# Supporting Information for "Modeling surface ocean phytoplankton pigments from hyperspectral remote sensing reflectance on global scales"

Sasha J. Kramer<sup>1,2</sup>, David A. Siegel<sup>1</sup>, Stéphane Maritorena<sup>1</sup>, Dylan Catlett<sup>1,2,†</sup>

<sup>1</sup>Earth Research Institute, University of California Santa Barbara, Santa Barbara CA, USA.

<sup>2</sup>Interdepartmental Graduate Program in Marine Science, University of California Santa Barbara, Santa Barbara CA, USA.

<sup>†</sup> Present address: Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.

The Supporting Information presented in this section includes:

Section S1: Supplemental information for the datasets and principal components regression models presented in the main section of the manuscript. This section includes: the results of an Empirical Orthogonal Function (EOF) analysis performed with both the measured and modeled pigment datasets; Pearson's correlation coefficients between the remote sensing reflectance residual ( $\delta R_{rs}(\lambda)$ ) and each accessory pigment; and the mean model coefficients resulting from the principal components regression modeling.

Section S2: This section includes the results of repeating the principal components regression modeling approach using the first and second derivatives of the measured remote sensing reflectance ( $R_{rs,meas}'(\lambda)$  and  $R_{rs,meas}"(\lambda)$ ) instead of the second derivative of the reflectance residual ( $\delta R_{rs}"(\lambda)$ ).

Section S3: This section includes the results of repeating the principal components regression modeling approach using the second derivative of the reflectance residual  $(\delta R_{rs}"(\lambda))$  at 5 nm resolution.

Section S4: This section includes the results of the principal components regression modeling approach using the second derivative of the reflectance residual  $(\delta R_{rs}"(\lambda))$  at 10 nm resolution.

Section S5: This section includes the results of repeating the principal components regression modeling approach using the first and second derivatives of the measured remote sensing reflectance  $(R_{rs.meas}'(\lambda))$  and  $R_{rs.meas}''(\lambda)$  at 5 nm resolution.

Section S6: This section includes the results of the principal components regression modeling approach using the first and second derivatives of the measured remote sensing reflectance ( $R_{rs,meas}'(\lambda)$  and  $R_{rs,meas}''(\lambda)$ ) at 10 nm resolution.

Section S7: A and B coefficients in the phytoplankton absorption component of  $R_{rs,mod}(\lambda)$ .

#### Section S1

This section addresses additional analysis for the measured and modeled datasets presented in the main manuscript. First, the results of the EOF analysis performed on both the measured (Figure S1A-D) and principal components regression modeled (Figure S1E-H) are shown. The correlations between  $\delta R_{rs}(\lambda)$ ,  $\delta R_{rs}'(\lambda)$ , and  $\delta R_{rs}"(\lambda)$  with the accessory pigments for dinoflagellates, haptophytes, and green algae are also shown (Figures S2-S4). Finally, the median spectral model coefficients ( $A(\lambda_i)$ ) optimized across 100-fold cross-validations of the principal components regression models are displayed for each major group of accessory pigments.





**Figure S1.** Empirical orthogonal function loadings for measured (A-D) and modeled (E-H) pigments. Modes (A & E) 1, (B & F) 2, (C & G) 3, and (D & H) 4 are displayed for phytoplankton pigment ratios to total chlorophyll-*a*. Loadings are colored based on pigment



clusters (Figure 3): light blue (cyanobacteria), dark blue (haptophytes), green (green algae), brown (diatoms), and gold (dinoflagellates).

Figure S2. Pearson's correlation coefficients (R) between  $\delta R_{rs}(\lambda)$  spectra and pigments, grouped based on the results of hierarchical cluster analysis (Figure 3): (A) Tchla, (B) dinoflagellate pigments, (C) haptophyte pigments, (D) green algal pigments. Grey bars indicate



wavelengths at which the correlation coefficients for all pigments are significantly different from zero.

Figure S3. Pearson's correlation coefficients (R) between  $\delta R_{rs}'(\lambda)$  spectra and pigments, grouped based on the results of hierarchical cluster analysis (Figure 3): (A) Tchla, (B) dinoflagellate pigments, (C) haptophyte pigments, (D) green algal pigments. Grey bars indicate



wavelengths at which the correlation coefficients for all pigments are significantly different from zero.

**Figure S4.** Pearson's correlation coefficients (R) between  $\delta R_{rs}$ "( $\lambda$ ) spectra and pigments, grouped based on the results of hierarchical cluster analysis (Figure 3): (A) Tchla, (B) dinoflagellate pigments, (C) haptophyte pigments, (D) green algal pigments. Grey bars indicate



wavelengths at which the correlation coefficients for all pigments are significantly different from zero.

