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Abstract :   
 
The delta-front estuaries of large rivers are crucial interfaces between lands and oceans, being 
considered hotspots of vulnerability to the impact of climate changes due to several causes: sea level 
rise; changes in the river discharges driven by climatic alterations in the hydrographic basins; high human 
concentration and other anthropic factors. This study focuses on the hydrodynamics/circulation and T-
S structure within the shelf regions and continental platform adjacent to two among the major 
rivers of Northeastern Brazil: the Sao Francisco and Parnaiba. We aim to qualitatively and quantitatively 
describe the physical dynamics typical of these coastal regions and try to relate their main alterations to 
the effects of local mechanisms as tidal forcing. The choice of these deltas was motivated by the great 
potential that such, biodiverse regions have in acting as important proxies of environmental modifications 
affecting the Brazilian tropical zone, allowing to investigate the role of geographical variability in response 
to these changes. A series of regional, modelling simulations was realized, at increasingly 
higher resolutions, in order to assess the mean and seasonal spatio-temporal variability of physical 
properties (T-S distribution, salt transport, hydrodynamical features of the local circulation). The 
identification and analysis of the major scales of variability was also used to evaluate the performance 
and applicability of our numerical tool, the Regional Ocean Modelling System, in the study areas. 
Preliminary results on mesoscales processes indicate that both deltas are modulated by an intense 
turbulent activity. The continental platform near the Sao Francisco estuary is marked by the presence of 
subsurface-intensified vortices, and the one in proximity of the Parnaiba mouth is characterised by the 
appearance of small vortices, fine meanders and filaments probably triggered by non-linear interactions 
between the river plume and the North Brazilian Current rings. 
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CTION 1: INTRODUCTION

Large-river, delta-front estuaries are important interfaces between continents a

 oceans for material  fluxes that have a global impact on the coastal  dynamics a

rine biogeochemistry. Changes in the climate system of the last millenniums seemed

e caused  alterations  in  the  hydrographic  basins  of  the  major  rivers  of  our  plane

cting the sediments discharges in their estuaries, as already demonstrated by sever

hors for different regions of the world ocean [Yang et al., 2002; Xu, 2003;  Donner 

 2004; Kundzewicz Z. W. et al., 2008; Bianchi and Allison, 2009; Araujo et al., 201

7]. Because long-term preservation of high-resolution sedimentary records on erodin

tinental platforms is rare, and where present, often integrates conditions from only

ited region, we must rely on coastal marine sediments (especially in large river delt

m estuaries)  to  better  advance our  understanding of  continental  climatic  processe

nce, the deltaic clinoforms built by these huge rivers represent an important source 

erestimated informations on environmental  changes.  This  results from the fact  th

se  deltaic  regions  are  mainly  characterized  by  an  elevated  rate  of  sediments  an

rients deposition allowing the preservation of different types of environmental proxie

opposition  to  what  happens  in  areas  located  far  from  the  river  mouth  where  th

iments transport is more easily eroded, producing incomplete, environmental records

In  our  study,  we  will  particularly  focus  on  the  deltas  and  adjacent  continen

tforms of two among the major rivers of Brazil, located in the Northeastern corner of t

ntry: the  Sao Francisco and the Parnaiba (Figure 1).  The choice of these estuari

ironments was motivated by the great potential that they have in acting as importa

xies  of  the  environmental  modifications  (sea  level  rise,  alterations  in  the  riv

charges, etc.) affecting the tropical zone of Brazil,  allowing to investigate the role 

graphical variability in response to local to regional changes. With this aim, we ha

lized a series of realistic,  modelling simulations in order to qualify and quantify th

an  and  seasonal  spatio-temporal  variability  of  physical  properties:  thermo-hali

cture, river discharge, main hydrodynamical features of the regional circulation.

 will numerically explore the complex dynamics of these two deltaic systems in order 

estigate alterations in the spatio-temporal distribution of the key physical processes 

 study  areas  in  relation  to  short-term  environmental  factors.  For  this  purpose,  o

sent work builds upon past numerical and observational findings [ Silva A. C. et a

5, 2009b, 2010; Silva M. et al., 2009a; Landim Dominguez et al., 2012; Araujo et a
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4,  2017  2018;  Varona  et  al.,  2019].  Some  were  used  to  gather  together  all  t

ilable information collected in precedent in-situ campaigns, but also to take advantag

the modelling work started at  the  Federal  University  of  Pernambuco simulating  t

rodynamical circulation of the Western Tropical Atlantic. 

The  paper  is  organized  as  follows.  The  current  Sect.  1  ends  up  with  a  br

sentation of the oceanographic region of study. The main aspects of  the numeric

del used for our experiments and details about its configurations are introduced in Se

as  well  as  the  satellite  products  employed  for  the  comparison  of  its  output  w

ervations. In this section we also provide a description of the salt transport calculatio

h its physical meaning,  hydrodynamical implications and the specific applications of th

imate made in our work. In Sect. 3, our principle modelling results in terms of therm

ine structure and mesoscale processes, are presented in order to highlight the stron

iability  and  high,  dynamical  complexity  of  the  estuarine-coastal  areas  und

estigation. In section 4, we discuss the principal results obtained from our numeric

ulations relating them with previous findings, documented in literature, and conclu

h some final remarks and perspectives on future steps to improve our work. 

The ocean circulation along the Northeastern Brazilian coast (Figure 1b) perform

 important  role  in  the interhemispheric  transport  of  mass,  heat,  and salt  and in  th

rmo-haline  overturning  cell  of  the  Western  Tropical  North-Atlantic  Ocean  (WTN

hmitz Jr. and McCartney, 1993; Bourlès et al., 1999a; Silva et al., 2009a; Veleda et a

2]. The WTNA is characterised by a complex system of zonal currents and counte

rents forced by subtropical gyres and the action of the trade winds in  both hemispher

ramma et al., 2005]. The WTNA is also a region with an intense land-ocean interactio

rked by significant material transport, mixed-layer depth changes [Grodsky et al., 201

les et al., 2013] and high biogeochemical activity [Lefèvre et al., 2010; Ibánhez et a

7; Araujo et al.,  2014, 2017],  giving rise to alterations in local and remote ocean

cesses. For example, rivers discharge uses to be a small component of the open oce

inity balance, but the magnitude of the Amazon freshwater source is so important th

 discharged volume reaches two-times the net evaporation minus precipitation (E-

get over the North-western Tropical Atlantic [Ferry and Reverdin, 2004]. Moreover, t

uaries  of  equatorial  rivers  have  been  identified  as  particularly  high-energy  mari

tems because of the combined action of the currents in the western Atlantic Ocea

de  winds, tidal oscillations and the discharge of continental waters, from the Orino

er and especially from the Amazon River  [Nittrouer and Demaster, 1996; Silva et a
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0].  Thus, in addition to these physical  and weather/climate mechanisms, other tw

jor  regional  rivers,  the  Sao  Francisco  and  the  Parnaiba,  are  also  responsible  

viding relevant amounts of sediments, nutrients, and coloured as well as transpare

solved organic matter that can be traced far from the rivers’ mouths [Hu et al., 2004].

