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Abstract 

The rise of new technology is continuously generating gigantic datasets, known as “big data”. Imagery 

to tackle biological and ecological questions, is no exception. Observing and learning from these data 

is crucial but remains a tedious and labour-intensive process. This project aims to address to what 

extent computer vision based on deep learning can solve ecological questions while minimizing – if not 

removing human validation. For this purpose, a convolutional neural network (CNN) was trained on 

two types of data representing different sampling conditions and species communities. The first aimed 

at detecting the attraction levels of different types of biodegradable baits using baited remote 

underwater videos (BRUV). The BRUV footage analysis showed promising results with an average 

precision (AP), the standard metrics to assess the performance of deep learning models, of 0.827 for 

fish for the best performing model. An Interest index was introduced to assess each of the different 

bait types and a cockle bait functioned as the control. The resulting analysis – manual and automated 

- showed that the biodegradable plastic bait C17 has the greatest potential of replacing an old-

fashioned cockle’s bait. The UWTV footage had more diverse classes (17 species, genus, or other taxa) 

and showed more mitigated results. The fish Callionymus spp., the crustacean Munida spp. and the 

Pennatulaceidae classes were accurately detected with AP values of 0.86, 0.82 and 0.80 respectively. 

In comparison, the main focus class Nephrops norvegicus slightly underperformed, with an AP value of 

0.69. Other classes were more difficult to identify as such as “hydrozoa” and “crustacean” (AP of 0.23 

and 0.24), due to their high diversity of shapes, colours and sizes. Nevertheless, in regard to other 

studies and given the challenging nature of marine-derived data, these values are satisfying. This 

project highlights the promising potential of replacing the labour-intensive human-validated analysis, 

while identifying the gaps that still need to be overcome. The generated models will help moving 

toward non-invasive methods with direct applications in marine conservation and fisheries 

management. 
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1. General Introduction 

I. Ecological background 
Obtaining robust observations has always been a key aspect of biological studies, especially in the field 

of ecology, to assess behavioural patterns (Underwood et al., 2000). Back in 1831 to 1836, Charles 

Darwin sailed the HMS Beagle to the Galapagos archipelago to observe the native finks on the different 

islands and their differences in beak sizes and forms due to different environmental surroundings. His 

observations heavily contributed in many parts to the theory of evolution widely accepted today. This 

is a rather simple example compared to the amount and accuracy of recent observations, for example 

in (Faillettaz et al., 2015) in which simple observations would not have led to the observation of sun-

orientation of different fish larvae’s, which enabled to decipher more complex theories and 

hypotheses. In some cases, one observer is not enough, and multiple scientists look at the same data 

to verify the results. This is labour and time intensive, time which could be spent in aspects of a project 

not able to be conducted by a computer such as out-of-the-ordinary scenarios or the discussion of the 

results. Furthermore, there is a potential to be biased towards the proposed hypothesis. Manual 

validation is more prove to human biases (i.e. experience, fatigue, etc.) compared to computer vision 

which is consistent and more neutral. This could generate unreliable assessments and lead to results 

that are influenced by one’s personal experience. This can lead to under or over estimations of 

populations in a conservatory light or lead to wrong results which - in this project - can have negative 

ecological and societal consequences. That is why a need for a reliable and universally applicable tool 

emerged. This project aims to participate in determining to what extent the current state of the art 

artificial intelligence could answer ecologically relevant questions.  

II. Artificial intelligence & deep learning 
In an era with rapidly changing technology with better, stronger and faster computers there is a 

demand for a universally applicable, low cost tool to analyse vast growing amounts of digital data such 

as video or photo captures (Parida, 2018). The process of manual analysis is time consuming and the 

need to speed up this crucial part of the analysis by letting super-computers doing the job is the next 

step in the history of data assessment, with the help of artificial intelligence (AI). AI is the attempt to 

project the human process of thinking into a machine or computer (Nilsson, 2009). This task is highly 

demanding since the human brain consists of a large number of neurons. A total of 2.28 * 106 neurons 

are approximately found in a human brain (Pakkenberg & Gundersen, 1988) and to reach an efficiency 

of these neurons. Currently impossible - this exactly is the ultimate goal of AI.  

Within the field of AI, machine learning is a well-developed discipline. Machine learning is the training 

of a computer as a tool for detection of a target based on features extracted from the input data such 

as shapes, colours, or other statistical values. For example in the study of (Dezecache et al., 2020) the 

distress calls of infant chimpanzees were processed with the help of a machine learning approach. 

Recorded calls were labelled as stress calls or not (stressed or not-stressed) depending on a feature 

manually extracted during the step of labelling. The algorithm was then able to distinguish between 

the different types of calls and was able to predict if future calls are assigned to the stressed or not-

stressed category.  

 

A subgenre or extension of machine learning is the so called deep learning (Miele et al., 2021). Deep 

learning takes this approach one-step further since it automates the step of feature extraction, which 

minimizes human interference during this step. In machine and deep learning, depending on the 

amount of data available, a portion of the dataset is taken to be shown to the computer as a training 

and is considered the training dataset. The standard split is 70% of the data used as the training dataset  
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(Huang et al., 2019a; Villon et al., 2018) but this can vary. If there is more data available, only 10% can 

be sufficient to train the algorithm and on the other hand in small datasets up to 90% are used for the 

training (Ovchinnikova et al., 2021). The volume of the training dataset is an important factor on how 

the performance of the model will change (Joulin et al., 2016; Sun et al., 2017). Through creation of 

different layers of features, called a convolutional neural network CNN (Fig. 1 - Kroodsma et al., 2018), 

which function as a decisional tree, the identified objects are categorized into predefined or non-

predefined categories. When the categories are not given, the deep learning approach is unsupervised, 

if given it is called supervised. In this report, the discussed process is supervised, since we provide the 

names of the classes. 

 
Figure 1, adapted from: Kroodsma et al., 2018. Creation of the CNN. From left to right: input of an image (colours RGB) and 
the construction of the different feature-layers (white dots) which resemble certain features extracted from the image. It is 
referred as “convolutional neural network” due to the creation of convolutional layers that break down the picture into smaller 
layers to increase accuracy. 

This trained algorithm can then be used to evaluate the remaining data, called the test data, which 

was not seen by the algorithm, to verify if the training was successful and the algorithm could work 

and be applied. Whilst nearly completely being freed from human interaction, deep learning is heavily 

dependent on how good, in terms of diversity and quality, the input data is and requires heavy 

computational efforts (Panda et al., 2016).  

Over the past few years, the development of deep learning has shown massive improvements in 

scientific fields such as engineering (Krishna Chaitanya & Maragatham, 2021) or the medical field 

(Maier, 2019). But there are not only applications in these fields but also in ecological fields (Christin 

et al., 2019, Schofield et al., 2019). Schofield et al, 2019 allowed the recognition of facial structures of 

wild living chimpanzees by a deep learning algorithm and use this technique to automatically monitor 

a population of chimpanzees with a fully non-invasive strategy. 

The marine environment has been given attention in the past decade too (Xu & Matzner, 2018). 