**Figure S5.** Median model coefficients for all pigments, grouped based on the results of hierarchical cluster analysis (Figure 3): (A) Tchla, (B) diatom pigments, (C) dinoflagellate pigments, (D) haptophyte pigments, (E) green algal pigments, and (F) cyanobacterial pigments. Grey bars indicate wavelengths at which the correlation coefficients for all pigments are significantly different from zero.

### Section S2

This section repeats the principal component regression modeling approach presented in the main manuscript, but using  $R_{rs,meas}'(\lambda)$  and  $R_{rs,meas}''(\lambda)$  as the input rather than  $\delta R_{rs}''(\lambda)$ :

$$\widehat{p}_m = \sum_{i=1}^N A_m(\lambda_i) * R_{rs,meas}'(\lambda_i) + B_i(\lambda_i) * R_{rs,meas}''(\lambda_i) + C_m [S1].$$

where  $A_m(\lambda_i)$  and  $B_m(\lambda_i)$  are the wavelength-specific coefficient applied to  $R_{rs,meas}'(\lambda_i)$  and  $R_{rs,meas}''(\lambda_i)$ , respectively, at the *i*th wavelengths ( $\lambda$ ) for a given pigment concentration ( $\hat{p}_m$ ), and  $C_m$  is an intercept.

All other model parameters were kept exactly the same. The results presented here show the  $R_{rs,meas}'(\lambda)$  and  $R_{rs,meas}''(\lambda)$  model performance summary (Table S1), the outcome of a hierarchical cluster analysis performed with ratios of modeled accessory pigments to modeled Tchla (Figure S6), an EOF analysis with the ratios of modeled pigments to modeled Tchla

(Figure S7), and correlations between measured and modeled pigment concentrations for Tchla and the five major accessory pigments (Figure S8).

**Table S1.** Summary statistics ( $\mathbb{R}^2$  and MAD) and standard deviations of statistics across 100 model cross-validations for all modeled pigments for the  $R_{rs,meas}'(\lambda)$  and  $R_{rs,meas}''(\lambda)$  model. MAD and its standard deviation are normalized to the mean pigment concentration for each pigment.

| Pigment | $Mean R^2$ | SD R <sup>2</sup> | Mean normalized MAD | SD normalized MAD |
|---------|------------|-------------------|---------------------|-------------------|
| Allo    | 0.46       | 0.23              | 1.296               | 0.389             |
| But     | 0.67       | 0.19              | 0.544               | 0.155             |
| Chlc3   | 0.72       | 0.15              | 0.586               | 0.172             |
| Chlc12  | 0.76       | 0.14              | 0.623               | 0.188             |
| DVchla  | 0.55       | 0.11              | 0.583               | 0.103             |
| Fuco    | 0.73       | 0.17              | 0.717               | 0.232             |
| Hex     | 0.6        | 0.2               | 0.636               | 0.174             |
| MVchlb  | 0.44       | 0.2               | 0.964               | 0.306             |
| Neo     | 0.45       | 0.22              | 1.095               | 0.349             |
| Perid   | 0.49       | 0.14              | 0.779               | 0.176             |
| Tchla   | 0.75       | 0.16              | 0.455               | 0.104             |
| Viola   | 0.41       | 0.19              | 1.082               | 0.369             |
| Zea     | 0.36       | 0.11              | 0.465               | 0.072             |



**Figure S6.** Hierarchical cluster analysis of thirteen modeled pigment ratios to modeled Tchla from the  $R_{rs,meas}'(\lambda)$  and  $R_{rs,meas}''(\lambda)$  model. Using a linkage distance of 0.50 (red dashed



line), five distinct groups emerge: haptophytes (dark blue), diatoms (brown), dinoflagellates (gold), green algae (green), and cyanobacteria (light blue).

**Figure S7.** Empirical orthogonal function loadings for the reconstructed pigments of the  $R_{rs,meas}'(\lambda)$  and  $R_{rs,meas}''(\lambda)$  model. Modes (A) 1, (B) 2, (C) 3, and (D) 4 were calculated for phytoplankton pigment ratios to total chlorophyll-a concentration. Loadings are colored based on

pigment clusters (Figure S6): light blue (cyanobacteria), dark blue (haptophytes), green (green algae), brown (diatoms), and gold (green algae).



**Figure S8.** Correlation between HPLC measured pigments and principal components regression modeled pigments using the  $R_{rs,meas}'(\lambda)$  and  $R_{rs,meas}''(\lambda)$  model: (A) Tchla, (B) Fuco, (C) Perid, (D) HexFuco, (E) MVchlb, (F) Zea. The 1:1 line is shown in black; the linear fit is shown in red. Samples are colored by source (red = ANT, orange = NAAMES, yellow = RemSensPOC [RSPOC], green = SABOR, blue = Tara, purple = BIOSOPE, black = EXPORTS).

