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Abstract: In a series of Polynesian pearls collected after short cultivation periods, early 
post-grafting mineral deposits were characterized by high resolution synchrotron-based X-ray 
fluorescence with unprecedented accuracy. Morphological patterns and elemental composition are 
correlated through simultaneous imaging processes. Evidence that aragonite and calcite occur in 
neighboring units during the earliest biomineralization stages reveals that the grafting process can 
result in a greater degradation than usually admitted in the widely shared ‘reversed shell’ concept. 
Compared with ultrastructure of the pristine nacreous tablets, this method enables a precise eval-
uation of the possible biological changes in the biomineralization mechanism during grafting. 
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1. Introduction 
Commercialization of cultivated pearls started more than a century ago, and during 

this period a remarkable event occurred in 1924. After the success of the Mikimoto’s 
promotional journey in America and Europe, the Paris trial was initiated to formally 
establish the status of the cultivated pearls. Officially commissioned experts were asked 
to compare the fine structure of the nacre produced by naturally grown pearls and those 
from the cultivated pearls then exclusively produced in Japan. 

Examination by using optical microscopy was the only available method, and after 
careful investigations, nacre of the cultivated pearls was declared equivalent to the nacre 
of the naturally grown ones. This conclusion resulted in the still valid commercial com-
promise: both natural and cultivated products can be named ‘pearls’, but only the natu-
rally grown ones deserve to be named ‘natural pearls’. This conclusion also supported 
the common opinion that in the ‘host’ animal, the grafts (and later the ‘pearl sacs’: see 
Supplementary File S1) continue the nacreous mineralizing activity previously running 
in the ‘donor’ animal. To summarize, nacre was admittedly deposited onto the spherical 
surface of a nucleus by the metabolic process running for nacre production in the shell 
and natural pearls. 

Contrasting with this common opinion, Kawakami’s observations [1,2] made it ob-
vious that after complete wrapping of the nucleus by the graft, the resulting newly es-
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tablished pearl sac can produce calcite. Therefore, between their initial secretion activity 
as a part of the nacre producing area in the ‘donor’ oyster, and their mineralizing activity 
in the grafted pearl oyster, the mineralizing cells of the pearl sac have undergone meta-
bolic changes. 

Taking into account that the Pinctada shells are built by two main mineral layers 
from which the external one is calcite [3,4], Kawakami suggested that after grafting op-
eration the pearl sac was starting a ‘regeneration’ process comparable to shell develop-
ment. Through a series of converging studies [5–7], this hypothesis was so widely ac-
cepted that it is now integrated in the current model of biomineralization for cultivated 
pearls, leading to the concept of pearls viewed as ‘reversed shells’ [8]. To summarize, the 
first organic deposition onto a nucleus surface of a pearl is assimilated to the shell’s per-
iostracum, the calcite units of the pearls admittedly reproduce the prismatic layer of the 
pearl oyster, whereas nacre of the pearls is considered equivalent to nacre of the shell. As 
a result, the nacreous layer, the more internal component of a pearl oyster shell, becomes 
the more external component of the pearls (Supplementary File S1). 

Such an alteration of the mineralizing process in the cultivated pearls has long re-
mained underestimated because, in the pearl producing sites, it is visible after a two year 
growth period, wherein most pearls exhibit an outer surface covered by nacre. The only 
intriguing point was (and still is) that a significant proportion of the harvested pearls are 
no longer spherical but morphologically irregular. 

Various characterizations of the pearl layer of cultivated pearls suggested that such 
postulated equivalences between the structures of shells and the hypothesized pearl 
growth steps do not fully reflect the biological processes of pearl development [9–12]. 
Not only can calcite occur, but the metabolic disturbances appeared even stronger than 
admitted: aragonite and calcite can be simultaneously produced within radially oriented 
envelopes (perpendicular to nucleus surface), a pattern that never occurs in shell micro-
structures. Moreover, mineralization patterns in the early pearl layers can differ not only 
between pearls, but within a given specimen (Figure 1). 

 
Figure 1. Morphology of the first pearl layer deposits onto nucleus surface. (A,B) Optical view of 
the outer surface showing heterogeneity of the mineral deposits and difference between the two 
samples. (C) Detail showing the irregular surface of 30-day post-grafting pearl layer. (D,E) SEM 
images of the surfaces of the early pearl layer evidencing heterogeneity of the mineral depositions. 