In particular, the Sao Francisco River (Figure 1d, displaying its deltaic region a

 adjacent continental platform) is the fourth, major river of South-America. It constitut

 largest river to run entirely within Brazil, measuring a total of 2863 km and draining a

a of 639,219 km2, which represents 7.5% of Brazilian territory [Knoppers et al., 200

ng the Sao Francisco River estuary, the spring and neap tide have been observed 

ge from 1.8 to  0.8 m, respectively  [Cavalcante et al.,  2017]. The Sao Francisco

sidered a classic example of a wave-dominated or wave-influenced delta [Wright an

leman,  1973;  Bittencourt  et  al.,  1982;  Dominguez  et  al.,  1987;  Dominguez,  199

attacharya and Giosao, 2003; Rangel and Dominguez, 2015],  where high wave ener

 mesotidal forcing induce intense vertical mixing of the estuarine zone and consta

uspension of particulates affect chemical processes [Bernardes et al., 2012]. This riv

ys an important role in the economy of the Northeastern region of Brazil, not only 

ms of energy production but also as a source of water supply for the local populati

 agro-industrial  activities  developing  within  its  basin.  The  Sao  Francisco  basin  

sidered one of  the most  vulnerable in Brazil  to ongoing climate changes,  sufferin

er a forecast of decreasing rainfall over the next decades [Marengo et al., 2012]. In 

aqueous portion, the Sao Francisco River has built a mud clinoform measuring abo

 in thickness [Rangel, 2017]. Delta clinoforms have long been recognized as natu

ords of environmental  changes in the drainage basin and coastal  sea [Bianchi an

son, 2009]. This river has thus been in the last years object of an extensive, resear

rt  [Bittencourt  et  al.,  2005;  Marengo et  al.,  2012;  Landim Dominguez et  al.,  201

ujo et al., 2014,  2018] mainly aimed at evaluating the effects of huge dams on 

ro-sedimentologic  regime and on the one of the adjacent  coastal  area,  due to th

iments and nutrients’ retention on the big reservoirs created by these dams. In most 

se  studies,  the  hydrological  series  of  the  1930-1979  period  has  been  used  as

erence parameter for the analyses of changes and their environmental impact. After t

9’s  flood,  the  reconstructed  natural  outflow  of  the  Sao  Francisco  river  has  be

racterised by an average discharge of 2.760 m3/s and nowadays its mean values a

n lower than this threshold [Landim Dominguez et al., 2012].  The outflow reducti

 been attributed to the construction and implementation of the above-mentioned dam
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rting from the Sobradinho one built in 1979. However, more recent studies [Aquino d

a et al., 2015; de Paula Filho et al., 2015] suggest that this reduction in the outflo

ld also be related to a climatic signature, which could be responsible of up to 40% 

 decrease. Indeed, the effects of the actual global warming could result in a gene

nuation of the precipitations regime within the Sao Francisco basin and consequen

ts outflow. Climate numerical models show that these effects could explain up to 35% 

 reduction in precipitation within the hydrographic basin of the Sao Francisco River.

Similar  considerations  can  be  drawn  for  the  Parnaiba  River  (Figure  1

resenting another important river of the Northeastern Brazilian coast, whose catchme

a has a dendritic pattern covering ~344,112 km2 and an average discharge of 841 m

uino da Silva et al., 2015]. The same authors report that in this region the tidal regim

emidiurnal  and mesotidal, with a mean amplitude of about 1.70m at neap tide and a

rage  3.06m  at  spring  tide. Apart  from  being  characterized  by  a  smaller  leng

400km)  and  a  different  dynamical  regime,  its  region  and  the  adjacent  continen

tform are submitted to a more limited, anthropic influence, in comparison to the S

ncisco River,  providing an interesting study area for the dynamical  analysis of  le

taminated,  natural  deltas.  In  fact,  the  Parnaiba  mouth  is  an  example  of  delt

senting  weak  alterations  in  the  transport  of  sediments.  The  investigation  of  th

lution and hydrodynamical regime of these deltas is therefore necessary at region

les, in order to evaluate the effects of climate changes and sea level rise. This wou

cisely be the case of the Parnaiba River, where a small dam situated 630 km upstrea

the mouth seems to not substantially affect the sediments transport towards the coa

is delta could be divided into two main areas: 1) an area laying between the two afflue

utaries of the Parnaiba River (the Parnaiba and the Igaraçu rivers), with their mou

nted north-eastward; 2) a system of tidal channels further west, which extend in t

twest-southeast direction [Galloway, 1975; Bhattacharya and Giosao 2003].  Faulti

 the eastward inclination of the river mouth could be responsible of triggering a mo

ent transformation of the delta from the west to the east directions [Almeida Filho et a

9].  This  could  explain  the  erosive  character  and the ‘elbow’-shape of  the princip

nnel  of  the  river  mouth  within  the  upstream  direction,  which  constitutes  a  typic

racteristic of the tectonically-controlled, river outflows [Reading and Collinson, 1996].

In  summary,  deltas  and  their  clinoforms are  important  repository  of  informati

ut  environmental  changes  (climate,  variations  in  the  sea  level,  anthropic  impac

cting the rivers basins and the nearby coastal zones. Hence, our analysis of the majo



Journal Pre-proof

spa ic

reg he

coa he

effe is

pap er

und

SE

ite

dat g

the al

reg o

Fra al

too le

pro d

val S,

http

of

the nt

for nd

app

2.1

in

and e,

ter nd

hyd rld

oce S

ver e

RO ial

con

Th us

inc ry
Jo
ur

na
l P

re
-p

ro
of

tio-temporal scales of variability in the hydrodynamics and circulation of these delta

ions and the adjacent continental platform would contribute to dynamically describe t

stal responses of these complex systems and elaborate predictions of responses to t

cts  of  the  ongoing climate  changes.  Moreover,  the  methodology developed in  th

er  could  be  extended  and  adapted  to  the  oceanographic  assessment  of  oth

erstudied Brazilian rivers and to their adjacent oceanic regions.

CTION 2: METHODOLOGY

The main goal of this work is to describe, through combining the analysis of satell

a and the output of numerical simulations, the main physical mechanisms determinin

 spatio-temporal  distribution  of  the  thermo-haline  structure  and the  hydrodynamic

ime/ circulation of the deltaic regions and the continental platform adjacent to the Sa

ncisco and Parnaiba rivers. We actually aim to develop and obtain a reliable numeric

l,  able  to  reproduce  the  different  scales  of  variability  of  the  T-S  and  mesosca

cesses  observed  within  the  deltaic  regions  under  study,  in  order  to  calibrate  an

idate  our  mathematical  model:  the  Regional  Ocean  Modelling  System  (ROM

s://www.myroms.org/).  