### Section S3

This section repeats the principal component regression modeling approach presented in the main manuscript, using  $\delta R_{rs}$ "( $\lambda$ ) at 5nm resolution (every 5nm from 400-700nm). All other model parameters were kept exactly the same. The results presented here show the model performance summary (Table S2), the outcome of a hierarchical cluster analysis performed with ratios of modeled accessory pigments to modeled Tchla (Figure S9), an EOF analysis with the ratios of modeled pigments to modeled Tchla (Figure S10), and correlations between measured and modeled pigment concentrations for Tchla and the five major accessory pigments (Figure S11). Spectral model coefficients are also shown (Figure S12).

**Table S2.** Summary statistics (R<sup>2</sup> and MAD) and standard deviations of statistics across 100 model cross-validations for all modeled pigments using  $\delta R_{rs}$ "( $\lambda$ ) at 5nm resolution. MAD and

| Pigment | Mean R2 | SD R2 | Mean normalized MAD | SD normalized MAD |
|---------|---------|-------|---------------------|-------------------|
| Allo    | 0.38    | 0.16  | 1.329               | 0.390             |
| But     | 0.59    | 0.15  | 0.613               | 0.185             |
| Chlc3   | 0.66    | 0.12  | 0.680               | 0.199             |
| Chlc12  | 0.66    | 0.12  | 0.751               | 0.229             |
| DVchla  | 0.42    | 0.11  | 0.688               | 0.111             |
| Fuco    | 0.63    | 0.13  | 0.903               | 0.261             |
| Hex     | 0.54    | 0.16  | 0.704               | 0.193             |
| MVchlb  | 0.41    | 0.19  | 0.985               | 0.305             |
| Neo     | 0.4     | 0.19  | 1.151               | 0.358             |
| Perid   | 0.45    | 0.12  | 0.825               | 0.167             |
| Tchla   | 0.68    | 0.15  | 0.532               | 0.122             |
| Viola   | 0.36    | 0.17  | 1.115               | 0.385             |
| Zea     | 0.35    | 0.11  | 0.491               | 0.076             |

its standard deviation are normalized to the mean pigment concentration for each pigment.



**Figure S9.** Hierarchical cluster analysis of thirteen modeled pigment ratios to modeled Tchla from the  $\delta R_{rs}$ "( $\lambda$ ) model at 5 nm resolution. Five distinct groups emerge: haptophytes (dark



blue), diatoms (brown), dinoflagellates (gold), green algae (green), and cyanobacteria (light blue).

**Figure S10.** Empirical orthogonal function loadings reconstructed from the  $\delta R_{rs}$ "( $\lambda$ ) model at 5 nm resolution for Modes (A) 1, (B) 2, (C) 3, and (D) 4, calculated for phytoplankton pigment ratios to total chlorophyll-a concentration. Loadings are colored based on pigment clusters

(Figure S9): light blue (cyanobacteria), dark blue (haptophytes), green (green algae), brown (diatoms), and gold (green algae).



**Figure S11.** Correlation between HPLC measured pigments and principal components regression modeled pigments constructed from the  $\delta R_{rs}$ "( $\lambda$ ) model at 5 nm resolution: (A) Tchla, (B) Fuco, (C) Perid, (D) HexFuco, (E) MVchlb, (F) Zea. The 1:1 line is shown in black; the linear fit is shown in red. Samples are colored by source (red = ANT, orange = NAAMES,



yellow = RemSensPOC [RSPOC], green = SABOR, blue = Tara, purple = BIOSOPE, black = EXPORTS).

**Figure S12.** Median model coefficients from the  $\delta R_{rs}$ "( $\lambda$ ) model at 5 nm resolution for all pigments, grouped based on the results of hierarchical cluster analysis (Figure S9): (A) Tchla, (B) diatom pigments, (C) dinoflagellate pigments, (D) haptophyte pigments, (E) green algal pigments, and (F) cyanobacterial pigments. Grey bars indicate wavelengths at which the correlation coefficients for all pigments are significantly different from zero.

### Section S3

This section repeats the principal component regression modeling approach presented in in the main manuscript (using  $\delta R_{rs}$ "( $\lambda$ )) at 10nm resolution (every 10nm from 400-700nm). All other model parameters were kept exactly the same. Model performance is compared for  $\delta R_{rs}$ "( $\lambda$ ) at 10 nm resolution (Table S3).