However, acquiring of reliable data is more challenging in marine environments (and aquatic 

environments in general) due to lower light availability, differences in lighting, blurriness and 

turbulence due to the always moving environment (Sun et al., 2017). Furthermore, the acquisition of 

these types of data is costly and labour-intensive. Costs that can or will not be spent which lead to 

training datasets that are not satisfactory. Sun et al., 2017 states that no matter how good your model 

is, if your training dataset is insufficient the results are not satisfying.  

A study in 2019 showed the potential of deep learning detecting three genera of marine bottom living 

animals – sea cucumbers, sea urchins and scallops (Huang et al., 2019a). Average precision numbers 

averaging at 59% show that 3 out of 5 animals were correctly located and classified. Best detected 

were sea cucumbers with an average precision value of 0.7979, slightly worse are the scallops detected 
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with an average precision of 0.6339 and worst detected are sea urchin with an average precision of 

0.4682. This shows the prospect of deep learning in aquatic and marine environments. Deep learning 

has thus shown to be efficient with certain classes of immobile species. Here, we want to determine 

the potential of deep learning regarding motile organisms, fast-moving fishes or slow-moving 

organisms facing a moving camera.  

 

III. Short project descriptions 
Two different types of data were evaluated in this project, with different recording techniques, species 

of interest and environments (benthic & demersal) but both having the same aim to assess to what 

extent the human interference can be lowered or avoided. The two different projects are evaluated 

and explained in their specific section of the report. 

2. General Material & Methods 
Project-specific methods are details in each project sections (Project LangolfTV and Project BAITFISH). 

Yet, the parts that are common to both projects (LangolfTV and BAITFISH) are described below only 

once to avoid repetitions (i.e. 1. Hardware resources, 2. Software, 3. Annotation procedure and 4. 

model evaluation). 

I. Computer, Graphics Processing Unit (GPU) & Operating System (OS) 
For the training and object detection a DELL computer running Ubuntu 18.04.5 LTS 64-Bit with 62 GB 

of RAM, an Intel Xeon Silver 4114 CPU (central processing unit). To bear the graphical and 

computational effort an NVIDIA® GeForce RTX 2080 Ti (11 GB of GDDR6 memory) Graphics Processing 

Unit (GPU) was used.  

 

II. VIAME & CFRNN 
Most of the work presented here was conducted using the software Video and Image Analytics in 

Marine Environments (VIAME; v0.15.1). VIAME is an open-source computer vision software platform 

created to support object detection, object classification and other processes involved in artificial 

intelligence tangible for a non-expert audience (Dawkins et al., 2018). Started in February 2018, it is 

still under development and a rapid implementation of fixes and updates lead to an adaptable tool for 

different project scopes. 

 

III. Annotation 
Annotation is the manual marking of an Area of Interest (AoI) in images and videos by creating 

bounding boxes (BB) around the target object (i.e. a fish, a scampi, etc.; Fig. 2). 

B 
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Figure 2, different types of annotation. In A depicted is a fish object in the footage. Annotated in a pink BB is the S. cantharus 
and on the bottom the bait is visible. In B a N. norvegicus (pink BB) class and an actiniaria (red BB) class. 

IV. Post processing – model evaluation 
IV.i Intersection over Union 

Each model was filtered for the category of interest “fish” and then the Intersection over Union (IoU) 

was calculated. The IoU is a numeric value of the intersection of the groundtruth bounding box and 

the detected bounding box and evaluates the representativeness of the bounding box (Figure 3).  

 

 

 

 

 

 

 

 

 

𝐼𝑜𝑈 =
𝐴𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ∩𝐴𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ∪𝐴𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛
  (1) 

 

The calculation of the IoU for each detection allows the final step to assess if a detection is considered 

correct (True Positive) or false (False Positive). With different IoU thresholds - 0.25, 0.5 and 0.75 – 

different AP were calculated and represented. This allows the evaluation of what the impact of the 

bounding box accuracy means to the overall model performance. 

IV.ii Metrics 

The metrics used to assess the results were precision, recall, F1 score and the (mean) average precision 

(Everingham et al., 2010). The precision is the portion of objects correctly identified (Equation 2) when 

looked at all detections – correctly or incorrectly identified. The recall is defined as the fraction of 

correctly detected objects when looked at all the objects that needed to be detected – the groundtruth 

(Equation 3). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
   (2)  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
                        (3) 

A 

Figure 3, IoU calculation. The IoU is calculated as the area that is described by 
both the detection (predicted) and the groundtruth bounding box value and give 
a value that ranges between 0 and 1 and gives insight on how well the 
prediction represents the groundtruth bounding box 

Detection 

Groundtruth 

Intersection 
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With True Positives being the correctly located and classified objects, False Positives being the wrongly 

classified objects (i.e. bait identified as fish or nothing identified as bait) and False Negatives being the 

missing objects, which were not detected. True Negatives, which are another class to measure the 

performance, would represent all the areas that were correctly not detected as a AoI. However, in 

object detection, this metrics is not useful and is ignored since it would artificially inflate the result. 

Depending on the question to be answered, these standalone metrics can be used to evaluate object 

detection models. When the interest lies in the highest possible value for both the metrics, then the 

F1 score can be considered in addition, since it combines the precision and the recall (Equation 4) and 

is the harmonic mean of the two. The F1 score will be used to determine the confidence threshold in 

the step of post-processing – bait attraction levels.  

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
             (4) 

Before the performance of object detection may vary depending on the amount of data considered, 

the most widely used object detector metric is the average precision (AP). Like the F1-score, the AP 

uses the both precision and the recall but sequentially plots them against each other – with the x-axis 

as the recall and the y-axis as the precision – to generate a precision-recall curve (PR curve). The area 

under the curve (AUC) corresponds to the AP, and the AP can thus be calculated for each class and the 

mean of all classes is called the mean average precision (mAP) (Hui, 2018).  

 

 

 

 

 

 

 

 

 

--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 

 

The following sections 3. and 4. detail the two case 

studies considered in this report, each with 

project-specific Introduction, M&M, Results and 

Discussion. 

 

--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 
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3. Project: LangolfTV 

Introduction 
The LangolfTV missions are international 

seabed stock assessment expeditions (Fig. 

4). These expeditions are conducted to 

assess the abundance of Nephrops 

norvegicus and other seabed dwelling 

organisms. The goal is to estimate the stock 

size of these economically relevant 

organisms and to ensure that the socio-

economic important harvest of the free 

living N. norvegicus in the area  is ensured 

for future generations. (Ifremer, 2017) 

Here, in line with the BAITFISH project, this 

project aims to determine to what extent 

human validation can be replaced by a 

computer doing the same work in order to 

automatize the stock assessment process 

and subsequently increase the amount 

surface and amount of data that can be 

evaluated. Yet here, since we focus on detecting the occurrence of a specific species, we postulate that 

if the computer can detect and locate more than 75% (AP > 0.75) (Knausgård et al., 2021) of the N. 

norvegicus, then the computer has the potential of replacing a physical human being counting the 

animals manually.  

