Supporting Information for "Oceanic mesoscale cyclones cluster surface Lagrangian material"

Clément Vic¹, Solenne Hascoët¹, Jonathan Gula^{1,2}, Thierry Huck¹, and Christophe Maes¹

¹Laboratoire d'Océanographie Physique et Spatiale, Univ. Brest, CNRS, IRD, Ifremer, Plouzané, France

²Institut Universitaire de France (IUF), Paris, France

Contents of this file

- 1. Figure S1 shows the number of drifters per bin in the North Atlantic Ocean at their release and after 150, 300 and 450 days of drifting.
- 2. Figure S2 shows a snapshot of synthetic particles' positions, vorticity computed from the model outputs and eddy contours as detected by py-eddy-tracker.

Additional Supporting Information (Files uploaded separately)

1. Movie S1 (map_drifters_eddies_NASTG_2000.mp4) shows SVP drifters (green trajectories) and mesoscale eddies (blue and red disks for cyclones and anticylones, respectively) for year 2000 in the North Atlantic Ocean. NB: disk sizes are not to scale.

January 24, 2022, 8:55am

X - 2

2. Movie S2 (movie_cyclonic_trap.mov) shows an example of how particles cluster in a cyclonic front before the latter rolls up into an eddy that ends up trapping those particles. Particles belonging to the eddy are coloured in pink.

X - 3

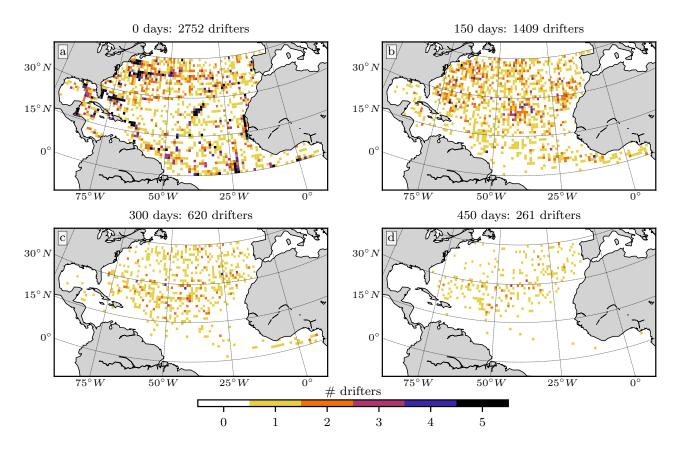
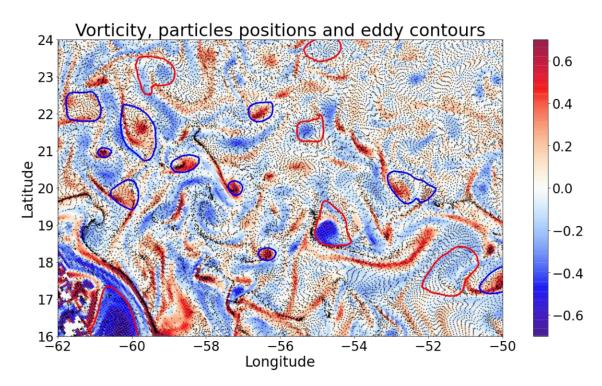



Figure S1. Number of drogued drifters per $1^{\circ} \times 1^{\circ}$ bin (a) at release and after (b) 150, (c) 300 and (d) 450 days. Total number of drifters in the area is shown above each panel.

X - 4

Figure S2. Snapshot of particles' position (black dots) superimposed on vorticity non-dimensionalised by the local Coriolis frequency (blue-to-red shading) and eddy contours detected by py-eddy-tracker (blue for cyclones and red for anticyclones).