**Table S3.** Summary statistics (R<sup>2</sup> and MAD) and standard deviations of statistics across 100 model cross-validations for all modeled pigments using  $\delta R_{rs}$ "( $\lambda$ ) at 10nm resolution. MAD and

| Pigment | Mean R2 | SD R2 | Mean normalized MAD | SD normalized MAD |
|---------|---------|-------|---------------------|-------------------|
| Allo    | 0.27    | 0.11  | 1.418               | 0.392             |
| But     | 0.42    | 0.12  | 0.725               | 0.183             |
| Chlc3   | 0.45    | 0.11  | 0.841               | 0.208             |
| Chlc12  | 0.44    | 0.13  | 0.918               | 0.238             |
| DVchla  | 0.44    | 0.11  | 0.683               | 0.112             |
| Fuco    | 0.42    | 0.11  | 1.072               | 0.266             |
| Hex     | 0.36    | 0.13  | 0.808               | 0.193             |
| MVchlb  | 0.36    | 0.16  | 1.055               | 0.303             |
| Neo     | 0.33    | 0.14  | 1.271               | 0.344             |
| Perid   | 0.43    | 0.11  | 0.843               | 0.166             |
| Tchla   | 0.52    | 0.14  | 0.654               | 0.133             |
| Viola   | 0.29    | 0.13  | 1.202               | 0.377             |
| Zea     | 0.33    | 0.12  | 0.490               | 0.075             |

its standard deviation are normalized to the mean pigment concentration for each pigment.

## Section S4

This section repeats the principal component regression modeling approach presented in Section S2, using  $R_{rs,meas}'(\lambda)$  and  $R_{rs,meas}''(\lambda)$  at 5nm resolution (every 5nm from 400-700nm). All other model parameters were kept exactly the same. The results presented here show the model performance summary (Table S4), the outcome of a hierarchical cluster analysis performed with ratios of modeled accessory pigments to modeled Tchla (Figure S13), an EOF analysis with the ratios of modeled pigments to modeled Tchla (Figure 14), and correlations between measured and modeled pigment concentrations for Tchla and the five major accessory pigments (Figure 15).

**Table S4.** Summary statistics ( $\mathbb{R}^2$  and MAD) and standard deviations of statistics across 100 model cross-validations for all modeled pigments using  $R_{rs,meas}'(\lambda)$  and  $R_{rs,meas}''(\lambda)$  at 5nm resolution. MAD and its standard deviation are normalized to the mean pigment concentration

| for each pigment. |         |       |                     |                   |
|-------------------|---------|-------|---------------------|-------------------|
| Pigment           | Mean R2 | SD R2 | Mean normalized MAD | SD normalized MAD |
| Allo              | 0.44    | 0.22  | 1.247               | 0.410             |
| But               | 0.66    | 0.18  | 0.557               | 0.166             |
| Chlc3             | 0.71    | 0.15  | 0.605               | 0.176             |
| Chlc12            | 0.73    | 0.14  | 0.666               | 0.196             |
| DVchla            | 0.5     | 0.1   | 0.623               | 0.104             |
| Fuco              | 0.71    | 0.17  | 0.751               | 0.224             |
| Hex               | 0.59    | 0.19  | 0.651               | 0.177             |
| MVchlb            | 0.44    | 0.21  | 0.966               | 0.307             |
| Neo               | 0.44    | 0.22  | 1.091               | 0.355             |
| Perid             | 0.49    | 0.14  | 0.785               | 0.177             |
| Tchla             | 0.73    | 0.17  | 0.475               | 0.105             |
| Viola             | 0.4     | 0.2   | 1.094               | 0.375             |
| Zea               | 0.35    | 0.11  | 0.466               | 0.073             |

3 2.5 Linkage Distance 0.5 0 Viola-ButFuco. Perid -Zea DVchla. Allo MVchlb -Fuco. Chlc12 Chlc3 Neo HexFuco γ Diatoms Haptophytes Dinos Cyanos Green algae

**Figure S13.** Hierarchical cluster analysis of thirteen modeled pigment ratios to modeled Tchla from the  $R_{rs,meas}'(\lambda)$  and  $R_{rs,meas}''(\lambda)$  model at 5nm resolution. Using a linkage distance of





Figure S14. Empirical orthogonal function loadings constructed from the  $R_{rs,meas}'(\lambda)$  and  $R_{rs,meas}''(\lambda)$  model at 5nm resolution for Modes (A) 1, (B) 2, (C) 3, and (D) 4, calculated for phytoplankton pigment ratios to total chlorophyll-a concentration. Loadings are colored based on

pigment clusters (Figure S13): light blue (cyanobacteria), dark blue (haptophytes), green (green algae), brown (diatoms), and gold (green algae).