Now, high-resolution synchrotron-based methods enable exploration of these un-
expectedly complex mineral structures with unprecedented accuracy. Here we report 
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how structural and compositional properties of the earliest materials deposited by the 
pearl sac lead to in-depth re-examination of the overall interpretation of pearl formation. 

2. Material and Methods 
2.1. Materials 

Specimens were obtained from Polynesian pearls produced during experimental 
programs dealing with Pinctada margaritifera (the ‘black lipped’ pearl oyster). The exten-
sive ADEQUA collaborative program involved the Direction des Resources Marines of 
Polynesia (DRM, Papeete) and the IFREMER biological station at Vairao. A more focal-
ized experiment carried out by the IFREMER biological station involving two series of 
pearls grown at Rangiroa and Vairao (Tahiti) were collected after growth periods ranging 
from 10 days to 30 days. 

Pearl sac tissues, and the underlying nucleus bearing the newly deposited minerals, 
were separately preserved. Contact between water and the freshly deposited mineral 
substances was avoided to prevent any dissolution/recrystallization process (individual 
envelopes covered by a paraffin coating). 

2.2. Methods 
2.2.1. Optical Microscopy 

Optical microscopy includes examination in transmission mode (using both polar-
ized and non-polarized light) of fragments collected from the surface of the nucleus. An 
Axio Imager D2m (Zeiss, Iena, Germany) was used with the Archimed software (V5.4.1 
Microvision). A ZEISS Standard Universal microscope (Iena, Germany) was used in ul-
traviolet (UV) epifluorescence mode using a mercury lamp fitted with a UV (365 nm) 
filter and fluorine objectives. 

2.2.2. Scanning Electron Microscopy 
Uncoated samples were examined using an FEI QUANTA FEG 600 in low vacuum 

and back scattered electron (BSE) and secondary electron (SE) modes (Max Planck Insti-
tute of Colloids and Interfaces, Potsdam, Germany). BSE consists of high-energy elec-
trons reflected or back-scattered out of the specimen. As a result, mineral-enriched zones 
are brighter than those enriched in organic components. Then, selected samples were 
gold coated and observed in secondary electron mode (SE) using a JEOL JCM 6000 (Mu-
seum National d’Histoire Naturelle, Paris, France) and a Zeiss Gemini LEO 1550 (Max 
Planck Institute of Colloids and Interfaces, Potsdam, Germany) in secondary electron 
mode. 

2.2.3. X-ray Fluorescence (XRF) Nano-Imaging at the Nanoscopium Beamline (Soleil 
Synchrotron) 

The incident X-ray beam of 17 keV energy was focussed by a Kirkpatrick-Baez mir-
ror at the sample position. The size of the focused beam was tailored between 60 × 70 nm2 
and 300 × 300 nm2 to the desired spatial resolution. The elemental distribution maps were 
collected in continuous scanning (FLYSCAN) mode by two Si-drift detectors [13,14]. 

2.2.4. X-ray Diffraction at the Nanoscopium Beamline (Soleil Synchrotron) 
Two-dimensional diffraction patterns were recorded by using a 2D detector with 512 

× 1024 pixels and with a pixel size of 75 μm. The detector was placed at 4.5 cm from the 
sample [13,14]. 

2.2.5. Fourier Transform Infrared Spectrometry (FTIR) 
FTIR was performed using a Globar source and a Continuum IR microscope coupled 

to a Nexus FTIR bench (Thermo Nicolet) at CRCC (Museum National d’Histoire Na-
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turelle, Paris, France). Spectra were collected in reflection mode with a resolution of 8 
cm−1 and an aperture of 75 × 75 μm2. For each spectrum, 200 scans were accumulated in 
the wave number range 4000–700 cm−1. Analyses were carried out in situ on the outer 
surface of the pearl layer deposits. 

2.2.6. Micro-XANES (X-ray Absorption Near Edge Structure) Spectroscopy Analyses 
Measurements were carried out at the ID21 X-ray micro-spectroscopy beamline of 

the European Synchrotron Radiation Facility (Grenoble, France) using the scanning X-ray 
microscope. An energy-dispersive silicon drift diode (Bruker, Berlin, Germany) with a 
collimated active area of 80 mm2 and equipped with a thin polymer window was used to 
collect the X-ray fluorescence (XRF) photons. The XANES energy scan at the S K-edge 
(2472 eV) was achieved using a fixed-exit double-crystal Si(111) monochromator (Kohzu, 
Japan) located upstream the microscope. XANES spectra were acquired between 2.45 keV 
and 2.53 keV. This experiment required the X-ray microscope to be operated under vac-
uum to avoid the strong absorption of the sulfur emission lines by air. 