The identification and analysis of the major scales of spatio- temporal variability 

 thermo-haline and hydrodynamical variables, extracted from the numerical experime

 the deltaic regions under study, will be finally used to evaluate the performance a

licability of this model within the areas of interest. 

. ROMS MODEL

The numerical tool used for the above-mentioned objective, ROMS [Shchepetk

 McWilliams, 2003, 2005; Penven et al., 2006; Debreu et al., 2012], is a free-surfac

rain-following coordinate model with split-explicit time stepping and with Boussinesq a

rostatic approximations. This model has been employed in many regions of the wo

an  by  a  broad,  international  community.  For  our  simulations  we  used  the  ROM

sion developed at the ‘Institut de Recherche pour le Développement’ (IRD), where th

MSTOOLS  package  [Penven  et  al.,  2006]  is  available  for  creating  the  init

figurations and for the subsequent visualization and analysis of its output.

is ROMS version also allows the nesting of various grids ones into the others, th

reasing  their  individual  resolutions,  through  the  adoption  of  the  AGRIF  libra
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aptative Grid Refinement in Fortran) [Blayo and Debreu, 1999; Debreu, 2000; Debre

 Vouland,  2003; Debreu and Blayo,  2008].  Two modes of communication are th

sible  between the different  grids  of  a  nested simulation:  the ‘one-way’,  also call

wnscaling’, where the parent grid (at lower resolution) signals are used as bounda

ditions  for  the  child  grid  (at  higher  resolution,  up  to  3  times finer  than the  pare

olution, as in our work); 2) the ‘two-way’, where the signals of the child grid also fe

k in to the parent grid, though a process known as ‘upscaling’.

It  is  worth  mentioning  that  ROMS has  already  been  extensively  tested  in  o

anic area of interest and largely used by a team of Brazilian modellers placed at t

deral University of Pernambuco [Silva A. C. et al., 2005, 2009b, 2010; Silva M. et a

9a; Varona et al., 2019]. Another remarkable advantage of this model is that has be

igned to be run at regional scales, both within an idealised framework and in a real

text.  It  is  indeed quite straightforward to realize sensitivity tests  with this model  

erently tuning a wide range of parameters, which enables the challenging pursuit 

cess-oriented studies. ROMS has also been designed for parallelization and computi

imization, so that our nested numerical experiments have been compiled using the M

essage  Passing  Interface)  library.  This  numerical  code  has  been  satisfactor

lemented on the French supercomputing clusters of IDRIS, of which we used the late

chine named Jean-Zay (http://www.idris.fr/annonces/annonce-jean-zay.html).

As  it  regards  the  main  datasets  used  to  force  and  initialize  our  numeric

eriments, at the  lateral boundary and initial conditions all variables were constraine

the monthly mean of the 2009 World Ocean Atlas, WOA2009 [Locarnini et al., 201

tonov et al., 2010] with a resolution of 1°. The surface forcings were obtained from t

nthly  mean  climatology  of  the  Comprehensive  Ocean-Atmosphere  Data  S

ADS05) [Da Silva et al., 1994] with 0.5° of resolution. For the river discharge, we to

antage of the climatology of Dai and Trenberth [2002], which includes monthly mean

ues  for  the  biggest  South-American  rivers'  runoff.  To  verify  if  this  dataset  w

roduces the mean values of discharge for the two rivers under study, we have plotted

nthly time series for both the Sao Francisco and the Parnaiba (Supplementary Mater

displaying a range of seasonal  values well  comparable to the ones reported in th

ional  literature (not shown).  Tides are a key process in mixing the river  freshwat

mes with the open ocean, and were obtained from the TPXO7  [Egbert et al.,  199

bert and Erofeeva, 2002], encompassing altimetry data from several satellites in ord
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validate the results obtained through the hydrodynamic model [Wang, 2004; D’Onofr

al.,  2012].  Hence,  in our study we have tested the tidal  effects  on the local  ocea

amics, running a series of numerical simulations with and without the input of tid

spectively the "Tidal" and "No- tide" setups). 

articular, we primarily run these two configurations at a mesoscale-resolving, horizon

olution  of  1/12°  (~7.3  km)  using  a  geographical  domain  encompassing  the  who

rtheastern Brazilian coast:  going from 10°N to  20°S of latitude and 30° to 60°W 

gitude (Figure 1b).  In this preparation phase, a  reference configuration for  the tid

ponents was developed. Additional numerical  tests have been performed to check th

sitivity of the model solution to the vertical grid of the configuration (number of vertic

els, vertical resolution, value of the stretching parameters at the surface and bottom

.).  By default  ROMS tends to stretch the vertical  levels towards the ocean surfac

uring an enhanced resolution in the upper layers. But, it is also possible to adopt

re homogeneous distribution of these levels (50 in our case) along the water column,

er  to  gain  further  resolution  in  the  subsurface  and  at  intermediate  dept

pplementary material  2). This was achieved by setting the stretching parameters 

ta-s' and 'theta-b' to respectively 5 and 0 and by using the newly-introduced function f

 vertical coordinate transformation, with the intention of investigating the effects of tid

chanisms on local ocean dynamics. 

ing  into  account  that  ROMS is  a  sigma  coordinate  model,  a  smoothing  over  t

hymetry, derived from the ETOPO2 [Smith and Sandwell, 1997] database with 2 min

olution and a value of minimum depth at the shore (hmin) of 10 m, has been necessa

minimise pressure gradient errors. However, in order to  avoid an excessive filtering 

 topography, this process has been evaluated through neutral stratification tests r

ng an idealized stratification of the water column. This showed the need of activati

 diffusive component of the advection scheme, designed to reduce artificial effects 

rious diapycnal mixing that could appear in the tracers fields (T and S).

The first mesoscale-resolving simulations were integrated for a period of 10 yea

ting the output at a daily frequency, in order to evaluate not only the initial adjustment 

 model but also the period necessary to achieve a statical steady-state of the simulat

rgy budget. The duration of this spin-up phase (about 18 months) was analysed 

ms of  global  diagnostics  of  surface  and  volume-averaged  variables:  kinetic  energ

tical velocity, density, temperature and salinity (Figure 2). Then the establishment of t

rgy  equilibrium  has  been  examined  by  exploring  the  dynamical  richness  of  t
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ulations through the Eulerian analyses of classical variables (potential vorticity, kine

rgy, properties and volumes of the water masses, heat and salt fluxes). In the future w

n to diagnose it as well  through the Langrangian tracking of the coherent, turbule

ctures and the inter-basin exchanges. Further sensitivity tests of the model to realis

ospheric forcings and lateral  oceanic conditions are planned to be assessed, usin

r-annual forcing for the surface atmospheric and for the lateral oceanic conditions. 