**Figure S15.** Correlation between HPLC measured pigments and principal components regression modeled pigments from the  $R_{rs,meas}'(\lambda)$  and  $R_{rs,meas}''(\lambda)$  model at 5nm resolution: (A) Tchla, (B) Fuco, (C) Perid, (D) HexFuco, (E) MVchlb, (F) Zea. The 1:1 line is shown in black; the linear fit is shown in red. Samples are colored by source (red = ANT, orange = NAAMES, yellow = RemSensPOC [RSPOC], green = SABOR, blue = Tara, purple = BIOSOPE, black = EXPORTS).

### Section S6

This section repeats the principal component regression modeling approach presented in Section S2 (using  $R_{rs,meas}'(\lambda)$  and  $R_{rs,meas}''(\lambda)$ ) at 10nm resolution (every 10nm from 400-700nm). All other model parameters were kept exactly the same. Model performance is compared for  $R_{rs,meas}'(\lambda)$  and  $R_{rs,meas}''(\lambda)$  at 10 nm resolution (Table S5).

**Table S5.** Summary statistics (R<sup>2</sup> and MAD) and standard deviations of statistics across 100 model cross-validations for all modeled pigments using  $R_{rs,meas}'(\lambda)$  and  $R_{rs,meas}''(\lambda)$  at 10nm resolution. MAD and its standard deviation are normalized to the mean pigment concentration

| Pigment | Mean R2 | SD R2 | Mean normalized MAD | SD normalized MAD |
|---------|---------|-------|---------------------|-------------------|
| Allo    | 0.39    | 0.19  | 1.331               | 0.408             |
| But     | 0.57    | 0.19  | 0.617               | 0.173             |
| Chlc3   | 0.63    | 0.17  | 0.703               | 0.176             |
| Chlc12  | 0.65    | 0.16  | 0.771               | 0.197             |
| DVchla  | 0.5     | 0.11  | 0.627               | 0.105             |
| Fuco    | 0.65    | 0.19  | 0.859               | 0.225             |
| Hex     | 0.5     | 0.18  | 0.726               | 0.183             |
| MVchlb  | 0.42    | 0.21  | 0.987               | 0.315             |
| Neo     | 0.41    | 0.22  | 1.165               | 0.350             |
| Perid   | 0.48    | 0.14  | 0.808               | 0.167             |
| Tchla   | 0.69    | 0.18  | 0.534               | 0.113             |
| Viola   | 0.39    | 0.19  | 1.124               | 0.380             |
| Zea     | 0.38    | 0.11  | 0.456               | 0.070             |

for each pigment.

## Section S7:

In the reflectance model used here, the phytoplankton absorption component is constructed as a function of chlorophyll:  $a_{ph}(\lambda) = A(\lambda) * Tchla^{B(\lambda)}$ . The *A* and *B* coefficients used here are shown below in **Table S6**.

| Wavelength ( $\lambda$ ) | А         | В        | λ   | А         | В        |
|--------------------------|-----------|----------|-----|-----------|----------|
| 400                      | 0.0361528 | 0.820472 | 417 | 0.0450843 | 0.781304 |
| 401                      | 0.0366568 | 0.817517 | 418 | 0.0455743 | 0.780118 |
| 402                      | 0.0371692 | 0.81458  | 419 | 0.0460527 | 0.779034 |
| 403                      | 0.037689  | 0.811675 | 420 | 0.0465182 | 0.778042 |
| 404                      | 0.038215  | 0.808814 | 421 | 0.0469695 | 0.77713  |
| 405                      | 0.0387458 | 0.806011 | 422 | 0.0474052 | 0.776289 |
| 406                      | 0.0392805 | 0.803279 | 423 | 0.047824  | 0.77551  |
| 407                      | 0.0398179 | 0.80063  | 424 | 0.0482245 | 0.774782 |
| 408                      | 0.0403567 | 0.79808  | 425 | 0.0486052 | 0.774096 |
| 409                      | 0.040896  | 0.795641 | 426 | 0.0489645 | 0.773442 |
| 410                      | 0.0414344 | 0.793327 | 427 | 0.0493011 | 0.772811 |
| 411                      | 0.0419709 | 0.791153 | 428 | 0.0496133 | 0.772193 |
| 412                      | 0.0425044 | 0.789132 | 429 | 0.0498994 | 0.77158  |
| 413                      | 0.0430336 | 0.787276 | 430 | 0.0501578 | 0.77096  |
| 414                      | 0.0435575 | 0.785576 | 431 | 0.0503868 | 0.770326 |
| 415                      | 0.0440747 | 0.784022 | 432 | 0.0505845 | 0.769668 |
| 416                      | 0.044584  | 0.782601 | 433 | 0.0507492 | 0.768975 |