3. Results 
3.1. Morphology of the Earliest Mineralized Units Established by X-ray Fluorescence and 
Crystallization Patterns Observed Using Polarized-Light Microscopy 

The earliest minerals appear as isolated spots dispersed upon a non-mineralized 
substrate (Figure 2A). Observed by X-ray Ca fluorescence mapping, these spots appear 
morphologically different, but they are all built by distinct elements radiating from cen-
tral points (Figure 2B). Closer examination of these units by polarization microscopy 
(Figure 2C,D) reveals the correspondence between calcium fluorescing areas and crystal-
lized organization of their mineral components. 

 
Figure 2. Example of initial mineralizations by the pearl sac; (A) Overall view of the detached 
fragment. (B) Morphological diversity of the minerals viewed by calcium fluorescence. (C,D) Po-
larized light microscopy of the minerals from area C in (A). Note the similarity in marginal growth. 
(E) Calcium fluorescence of unit shown in (D). 
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3.2. Simultaneous Deposition of Calcite and Aragonite in Neighboring Units 
Fragment 2A also provides evidence of a simultaneous deposition of calcite and 

aragonite in close neighboring areas at the very beginning of the post-grafting minerali-
zation process. Taking into account the mineral units of sector Figure 2A, area C ex-
tended to the neighboring unit (unit 4, Figure 3A), submitted to the X-ray beam, the four 
mineral units exhibit a similar response for calcium fluorescence (Figure 3B). However, 
submitted to X-ray wavelength for strontium fluorescence, only unit 4 reveals a positive 
Sr concentration. 

Moreover, the X-ray fluorescence mapping provides a framework for mineralogical 
characterization. Precisely localized X-ray diffraction measurements can be carried out 
by selecting any area of the illustrated sector, from a single pixel to any region of interest. 
Diffraction spectra were collected in the selected sectors of Figure 3D,E, resulting in the 
Figure 3F,G diagrams for calcite and aragonite respectively. 

This method provides a double characterization of the earliest minerals undoubt-
edly establishing that at a distance of few tens of micrometers the pearl sac cells have 
created calcite and aragonite structures. 

 
Figure 3. Simultaneous deposition of calcite and aragonite units in the first post-grafting mineral-
ization stage. (A) Light microscope view (natural light) of four mineralized units. (B) Calcium flu-
orescence. (C) High strontium fluorescence in unit 4; low strontium fluorescence in units 1, 2, and 3. 
(D,E) Selected areas from which X-ray diffraction data were collected. (F,G) Corresponding X-ray 
diffraction diagrams. In both cases, typical diagrams for calcite (F) and aragonite (G) are obtained 
suggesting remarkable consistency in the orientation of the mineral particles. 
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3.3. Differences in Physical Status for Calcite and Aragonite 
Applying the double characterization method to another sample (Figure 4A,B), the 

central unit and its close neighboring ones reveal that not only are the lateral and central 
units mineralogically different (calcite and aragonite respectively), but their physical 
status also appears remarkably distinct. These two distinct diffraction patterns indicate 
that in the sample areas submitted to incident X-ray beam (Figure 4C,D), calcite crystals 
are rather well developed leading to distinct diffraction spots, whereas aragonite is made 
of randomly oriented microcrystalline units (Figure 4E,F). 

 
Figure 4. Mineralizing spots in which the distinct physical status of calcite and aragonite are estab-
lished. (A,B) Natural view of the area. (C,D) High-resolution X-ray fluorescence for calcium (C) 
and strontium (D). (E,F) Diffraction diagrams for the central (E) and lateral (F) areas. Well crystal-
lized calcite (E: distinct diffraction spots) and powder aragonite (F: small spots in continuous lines) 
are characterized in neighbor areas produced by the same pearl sac. 