The Norway lobster called Nephrops norvegicus - referred to as Scampi—are a species of Nephropidae 

or lobsters and are distributed on the continental shelf and slope in the North Atlantic (M. P. Johnson 

et al., 2013) all the way down to the Canary Islands, the western Mediterranean Sea in particular in 

the Adriatic Sea and the Aegean Sea (Lolas & Vafidis, 2021). Due to their benthic lifestyle, the species 

is exposed to a variety of different stressors such as low oxygen levels (Hagerman & Baden, 1988), 

predators such as shore crabs and squat lobsters (Albalat et al., 2016) humans and others (Canli & 

Furness, 1993, 1995). Another stress is applied to these animals: the fishing industry is highly interested 

in harvesting this species with trawling techniques (Leocádio et al., 2012) for its high economical value 

for food consumption all over the world (FAO, 2020). An estimated 300 million euros per year is the 

revenue is generated from catching these organisms (Landings of Fishery Products., n.d.). Of interest 

here, the species prefer muddy soil to build protective burrows in the seabed to endure the stress of 

predation, competition and fishing stressor (M. L. Johnson & Johnson, 2013). As of now, the abundance 

is estimated by counting the number of burrows and not actual individuals. This study aims at 

automatically determining the abundance of Scampi that are either outside of their burrow or, at least, 

partially visible. Since the data collection is occurring at the same sites every year since 2017, providing 

new indices of abundance difference between years would be useful to managers for highlighting ups 

and downs in local abundances and to define where the fishing effort should be focused on. This is 

essential for to reduce the risk of depletion of Scampi populations.   

 

 
Figure 4, depiction of the expedition vessel “The Celtic Explorer” 
during of the missions. The camera that is lowered and described in 
the next paragraph is visible. 
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Material & Methods 
I. Data collection 

The footage was captured by towing a 2048 x 1152 px camera, 

light and laser-equipped sledge above the sea ground (Fig. 5) by 

a trawler—this technique is known as an underwater television 

(UWTV) survey (Campbell et al., 2009). In total, 44 stations (i.e. 

locations) where captured and analysed. All species beneath the 

camera were recorded and the video files were manually 

reviewed by marine scientists.  

Figure 5, the sledge used in the assess-
ments of the seabed in the LangolfTV 
project.  

II. Annotation conversion 

Some LangolfTV data had been annotated with a different software called Labelix, and thus had to be 

pre-processed and converted into a format compatible with VIAME (see above). Labelix creates an xml 

file as output, whilst VIAME uses a csv format as input for the annotations. To convert the Labelix 

derived annotations and exploit them in VIAME, the different image attributes where extracted, filled 

into a data frame and saved in .csv format using RStudio v1.4.1106 and packages “XML” and 

“tidyverse” – especially the function grep. 

III. Training Data 

The project collected data in 2019 at 44 different stations in the Gulf of Biscay. 39 of these stations 

showed low to high-moderate diversity of classes and functioned as the training dataset. This led to 

79% or 31’736 annotations of the complete data collected in 2019 being treated as the training data. 

For a full overview of the 18 classes and number of annotations, see Table 1. These annotations were 

marked on 20’364 images, corresponding to roughly one to two annotations in each frame. It is 

important to note that not all the original annotations were used, since there were classes with only 

two annotations available. The low numbered classes were fused with bigger classes to have better 

overall class levels (Appendix IV). Class imbalance, a recurrent issue with machine learning, are 

regulated by the usage of the metrics mAP, which already accounts for this type of issues. 

Table 1, depiction of the split of the train and the test annotation dataset used for the LangolfTV subproject. 
Classes were fused to allow a better overview and training process.  

 class total train test percentage of test 

actiniaria 4401 3607 794 18% 

actinopterygii 1082 912 170 16% 

callionymus 400 356 44 11% 

cephalopoda 327 297 30 9% 

crevette 2655 2382 273 10% 

crinoidea 2500 2386 114 5% 

crustacean 1096 995 101 9% 

flatfish 730 547 183 25% 

gadiforme 530 425 105 20% 

hydrozoa 1494 1355 139 9% 

munida 6183 5001 1182 19% 

nephrops_norvegicus 2874 2474 401 14% 
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pennatulacea 7299 4790 2509 34% 

polychaeta 792 670 122 15% 

scyliorhinus 38 18 20 53% 

terrier 7663 5341 2322 30% 

starfish 261 180 81 31% 

 40325 31736 8589 21 % 

 

IV. Test data 

Stations 2, 15, 18, 52 and 68 were held back due to their high diversity levels and inclusion of rare 

species the algorithm was trained on (Fig. 6). In total, the 8’589 remaining annotations from 4’643 

images were used to evaluate the models’ performance. The stations evaluated have all the classes 

included, which allows the calculation of average precisions (AP) for each class and a mean average 

precision (mAP) for all the classes together - see paragraph below VII. Since the focus lies on detecting 

Scampi and their burrows, these classes’ AP are of particular interest for this study. 

 
Figure 6, example species observed during the LangolfTV 2019 mission used in the project of 2021. A shows the species of 
interest N. norevgeicus, B shows a crustacean (unidentifiable but not a Scampi nor a Munida) and C shows an example of a 

Munida spp.  

V. Post processing – Confusion matrix 

After the creation of the model and the evaluation of its performance, a confusion matrix could be 

computed. The confusion matrix is an important tool to see how exactly the training efforts can be 

focused to generate a new model with better results on underperforming classes when numerous 

classes are considered. A confusion matrix enables to highlight strengths and flaws in the proposed 

model and give an overview on how the model has performed when compared to all classes and gives 

more insights on which class performed well and which are underperforming.  

Results 
I. Model evaluation 

The performance of the model created with the training and test data presented above are presented 

with the Precision-Recall curves at IoU levels of 0.25, 0.5 and 0.75 (Figure 7).  
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Figure 7, Precision-Recall curves depicting the performance of the LangolfTV model. Three levels of IoU are presented to 
have an overview on how this affects a model’s performance. The mAP values are depicted in the rectangle boxes in the top 
right corner. (Abbreviations: mAP = mean average precision, IoU = Intersection over Union)  

In Figure 7, different IoU levels show moderate to high difference in the model’s performance. The 

difference between IoU 0.25 and 0.5 is lower than the difference between either the IoU 0.25 or 0.5 

and the IoU 0.75. The mAP of all the classes is 0.814 for IoU > 0.25, 0.808 for IoU > 0.5 and 0.577 for 

IoU > 0.75. The two lower IoU thresholds show a gradual decrease ending with a steep decline at higher 

recall values. For the highest IoU threshold, the detections with a high precision already show a pattern 

of decline and start to drop at 0.02 recall value. False Negatives (FN) range from ~ 12% for 0.25 and 

0.5 to 17% for 0.75.  

Table 2, individual AP per class. 
(Abbreviations: AP = average precision) 

II. Individual average precisions 

Individual APs are depicted in Table 4. Average precision ranges 

from 0.24 to 0.86 for the different classes. The most influencing 

classes are “pennatulacea” and “munida” with numerous 

detections (2’509 and 1’182) and high AP (0.8 and 0.82). 

The “callionymus” has the highest AP value (AP=0.86), while the 

“hydrozoa” and “crustacean” classes have the two lowest level 

of correctness, each with AP values of 0.24.  