In order to maximize computing efficiency of several simulations at submesosca

mitting resolution we took advantage of the AGRIF 2-way nesting capability of ROM

 previously mentioned, this double-nested approach is designed such that the bounda

ditions  of  the  high  resolution  ’child’  domains  are  supplied  by  the  lower  resolutio

rent’ domain within which they are embedded [Debreu et al., 2012].  This allows 

y consistent boundary conditions of the child domains than what could be obtain

m, often sparsely available, in-situ data. The AGRIF 2-way nesting enables the ch

utions to feed back into the parent domain and therefore allows to achieve a realis

resentation of coastal and ocean dynamics at multiple, interacting scales while takin

 account the "upscaling" effect.

r two AGRIF zooms were localized over the two deltaic regions of interest, the Parnai

 Sao Francisco (Figures 1c and 1d),  and for  each of  them we have run 5 year

ulations at daily output of the nested configuration. The horizontal  resolutions we

2°  for  the  parent  grid  and  1/36°  (~2.7  km)  for  the  child  grids,  while  vertically  w

sistently employed 50 levels, homogeneously distributed along the water column. A

o in these nested solutions, we used the two previous settings: one encompassing th

rmation of the tides components (called "Tidal") and a second one without (called "N

"). In terms of forcing, initial state and advection/ diffusion schemes, in the embedd

s we set exactly the same initial conditions, surface atmospheric forcing and late

anic forcings (only at the parent grid boundaries) as for the single grid run (1/12

ecific tests were also carried out for the child grid smoothing of the nested configuratio

  OBSERVATIONS FOR VALIDATION

r fist methodological step, after having run our numerical simulations, was to compa

output with the available observations of the study regions, that in our case are satellit

rieved data, since in-situ measurements are still very sparse and rare in these areas. 

particular, we regret the lack of information on the vertical distribution of the therm

ine and hydrodynamical variables to validate our numerical output at depth. Reaso
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y our model validation has the limitation of being restricted to the evaluation of t

face fields, which have been compared to satellite data analysing both their over

an values and their seasonal cycles. For a fair comparison of the model data with th

ilable  observations,  the  finer  resolution  of  the  model  output  was  degraded  

roximate  the  lower  resolution  of  the  satellite  products.  Hence,  the  differences  

eral  variables  (sea  surface  salinity  and  temperature,  zonal  ad  meridional  curre

ocities,  eddy  kinetic  energy)  were  computed  between  the  mean  values  from  t

erical output and the satellite observations (Figure 3). In the following subsection, w

l briefly present the main technical aspects and oceanographic characteristics of the

ellite products, as well as the websites where they can be accessed and downloaded.

.1 Satellite Products

ea Surface Temperature (SST) product, from the TropFlux (https://incois.gov.in/tropflu

nalysis of air-sea heat fluxes for the global tropical oceans from 2007 to 2018: th

aset provides daily, timely, accurate air-sea heat and momentum flux data for the ent

N- 30°S region at 1° of spatial resolution. It is largely derived from a combination 

A-I re-analysis data  for turbulent and longwave fluxes (https://www.ecmwf.int/),  a

CP surface radiation data for shortwave flux (https://isccp.giss.nasa.gov/).  A preci

cription of the flux computation procedure is provided in Praveen Kumar et al. [2012].

ea  Surface  Salinity  (SSS)  from  the  Soil  Moisture  and  Ocean  Salinity  (SMO

s://earth.esa.int/web/guest/missions/esa-operational-eo-missions/smos)  data  fro

0 to 2017 at 1/3° spatial resolution. The Microwave Imaging Radiometer using Apertu

nthesis (MIRAS) radiometer picks up faint microwave emissions from Earth's surface 

p levels of soil moisture, sea surface salinity, sea ice thickness and other geophysic

iables such as wind speed over ocean and freeze/ thaw soil state. We used the level

S products version v662.

 and  V  velocities  from  the  Ocean  Surface  Current  Analysis  Real-time  (OSCA

s://data.planetos.com/datasets/nasa_oscar_global_5day)  from  1992  to  2018:  th

aset is generated by Earth Space Research (ESR, http://www.esr.org/oscar_index.htm

 contains near-surface ocean current estimates, derived using quasi-linear and stead

 momentum equations. The horizontal velocity is directly estimated from sea surfa

ght, surface vector wind and temperature. These data, collected from various satellit

 in-situ instruments, are on a 1/3° degree grid with a 5 day temporal resolution. 
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ddy Kinetic Energy (EKE = ½ [U^2 + V^2]^0.5 , Equation 1) estimates from the Alo

ck Sea Level Heights (AVISO,  https://www.aviso.altimetry.fr/) from 2000 to 2016 at 

tial resolution: retrieved from the Ssalto/Duacs along-track altimeter products, includi

lti-mission  sea  surface  heights  computed  with  respect  to  a  20-year  mean.  Seve

eliness are proposed: near-real-time and delayed-time.  As well as different variable

a Level Anomaly and Absolute Dynamic Topography filtered and unfiltered in delaye

e.  The  Copernicus  Marine  Environment  Monitoring  Service  (CMEM

://marine.copernicus.eu/)  is  in  charge of the processing and distribution of  the  S

el Anomaly (SLA-H) and Absolute Dynamic Topography Heights (ADT-H) in the nea

l-time product.

  Salinity Transport across the continental platforms adjacent to the estuaries

For the estuary scales, the estimation of the salinity budget is very important f

erstanding the turbulent dynamics at the ocean-river interface [Rosário et al., 201

t, also at coastal and larger scales the inclusion of salinity dynamics and its variabil

 necessary  for  studying  mixed  and  barrier  layer  behaviours  in  the  western  sout

pical Atlantic, where ocean-atmosphere coupling is known to be strong [Araujo et a

1]. As described in Miranda et al. [2002] the equation for the advective transport of s

ludes at least 7 physical components, among which: the volume transport due to t

r discharge; the mass transport generated by the propagation of tidal waves; the ter

tidal  correlation  between  the  mean  values  of  velocity  and  salinity  within  the  wat

umn;  the  transport  linked  to  the  stationary  circulation,  representing  the  differen

ween  the  gravity  current  and  the  component  generated  by  the  river  discharge  

idual; a term related to the oscillatory shear, to the movement due to the wind and 

 turbulent  fluctuations of  current  velocity,  at  a  temporal  scale inferior  than the tid

iod; a term associated to the tidal dispersion and a final term corresponding to t

poral mean of the correlation between salinity and the tides weighted by the residu

ocity.  Bergamo et al. [2002] provides a practical, computational description of this s

nsport (Ts) in terms of its mean value: 

s=1/T∫
0

T

∫
0

h

ρ u S dz dt=⟨ ρ u S h ⟩            Equation 

ere 'ρ'  is  the water density,  'u'  is  the the zonal component of  current velocity,  'S'

inity, 'T' is the temporal range and 'h' is the thickness of the water column. The symb
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) denotes the temporal average, while (¯¯¯) indicates the spatial mean. In general,

aller  estuaries  this  transport  can  be  considered  laterally  homogeneous  for  t

culation of the advective transport of salt  [Miranda et al.,  2002].  However, given t

ensions of the Sao Francisco and Parnaiba deltas, the model estimation of the s

nsport  would  be  representative  just  for  the  specific  grid  points  chosen  for  t

culation.  In  our  case,  these  points  were  selected  along  two  transversal  transec

oss the continental platform, that will be used during the in-situ campaigns planned f

 near-future out of the estuaries under survey and through which the flow was assum

e laterally homogeneous. The transect is aligned to the river delta for the Parnaiba a

 the Sao Francisco it is approximately traced along the canyon profile; in both cas

y are placed at about 10 km from the coastline, covering a length of a couple of km a

epth of 50m. A local salt transport will be then computed and later discussed in functio

he transects' positions within the simulated child grids of the two deltas as displayed

 Sea Surface Salinity maps of Figures 7a and 7 b. 