3.4. Last Step in Coverage of the Nucleus: Branching Structure of the Convergent Mineralizing 
Units 

It is worth reminding that the final step in the grafting process was the insertion of 
an approximately 3 mm × 3 mm fragment of living tissue onto the nucleus surface (Sup-
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plementary File S1). As nucleus is about 6 to 8 mm in diameter, the nucleus wrapping by 
the graft requests an initial expanding phase for the mineralizing cells, the end of which 
is reached when distinct units are in close contact: Figures 5A,B show such a status. 

Calcium and strontium fluorescence (Figures 5C and 5D respectively) shows the 
presence of aragonite (high Sr content on Figure 5D) among calcite irregular units. Closer 
mapping of the central area reveals that up to the last step of an expansion phase, the 
mineralizing mechanism does not produce compact crystals. On the opposite, a branch-
ing mineral structure is clearly illustrated by the HR-X-ray fluorescence mapping (Figure 
5C,D). Polarized light microscope shows that the neighboring units exhibit distinct po-
larization patterns for these branching mineral areas (Figure 5E–G). 

 
Figure 5. Structure of the mineralized units at the end of the graft expansion phase. (A,B) Each 
mineral unit viewed by optical microscopy (polarized light) exhibits distinct morphological and 
polarization patterns. (C,D) Ca (C) and Sr (D) HR-X-ray fluorescence of the selected area of Figure 
2B (area C). (E–G) Polarization microscope view of the central part of the selected area; structures 
revealed by X-ray fluorescence are built by a branching crystallized material. 

4. Discussion 
Kawakami suggested a ‘regeneration process’ when he discovered calcite in pearl 

layers [1,2]. The reversed shell theory considers that the mineralization sequence of a 
pearl layer first includes an organic layer assimilated to the shell periostracum, followed 
by calcite prisms and finally by nacre. This view explains both the inner position of the 
calcite structures in pearl layers and the regular presence of nacre at its outer surface 
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(Supplementary File S1). Comparison between this scheme and the physical characteri-
zations of the earliest post-grafting minerals leads to a different interpretation. 

Previous investigations have shown that the calcite structures in the cultivated 
pearls exhibit distinct features from the scheme supporting the reversed shell theory. For 
instance, very important is the Figure 7 in [15], showing that uncontrolled morphology of 
the calcite units and prismatic calcite in the outer shell layer differ. 

Focusing on the periostracum and its role in shell formation leads to an accentuated 
contrast with what occurs in the earliest post-grafting structures in pearls. 

4.1. Periostracum in the Pinctada Shells: Its Role in Shell Formation Compared with the Earliest 
Mineral Depositions in Pearls 

The crucial function of the periostracum in shell formation has been illustrated 
[16,17] and summarized in Figure 6. Beginning in the deeper part of the outer mantle 
grove (Figure 6A), the thin rhythmically produced organic membrane not only ensures 
isolation of the mineralizing area from sea water, but actively participates in shell con-
struction. 

This role begins with deposition onto the internal side of the periostracum of regu-
larly spaced spots of organic compounds, acting as centers of calcification (Figure 6A,B). 
During the upward transit of the periostracum to the shell growing edge (Figure 6A: blue 
arrow), these centers are repeatedly surrounded by concentric depositions of calcite re-
sulting in globally circular units whose diameters grow up to cover almost the internal 
surface of the periostracum (Figure 6B–D). This is the ‘flexible shell’ built by distinct free 
growing calcite units. In spite of a mixed organo-mineral composition, every unit exhibits 
a single crystal behavior as previously shown by multiple X-ray diffractions (Figure 4 in 
[16]). In addition, every unit shows a different orientation from that of its neighbors 
(Figure 5 in [16]). This point is important because, after being incorporated into the shell 
growing edge, these calcite units are acting as substrates for crystallization of the prisms. 
The amorphous calcium carbonate simultaneously secreted by the mantle cells will 
crystallize by following the crystalline orientation of the underlying disks [18]. Note must 
be made that from this point, growth of the prisms is simultaneous [16,19], whereas 
periostracal disks individually grow. 

