biomarker pigments (Table 2), particularly for Fuco 
(R2 = 0.65). The order of some of the branches of the dendrogram 
shifted between the measured (Fig. 3A) and modeled (Fig. 3B) pigment 
datasets. Most notably, the modeled Perid clustered more closely with 
the modeled (assumed) cyanobacterial pigments, while measured Perid 
clustered more closely with measured (assumed) diatom pigments. 
However, the broad pigment groups remained the same between these 
analyses at high (>0.5) linkage distance thresholds, and the five groups 
of covarying pigments remain consistent. Similarly, the same major 
pigment-based taxonomic groups separated from the EOF analysis, but 
with different groups dominating different modes between the measured 
(Fig. S1A–D) and modeled (Fig. S1 E-H) datasets. The first mode 
separated green algal pigments from all other groups, the second mode 
separated haptophyte pigments from dinoflagellate pigments, the third 
mode separated diatom pigments from all other groups, and the fourth 
mode separated cyanobacterial pigments from all other groups. 

Even the accessory and biomarker pigments with relatively poor 
model performance were reconstructed accurately enough that the 
patterns of covariation among those pigment ratios to Tchla, and be
tween those pigment ratios and pigment ratios modeled with higher 
skill, were consistently recovered (Figs. 3, S1). For instance, Zea was 
retrieved with lower accuracy than many other pigments (Table 2; R2 =

0.37); however, the strong covariation between Zea and DVchla meant 
that these reconstructed pigments still clustered closely together and 
away from all other pigments (Figs. 3B, S1H). Similarly, many of the 
green algal pigments were not as accurately modeled as many other 
pigments (Table 2; MVchlb R2 = 0.42, Neo R2 = 0.42, Viola R2 = 0.38), 
but these pigments covary with each other and with Allo (R2 = 0.40) and 
thus still clustered together as a distinct pigment group (Figs. 3B, S1E). 

4. Discussion 

The goal of this analysis was to model phytoplankton pigment con
centrations from hyperspectral optics and use those modeled pigments 
to reconstruct relationships between and among groups of pigments that 
describe open ocean phytoplankton pigment composition. To achieve 
this goal, principal components regression was employed to model 
pigment concentrations from the second derivative of the residual 
spectra between measured and modeled hyperspectral remote sensing 
reflectance (δRrs " (λ)). From a hierarchical cluster analysis of the 
measured HPLC pigment data, five distinct phytoplankton pigment 
groups were identified (diatoms, dinoflagellates, haptophytes, green 
algae, and cyanobacteria), constraining the number of groups that could 
be identified by the reflectance modeling approach to these same five (or 
fewer) groups. Ultimately, the principal components regression 
modeling approach reconstructed the measured pigment dataset, such 
that the same five pigment-based phytoplankton groups were identified 
again. The resulting modeled pigment dataset both reconstructs the 
patterns of covariability between and among phytoplankton pigments, 
and recreates the qualitative descriptions of five phytoplankton pigment 
groups determined from hierarchical cluster and EOF analyses. While 
the analyses presented here used the residual between the measured and 
modeled reflectance (δRrs " (λ)), principal components regression 
modeling was repeated using the combined first and second derivatives 
of the measured hyperspectral reflectance (Rrs, meas 

′ (λ) and Rrs, meas " (λ)) 
with comparable results (Figs. S6–8, Table S1). 

Here, we consider the strengths and limitations of the modeling 
approach and the results presented in this work. Since the derivative 
approach is sensitive to measurement noise in addition to variations in 
spectral shape, this analysis required the curation of a highly quality- 
controlled dataset. Data were limited for hyperspectral Rrs(λ) 
matchups with HPLC pigments to 145 samples; more high quality data 
will improve this analysis and future analyses that use hyperspectral 
optics to model phytoplankton pigment concentrations. The results of 

Table 2 
Average summary statistics (R2 and normalized MAD) and standard deviations 
of summary statistics across 100 model cross-validations for all modeled pig
ments. MAD and its standard deviation are normalized to the mean retrieved 
pigment concentration for each pigment. All statistics were assessed on a linear 
scale.  