ESULTS

The SSS, SST, U, V and EKE difference maps of Figures 3a-e, being the result 

 validation of our simulations' output against satellite-retrieved observations, show ho

 numerical experiments that were run including the tidal components are overall able 

ture the most salient aspects of the Western Tropical Atlantic circulation. In terms of th

cers' distributions, the model solution is generally marked by a positive bias in the T

perties along the northern coast in correspondence of the Parnaiba estuary and abo

of the Amazonian platform, while the modelled southern branch of the North Brazili

rrent (NBC) is fresher and colder than what is observed. The root mean squared err

SE) mean values of the difference between the modelled properties and the observe

equal  to 0.0161 for temperature and 0.0108 for salinity.  These values spatially va

ween the Parnaiba nested domain (0.1060 in SST and 0.0104 in SSS) and the S

ncisco zoom ( 0.0593 in SST and 0.0102 in SSS ). This could be due to discrepanci

he heat and salt fluxes of the two branches of the South-Equatorial Current (SEC) aft

rcation (sketched in the SST map of Fig. 3b, following [Rodrigues et al., 2007]).

e  considerations  can  be  drawn  for  the  dynamical  variables,  as  for  the  zonal  a

ridional  components  of  current  velocity  (U  and  V)  the  RMSE  mean  values  of  t

erence 'model-observations' are respectively 0.0042 and 0.0035. We see again th
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re significant differences can be observed along the northern-northeastern continen

lf  in  particular  in  the vicinity  of  the Parnaiba estuary and along the Amazon Riv

me.  These  discrepancies  are  translated  in  a  negative  bias  of  the  EKE estimati

centrated at the same locations, where the RMSE reaches a value of 0.0076 (me

ue of ~0.0041). A part of them could be explained by the fact that our first, mesosca

mitting  simulation  is  missing  the  contribution  of  more  realistic  river  discharge,  

viously  demonstrated  by  Varona et  al.  [2019] in  a  numerical  study of  the  Amaz

uary. The qualitative findings described for the thermo-haline and dynamical variabl

lysed within the grid parent of the 'Tidal' simulation are similar to those extracted for t

ld grids of the Parnaiba and Sao Francisco rivers mouths (subplots 1 and 2 of Figur

e).  Apart  from the mean values of  the RMSE,  seasonal  estimates have also bee

puted and summarised in Table 1 for each of the 4 seasons and the 5 variables us

 the  model  comparison  with  satellite  data,  confirming  the  reasonably  low  order  

gnitude of their differences throughout the modelled 10 years of integrations. 

is result is confirmed by the ROMS capacity of capturing the seasonal cycles of th

rmo-haline structure (Fig. 4 a-b) within the deltas' nested domains, in comparison to t

ellite observations used for the validation of the ‘Tidal’ simulation (TropFlux data f

T and SMOS data for SSS). We observe that the model has a general tendency of su

imating the SSS values, for which the hugest discrepancy between the monthly tim

ies takes place in the Sao Francisco area with a difference of about 0.03 PSU betwee

 ROMS estimate and the SMOS one. Overall, the two graphs of Figure 4 show a fa

parison between numerical results and satellite measurements, but in order to have

tistical confirmation of model ability to  reproduce observations, we performed the tw

ple  't-test.  Prior  to  performing  the  latter,  observations  and  numerical  output  we

malised since the initial dataset showed non-normal distributions as verified by the on

ple  Kolmogorov-Smirnov  test.  Finally,  the  t-test  results  indicated  no  statistica

nificant differences between the temporal distributions of the thermo-haline variabl

ued of the ROMS tidal simulation and the ones retrieved from satellite data, as t

ues of the 'p' coefficients range from 0.9941 (for the SST in the Parnaiba zoom, Fig. 4

0.9984 (for the SSS in the Sao Francisco zoom, Fig. 4b), for a significance level (α) 

5 in all the analysed cases.   

spite of the above-mentioned, localised discrepancies our simulations seem to be 

d  agreement  with  the  regional  satellite  observations,  while  reproducing  the  ma
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soscale aspects and patterns of the Tropical Atlantic's Western Boundary Current.

e Potential Vorticy ( PV =ζa∗∇ θ / ρ  Equation 3,  where 'ζa' is the absolute vortici

is potential temperature and 'ρ' is water density) surface maps for the parent grids 

h the 'Tidal' and 'No-tide' simulations (Figs. 5a and 6a) mark the latitude (south of 10°

which the southern SEC (sSEC) and its central branch (cSEC) terminations form t

rth  Brazil  Undercurrent–North  Brazil  Current  (NBUC–NBC)  system.  The  latt

resents one of the most powerful western boundary currents in the world [Silva et a

9]. The latitude where the sSEC bifurcation occurs is not well known, although it h

n demonstrated from observations and model results [Silveira et al., 1994; Stramma 

 1995; Rodrigues et al., 2007] that the NBUC originates south of 10°S.

e surface snapshots of PV, EKE and SST from the estuaries' zooms of Figures 5b-g an

g, show that the oceanic regions adjacent to the platforms, off the rivers' deltas, a

rked by the presence of small vortices, meanders and filaments probably due to t

-linear interactions between the rivers' plumes and the main currents' vortices (NBC f

 Parnaiba and SEC for the Sao Francisco). These turbulent structures are visible in t

ps  of  both  the  'Tidal'  and  'No-tide'  simulations,  even  though  much  finer  scal

racterise the experiment encompassing tidal forcing, as tides are an essential proce

ixing the river plumes with the open ocean [Varona et al., 2019]. 