 
Figure 6. Role of the periostracum in the formation of the shell outer layer. (A) Histological view 
showing the origin of the periostracum (p) in the deeper part of the outer mantle grove and the first 
secretion onto its inner surface (s)—Image credit: A. Fougerouse, DRM. Periostracum is continu-
ously secreted (on a stepping mode) and it progresses towards the shell growth edge (blue arrow). 
(B) Statistical deposition of the organic centers surrounded by the earliest secondary deposition. 
(C) Mineralized disks whose diameters progressively increase. (D) Stepping mineralization of the 
disks forming concentric rings surrounding the initial center. (E) Disk reaching the shell growing 
edge visible through the internal side of the periostracum (isp). (F) Deposition of calcium carbonate 
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by the mantle contributes to create the rigid shell. (G) Oblique view of the shell prisms showing 
their outer sides made by the partly decayed periostracum with the underlying disks and the first 
common growth steps of the shell. 

Compared with this well-organized stepping calcification process that obviously 
requires strong biological spatial and timing coordination, the contrast is striking with 
the branching growth mode of the early calcite deposition by the pearl sac (Figure 7D). 
Conclusively the earliest calcite deposition by the pearl sac onto the nucleus surface does 
not support the similarity with the complex process of calcite deposition in shell devel-
opment. 

4.2. Origin of Crystalline Orientation in Shell Prisms Compared with Crystalline Consistency of 
Calcite Depositions in Pearls 

A major difference between the early secretions of the pearl sac onto the nucleus 
surface (Figure 7A–C) and the periostracum is also clearly appearing when considering 
crystalline orientations of the mineral components. 

In the development of the shell growing edge, it has been shown that periostracum 
is acting only as a conveyor belt moving the calcite disks from the deeper part of the outer 
mantle grove up to the shell border [16]. Crystalline orientation of the calcite disks is 
given by the initial organic centers deposited onto the internal surface of the periostra-
cum [18]. In contrast, the organic layer secreted by the pearl sac and progressively cov-
ering the nucleus (Figure 7A–C) has a leading role regarding crystalline orientation of the 
tiny mineral particles it is bearing. Evidence of some consistency in crystallographic ori-
entation of these particles in the flushing mucus is suggested by observation in polariza-
tion microscopy of the surface of the branching crystallization (Figure 7D,E). 

 
Figure 7. Expanding mucus onto the nucleus surface and its leading role in the first crystallization. 
(A,B) Earliest secretions by the pearl sac appear as expanding mucus radiating from centers.(C) The 
diverging branches comprise tiny particles forming the earliest mineral units. (D) Calcium fluo-
rescence from the end of an expanding sector. (E) Polarized light optical microscopy of the end of 
this expanding sector provides evidence of the consistency in crystallographic arrangement of the 
mineral particles. 
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4.3. Composition, Mineralogy: Diversity and Coexistence in Close Proximity 
A major obstacle to the rejuvenescence program postulated by the reversed shell 

theory is that calcite and aragonite in the early mineralization stages of pearl develop-
ment crystallize in close proximity. In development of the shell of P. margaritifera, calcite, 
and aragonite are simultaneously produced in clearly separated areas (Figure 8E,F in 
[16]). 

Whatever their shape, the early pearl layers are a mixture of organic and mineral 
components, as shown by the comparison of SEM images in secondary electron (SE) and 
backscattered mode (BSE) (Figure 8A,B). The grayish SE image shows a slight difference 
between the outer region and the middle of the branching deposits (Figure 8A), but the 
BSE clearly evidence the difference of the degree of mineralization between these two 
zones (Figure 8C). From these images, it seems that the beginning of a branching deposit 
is not rich in Ca and Sr, indicative of calcium carbonate. Detailed images of the mineral-
ized outer region reveal a nanogranular structure (Figure 8C). 

 
Figure 8. (A) SEM image in SE mode does not emphasize the heterogeneity of the branching de-
posit. (B) BSE mode clearly displays the contrast between mainly organic (black) and mainly min-
eralized (white) zones. (C) Nanogranular structure of the mineralized deposits. 

FTIR spectra of the calcite and aragonite groups are characterized by three major 
bands attributed to the carbonate ion CO32−: ν3 at 1429 cm−1, the ν2 doublet 877–848 cm−1, 
and ν4 at 713 cm−1 for calcite; ν3 at 1471 cm−1 and two doublets ν2 at 858–844 cm−1 and ν4 
at 713–700 cm−1 for aragonite [20,21]. The weak carbonate ν1 band is at 1012 cm−1 for cal-
cite and at 1083 cm−1 for aragonite. The main peaks assigned to proteins are the amide I 
bands (~1650 cm−1), amide II (~1550 cm−1), and amide III band (1310–1240 cm−1). Bands 
between 1230 cm−1 and 1265 cm−1 are assigned to sulphate [22,23]. Bands between 1180 
cm−1 and 1200 cm−1, and between 1370 cm−1 and 1420 cm−1 are due to organic sulphate, 
whereas inorganic sulphates are between 1080–1130 cm−1 [24]. 