 

 

 

 

 

 

class AP 

terrier 0.36 

starfish 0.74 

scyliorhinus 0.38 

polychaeta 0.23 

pennatulacea 0.80 

nephrops_norvegicus 0.69 

munida 0.82 

hydrozoa 0.24 

gadiforme 0.71 

flatfish 0.52 

crustacean 0.24 

crinoidea 0.63 

crevette 0.68 

cephalopoda 0.44 

callionymus 0.86 

actinopterygii 0.52 

actinaria 0.60 
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III. Confusion matrix 

To get a better overview on the results of the precision-recall curves, the IoU threshold of 0.5 (i.e. the 

most commonly used threshold in the literature (Huang et al., 2019a)) was chosen for the confusion 

matrix (Fig. 8). For a confusion matrix, the confidence level to consider the detections as correct also 

need to be defined. A confidence threshold of 0.33 was selected by calculating the highest F1 score. 

This, if the predicted confidence in the classification of one object is below 0.33, it will be considered 

a false negative (FN), while if it is higher than 0.33, it will be a true positive. Within the 17 classes 

consider, five classes (crustacean, nephrops_norevigucs, munida pennatulacean and terrier) were 

chosen for closer inspection since these classes either performed well, poorly or are of interest for the 

economy in the area (Fig. 8 – yellow, green, red, white, and blue rectangle).  

 

Figure 8, confusion matrix for all the classes implemented in the model within this project. On the x-axis the actual class in 
the groundtruth is reported and on the y-axis the models predicted class. The lighter the colour per cell, the better the 
performance of the model for this class. Colour code for the rectangles is yellow for the crustacean, green for the Munida spp., 
red for the Scampi, white for the pennatulacean and blue for the burrow (in French terrier) class. False negatives and false 
positives are bounding boxes that are drawn in the background and do not represent any class. (Abbreviations: FN = 
background false negative, FP = background false positive). 

Overall, there is a clear diagonal line observable, which indicates that the predicted classes are mostly 

represented as the true classes. There is one clear exception with the “terrier” (French burrow) class 

(Fig. 8 – blue rectangle): 1’273 detections are counted as true positives (TP) but another 1’014 

background false negatives (bFN) and 1’189 background false positives (bFP) are also detected. This 

means that a large proportion of burrows are not detected or located correctly (only around 36% are 

correctly detected). Another underperforming class is the “crustacean” class (Fig. 8 – yellow rectangle) 

which showed confusions with other more abundant classes such as “munida” and 

“nephrops_norvegicus”. In total 32 true predictions and 100 wrong predictions make up this class, this 

only 24% are predicted correctly.  

The Scampi trigger moderate results (class “nephrops_norvegicus”, Fig. 8 – red rectangle): a total of 

324 of the Scampi are correctly detected but non-background false positives (FP) remain frequent (55 

detections, 14%). In addition, there are 77 bFN and 14 bFP detections, which adds up to a final mean 
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of 69% of correct predictions for Scampi (correct = correct class and correct location of the object on 

the frame).  

One of the classes, the “pennatulacea” was the most accurately detected (Fig. 8 – white rectangle), 

with 2’457 TP, 10 FP, 67 bFN and 539 bFP. More than 80% of all the detections made were thus 

correctly detected. Another easy-to-detect class was the “munida”, having 1’130 TP, 59 FP, 86 bFN and 

108 bFP (Fig. 8 – green rectangle). It overpasses the pennatulacea class with a mean correct prediction 

of 82%. These two classes make up most of the data and therefore have a big impact on the mean 

average precision. 

Discussion 
This project presents a new method to estimate the benthic organism’s abundance when dealing with 

Underwater Television (UWTV) surveillance data. The great advantage of this method is that the 

organism found on the seabed floor are in general less fast-moving organisms and have less year-to 

year diversity. On the other hand, the seabed is more divers when it comes to its inhabitants – as seen 

in these projects. Nevertheless, the advantage of more sessile and slower organisms allows to use the 

same model each year to assess the abundance of these communities, which, over longer time scales, 

could save a lot of labour and time.  

Contributing most to the high mAP value are the two classes “pennatulacean” and “munida”, which 

both combined are over 3’500 annotations of a total of 8’500 annotations worth. This means if these 

classes perform well (AP > 0.5), the whole model would be considered as “good”—that is one of the 

flaws of the metric, even though it is accounted for it during the calculation.  

Special attention is given to the Scampi class and the performance of the model on this class. The 

overall AP value of 0.69 is considerably lower than expected and does not reach the level proposed in 

the hypothesis. This may result from the morphology of other crustacean species such as Munida spp. 

and the general class of crustaceans, which can easily be confounded with N. norvegicus (Figure 6) and 

are frequently falsely identified as such (Figure confusion matrix). Another error-prone class is the 

terrier class. Its underperformance could be due to the inconsistency of the training dataset containing 

un-annotated burrows. Furthermore, it could be because of the training data containing burrowed 

Scampis which are not 100% visible and then the model detects a Scampi instead of a burrow. There 

is potential by improving the detection of scampi in their burrow by adding diverse data (angle, parts 

of the scampi that is visible, etc.) into the model training.  

The created model is thus able to predict several, uniquely shaped and formed species with an AP 

greater 0.75, showing a solid potential to complement the assessment of these species or genus. Yet, 

comparing the results to other publications suggests that the model can be considered as efficient as 

others (eg. Huang et al., 2019b). In the publication of Huang et al., 2019b obtained AP values 0.47 to 

0.80 and an overall mAP of 0.6, which are in agreement of the results of this projects. For some classes, 

“crevette”, “munida” and “pennatulacea” with mAP values over 0.8, this method could indeed be 

applicable for multi-year variability in abundances. An AP over 0.5 is commonly assumed as “good” (Li 

et al., 2015). However, our results indicate that considering this threshold alone can lead to under- or 

overestimation of wild living populations, therefore misleading conservation efforts in this area. Here 

of particular interest, the key class “nephrops_norvegicus” has an AP of 0.69 (ie. considered “good to 

excellent” based on (Li et al., 2015)), which translates the 69% of correct detections and 31% of 

incorrect ones on this class. Further fine-tuning is thus mandatory to obtain a model that reaches 

satisfactory performances to feed stock assessment data, and one should not stick to numerical values 

without understanding what is behind and the potential consequences of error propagation if the data 

are exploited for modelling or stock management.  
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Next steps for this project could be the implementation of a class-dependent fine tuning and further 

analysis of the underperforming classes. This could give a greater insight on why exactly certain classes 

did not perform well and to what extent this performance could be improved. Adding more data from 

more stations and years could be a great improvement.  

4. Project: BAITFISH - Behaviour, performAnce, Impacts of Trap FISH 

Introduction 
This project aims to develop more selective fishing gear targeting economically relevant fish species in 

the Golf of Biscay whilst decrease bycatch or avoid trapping unwanted or even protected species 

(Ifremer, 2018). During summer seasons the species Spondyliosoma cantharus or commonly known as 

the black seabream is very abundant in the area around the Golf of Biscay. Non-selective fish traps 

were chosen by numerous fishermen and led to the increase of targeted bycatch of lobster and other 

crustaceans without quota and therefore the need for a newer more selective fish traps emerged. 