RMSE Winter Spring Summer Autumn

SST 0.0396 0.0279 0.0401 0.0362

SSS 0.0100 0.0181 0.0139 0.0097

U-vel 0.0047 0.0048 0.0050 0.0049

V-vel 0.0038 0.0041 0.0040 0.0037

EKE 0.0035 0.0039 0.0042 0.0043

le 1: RMSE values between the satellite observations described in Section 2.2.1 an
 output  of the 1/12° simulation with 50 levels in terms of Sea Surface Temperatu
T, 1st  row), Sea Surface Salinity (SSS, 2nd  row), zonal and meridional velocities (U-v
 V-vel, respectively  3rd and 4th rows), Eddy Kinetic Energy (EKE, 5th row).

rt of the meso-submesoscale dynamics could be indeed attributed to the interactions 

l  waves  with  local  bathymetry  and  with  some  of  the  SEC  central  and  southe

minations, as documented in previous numerical and observational studies [Silva et a

9b, 2010; Coles et al., 2013; Korosov et al., 2015; Newinger and Toumi, 2015; Arau

al., 2017].  The differences between the two numerical configurations  ('Tidal' and 'N

' setups) were quantified calculating the RMSE values in terms of PV, EKE and SST f
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 parent grid and for the Parnaiba and Sao Francisco zooms (Table 2), showing th

ortant  discrepancies  are  especially  present  in  the  reproduction  of  the  temperatu

tribution and thus of the overall PV budget.

Model Domain RMSE in PV RMSE in EKE RMSE in SST

rent Grid 1.2445 0.004 1.1282

rnaiba zoom 0.9193 0.0185 2.198

o Francisco zoom 1.0274 0.0035 1.9943

le  2:  RMSE  values  between  the  'Tidal'  and  'No-tide'  configurations  of  the  1/1
ulation with 50 levels (1st  row) and between the nested zooms at 1/36° embedde

hin them (2nd and 3rd rows) for different variables: Potential Vorticity (PV, 1st column
dy Kinetic Energy (EKE, 2nd column) and Sea Surface Temperature (SST, 3rd column).

The effects of the tidal forcing inclusion in the model on the dynamical process

ical of estuarine- coastal regions can also be qualified through the analysis of the s

nsports' time series displayed in Figure 7c. In this plot, the calculation of the daily me

nsport of salt was carried out using the output of the model last year (Y10) of both th

al' and 'No-tide' nested simulations. These averaged values were extracted along th

 transects localised across the continental platforms adjacent to the Parnaiba and Sa

ncisco estuaries (respectively Figure 7a and 7b), representing the possible positions 

tions to use during the oceanographic surveys planned in these regions in the nea

re.  The  'Tidal'  and  'No-tide'  curves  of  these  mean  salt  transports  (respective

tinuous and dotted lines in  Figure 7c) show similar patterns and generally positi

ues for the Parnaiba River and negative ones for the Sao Francisco. However, the 'N

' estimates are marked by much lower values for both rivers, highlighting how the tid

cing plays an important role in the horizontal distribution and advection of salt within t

stal areas closed to the estuaries of interest. This is in accordance with the numeric

ings of Wey et al. [2014] for most types of estuaries, revealing that the leading ord

idual salt transport is driven by horizontal diffusion, river outflow, and tidal advection. 

the case of the 'Tidal' experiment, to better investigate the influence of this forcing 

 behaviour of the dynamical variables at depth, instantaneous zonal and meridion

tions of  current velocities were extracted along the same sections, placed across t

tinental  shelf  near  the deltas,  where the salt  transport  time series were estimate

ese  velocity  sections  are  shown  in  Figures  8a-d,  where  positive  (negative)  valu

icated by solid (dashed) lines correspond to  north-westward (south-eastward) curren

these  plots,  both  the  Parnaiba  and  the  Sao  Francisco  coastal  areas  seem  to  
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rested by an intense eddy activity, since cyclones and anticyclones alternate below t

 surface, and some of them have an important vertical structure that can be trace

n to 1500 m of depth. In case of the Sao Francisco, morphologically characterised 

eep canyon, the eddies' extension along the water column is more significant, reachi

ean depth of almost 2000 m. This points out to the possible formation of subsurfac

nsified mesoscale features. That is why it was necessary to increase the numeric

olution within the embedded child grids, in order to become fully mesoscale-resolvi

 even submesoscale-permitting both in the horizontal and in the vertical.

is  eddy  activity  can  be  better  traced  at  depth  by  plotting  instantaneous  profiles  

tive vorticity 'ζ' (Figure 9a), extracted at the locations where current velocity assum

greatest magnitude at the surface in each of the two child grids (indicated by a bla

r in the velocities' sections of Figures 8a and 8c) and comparing the behaviour of t

al ' and 'No-tide' runs also in the vertical (RMSE values between the two estimates a

ut 3.8 for the Sao Francisco and 2.7 for the Parnaiba). For both the Sao Francisco an

rnaiba deltas, the 'Tidal' and 'No-tide' profiles have, almost at all depths, an oppos

n, although in the case of the 'No-tide' run the excursion of positive and negative valu

ore reduced. However, for both the configurations and deltas these profiles suggest a

rnation of anticylonic and cyclonic eddies, whose effects in thermo-haline properties

tically less marked than their dynamical signature. Indeed, the T-S diagrams of Figu

 show for both deltas slight discrepancies between the two configurations, since th

SE estimates between the 'Tidal' and 'No-tide' curves are approximately 0.05 for th

o Francisco and 0.1 for the Parnaiba.

further assess the differences between the two deltaic regions of interest in terms of th

l forcing we have performed some diagnostics regarding its local elevation, the region

tribution of the major tidal components and the approximation of the tidal wave on th

tinental platforms adjacent to the rivers’ deltas. We primarily traced a time series of t

l range from the first 20 days of the model integration, extracting the values of sea lev

m the TPX07 product used to force the model at the coastal gauge stations closest 

h one of the two estuaries (Supplementary Material 3).  This graph points out how t

 deltas are interested by a very similar, semi-diurnal period even though the tidal ran

reater in the Parnaiba area. This slight distinction is visible also in the surface maps 

 first, four tidal constituents among the ten considered in our tidal simulation (M2, S

, K2, K1, O1, P1, Q1, Mf, Mm) showing higher values along the Parnaiba coastline f

h of the displayed constituents. But, at the regional scale, not huge  discrepancies ca
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 observed  between  the  two  deltas  in  terms  of  the  overall  intensity  of  these  tid

ponents.  Then zooming to  finer  scales,  more significant  differences can be note

eed, in the plots of the M2 (major semi-diurnal lunar component) tidal amplitude a

se extracted within the nested domains of each delta (Figure 10 ‘a-d’), we observe th

ch lower intervals of values are present in the Sao Francisco area, where the tid

pse (mathematical approximation of the tidal wave) shape is almost point-like. Instea

se to the Parnaiba delta the tidal ellipse has a well-defined shape, turning and flatteni

axis  in  proximity  of  the  continental  platform  where  the  magnitude  of  the  M2  tid

plitude and phase substantially increase (note the different ranges of values betwee

 colour bars of Figure 10 a-c and b-d).