Infrared spectra of the first pearl layers show that aragonite and calcite exist (Figure 
9A). Adjacent irregular units are visible in calcite (Figure 9B), but not in aragonite (Figure 
9C). The size of the analyzed region is 70 μm, so that the difference of structure between 
calcite and aragonite is visible (Figure 9D). Moreover, the coexistence and juxtaposition 
of both polymorphs are detected (Figure 9A). The spectrum shows the aragonite is rich in 
organic matrix and poorly crystalline. Calcitic deposits are rich sugars (998 cm−1 band 
[25,26]). 
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Figure 9. FTIR spectra of first deposits: prismatic calcite (A,B), microgranular aragonite (A,C) and a 
mixed zone (A,D). Grey rectangle: range of ν3 band for aragonite; orange rectangle; range of ν3 
band for calcite. 

Two main categories of minerals are also revealed by μ-XANES analysis at the S 
K-edge (Figure 10). Sulfur in calcareous biominerals was identified on corals and mol-
lusks [27]. S is known in amino acids (cysteine, cystine, and methionine), and in sul-
phated acidic sugars. In calcitic mollusk shells, the content in organic sulphated sugars is 
higher than that of amino acids in the intraskeletal matrix. From the ratios of the surface 
of the two main peaks (2.472 for S in amino acids, and 2.48 for sulphated sugars), two 
populations are differentiated (Figure 9). When compared with data resulting from other 
analyses, it can be suggested that the high ratios are present in aragonite units, whereas 
low ratios are those of the calcite units. 

 
Figure 10. Micro-XANES spectra at the S K edge showing the presence of two categories of pearl 
layer deposits: one is rich in sulfur amino acids, another one poor in these amino acids. 
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All these observations confirm the results of synchrotron X-ray fluorescence and 
X-ray diffraction. Two categories of early deposits in the pearl layer are identified in the 
neighboring units: calcite and aragonite. These polymorphs are known in Pinctada shells, 
but here they are not regularly arranged and superimposed. Moreover, the nacreous 
tablets and the calcitic prisms are not visible. 

These converging conclusions obtained from various methods lead to the opinion 
that the early secretions by the pearl sac cannot be assimilated to a rejuvenescence pro-
gram that should be responsible for the formation of a ‘reversed shell’. In contrast to such 
a new biomineralization program (that should lead to similarity between the pearls), the 
huge diversity in pearl morphology is due to variable alterations of the biomineralization 
mechanism following diversity in physical conditions during the grafting process. 

4.4. Physical Patterns of the Earliest Mineral Deposition by the Pearl Sac Provide Evidence of 
Degradation in the Nacre Producing Mechanism 

The reported results show that synchrotron-based fluorescence and X-ray mapping 
measurements allow for a precise comparison to be made between pristine nacreous 
structures in shells and early mineral depositions by the pearl sac. This might be a valu-
able approach to evaluate the biological changes that have obviously occurred in the 
mineralizing cells of the mantle during the grafting process. 

A series of investigations conducted with increasing spatial resolution has led to the 
conclusion that both prisms and nacre exhibit essentially similar ultrastructures at the 
nanometer range (Figure 11) [27]. Although their structures and mineralogy differ (Fig-
ure 11A,B,D,E), nacre and prisms are built by layers of organically coated mineral grains 
whose thickness is in the micrometer range (Figure 11C,F). 

Note must be made that formation of these mineral layers is compatible with the 
current exocytosis model in which interactions between amorphous calcium carbonate 
(stored into the mineralizing cells) and the specific blends of organic compounds enable 
extracellular formation of the calcite and aragonite grains [28]. A recently isolated protein 
[29] exemplifies how such a mineralogical discrimination may occur from a common in-
tracellular resource. 