| Wavelength ( $\lambda$ ) | А         | В        | λ   | А         | В        |
|--------------------------|-----------|----------|-----|-----------|----------|
| 434                      | 0.0508788 | 0.76824  | 471 | 0.0406587 | 0.752086 |
| 435                      | 0.0509714 | 0.767451 | 472 | 0.0402921 | 0.752333 |
| 436                      | 0.051025  | 0.7666   | 473 | 0.0399081 | 0.752526 |
| 437                      | 0.0510373 | 0.765675 | 474 | 0.0395075 | 0.752676 |
| 438                      | 0.0510062 | 0.764669 | 475 | 0.0390911 | 0.752799 |
| 439                      | 0.0509293 | 0.763569 | 476 | 0.0386597 | 0.752907 |
| 440                      | 0.0508043 | 0.762366 | 477 | 0.0382142 | 0.753015 |
| 441                      | 0.0506286 | 0.761049 | 478 | 0.0377551 | 0.753135 |
| 442                      | 0.0503996 | 0.759607 | 479 | 0.0372833 | 0.753282 |
| 443                      | 0.0501146 | 0.75803  | 480 | 0.0367994 | 0.753468 |
| 444                      | 0.0497729 | 0.756315 | 481 | 0.036304  | 0.753708 |
| 445                      | 0.0493817 | 0.754497 | 482 | 0.0357979 | 0.754015 |
| 446                      | 0.0489503 | 0.752621 | 483 | 0.0352815 | 0.754403 |
| 447                      | 0.0484879 | 0.750731 | 484 | 0.0347555 | 0.754887 |
| 448                      | 0.0480036 | 0.748871 | 485 | 0.0342205 | 0.75548  |
| 449                      | 0.0475065 | 0.747084 | 486 | 0.0336771 | 0.756197 |
| 450                      | 0.0470055 | 0.745416 | 487 | 0.0331256 | 0.757053 |
| 451                      | 0.0465099 | 0.74391  | 488 | 0.0325668 | 0.758063 |
| 452                      | 0.0460285 | 0.742613 | 489 | 0.032001  | 0.759242 |
| 453                      | 0.0455705 | 0.741568 | 490 | 0.0314288 | 0.760606 |
| 454                      | 0.045145  | 0.740822 | 491 | 0.0308507 | 0.762167 |
| 455                      | 0.0447612 | 0.740421 | 492 | 0.0302675 | 0.76392  |
| 456                      | 0.0444255 | 0.740395 | 493 | 0.0296799 | 0.765857 |
| 457                      | 0.044133  | 0.740704 | 494 | 0.0290889 | 0.767971 |
| 458                      | 0.043876  | 0.741294 | 495 | 0.028495  | 0.770253 |
| 459                      | 0.043647  | 0.742108 | 496 | 0.0278993 | 0.772698 |
| 460                      | 0.0434384 | 0.743092 | 497 | 0.0273023 | 0.775298 |
| 461                      | 0.0432427 | 0.744191 | 498 | 0.026705  | 0.778047 |
| 462                      | 0.0430524 | 0.745351 | 499 | 0.026108  | 0.780938 |
| 463                      | 0.0428601 | 0.746518 | 500 | 0.0255122 | 0.783966 |
| 464                      | 0.0426582 | 0.747638 | 501 | 0.0249184 | 0.787125 |
| 465                      | 0.0424394 | 0.748657 | 502 | 0.0243273 | 0.79041  |
| 466                      | 0.0421975 | 0.749532 | 503 | 0.0237396 | 0.793816 |
| 467                      | 0.0419323 | 0.750265 | 504 | 0.0231564 | 0.797338 |
| 468                      | 0.0416447 | 0.750873 | 505 | 0.0225782 | 0.800971 |
| 469                      | 0.0413359 | 0.75137  | 506 | 0.022006  | 0.804711 |
| 470                      | 0.0410069 | 0.751769 | 507 | 0.0214405 | 0.808554 |