Pigment Mean R2 SD R2 Mean normalized MAD SD normalized MAD 

Allo 0.40 0.19 1.221 0.400 
But 0.62 0.16 0.588 0.185 
Chlc3 0.68 0.13 0.639 0.212 
Chlc12 0.70 0.13 0.703 0.235 
DVchla 0.55 0.12 0.594 0.103 
Fuco 0.65 0.15 0.844 0.274 
Hex 0.54 0.16 0.692 0.201 
MVchlb 0.42 0.19 0.975 0.295 
Neo 0.42 0.21 1.127 0.354 
Perid 0.49 0.13 0.783 0.166 
Tchla 0.72 0.15 0.498 0.127 
Viola 0.38 0.18 1.101 0.370 
Zea 0.37 0.10 0.472 0.071  
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Fig. 6. Relationships between HPLC measured pigments and principal components regression modeled pigments using the median model result of all 100 cross- 
validations: (A) Tchla, (B) Fuco, (C) Perid, (D) HexFuco, (E) MVchlb, (F) Zea. The 1:1 line is shown in black; the linear fit is shown in red for Tchla, brown for 
Fuco, gold for Perid, dark blue for HexFuco, green for MVchlb, and light blue for Zea. Samples are colored by source (red = ANT, orange = NAAMES, yellow =
RemSensPOC [RSPOC], green = SABOR, blue = Tara, purple = BIOSOPE, black = EXPORTS). (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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the principal components regression models (or any bio-optical model) 
are constrained by the validation dataset used in the analysis. In this 
case, the taxonomic groups determined from the associations between 
and among HPLC phytoplankton pigments restricted the pigment groups 
that could be identified from optics to the five identified here. These five 
groups represent the extent to which phytoplankton pigment composi
tion can be resolved within the global open ocean HPLC dataset 
assembled here. Finally, while this analysis aims to describe the central 
tendencies of the dataset used here, analyses that include different 
taxonomic or optical regimes than those included in this dataset 
(particularly inland or coastal waters) might need to combine ap
proaches to fully describe the surface ocean phytoplankton pigment 
composition from optics. This approach describes a “base state” in the 
global surface ocean, while rare or more extreme departures from that 
base state will have divergent optical properties and will likely require 
more targeted approaches. 

4.1. Quality controlling a global dataset from multiple sources 

The robustness of any modeling approach is limited by the dataset 
used to construct and test that model. Here, data from eight field cam
paigns were combined, most of which had already been published in 
previous analyses (e.g., Uitz et al., 2015; Bracher et al., 2015a; Chase 
et al., 2017) or had been collected by those same groups using identical 
methods (e.g., the EXPORTS samples). The HPLC pigment dataset dic
tates the potential and limitations of the resulting optical model—here, 
the results were limited to five distinct pigment groups (Fig. 3A, 
Fig. S1A–D). The derivative analysis approach magnifies narrow 
spectral features, including measurement noise and error; thus, quality 
control of the Rrs(λ) spectra was crucially important to ensure that the 
model results were influenced by real features rather than artifacts. 
Strict quality control will be particularly important for ocean color 
sensors such as PACE, particularly considering the potential effects of 
imperfect atmospheric corrections on reflectance data from these mis
sions. It is likely that imperfections in atmospheric correction will occur 
on broader spectral scales (as is expected from the shapes of aerosol 
absorption and scattering; Werdell et al., 2019). Thus, the approach used 
here will negate many of these issues. 