However, in the regular mineralization process of shell formation, the mineral 
grains are produced in distinct areas of the shell mantle (the outer one forming calcite 
and the inner one aragonite) and accordingly are subdivided into specifically shaped 
units by formation of the organic envelopes. This regular association between mineralogy 
and specific spatial arrangement of the envelope forming molecules results in the long 
recognized microstructure of the prismatic and nacreous shell layers. Conversely, ge-
nomic data obtained on grafted samples display irregular gene expressions. For a given 
pearl sac, expression of the mineralizing genes was obtained from the whole pearl-sac 
used as a single data source. Pearl sacs are different with respect to the expressions of the 
genes involved in mineralization (Supplementary File S2). 

It is worth noting that such coordination between mineral grains and the organic 
envelopes is a stepping process investigated for both prisms and nacre in the P. margar-
itifera shell [11]. With particular interest regarding the grafting process, the distinct steps 
predating the final status of nacre have been established. 

The reported results reveal a clear opposition between the behavior of the two main 
components of the shell (mineral grains and microstructural envelopes) submitted to 
grafting process. 
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Figure 11. Similarity of ultrastructures in the calcite prisms and nacre of the P. margaritifera. (A) 
Inner side of a valve showing the transition area between the end of prismatic domain (right) and 
the first occurrence of nacreous area. The nacreous area begins by deposition of aragonite made of 
sub-micrometric grains. (B) SEM image showing the layered structure of prisms. (C) AFM phase 
contrast image showing the granular nanostructure of the prisms. (D–F) Ultrastructure of nacreous 
tablets also built by nanograins. (G) AFM amplitude image of the nanogranular structure of the 
prisms. (H) AFM phase image contrast of the same zone, showing black areas (organo-mineral 
contents) and the mainly mineral gray areas. (I) Crystallization of grain core surrounded by per-
sistent amorphous material made visible in transmission electron microscopy. 

In every reported example, the consistency of crystallographic orientation for the 
mineral grains has been established, contrasting with the absence of the microstructural 
envelopes. This transforms the mineral secretion mechanism into a free-running miner-
alization process, with no remaining indication of the specific micro-structural organiza-
tion for both aragonite and calcite. From a biomineralization viewpoint, this suggests 
different sensitivities between grain and envelope formations regarding the operational 
stress caused by the grafting process. 

Therefore, from a practical viewpoint, deciphering the structural alterations in the 
early mineralization by the pearl sac might be an efficient approach to evaluate the bio-
logical degradation of the biomineralization mechanism between pristine nacre pro-
duced by the graft as a part of the shell mantle and mineralization by pearl sac resulting 
from transportation of this graft into the host shell. 

5. Conclusions: Instead of a ‘Reversed Shell’ Growth Mode, a Post-Grafting Recovery 
Process May Help to Understand Early Calcifications in Pearl 

Results obtained by synchrotron-based characterizations of the earliest mineral 
depositions in the cultivated pearls clearly disprove their commonly admitted similarity 
with the periostracum of the Pinctada shells: 
• Contrasting to the regular layering admitted by the “reversed shell” theory, the ear-

liest post-grafting mineralizations are highly irregular from both structural and 
mineralogical view-points; 
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• In the development of the Pinctada shells the periostracum is acting only as the con-
veyor of the mineral structures that are produced by the epithelial cells of the outer 
mantel grove, whereas the first organic deposition in pearls creates the new mineral 
units; 

• These earliest mineralizing secretions of the peal sac can produce calcite or aragonite 
units even within a given pearl sac: this never occurs in the Pinctada shells in which 
the periostracal disks and later the prisms of the outer layer are invariably made of 
calcite. Simultaneous deposition of calcite and aragonite never occurs at the shell 
growing edge. 

These data clearly establish that the earliest pearl sac secretions cannot be consid-
ered equivalent to the shell periostracum. This conclusion takes place after previous 
studies that have shown the unlimited diversity of the early mineral depositions in pearls 
and their progressive return to nacre secretion.  

Instead of a ‘reversed shell’ growth mode, the non-nacreous structures that occur 
below the nacreous layers of the cultivated pearls can be viewed as the result of a 
post-grafting recovery process after disturbance of the mineralization mechanism in the 
graft cells (and later the peal sac). Diversity of these earliest mineral deposits suggests 
that during the grafting process the genomes of the cells were submitted to variable al-
terations depending on the operational grafting conditions. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/article/10.3390/min12020172/s1, File S1: Summary of the grafting process for pearl 
production [30]; File S2: Expression of gene activity [31]. 
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