Moisture diffusion under pressure in composites

Type Proceedings paper
Date 2015
Language English
Other localization http://www.iccm-central.org/Proceedings/ICCM20proceedings/papers/paper-3303-1.pdf
Author(s) Humeau Corentin1, Davies PeterORCID1, Jacquemin Frederic2
Affiliation(s) 1 : IFREMER, Ctr Bretagne, Lab Comportement Struct Mer, CS 10070 ZI Pointe Diable, F-29280 Plouzane, France.
2 : EMM GeM, F-44600 St Nazaire, France.
Meeting 20th International Conference on Composite Materials (ICCM), Copenhagen, DENMARK, JUL 19-24, 2015
Source ICCM20 Proceedings, 20th International Conference on Composite Materials, July 19-24, 2015. Ole Thybo Thomsen, Christian Berggreen and Bent F Sørensen (Eds). 3303-1, 10p.
Keyword(s) Composite, Moisture diffusion, Hydrostatic pressure
Abstract

The influence of hydrostatic pressure on composite behaviour is critical for many underwater applications. Under these extreme environmental conditions water diffusion has rarely been studied, and published data are contradictory. The aim of this study is to understand what governs pressure effects by studying different materials (unreinforced resin, glass reinforced epoxy composites). First, water diffusion was studied at different pressure levels (1, 50 and 500 bar) in order to identify the diffusion models. For the neat epoxy resin the water uptake remained unchanged by pressure rise, whereas glass fibre reinforced epoxy had a maximum moisture content that increased while the diffusion coefficient was unaffected. In a second part, the present study focuses on the identification of the diffusion law using a numerical method. In the final section the analysis of microstructure revealed one influent parameter on the water diffusion in composites under pressure. Indeed, an X-ray micro-tomography study showed a high level of porosity in the glass fibre reinforced epoxy. Moreover, glass fibres are hydrophobic which results in water diffusion exclusively located in the resin and in voids in the composite. Whereas resin water uptake does not depend on hydrostatic pressure, the additional moisture content in voids showed a high dependence with pressure level and a link with porosity ratio in the composite.

Full Text
File Pages Size Access
Publisher's official version 10 619 KB Open access
Top of the page

How to cite 

Humeau Corentin, Davies Peter, Jacquemin Frederic (2015). Moisture diffusion under pressure in composites. ICCM20 Proceedings, 20th International Conference on Composite Materials, July 19-24, 2015. Ole Thybo Thomsen, Christian Berggreen and Bent F Sørensen (Eds). 3303-1, 10p. https://archimer.ifremer.fr/doc/00749/86100/