Furthermore, economically a great interest in this fish exists in the region around the Gulf of Biscay 

(Perodou & Nedelec, 1980). Due to their low fat content, low liver lipid content and high 

Hepatosomatic Index (Rizzo & Bazzoli, 2020) they became a popular target for the artisanal and 

commercial fishing industry (Future Market Insights, 2020; Kora et al., 2000) and food industry.  

To increase the time of attraction for the fish, three biodegradable plastics were introduced and tested. 

The smell of these baits’ dissolves slowly into the water column attracting nearby fish downwards of 

the current and potentially allows the trap to be longer in water with attracting only fish as interest. 

Here, we focus on the spatial, temporal, and behavioural differences between the fish approaching 

different types of baits. Patterns were first analysed manually, then automatically with the deep 

learning networks trained on the data. Both methods were then compared to determine the potential 

of a computer replacing human validation when dealing with this kind of sea trials. 

Material & Methods 
I. Data collection 

In a preliminary project, different baits were tested to evaluate the most efficient bait type between 

several organic and inorganic matters (lures, light, cuttlefish, cockles, etc.) (Fluhr et al., in prep). The 

most efficient in attraction and withhold were the cockles which functioned as the control in the 

experiment evaluated in this report. For the current project, Baited Remote Underwater Videos 

(BRUVs) were recorded by lowering dropcams (Fig. 9) in different locations recording the area of and 

around the bait structure.  

 
Figure 9, basic principle of the baited remote underwater setup used in BAITFISH.  

https://fr.wikipedia.org/wiki/Dorade_grise
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This experiment wanted to evaluate if the hooking of animal biomass can be reduced by using 

biodegradable plastic pallets induced with cuttlefish powder as bait. The footage was generated during 

one-day boat trips from 20. to 23. of July 2020 with GoPro Hero 4 cameras and in the format of 

1920x1080px and 24 frames per second (fps). The videos were manually analysed by a student of the 

UBS (Université Bretagne-Sud), then revised and re-formatted to fit the output of the detector and to 

acquire comparable results.  

II. Annotation 

The annotation for the BAITFISH data did not need a conversion since the videos were not processed 

before and were annotated directly in VIAME. In addition, the fish class, the plant and bait class were 

introduced to reduce the amount of falsely positive predicted particles, plants and the bait-apparatus. 

III. Training Data 

Training data are the images that are presented to the computer from which the algorithm learns the 

different classes – in this example the fish, plant, and bait classes. The baseline model 0 is an already 

existing, pre-trained fish detector available in VIAME. It was trained using CFRNN on four National 

Oceanic and Atmospheric Administration (NOAA) datasets containing various footage of different 

sites. Dropcams in the Gulf of Mexico, the MOUSS protocol in the Pacific Ocean (Miller-Greene et al., 

2020) and the HabCam (HABitat mapping CAMera) system in the Atlantic Ocean (Cojanu & Hugus, 

2016). This detector is constantly updated, and the detector used in this project was downloaded the 

10th of March 2021. 

The model 0 is thus performant to identify fishes in general, yet this baseline model performed poorly 

on the species considered here, since the conditions and species characteristics are unknown to the 

model. Thus, going from model 0, BRUV footage of older expeditions in the area Gulf of Biscay was 

used to train the different models. The images and annotations were gradually increased to evaluate 

the effect on the model’s performance by doing so (Table 3). Different levels of complexity due to 

turbidity and levels of fish were chosen to have a great variety of input data. To save time spent 

annotating, the frame rate was reduced to five fps from 24. Therefore, 9,277 images - used for model 

11 & 14 – correspond for approximately 30mins of video footage. The difference between the model 

11 and model 14 are different only by their parameterization of the neural network (indicated by the 

* in Table 3). Augmentation is the process of increasing the number of images by rotation, cutting and 

other image alterations is done automatically in VIAME and optimized for the deep learning network 

architecture used (here, CFRNN).  

Table 3, model names and training efforts (annotations) used. The *-symbol stands for a different validation set size and 
was corrected only for model 14. 

Model Images Annotations Fish Plants Bait 

0 – The Basic 0 0 0 0 0 

5 – The Middle 1830 4002 1875 222 1905 

7 – Only Fish 1830 1875 1875 0 0 

8 – 7K 7141 24017 19214 879 3942 

11 – Close Second  9277 30433 19214 6073 5146 

14 – Top Model* 9277 30433 19214 6073 5146 

 

IV. Extracting the groundtruth dataset 

To evaluate the performance of each BAITFISH model, a 17-min video (5,100 frames) with varying 

environmental factors such as turbidity and camera angle (Fig. 10) was concatenated and fully 

annotated, totalizing 6,660 fish and 5,100 baits. These handmade annotations are the baseline dataset, 
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or groundtruth, used in the following sections to compare the object detections performance of the 

different models. 

Important note: There was no plant annotated in this video, since the interest of the project lies on 

the ability to detect the fish object. 

 

Figure 10, Snapshots of the test video used for the groundtruth in the BAITFISH project. A: low light condition, B: clear 
conditions but with camera frame visible, and C: school of fish passing by the bait. In blue are the annotated fish and in red 
the different baits. Note that these images are already enhanced by VIAME as they were during the training. Important note 
that the colour correction is not applied for the training only when the video is loaded into VIAME directly. 

V. Manual processing 

The videos were looked through by hand and the time of the fish on screen was noted with different 

additional information such as behaviour. A general model was applied to the video and allowed the 

identification of potential fish and their corresponding timestamps. All the fish positions were 

evaluated and looked at and allowed the manual analysis of the videos. 

VI. Post processing – bait attraction levels 

The ecological question to be addressed here is to determine the attraction levels of one control and 

three biodegradable plastic baits developed within the BAITFISH and Indigo projects, using the 

presence and behaviour of S. cantharus around the baits. Since all data need to be validated to reach 

this objective, this will later enable the comparison between the attraction levels obtained manually 

and automatically with the trained models presented above.  

VI.i Confidence threshold 

Every detection receives a certain confidence of correctness ranging from 0 to 1 (equivalent to a 

probability) by the model. The higher this value, the more certain that the chosen class is correct. When 

several classes are probable, the model will provide the confidence level of all possible classes (from 1 

to n classes, n being the number of different classes used for training the model). Here, we assume 

that the class with was attributed the highest confidence is the most likely, and all secondary 

classifications were discarded.  

To reduce the False Positives, a confidence threshold was calculated for the best performing model 

based on the highest F1 score by plotting the confidence (on the x-axis) in 0.01 steps against the F1 

score (y-axis). To assess further the effect of the confidence threshold, a lower and higher (± 0.1) 

threshold are also included into the evaluation.  

VI.ii Area of Interest (AoI) 

The Area of Interest (AoI) is the portion of the screen surrounding the bait in a radius of 450px - see 

the red circle in Figure 11. The area has been defined in an ongoing study (Fluhr et al., in prep), which 

shows promising results.  
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Figure 11, Area of Interest (AoI) as described above. 

The centre of the bounding box (mean of x1 and x2 and mean of y1 and y2) functioned as the point to 

which the distance to the bait is calculated (Fig. 12) and to decide if an object is in the AoI or not.  