The quality control approach employed here aimed to remove any 
spectra with spurious features that would be amplified in the present 
approach; thus, some samples were removed from the datasets that were 
suitable for other analyses. Similarly, the wavelength range of the Rrs(λ) 
spectra was selected to maximize overlap between different sampling 
approaches; all eight field campaigns measured reflectance between 400 
and 700 nm, while some field campaigns had a larger range of mea
surements. There is undoubtedly useful phytoplankton community in
formation in the UV and specific spectral features in the UV region have 
been shown to covary with specific biomarker pigments (e.g., Barrón 
et al., 2014; Kahru et al., 2021). Ideally, future Rrs(λ) datasets will 
include high-quality measurements over a broader spectral range for full 
consideration of the impact of phytoplankton pigments on spectral data. 
Our results show that the model coefficients in this analysis vary across 
the visible spectrum (Fig. S5), not just in a narrow wavelength range. 
This result supports the importance of rigorous quality control for the 
spectral data used here; even small variations on short (5–10 nm) 
spectral scales are ultimately important in this pigment modeling 
approach. Similarly, the noise-to-signal ratio across the visible spectrum 
for in situ Rrs(λ) data (as were used here) is much lower than for 
remotely sensed Rrs(λ) data. Thus, spatiotemporal aggregation of 
remotely-sensed Rrs(λ) will likely be required to improve and increase 
the signal-to-noise ratio to a level that can be tolerated by the approach 
presented here. 

4.2. The need for more high-quality, paired global data 

While the dataset used in this analysis was limited by the stringent 

quality control approach for both the HPLC pigment samples and Rrs(λ) 
spectra, it was also limited by the available data that fit these re
quirements. There are abundant HPLC pigment samples with high data 
quality in the surface ocean (e.g., Kramer and Siegel, 2019). However, of 
the 4550 HPLC pigment samples in that analysis, only 145 had co- 
located, hyperspectral Rrs(λ) spectra that passed the present quality 
control process. The distributions of both Tchla and the major accessory 
pigments varied in the 145 HPLC samples with corresponding Rrs(λ) 
spectra, relative to the larger 4550 sample dataset analyzed previously 
(Fig. 7). 

The mean pigment concentrations and ranges are significantly 
different for Tchla, Fuco, Perid, and HexFuco (two-sample t-test; p <
0.01). The mean values and range of the pigment concentrations in the 
global dataset were higher for Tchla and all accessory pigments except 
Zea compared to this dataset. The dataset used in this analysis was 
skewed more to samples with lower average Tchla concentrations that 
contained higher concentrations of Zea, but the difference in the mean 
Zea concentration between the two datasets was not significant 
(Fig. 7F). While the pigment-based statistical analyses from this dataset 
were comparable to the results of Kramer and Siegel (2019) in identi
fying nearly the same five groups of phytoplankton pigments (this 
analysis separated diatom pigments from dinoflagellate pigments; 
Fig. 3A), the bio-optical models that were constructed for this dataset fit 
a specific subset of the global dataset. Further model optimization may 
be required to apply this model accurately to all samples in that dataset, 
given the differences in dataset characteristics. However, despite the 
lower concentrations of most accessory pigments in this dataset, the 
model still reasonably reconstructed the concentrations of most acces
sory pigments. 

There are many datasets that contain paired HPLC pigment samples 
and multispectral optics and/or radiometry (e.g., Werdell and Bailey, 
2005). Similarly, some datasets include paired HPLC pigment samples 
(or other measurements of phytoplankton community composition) and 
hyperspectral optics (such as absorption by phytoplankton or other 
oceanic constituents), though few include hyperspectral reflectance as 
noted above (e.g., Valente et al., 2019; Casey et al., 2020). These data
sets are also limited by their sampling locations—it is operationally 
more straightforward to collect both water samples and spectral mea
surements in inland and coastal waters than in the open ocean, so open 
ocean observations are more limited. The ratio of coastal to open ocean 
samples in most bio-optical datasets is not representative of the fraction 
of coastal to open ocean ecosystems on Earth (Mouw et al., 2017). The 
work presented here demonstrates conclusively the need for more and 
consistently collected, paired measurements of phytoplankton commu
nity composition (including, but not limited to, HPLC pigments) and 
hyperspectral Rrs(λ) data (and, ideally, hyperspectral optical data) from 
diverse environments. Since all models, including the principal 
component regression model used here, are constrained by the quality 
and content of the datasets used to train and test those models, efforts to 
reconstruct phytoplankton community indices from hyperspectral 
reflectance can only be strengthened by the addition of more, high- 
quality open ocean hyperspectral optical and pigment data (e.g., 
Bracher et al., 2017). 