| Wavelength ( $\lambda$ ) | А         | В        | λ   | А         | В        |
|--------------------------|-----------|----------|-----|-----------|----------|
| 508                      | 0.0208826 | 0.812496 | 545 | 0.0086346 | 0.937605 |
| 509                      | 0.0203333 | 0.816533 | 546 | 0.0084485 | 0.939341 |
| 510                      | 0.0197932 | 0.820661 | 547 | 0.0082646 | 0.940989 |
| 511                      | 0.0192634 | 0.824875 | 548 | 0.0080827 | 0.942548 |
| 512                      | 0.0187445 | 0.829159 | 549 | 0.0079025 | 0.944017 |
| 513                      | 0.0182373 | 0.833496 | 550 | 0.0077237 | 0.945396 |
| 514                      | 0.0177427 | 0.837866 | 551 | 0.007546  | 0.946684 |
| 515                      | 0.0172614 | 0.842253 | 552 | 0.007369  | 0.947879 |
| 516                      | 0.0167942 | 0.846638 | 553 | 0.007193  | 0.94898  |
| 517                      | 0.0163421 | 0.851005 | 554 | 0.007018  | 0.949986 |
| 518                      | 0.0159059 | 0.855334 | 555 | 0.006842  | 0.950895 |
| 519                      | 0.0154865 | 0.859608 | 556 | 0.006667  | 0.951707 |
| 520                      | 0.015085  | 0.86381  | 557 | 0.006492  | 0.952428 |
| 521                      | 0.0147019 | 0.867924 | 558 | 0.006321  | 0.953066 |
| 522                      | 0.0143363 | 0.871945 | 559 | 0.006153  | 0.953629 |
| 523                      | 0.0139871 | 0.875875 | 560 | 0.00599   | 0.954124 |
| 524                      | 0.0136531 | 0.879711 | 561 | 0.005833  | 0.954559 |
| 525                      | 0.0133332 | 0.883451 | 562 | 0.005685  | 0.954942 |
| 526                      | 0.0130262 | 0.887096 | 563 | 0.005545  | 0.955279 |
| 527                      | 0.0127311 | 0.890643 | 564 | 0.005416  | 0.955578 |
| 528                      | 0.0124468 | 0.89409  | 565 | 0.005299  | 0.955845 |
| 529                      | 0.0121722 | 0.897435 | 566 | 0.005195  | 0.956087 |
| 530                      | 0.0119064 | 0.900676 | 567 | 0.005103  | 0.956307 |
| 531                      | 0.0116484 | 0.903812 | 568 | 0.005024  | 0.956508 |
| 532                      | 0.0113978 | 0.906843 | 569 | 0.004955  | 0.95669  |
| 533                      | 0.0111541 | 0.909774 | 570 | 0.004897  | 0.956857 |
| 534                      | 0.0109168 | 0.912604 | 571 | 0.004848  | 0.95701  |
| 535                      | 0.0106857 | 0.915338 | 572 | 0.004809  | 0.957151 |
| 536                      | 0.0104604 | 0.917975 | 573 | 0.004778  | 0.957283 |
| 537                      | 0.0102404 | 0.920519 | 574 | 0.004754  | 0.957407 |
| 538                      | 0.0100255 | 0.92297  | 575 | 0.004737  | 0.957525 |
| 539                      | 0.0098153 | 0.925329 | 576 | 0.004727  | 0.95764  |
| 540                      | 0.0096094 | 0.927598 | 577 | 0.004723  | 0.957753 |
| 541                      | 0.0094076 | 0.929777 | 578 | 0.004724  | 0.957867 |
| 542                      | 0.0092095 | 0.931866 | 579 | 0.00473   | 0.957982 |
| 543                      | 0.0090149 | 0.933868 | 580 | 0.00474   | 0.958101 |
| 544                      | 0.0088233 | 0.935781 | 581 | 0.004753  | 0.958227 |