 

 

 

Fish-tracks that lasted less than 2 frames were systematically false-positives, and were considered as 

such in the analyses, and not counted as fish nor considered for the evaluation of fish counts within 

the AoI.  

VI.iii Interest Index (Ii) 

After this cleaning process (i.e. discarding fish with low confidence or tracks too shorts), each detected 

fish can be considered as a fish and is categorised into one of five categories (Table 4) depending on if 

and how long the fish was on the screen and in the AoI.  

Table 4, categories of interest and the time spent in AoI or one the screen. 

Category Times spent in AoI (s) Category 

1 0 (only on screen not in AoI) On the screen 

2 < 1 Passing 

3 1-2 Mildly interested 

4 2-3 Interested 

5 > 3 Eating 

 

Figure 12, shows the definition of a fish inside (A) and outside (B) of the AoI. Blue corresponds to the bounding box of a 
fish and the red circle indicates the AoI.  
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The five categories are then corrected for the total number of fish in the video (Equation 5), since this 

factor plays a crucial role and needs to be incorporated into the equation. The category of each fish is 

divided by the number of fish and summed up to have a corrected mean of all the categorised fish, as: 

𝐼𝑖 =  ∑
𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑖

𝑛𝑓𝑖𝑠ℎ𝑗

            (5) 

VI.iv Statistical test 

A Kruskall-Wallis test was conducted to test significancy between the bait types of each method. A 

pairwise Wilcoxon-test was used to check the differences in the bait types and to further evaluate the 

result. As a software RStudio v2021.09.0 Build 351 and R 4.1.1 with the packages ggplot2 3.3.5 and 

ggrepel 0.9.1 for graphics and the package stats 4.1.1 for statistics. The methods – automated and 

manual - were not compared in-between since there was an observable significance difference.  

Results 
I. Model performance 

To assess the models’ performance, two different sets of curves were dawn. One set for the mean 

average precision (mAP) for the two classes bait and fish and one set for the average precision (AP) of 

the fish class alone (Table A1). 

 

Figure 13, Precision-Recall curves of the two classes fish and bait – indicated with colours are the 
different models. Labels indicate the mAP for each model for the two classes. The different 
plots/facets explain the PR curves at different IoU thresholds 0.25, 0.5 and 0.75. (Abbreviations: 
IoU = Intersection over Union, mAP = mean average precision, PR = Precision-Recall) 

The mAP values for the first set of curves - bait and fish - are presented on Figure 13. Model 0 is 

outperformed by every other model since there is no bait class trained, which leads to inflation of false 

negatives and therefore severe smaller mAP values (IoU > 0.75 = 0.028, IoU > 0.5 = 0.261, IoU > 0.25 = 

0.339). The second model is model 7 trained only on the fish class and for the same reason as model 0 

it does not perform well with values ranging from 0.155 for IoU greater than 0.75 up to 0.461 with an 
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IoU threshold of 0.25. That means roughly every second detection is correctly located. Model 5 has 

the least annotation compared to the remaining models but is with values 0.804 (IoU > 0.75), 0.899 

(IoU > 0.5) and 0.910 (IoU > 0.25) above 0.5, which can be considered good to excellent. The next best 

model is model 8 and differentiates from the other models by having less bait and plant annotations. 

MAP values of 0.849, 0.923 and 0.931 were achieved for the different thresholds. The increase of 0.5 

and 0.25 compared to 0.75 is explained by the difficulty for the model to locate and mark the correct 

location of the objects in the video. Model 11 and model 14 are different in terms of parameters 

chosen and achieved values of 0.723, 0.824 and 0.831 for model 11 and 0.816, 0.859 and 0.867 for 

model 14.  

 

Figure 14, Precision-Recall curves of the class fish – indicated with colours are the different 
models. Labels indicate the mAP for each model. The different plots/facets explain the PR curves 
at different IoU thresholds. (Abbreviations: IoU = Intersection over Union, AP = average precision) 

Overall, the IoU thresholds, a consistent increase of the AP is observable (Fig. 14) when going from 

model 0 to model 8 except for model 7, which was a test model trained only on fish and no other 

classes (plants and baits) and to see the effect of the exclusion of non-fish classes on the average 

precision on the class of fish. The models 8, 11 and 14 seem to have reached a plateau since the AP is 

in the range of ± 0.03 with 0.7 to 0.72 for IoU > 0.25, 0.67-0.7 for IoU > 0.5 and 0.5-0.52 for IoU > 0.75.  
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Figure 15, Precision-Recall curves of the class fish – indicated with colours are the different models. Labels 
indicate the AP for each model. The different plots/facets explain the PR curves at different IoU thresholds. 
Black box indicates a special type of error of object detection explained in Figure 13. (Abbreviations: IoU = 
Intersection over Union, AP = average precision) 

For the following results, an IoU > 0.5 is considered since it is the most commonly used threshold. The 

Figure 15 and following figures only show the result for AP of the models at the selected threshold of 

IoU > 0.5. As expected, the generic fish model 0 performs poorly when it is compared to the other five 

models. With an AP of 0.307, the model 0 generates approximately one third of correct detections. By 

providing more images and annotations, we could fine-tune the models and largely improve the 

detections. Better performant was the model 7, which was trained on only the fish annotations. The 

AP doubled when compared to the model 0 with a value of 0.614. An AP of around 0.68 ± 0.02 (models 

8, 11 and 14) means that approximately for every three fish detected, two of them are correctly 

identified and located. Model 14 has the highest AP with 0.695 for the class fish and was the model 

chosen for the detection & evaluation of the biodegradable-plastic baits videos. 
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Figure 16, error of model 8 detecting the GoPro light as a fish (blue BB). Correctly identified 
bait (red BB) and plants (green BB). This was later avoided by adding annotations of the light 
as the plant class for models 11 and 14. Important note that the colour correction is not applied 
for the training only when the video is loaded into VIAME directly. 

Special attention was given to re-occurring and avoidable errors. In Figure 16 provides an example of 

such re-occurring detection with model 8. On the right-hand corner there is an incorrect detection 

since the GoPro light is detected as a fish. To counteract this mistake, the models 11 and 14 contain 

images with this light annotated. This error hinders the model 8 from being one of the best models in 

this experiment (cf. the black rectangle on Figure 15).  

II. Biodegradable-plastic baits analysis 

II.i Confidence threshold 

To define an objective cut of the F1 score, the score was plotted against the confidence threshold and 

the highest value for the F1 score was chosen to represent the threshold needed (Figure 17). 

 

Figure 17, evaluation of the confidence threshold for model 14. The F1 score is plotted against the threshold to get the 
highest possible value for the F1 score. 

The curve here does not follow the expected pattern (see Appendix I for the expected pattern). As 

explained in Czakon (2021), this is due to the low detection number at lower confidences and those 

detections being valid. This definition of threshold is used when all classes are balanced and of the 

same importance. Since the interest only lies on the fish, this technique is used to find the best 
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threshold only for the fish class. At a confidence threshold of 0.53 the F1 score is highest with a value 

of 0.83. This means that the further analysis will be done with a threshold of 0.53, a lower (0.43) and 

a higher (0.63) variant for comparison. 