4.3. The importance of spectral resolution 

The quality and content of the model input data is also determined by 
the spectral resolution of that data. Hyperspectral data provide more 
degrees of freedom for modeling phytoplankton accessory pigments 
from Rrs(λ) (Wolanin et al., 2016; Werdell et al., 2018; Cael et al., 2020). 
However, there are also high degrees of correlation between measure
ments made at similar wavelengths, which dilutes the statistical power 
of individual wavelengths (Cael et al., 2020). Thus, with these potential 
strengths and limitations in mind, this analysis was replicated for δRrs " 
(λ) using 5 nm and 10 nm resolution rather than 1 nm resolution. The 
results demonstrate very little loss of qualitative or quantitative power 
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for pigment reconstruction between 1 nm and 5 nm resolution: the same 
5 pigment groups separate (Figs. S9, S10), the relationships between 
measured and modeled pigments are comparably strong (Table S2, 
Fig. S11), and there is still predictive power across the visible spectrum 
that can be used for pigment modeling (Fig. S12). However, at 10 nm 
resolution, the results are notably worse for all modeled pigments 
(Table S3). This result is encouraging for existing and future ocean color 
remote sensing missions with high (~5 nm) spectral resolution (e.g., 
Werdell et al., 2019). These results can be replicated using both the first 
and second derivatives of the measured hyperspectral reflectance, Rrs, 

meas 
′ (λ) and Rrs, meas " (λ) at varying spectral resolution in principal 

component regression models (Figs. S13–15; Tables S4, S5). 

4.4. The potential of the spectral gap hypothesis 

The present results highlight the benefit of removing Rrs(λ) vari
ability at broad spectral scales to accentuate those spectral variations 
that should be better associated with optical features caused by changes 
in phytoplankton pigment composition. Central to this approach is the 
hypothesis that phytoplankton optical signals can be useful for quanti
fying phytoplankton pigment composition by maximizing the variability 
in δRrs(λ) on narrow spectral scales (<100 nm) and reducing or 
removing the broad scale (>100 nm) signals that dominate the major 
optical properties in the ocean (e.g., CDOM, NAP). By removing broad- 
scale spectral signals, the δRrs(λ) spectra (and its derivatives) should 
accentuate the optical signals associated with the phytoplankton com
munity. The major variations in the magnitude and shape of δRrs " (λ) 
were predominantly in the blue and red wavelengths (Fig. 2C), where 
phytoplankton accessory pigment absorption and fluorescence are the 
highest. However, the results of the principal components regression 
modeling approach demonstrate that relevant information for modeling 

pigments from the second derivative of δRrs(λ) is not just contained in 
the spectral regions where many phytoplankton pigments absorb, but 
across the whole visible spectrum (Figs. 5, S4). These results demon
strate the covariation among pigments and their absorption features, but 
also the co-variability of pigments with other phytoplankton pigment 
group-specific optical properties (e.g., fluorescence, scattering, pack
aging, etc.). The model coefficients also have power across the visible 
spectrum (Fig. S5), demonstrating the importance of using data from 
400 to 700 nm in this modeling approach (see also discussion in Catlett 
and Siegel, 2018). 

4.5. Further applications of δRrs(λ) for PACE 

To a large extent, the residuals between measured and modeled 
Rrs(λ), δRrs(λ), represent the differences in the relationship between 
Tchla and accessory pigments and their influence on phytoplankton 
absorption, aph(λ), in the measured and modeled dataset (e.g., NOMAD; 
Werdell and Bailey, 2005) and might not accurately reflect the re
lationships between Tchla and accessory pigments (which influence the 
shape and magnitude of aph(λ)) in the present dataset. Thus, the residual 
reflectance spectrum, δRrs(λ), is a useful tool to quantify the shape dif
ferences of a given Rrs(λ) spectrum—particularly when combined with a 
derivative analysis that accentuates the fine-scale features related to 
phytoplankton absorption and scattering. The usefulness of the reflec
tance residual approach in bio-optical oceanography has been estab
lished before (e.g., Roesler and Perry, 1995; Alvain et al., 2005), though 
it has not been applied for modeling phytoplankton pigment concen
trations. This approach could be further applied to hyperspectral ocean 
color data to classify and cluster optical data and describe broad patterns 
in the global surface ocean (e.g., Siegel et al., 2005; Blondeau-Patissier 
et al., 2014). Through measurements and modeling of surface ocean 