| Wavelength ( $\lambda$ ) | А        | В        | λ   | А        | В        |
|--------------------------|----------|----------|-----|----------|----------|
| 582                      | 0.004769 | 0.958361 | 619 | 0.005635 | 0.972645 |
| 583                      | 0.004788 | 0.958504 | 620 | 0.005698 | 0.972999 |
| 584                      | 0.004808 | 0.95866  | 621 | 0.005766 | 0.973331 |
| 585                      | 0.00483  | 0.95883  | 622 | 0.00584  | 0.973638 |
| 586                      | 0.004853 | 0.959015 | 623 | 0.00592  | 0.973919 |
| 587                      | 0.004876 | 0.95922  | 624 | 0.006006 | 0.974172 |
| 588                      | 0.004899 | 0.959444 | 625 | 0.006099 | 0.974394 |
| 589                      | 0.004921 | 0.959691 | 626 | 0.006199 | 0.974584 |
| 590                      | 0.004942 | 0.959963 | 627 | 0.006305 | 0.974744 |
| 591                      | 0.004961 | 0.960261 | 628 | 0.006418 | 0.974873 |
| 592                      | 0.004978 | 0.960584 | 629 | 0.006537 | 0.974974 |
| 593                      | 0.004994 | 0.960931 | 630 | 0.006663 | 0.975048 |
| 594                      | 0.005009 | 0.961299 | 631 | 0.006793 | 0.975095 |
| 595                      | 0.005023 | 0.961686 | 632 | 0.00693  | 0.975118 |
| 596                      | 0.005036 | 0.962092 | 633 | 0.007071 | 0.975115 |
| 597                      | 0.005049 | 0.962513 | 634 | 0.007218 | 0.97509  |
| 598                      | 0.005061 | 0.962949 | 635 | 0.007369 | 0.975042 |
| 599                      | 0.005073 | 0.963398 | 636 | 0.007525 | 0.974973 |
| 600                      | 0.005085 | 0.963858 | 637 | 0.007685 | 0.974883 |
| 601                      | 0.005098 | 0.964328 | 638 | 0.007849 | 0.974773 |
| 602                      | 0.005111 | 0.964805 | 639 | 0.008017 | 0.974645 |
| 603                      | 0.005125 | 0.965289 | 640 | 0.008189 | 0.974497 |
| 604                      | 0.00514  | 0.965778 | 641 | 0.008365 | 0.974332 |
| 605                      | 0.005156 | 0.96627  | 642 | 0.008544 | 0.97415  |
| 606                      | 0.005173 | 0.966765 | 643 | 0.008727 | 0.973951 |
| 607                      | 0.005192 | 0.967259 | 644 | 0.008912 | 0.973736 |
| 608                      | 0.005213 | 0.967752 | 645 | 0.009101 | 0.973506 |
| 609                      | 0.005236 | 0.968242 | 646 | 0.009293 | 0.973261 |
| 610                      | 0.005261 | 0.968728 | 647 | 0.009488 | 0.973001 |
| 611                      | 0.005289 | 0.969208 | 648 | 0.009685 | 0.972728 |
| 612                      | 0.00532  | 0.969681 | 649 | 0.009885 | 0.972441 |
| 613                      | 0.005354 | 0.970144 | 650 | 0.010087 | 0.97214  |
| 614                      | 0.005391 | 0.970597 | 651 | 0.010292 | 0.971827 |
| 615                      | 0.005431 | 0.971038 | 652 | 0.010499 | 0.971501 |
| 616                      | 0.005476 | 0.971465 | 653 | 0.010708 | 0.971163 |
| 617                      | 0.005524 | 0.971876 | 654 | 0.010919 | 0.970813 |
| 618                      | 0.005578 | 0.97227  | 655 | 0.011133 | 0.970451 |

| Wavelength ( $\lambda$ ) | А        | В        |
|--------------------------|----------|----------|
| 656                      | 0.011348 | 0.970078 |
| 657                      | 0.011565 | 0.969693 |
| 658                      | 0.011784 | 0.969298 |
| 659                      | 0.012004 | 0.968892 |
| 660                      | 0.012227 | 0.968475 |
| 661                      | 0.012451 | 0.968047 |
| 662                      | 0.012676 | 0.967609 |
| 663                      | 0.012903 | 0.967161 |
| 664                      | 0.013131 | 0.966702 |
| 665                      | 0.013361 | 0.966233 |
| 666                      | 0.013591 | 0.965757 |
| 667                      | 0.013819 | 0.965294 |
| 668                      | 0.014042 | 0.964864 |
| 669                      | 0.014257 | 0.96449  |
| 670                      | 0.01446  | 0.964195 |
| 671                      | 0.014647 | 0.964    |
| 672                      | 0.014816 | 0.963929 |
| 673                      | 0.014963 | 0.964005 |
| 674                      | 0.015085 | 0.96425  |
| 675                      | 0.015178 | 0.964688 |
| 676                      | 0.015238 | 0.965343 |
| 677                      | 0.015262 | 0.966239 |
| 678                      | 0.015246 | 0.967402 |
| 679                      | 0.015187 | 0.968857 |
| 680                      | 0.015081 | 0.970629 |
| 681                      | 0.014923 | 0.972745 |
| 682                      | 0.014709 | 0.975232 |
| 683                      | 0.014436 | 0.978119 |
| 684                      | 0.014101 | 0.981426 |
| 685                      | 0.013703 | 0.985145 |
| 686                      | 0.013247 | 0.989259 |
| 687                      | 0.012735 | 0.993753 |
| 688                      | 0.012167 | 0.998612 |
| 689                      | 0.011548 | 1.003823 |
| 690                      | 0.010877 | 1.009373 |
| 691                      | 0.010158 | 1.015248 |
| 692                      | 0.009392 | 1.021438 |

| λ   | А        | В        |
|-----|----------|----------|
| 693 | 0.008581 | 1.027931 |
| 694 | 0.007726 | 1.034717 |
| 695 | 0.006829 | 1.041786 |
| 696 | 0.005891 | 1.049128 |
| 697 | 0.004914 | 1.056734 |
| 698 | 0.003898 | 1.064597 |
| 699 | 0.002846 | 1.072708 |
| 700 | 0.001757 | 1.08106  |