II.ii Number of fish 

Looked at first were the number of fish predicted for each biodegradable bait type. A Kruskal-Wallis 

test and a pairwise Wilcox-test was then done to see if the data is different from each other. A boxplot 

graph was created to present a visual output of the data (Figure 18).  

 

Figure 18, number of fish predicted by analysis method – automated or manual. A presents the data after 15 minutes of the 
videos have passed, B shows after 59 minutes and in C described is the whole video. This was done to have the temporal factor 
also included. Red colour indicates the automated data, whilst the blue colour indicates the manually acquired data.  

The conditions of application are violated for the manual analysed data (presence of 

heteroscedasticity, Bartlett test, p < 0.05), and the Kruskal-Wallis test was thus applied.  

Overall, the Kruskal-Wallis test showed significant differences in the automated data (p-value for 

15mins = 0.05, p-value for 59mins = 0.04, p-value for the whole video = 0.05) as well as significant 

differences in the manually acquired data (p-value for 15min = NA, p-value for 59min = 0.16, p-value 

for the whole video = 0.066). The Lactips and C600 show no statistical differences in attraction level 

(pairwise Wilcoxon test, p > 0.05). The pairwise Wilcoxon test shows highest confidence of difference 

for C17 and C600 a p-value of 0.34. The shape of the boxplot follows similar patterns with an outlier 

for the C17 baits and low values for C600. Yet, there is a difference in the total number of fish observed 

for the two methods. Nevertheless, similar patterns are observable with high numbers for the control 

bait and lower numbers for the biodegradable baits. The high number of fish detected by the model is 

an indicator that the model is overestimating the number of fish in the video, which is expected since 

if the track of a fish is lost, the same fish may be counted multiple times. 

II.iii Interest index (Ii) 

To counteract this overestimation, an Interest index (Ii) was calculated. The calculation is explained in 

Equation 5. 
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Figure 19, boxplot of the Interest index (Ii) for the different bait types. A presents the data after 15 minutes of the videos 
have passed, B shows after 59 minutes and in C described is the whole video. The colour code is red for automatically analysed 
and blue for manually analysed data. 

The interest index Ii returns a value for each video, which are presented on Figure 19. Clear differences 

are observable in the 15min group since there was fish detected even though there were no fish 

observed by manual analysis. Interestingly, for both the automated and manual dataset the index is 

high for the control bait (automated = 3.089451, manual 3.850622) which indicates an early presence 

of fish staying in the area of interest for a long time (Figure 19 – A). A Kruskal-Wallis test showed no 

significant difference in the bait’s attraction levels for the automated data with a p-value of 0.06, no 

test was conducted for the manual data since there is only one group. Figure 19 – B indicates the 

Interest index after 59min. Automated data shows lower levels of interest levels in comparison to the 

manually evaluated data (Ii = 2.590784 vs 2.98497). The boxplots do follow similar patterns within the 

two methods conducted. For the whole video analysis (Fig. 19 – C), the boxplots follow similar patterns, 

forming a u-shape. Overall, the interest index is similar when looked at the mean between the two 

methods, with no significant difference is observable when investigating each method separately – 

automated p-value = 0.50, manual p-value = 0.25).  

II.ii Heatmapping the number of fish 

Without great extra effort, heatmaps (Fig. 20) were created and visually explored to detect if there is 

a dense concentration of fish in the AoI. 
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Figure 20, heatmaps describing the fish in AoI. Each plot represents a video and each 30px by 30px field is used to present 
the concentration/density of the detection of fish at this exact 30x30-area. The plots are divided by baits (C17, C600, Lactips, 
Control (Cockles)) and by dates (20-23.07.2020). The colours of the 30x30 fields represent the density from dark (= high density) 
to light (= low density). (Abbreviations: NDA = No Data Available) 

The bait's level of attraction of the C17 bait shows the strongest attraction levels of the three bioplastic 

baits, as indicated by the larger numbers of fish inside of the AoI, followed by the C600 and Lactips. 

The control, with raw cockle, remains the bait type with the highest attraction potential overall. Which 

aligns with the results of Figure 18. Another aspect is that there were temporal differences between 

the same baits but different dates – C600 20.07.2020 and 21.07.2020 are an example. 

Discussion 
Automatic predictions and models’ performance 

Overall, increasing the size of the training effort improved the performance of the models. This is 

particularly striking when comparing the mAP from the model 0 to model 14. The poor performance 

of model 0 highlights the importance of case-specific datasets, which allows the algorithm to be 

specialised in the species of interest and the conditions of the area. Our results pinpoint how species-

specific training data control the sensitivity in the performance of a deep learning model. 

The increasement of the aP for fish from 0.354 to 0.827 allows us to assume, that with increasing 

efforts, the models get more performant. This is goes hand in hand with the observations done by Sun 

et al., 2017 and Joulin et al., 2016 who state that the increase in volume of the data is linked to better 

visual detection. The drawback is a loss in efficiency, since more complex models require longer 

processing for the detections process; here, it reached up to several days for one video. Nevertheless, 

there is a plateau observable for models 8, 11 and 14 and the increase in data is not enough to improve 

the models since the AP are in similar ranges to each other. This is surprising since the effort to train 

these models, namely more annotations and more time, was heavily increased, especially for model 

11 and 14. With increased training volume, the change in mAP decreased and more annotations and 

images were needed to further improve the models to new mAP levels. 

Another interesting thing about the choice of the classes is that an easy to detect class – in this example 

the bait – can heavily increase mAP values from 0.827 (without the bait) to 0.922 (with the bait). This 

NDA 
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shows that even a metrics routinely used in deep learning like the mAP has flaws and should be 

interpreted with caution. Indeed, easy or hard to detect classes can inflate or deflate the result and 

lead to misinterpretation, that is why the individual AP need to be considered too and looked at. 

Especially when the class of interest is not the one that is easily detectable as presented in Jalal et al., 

2020, where Abudefduf vaigiensis (45% average) severely underperformed compared to the other 

classes – i.e. Chaetodon speculum (100% average) – and the overall performance of < 90% average. 

The effect of adding bait and other particles that increased the noise in fish detections into the training 

process was an approach to compare how much this differs the AP of the fish. This effect is visible in 

the OnlyFish model 7 (APfish = 0.740), which was trained on the same amount of fish annotations as 

model 5 (APfish = 0.794) but severally underperformed when compared to each other (Figure 14). This 

is due to the bait and other particles being detected as a fish and this leads to an increase in false 

positives for the class of fish. 

Considering the challenging conditions in the created test video, the AP values can be considered good, 

when compared with other projects with the same intention. Two examples (Huang et al., 2019b; 

Politikos et al., 2021) show that AP values ranging from 0.4682 for sea urchins, 0.7979 for sea 

cucumbers, 0.6339 for scallops, and 0.62 for marine litter can be considered the current state of the 

art, which is on track with (yet even lower) the results that have been accomplished in this project. 

Adding to that, a software bug led to inconsistent validation sets, which, at first, decreased the 

performance of the models and confused the interpretation of the models’ performance. This bug has 

been fixed in interaction with the developer of the VIAME software, Matt Dawkins (NOAA). Models 1-

4 encountered a bug in the conversion of the videos into single-frame pictures, because the extraction 

led to a small lag in timestamps. The resulting lag was visible in the trained detections by always being 

a head of the fish (Figure A1). This behaviour has also been fixed with the help of Matt Dawkins.  