Fig. 7. Histograms of measured HPLC pigment concentrations from this analysis and from Kramer and Siegel (2019): (A) Tchla, (B) Fuco, (C) Perid, (D) HexFuco, (E) 
MVchlb, (F) Zea. 
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reflectance, the δRrs(λ) parameter could describe similarities and dif
ferences in the shapes of measured hyperspectral Rrs(λ). Statistical an
alyses, such as EOFs or cluster analysis, could then partition these 
optical communities into broadly similar groups, and allow for a deeper 
investigation of the phytoplankton pigment composition underlying 
these similar optical regimes. Ultimately, this type of approach would 
aim to describe the central tendency in the dataset by classifying groups 
of spectra that were correlated with similar surface ocean patterns and 
ecosystems. 

4.6. Combining principal components regression modeling with other 
remote sensing phytoplankton community composition algorithms 

The model that was constructed here describes a statistical approach 
for predicting phytoplankton biomarker pigment concentrations from 
reflectance spectra. The modeling approach implemented with this 
dataset is empirical, and thus it was only able to reconstruct the 
phytoplankton pigment communities represented in this dataset. While 
many remote sensing algorithms have similarly been constructed to 
retrieve various optical parameters (e.g., Maritorena et al., 2002; Wer
dell and Bailey, 2005; Uitz et al., 2015; Chase et al., 2017; etc.), some 
remote sensing algorithms for detecting phytoplankton community 
composition aim to identify the cases that deviate from standard oceanic 
conditions. In those models, the aim is to identify the phytoplankton 
group that dominates the optical signal in a given ecosystem, often in the 
case of a monospecific phytoplankton bloom. This information is likely 
not retrievable using empirical techniques aimed at quantifying the 
central tendencies in a dataset. Approaches exist to quantify or identify 
blooms of coccolithophores (Brown and Yoder, 1994; Sadeghi et al., 
2012) or Trichodesmium spp. (Westberry et al., 2005; Westberry and 
Siegel, 2006) on global scales, as well as Phaeocystis spp. (Lubac et al., 
2008), harmful algal blooms (i.e., Karenia brevis, Stumpf et al., 2003; 
Pseudo-nitzschia spp., Smith and Bernard, 2020; etc.), and diatoms 
(Sathyendranath et al., 2004; Soppa et al., 2014; Kramer et al., 2018) on 
local scales. It is important to note that the approach developed here is 
not comparable to these methods, as it does not attempt to identify the 
dominant phytoplankton group within a community, but rather re
constructs individual phytoplankton pigment concentrations from Rrs(λ) 
and δRrs(λ). Reconstructed pigment compositions and concentrations 
can then be used to estimate phytoplankton community composition. In 
other ecosystems or regions, the combinations of reconstructed pig
ments might cluster differently to form distinct phytoplankton pigment 
groups from the ones identified here (e.g., Kramer and Siegel, 2019). By 
aiming to describe variability in suites or communities of biomarker 
pigment concentrations, the principal components regression modeling 
approach used here describes a central tendency in the dataset, and is 
complimentary to ocean color algorithms that attempt to identify out
liers dominated by a single phytoplankton type. 

Combining the method presented here with one of the above more 
targeted methods may provide insight into how well the reconstructed 
pigment suites match the distinct optical signals associated with a given 
phytoplankton group. For example, in an ecosystem where a “coccoli
thophore bloom” (Brown and Yoder, 1994) can be identified from 
remote sensing, would the reconstructed pigment modeling also retrieve 
high concentrations of HexFuco and Chlc3? In this case, the principal 
components regression modeling approach could serve to describe a 
community in which the optics were more useful for describing phyto
plankton community composition than the pigments. These combined 
approaches could also give insights into bloom succession, and the 
strengths or weaknesses of individual models as the optical properties of 
a bloom change. Alternately, the Westberry et al. (2005) approach can 
identify a Trichodesmium bloom from ocean color based on optical 
anomalies above a defined threshold value. Using pigment data, Tri
chodesmium could be distinguished by the cyanobacterial biomarker 
pigments considered here (Zea, DVchla), but also by phycobilins, which 
are not measured by traditional HPLC methods, but can be modeled by 

similar approaches to those employed here (Taylor et al., 2013). Again, 
the optics may provide more information than the pigment-based tax
onomy, and thus the methods would be stronger when combined. 