ISCUSSION AND CONCLUSIONS

Besides the fact that the model accurately reproduces the satellite-derived variabl

rall  (SSS,  SST,  U  and  V  velocities,  EKE  of  Figures  3a-e)  and  the  thermo-hali

sonal cycles (Figures 4a-b), it also resolves the local mesoscale dynamics quite we

luding frontal  structures, meanders and specific upwelling regions. For instance, th

centration of tiny filaments observed in the model PV map of Figure 5a in the vicinity 

 Abrolhos Bank (Lat. 17–18°S—Long. 38.5°0 –39.5°W, marked by a black asterisk) a

 Vitória-Trindade Ridge (Lat. 20°S—Long. 34–38°W, marked by a black square) a

d  hints  of  observed  and  modelled  upwelled,  cold  waters  and  mesoscale  cyclon

ctures previously documented in this area [Schmid et al., 1995; Campos, 2006]. In fa

 modelled SST and EKE are especially efficient compared to the satellite estimates 

se variables in proximity of the coastline (~10 km), where the infrared and the altimet

rievals may be respectively cloud-contaminated and limited by the data gaps along t

tinental shelf. 

e capacity of the ROMS model to capture the fine-scale, turbulent structures has bee

ved in both the 'Tidal' and 'No-tide' configurations, as evidenced in the nested maps

, EKE and SST (Figures 5b-g and 6b-g). Even though for a thorough analyses of th

amical differences between these two numerical setups both simulations should 

un with output at hourly frequency, we can already observe some evident discrepanci

he distribution of the potential vorticity, eddy kinetic energy and temperature shown

ir surface maps, which were quantified in terms of the RMSE values of Table 2. 

nificant differences between the two configurations emerge as well in the time series 

t transport of Figure 7c, which relates the movement of salt along an estuarine chann
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several physical forcings (e.g., tides, freshwater flow, wind). The latter relationship

ential in predicting the extent of saline intrusion within the estuary and provides insig

 the dispersal of other substances [Monismith et al.,1996; Wells and Young, 1992]. S

nsport is generally divided into a seaward advection of salt, due to the net river outflo

 two  mechanisms of  landward  salt  transport,  the  estuarine  salt  transport  (i.e.,  th

tical and lateral variations of tidally averaged, or ‘‘residual,’’velocity and salinity) a

l dispersion (i.e., the tidal correlations of velocity and salinity) [Fischer, 1976]. Genera

 calculation of properties' transport is realized along a section transversal to the estua

e considered the estuary laterally homogeneous [Bergamo et al., 2002; Miranda et 

2; Vaz et al., 2012]. In the case of the Sao Francisco and Parnaiba rivers, taken in

ount  their  reasonable width,  their  estuaries were not  considered so.  Thus,  the s

nsports shown in the time series of Figures 7c were calculated along two transec

alised across the continental platforms adjacent to the estuaries of interest (Figs. 

 7b), where the hypothesis of lateral homogeneousness of the flow was assumed. F

st of  the analysed year (model  Y10),  the two mean estimates of salt  transport  ha

inly an opposite sign, being negative in the case of the Sao Francisco and positive f

 Parnaiba. In-situ mesurements of such physical quantity would be required to loca

lain the dynamical processes that influence this contrasted behaviour. But at a larg

le,  we  could  hypothesize  that  this  is  related  to  a  higher  rate  of  evaporati

racterising  the  coastal  area  off  the  Parnaiba  delta,  geographically  placed  mo

theast than the Sao Francisco estuary [Hastenrath, 2006]. 

other reason could be represented by the northward transport of warmer and salt

ters by the NBC's rings, which have a vertical signature as significant as the horizon

. Indeed, in the vertical sections of the meridional and zonal velocities extracted fro

 'Tidal' simulation (Figures 8a-d), eddies of both signs, at times appearing as dynamic

oles, can be traced at meaningful  depths, which, in the case of the Sao Francis

yon,  can  get  down  to  2000  m.  The  existence  of  subsurface  mesoscale  vortic

ociated  to  the  NBC  retroflection  is,  in  some  areas  of  the  two  nested  domain

denced without any signature in the surface layer, so confirming earlier model outpu

lva et al., 2009b]. Those of them which are subsurface anticyclones (also named 'ring

the regional literature), linked to the NBC/NBUC retroflection into the north Equator

dercurrent  (nEUC)  and  the  EUC,  contribute  to  the  transport  of  South  Atlantic  hig

inity water into the Northern Hemisphere. The numerical results of  Silva et al. [2009

hlighted that,  during all  the seasons, the Salinity Maximum Waters (SMWs) comin
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m the North Atlantic are transported through the boundaries of these rings (near 8°N

ile the SMWs coming from the South Atlantic are transported within the core of the rin

ing their north-westward displacement. In a similar way, Johns et al. [2003] described

 Western  Tropical  Atlantic  the  presence  of  intensified  subsurface  rings  above  t

rmocline  but  without  any  signature  at  the  surface.  These  structures  were  al

roduced in the modelling works of  Barnier et  al.  [2001],  Garraffo et  al.  [2003],  a

amma et al. [2005]. More recent observations of the North Brazil Current Rings (NBC

periment  [Johns  et  al.,  2003] confirmed  the  existence  of  a  ranking  of  surface  a

surface NBC rings between 50 and 40°W, transporting SAW on the ring core and Nor

antic Water (NAW) on its boundaries. They would represent the third type of NBC rin

cribed by Wilson et al. [2002], namely thermocline intensified structures with almost 

ectable surface signature, as emerged in the nested velocity sections of Figures 8 (a-

 in  the  relative  vorticity  profiles  of  Figure  9a.  In  these  latter  plots,  the  dynamic

nature of anticyclonic and cyclonic eddies at depth is much greater than in the upp

ers. In contrast, T-S variations are more significant near the surface (Figure 9b), ev

ugh  their  behaviour  does  not  substantially  differ  between  the  'Tidal'  and  'No-tid

figurations as much as seen in the curves of relative vorticity. This suggests that th

erical inclusion of the tidal forcing has a greater impact on the eddy dynamics than o

 thermo-haline structure of the simulated regions of study. 

further characterize the difference of the tide influence between the two estuaries, a s

tidal  metrics (plots  of  the range and of  the 4 major  components’ amplitudes in  th

pplementary Material  3 and 4; M2 amplitude, phase and ellipse of the tidal wave 

ure 10 a-d) were computed from the model and analysed within the nested domain 

h delta. The Parnaiba case shows much higher values of tidal elevation, amplitudes

 four tidal constituents taken into account and also in terms of the M2 parameters an

pse, than  the Sao Francisco area. This tidal difference could represents one of t

sons why the subsurface variations of RV are more pronounced in the Parnaiba profil

n in the Sao Francisco ones. And it could also explain the greater magnitude of the P

ues along the Parnaiba continental platform than within the Sao Francisco region.

addition to the presence of the cited surface and subsurface eddies in the regions 

dy,  another  source  of  turbulence  could  be  represented  by  the  interaction  of  the

soscale structures  with  the  rivers plumes and tidal-estuarine processes,  particula

ctive within canyons, where turbulence is usually orders of magnitude stronger than

 open ocean [Nash and Moum, 2001;  Kunze et  al.,  2002].  These interactions m
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lude: (i) internal wave critical reflection [Eriksen, 1982]; (ii) scattering of the barotrop

 and internal waves off small-scale topography [St. Laurent and Garrett,  2002]; (

rnal  lee  wave generation  by  small  scale  topography  [Thorpe 1996]; and  (iv)  ed

dding [MacCready and Pawlak, 2001]. For the time being, the multiple limitations of o

erical work does not allow to evaluate if the interaction of the river plume with (

ld be one of the mechanisms taking place in the areas of interest or rather due to th

 type of mechanism. Specific, process-oriented studies would be needed to evalua

 role  played  by  each  of  the  above-mentioned  interactions  within  the  two  areas  

rest, but such an insightful  research goes beyond the scopes of the current pap

reover, high-resolution sampling in both time and space are required to resolve and 

lyse the scales of the listed processes inside canyons [Solé et al., 2016] and within t

tinental platforms under investigation.