Fish bait attraction levels 

While promising, considering only the model’s prediction to answer an ecological question remains 

limited on several aspects. The main issue was that the overall number of fish predicted was inflated 

compared to the manual counts. This likely results from fish leaving the camera field of view, by 

remaining in an ambiguous positioning over several frames, or by hiding behind an object and then re-

emerging. In this scenario, the model will necessarily predict multiple fish instead of one, which can 

add up quickly to many fish being double or triple counted. Another aspect leading to overestimation 

could be the “noise”. This is a well-known issue when considering using an artificial intelligence 

approach (Stekolshchik, 2020). As of today, this issue can only be counteracted with the development 

of more performant trackers or the implementation of a dynamical error correction factor that changes 

the number of predicted fish. This overestimation could also result from the lower numbers of the 

Interest index of the automated data, since the cut-off of certain fish individuals creates multiple fish, 

which are considered less long in the area of interest and therefore alter the mean index towards lower 

values.  

Another aspect was the aspect of time, since there were great differences between the two analysis 

methods after only 15min and 59min but if we look at the whole video, the difference gets smaller. 

This indicates that the model’s prediction gets more confident and more precise when looked at longer 

videos. This indicates that the potential of the created model lies more in the evaluation of larger 

datasets or longer videos compared and decreases with short duration experiments or essays.  

The Interest index showed clear differences in numeric values between bait types for the two methods 

evaluated but there is a more qualitative approach, which allows to make certain assumptions. The 
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results indicate that some behaviours can be more easily assessed than others using deep learning. For 

example, there was a high number of fish for 15min with both methods in the control group, followed 

by a decline for 59min since the bait was eaten and the fish started only passing through and for the 

whole video it stayed the same. This indicates that the attraction level for the control falls rapidly after 

deploying the bait into the water and does not need to stay in the water for several hours. This pattern 

was accurately depicted by the automated method. Whilst the biodegradable baits had stable and 

mediocre attraction levels for the first hour, but their attraction potential rose over time until the end 

of the sampling period. Interestingly, the C17 bait is the one outperforming the control towards the 

end – this could be due to the mentioned depletion of the physical bait in the control group or due to 

the effectivity of this type of bait. These biodegradable baits have the advantages of staying in the 

water longer since it will not be eaten by the fish immediately and could lead to a longer deployment 

time whilst also safe resources.  

5. General Discussion 
Thus, even though different in their nature, camera type, environmental conditions and number of 

classes considered, both projects had similar mean average precision values – 0.827 for BAITFISH and 

0.808 for LangolfTV. Both mAP values are considered “good to excellent” (Li et al., 2015). The small 

difference of these values can be explained by the differences in the training effort and training data 

quality, as well as in the number of classes predicted. The more classes a model must predict the harder 

it is to classify it correctly and not as a wrong class (Shahinfar et al., 2020). With this in mind, it is likely 

that the LangolfTV, which based on the mAP slightly underperformed when compared to the BAITFISH 

project, is actually the more performant of the two models overall.  

Although performing well in terms of mAP values, both projects highlighted the difficulty of answering 

an ecological question. Immobile and distinctive classes were detected excellent whilst other faster 

moving, burrowing or similar classes were underperforming due to misclassification. Fish not moving 

and staying close to the bait structure were detected very well whilst fish that entered the screen 

rapidly were misclassified or missed. Nevertheless, both projects showed patterns and evidence of 

being able to answer such questions, which indicate the possibilities to be utilized as a reproducible 

and constant tool in this area of expertise. For example, in fisheries management, marine policy 

engagement or conservation of the ocean.  

Both these models thus have the potential to be implemented into different aspects and tools to help 

in marine conservation, fisheries, or scientific research. For example, the LangolfTV model could be 

used to minimize the bycatch of the bottom trawling technic and move fishing efforts away from areas 

known for sensitive species and large biodiversity.  

6. Conclusion 
These two projects show the progress and opportunities arising when using an artificial intelligence 

approach when looking at ecologically relevant data. It always has been important to look at data to 

find evidence for a hypothesis proposed. For these two projects a similar approach was chosen to 

conduct the feasibility of deep learning replacing the human behind the keyboard and it was found 

that there is a possibility to do so but not for every project.  

As the BAITFISH project showed, the algorithm had good prediction numbers with an AP of 0.826 but 

the number of fish were overestimated due to noise and other factors discussed above. Nevertheless, 

the results on the interest index showed potential to answer the bait attraction levels in both methods 

described.  
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For the LangolfTV project certain classes were predicted good and others were not. There is room for 

improvement on this model too with more data but the project highlights that the utility of deep 

learning is within the realm of possibility for continental shelf stock assessments.  
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7. Appendix 
Appendix I – expected curvature of F1 score x threshold 

 

Figure A1, from (Czakon, 2021) 

An example of the F1 score/threshold curve applied in this project.  

Appendix II – (Mean) Average precision values for all the models of two class analysis 

Table A1, values of (mean) average precisions of all the models and IoU thresholds 

Model IoU threshold aP (fish) mAP (fish + bait) 

0 0.25 0.437 0.339 

0 0.5 0.354 0.261 

0 0.75 0.050 0.028 

5 0.25 0.830 0.910 

5 0.5 0.749 0.899 

5 0.75 0.555 0.804 

7 0.25 0.796 0.461 

7 0.5 0.740 0.411 

7 0.75 0.374 0.155 

8 0.25 0.860 0.931 

8 0.5 0.826 0.923 

8 0.75 0.615 0.849 

11 0.25 0.828 0.909 

11 0.5 0.798 0.902 

11 0.75 0.583 0.773 

14 0.25 0.862 0.930 

14 0.5 0.827 0.922 

14 0.75 0.607 0.866 
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Appendix III – VIAME error frame change 

 

Figure A2, Error encountered when training the data on extracted frames, 
the algorithm was trained lagging in front of the fish for most of the time. This 
was discovered after already training 4 of the models. 

Error encountered during the training of the data because of the frame extraction delay.  

Appendix IV - Classes of LangolfTV before fusion of classes 

terrier=7663 

actiniaria=4228 

nephrops_norvegicus=2874 

munida=6183 

microchirus_variegatus=350 

hydrozoa=01494 

actinauge=173 

gadiforme=318 

crevette=2655 

brachyura=1086 

pennatula_phosphorea=6514 

callionymus=400 

poisson=59 

actinopterygii=952 

pennatulacea=626 

pleuronectiforme=10 

sabellidae=615 

ophiuroidea=74 

lepidorhombus_whiffiagonis=356 

octopodiforme=294 

polychaeta=177 

bryozoa=13 

autre=8 

solea_solea=14 

Conger=036 

echinoidea=15 

crinoidea=2485 

trisopterus=163 

laser=66 

virgularia_mirabilis=159 

asteroidea=187 
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paguroidea=10 

micromesitius_poutassou=7 

scyliorhinus=38 

triglidae=35 

merluccius_merluccius=42 

sepidae=33 

sepiidae=1  
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