5. Conclusions 

This analysis demonstrates the potential and limitations of hyper
spectral remote sensing reflectance data for reconstructing phyto
plankton pigment composition. Five pigment groups were separated 
from the validation dataset of HPLC pigments and are assumed to 
represent diatoms, dinoflagellates, haptophytes, green algae, and cya
nobacteria. Thirteen pigments were then modeled from a matched-up 
dataset of reflectance data, resulting in the same five pigment groups. 
The approach used here tested the spectral gap hypothesis—i.e., that 
phytoplankton signals useful for characterizing phytoplankton pigment 
composition are contained on spectral scales narrower than the scale of 
other factors influencing optical properties (<100 nm). Overall, our 
results suggest that principal components regression modeling is a 
strong candidate for retrieving phytoplankton pigment composition 
from hyperspectral remote sensing data. The success of this model 
depended in part on rigorous quality control applied to both datasets 
before modeling, which ensured that only real features were magnified 
by the residual and derivative methods. Furthermore, the model works 
best at high (1–5 nm) spectral resolutions, and model performance de
creases at coarser (10+ nm) resolution, which is relevant to future 
remote sensing instruments with improved spectral resolution (e.g., 
NASA’s PACE sensor). Finally, this model is limited to the dataset for 
which it was developed; however, in combination with other remote 
sensing algorithms that target specific phytoplankton taxa, it would 
offer more information about both surface ocean optics and phyto
plankton ecology, as it could help to illuminate some of the assumptions 
underlying both types of approaches. More high-quality, paired datasets 
from a range of different ecosystems and environments will also improve 
this approach and future global models for phytoplankton pigment 
composition. 
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phytoplankton groups in case 1 waters from global SeaWiFS imagery. Deep-Sea Res. 
I Oceanogr. Res. Pap. 52 (11), 1989–2004. https://doi.org/10.1016/j. 
dsr.2005.06.015. 

Alvain, S., Moulin, C., Dandonneau, Y., Loisel, H., 2008. Seasonal distribution and 
succession of dominant phytoplankton groups in the global ocean: a satellite view. 
Glob. Biogeochem. Cycles 22 (3), 1–25. https://doi.org/10.1029/2007GB003154. 

Barrón, R.K., Siegel, D.A., Guillocheau, N., 2014. Evaluating the importance of 
phytoplankton community structure to the optical properties of the Santa Barbara 
Channel, California. Limnol. Oceanogr. 59 (3), 927–946. 

Behrenfeld, M.J., Bidle, K.D., Boss, E., Carlson, C.A., Gaube, P., Giovannoni, S., et al., 
2014a. North Atlantic Aerosols and Marine Ecosystems Study (NAAMES). NASA 
Ocean Biology DAAC, SeaBASS. https://doi.org/10.5067/SeaBASS/NAAMES/ 
DATA001. 
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2011. Bio-optical provinces in the eastern Atlantic Ocean and their biogeographical 
relevance. Biogeosciences 8 (12), 3609–3629. https://doi.org/10.5194/bg-8-3609- 
2011. 

Taylor, B.B., Taylor, M., Dinter, T., Bracher, A., 2013. Estimation of relative 
phycoerythrin concentrations from hyperspectral underwater radiance 

measurements – a statistical approach. J. Geophys. Res. Oceans 118, 2948–2960. 
https://doi.org/10.1002/jgrc.20201. 

Torrecilla, E., Stramski, D., Reynolds, R.A., Millán-Núñez, E., Piera, J., 2011. Cluster 
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