In  summary,  for  the  oceanic  region of  study,  ROMS  provides  a  numerica

austive  description  of  the  coastal,  estuarine  processes  and  their  propertie

iabilities. Our numerical results, coming from regional climatological modelling, are 

d agreement with previous studies and satellite-retrieved observations, showing simi

terns of thermo-haline distribution and ocean surface circulation of the Western Tropic

antic. At  present,  our  findings  provided  evidence  of  an  intense  turbulent  activ

racterising  the  T-S  structure  and  hydrodynamical  regimes  of  two  among the  ma

uaries of the Northeastern Brazil: the Sao Francisco and Parnaiba rivers. Embedd

ld grids, run within their coastal areas and adjacent platforms at much higher resolutio

n the original parent grid, allowed to qualify in more details the fine-scale interactio

ween the river's plume and the SEC terminations, in the case of the Sao Francisco (P

ps of  Figs.  5a and 5e),  and with  the passage of  the NBC rings,  for  the Parnaib

erefore,  the dynamics of both deltas  are marked by short  spatio-temporal  scales 

iability  in  terms of  the  main  patterns  of  circulation,  hydrodynamical  properties  an

rmo-haline  structure.  This  is  reflected  also  in  the  vertical  sections  of  the  curre

ocities, where it looks like the Sao Francisco shelf and adjacent platform is interest

the presence of subsurface-intensified eddies (Fig. 8 c-d). Similarly, a strong turbulen

ms to characterise the oceanic region off the Parnaiba delta, both at surface (Fig. 5 

and at depth (Fig. 8 a-b). In order to investigate in more details all these processes 

 next  future,  the  current  model  configuration  will  be  improved  by  using  a  high

olution and including finer, dynamical scales, better turbulence closure schemes, an

re realistic products for the surface forcing and lateral boundary conditions. Using th



Journal Pre-proof

nes ng

sig e

reg e

sim el

com to

qua ys

wit

AK

Th al

aid  e

Mo e

ack ng

sup ce

(ht ial

Iss ng

the ir

pre he

IDR o

hel

RE

- A .,
200 n
Eq

- A .,
Zw ty,
vol

- A e
infl he
Pa ek
(Fl

-  A 9.
Co g
del
Jo
ur

na
l P

re
-p

ro
of

ting  capability  of  ROMS, we will  continue to  explicitly  resolve the fast  propagati

nals across the whole Tropical Atlantic while addressing the coastal response within th

ions of the embedded child grids. Another further step would be the comparison of th

ulations' output with in-situ data. The availability of accurate observations for the mod

parison  will  allow  us  to  run  offline  Lagrangian  integration  of  particles  in  order  

ntify  currents'  trajectories in more details,  as well  as to describe tracers'  pathwa

hin the estuaries of interest and along the adjacent continental platforms.
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ure 1: Location of Brazil  in South-America,  and of the Parnaiba and Sao Francisco
aries in the northeastern region ('a' adapted from [Aquino da Silva et al., 2019]). 'b'
ws the geographic extension of the domain of the 'Tidal'  simulation at 1/12º with 50
els,  where  the  boxes  highlight  the  two  embedded  zooms  of  the  Parnaiba  and  Sao
ncisco deltas and adjacent platforms (respectively 'c' and 'd)', realized using [GEBCO,
3] and [Gorelick et al., 2017]).
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Figure 2: Temporal series of different surface and volume averaged variables ('a' volume ano
[km³], 'b' kinetc energy [cm²/s²], 'c' density [kg/m³] on the left y-axis and vertical velocity [m
the right y-axis, 'd' salt [PSU] on the left y-axis and temperature [°C] on the right y-axis)  of
simulation at 1/12º with 50 levels, whose first 18 months can be considered a spin-up period.

A)
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gure 3: Difference maps of Sea Surface Salinity (a), Sea Surface T emperature (b), zonal U (c)
eridional V (d) velocities, Eddy Kinetic Enenrgy (e) between the monthly means of the 'Tidal' ru
tellite-observations interpolated in the model grid.With '1' and '2' are indicated the Parnaiba a
ancisco zooms for each of these variables, while in subplot ' b' the South-Equatorial Current (
furcation has been sketched following Rodrigues et al. [2007].

4: Monthly timeseries of SST (red curves) and SSS (blue curves) comparing the seasonal cycle
output (average files from the last 8 years of the Tidal simulation) and the satellite observation
el validatio(TropFlux and SMOS datasets, respectively) within the nested domains of the Parn
 Sao Francisco (b) estuaries. The 'p' values at the bottom of each graph represent the significa
ents from the 't-student' test used to statistically corroborate the robustness of the comparison 
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tantaneous surface maps of Potential Vorticity for the parent grid (a) and the Parnaiba and Sa
b and e), as well as estimates of EKE (c and f) and SST (d and g) from the 'Tidal' simulation. In
nk and the Vitoria-Trindade Ridge are marked by respectively a black asterisk and a black squ

Figure 6: Same as Figure 5 for the 'No- tide' simulation. 
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 Vertical sections of instantaneous meridional (left) and zonal (right) velocities along the trans
s 7 a-b for the Parnaiba ('a', 'b') and the Sao Francisco ('c' ,'d') child grids. Positive (negative)
 by solid (dashed) white lines correspond to northward (southward) current, black dashed line

ea Surface Salinity mean maps from the model last year (Y10) of the 'Tidal' simulation for the P
 Francisco zooms (respctevely 'a' and 'b'), showing the location of the transects across the con
ng which the times series of the daily averages of salt transports ('c') were calculated for the '

ns.
s' position along the water column.The black stars in 'a' and 'c' mark the stations where the profiles of 
were traced.
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9: Instantaneous profiles of Relative Vorticity ('a') traced at the locations indicated by black sta
ions of Figures 7a-c, for the 'Tidal' and 'No-tide' configurations and for both the child grids of
a and Sao Francisco deltas; in 'b' the correspondant Temperature-Salinity diagrams plotted a

ations.  

a)
b)

a)
b)
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ure 10: M2 Tidal ellipses (red line)  plotted over surface maps of the amplitude and phase of th
l component for the Parnaiba (respectively 'a' and 'c') and Sao Francisco nested domains ('b' 
 'd'). 
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