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ABSTRACT
Background. Population dynamics are driven by a number of biotic (e.g., density-
dependence) and abiotic (e.g., climate) factors whose contribution can greatly vary
across study systems (i.e., populations). Yet, the extent to which the contribution of
these factors varies across populations and between species and whether spatial patterns
can be identified has received little attention.
Methods. Here, we used a long-term (1982–2011), broad scale (182 sites distributed
across metropolitan France) dataset to study spatial patterns in the population’s
dynamics of three freshwater fish species presenting contrasted life-histories and
patterns of elevation range shifts in recent decades. We used a hierarchical Bayesian
approach together with an elasticity analysis to estimate the relative contribution of a
set of biotic (e.g., strength of density dependence, recruitment rate) and abiotic (mean
and variability of water temperature) factors affecting the site-specific dynamic of two
different size classes (0+ and >0+ individuals) for the three species. We then tested
whether the local contribution of each factor presented evidence for biogeographical
patterns by confronting two non-mutually exclusive hypotheses: the ‘‘range-shift’’
hypothesis that predicts a gradient along elevation or latitude and the ‘‘abundant-
center’’ hypothesis that predicts a gradient from the center to the edge of the species’
distributional range.
Results. Despite contrasted life-histories, the three species displayed similar large-scale
patterns in population dynamics with a much stronger contribution of biotic factors
over abiotic ones. Yet, the contribution of the different factors strongly varied within
distributional ranges and followed distinct spatial patterns. Indeed, while abiotic factors
mostly varied along elevation, biotic factors—which disproportionately contributed to
population dynamics—varied along both elevation and latitude.
Conclusions. Overall while our results provide stronger support for the range-shift
hypothesis, they also highlight the dual effect of distinct factors on spatial patterns in
population dynamics and can explain the overall difficulty to find general evidence for
geographic gradients in natural populations. We propose that considering the separate
contribution of the factors affecting population dynamics could help better understand
the drivers of abundance-distribution patterns.
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INTRODUCTION
Population dynamics have been related to several factors that can be classified as intrinsic
(i.e., biotic) or extrinsic (i.e., abiotic) (Cappuccino & Price, 1995). Whether populations
are mostly influenced by one or the other type of factor has been a matter of debate
(Andrewartha & Birch, 1954; Nicholson, 1957) and has recently regain interest owing to the
need to improve our knowledge regarding the influence of climate change on population
and species extinction risk (Bellard et al., 2012). Although there is now clear evidence that
both factors can influence wild populations (Bjørnstad & Grenfell, 2001), we still have a
poor understanding of their relative influence across the distributional range of species
(Frederiksen, Harris & Wanless, 2005; Guo et al., 2005; Pearce-Higgins et al., 2015; Dallas,
Decker & Hastings, 2017; Pironon et al., 2017).

Beyond data limitations (i.e., the need of long-term time series formultiple populations),
the complexity underlying population dynamics may explain this lack of knowledge
(Benton, Plaistow & Coulson, 2006). For instance, in stage-structured populations,
individuals in different states can be differentially influenced by climatic conditions
(Coulson et al., 2001; Ibáñez et al., 2015) while contributing differently to the overall
dynamic of the population (Radchuk, Turlure & Schtickzelle, 2013). At the same time,
climate can have various influences on populations depending on their position within
the distributional range of species (Curnutt, Pimm &Maurer, 1996; Sæther et al., 2008;
Pearce-Higgins et al., 2015). Some studies have attempted to identify the large-scale drivers
of population dynamics by studying the extent to which spatially distant populations
tend to vary in synchrony over time (Liebhold, Koenig & Bjørnstad, 2004). While in some
cases, their findings support the view of a common climatic driver (e.g., temperature)
affecting populations abundance similarly, in most cases, a considerable amount of
variance remains unexplained (Chevalier et al., 2015), suggesting that population dynamics
and their associated drivers can greatly vary over space (Sæther et al., 2008; Grøtan et al.,
2009; Roy, McIntire & Cumming, 2016).

Spatial differences in population dynamics can vary according to a number of factors
including species range limits (Williams, Ives & Applegate, 2003), the abiotic environment
(Sæther et al., 2008), resource availability (Wang et al., 2008), latitude (Sæther et al., 2008;
Pearce-Higgins et al., 2015) or elevation (Dostálek, Rokaya & Münzbergová, 2018). Two
main hypotheses have been advanced to explain these spatial variations. Based on the
niche concept (Hutchinson, 1957; Peterson et al., 2011), the first hypothesis predicts a
negative relationship between population abundance and the distance to the geographic
range center (Brown, 1984). This abundant-center hypothesis (also called core–periphery
hypothesis; Pironon et al., 2017) has a long-standing history in ecology and assumes that
environmental conditions become harsher towards the limits of species ranges, leading to
geographic patterns in the demographic performance, the strength of density-dependence
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or the genetic variability of populations (Sagarin, Gaines & Gaylord, 2006). For instance, a
main expectation is that core populations should be rather regulated by density-dependent
processes because highly productive areas tend to be monopolized by individuals with high
competitive abilities, whereas peripheral populations are rather expected to be regulated
by abiotic factors (Pironon et al., 2017; Santini et al., 2019). However, recent studies
found contrasting empirical support for the abundant-center hypothesis casting doubts
about its generality (Dallas, Decker & Hastings, 2017; Santini et al., 2019). The second
hypothesis—the range-shift hypothesis—is based on the evidence that species are moving
poleward or upward to track suitable climatic conditions (Parmesan & Yohe, 2003; Pecl
et al., 2017). These range shifts imply that populations located at the periphery of the
range can display various behaviors depending on whether they are located at the trailing
(i.e., low latitude or elevation) edge where extinction processes are at play (Kuussaari et al.,
2009) or at the leading (i.e., high latitude or elevation) edge where colonization processes
should be more prevalent (Engler et al., 2009). Different spatial patterns are expected under
this hypothesis. For instance, while trailing and leading-edge populations should be both
weakly regulated by density-dependent processes owing to environmental disequilibrium,
populations located at the leading edge are expected to be positively affected by climate
change, whereas the opposite is expected for populations located at the trailing edge (Mills
et al., 2017). Whether spatial variations in population dynamics are best explained by the
abundant-center or the range-shift hypothesis remains unexplored to date.

In this study, we used an extensive database containing information on population
abundances and individual sizes from different sites covering France, to study the spatial
pattern in the contribution of biotic and abiotic (temperature-related) factors to the
population dynamics of three freshwater fish species presenting contrasted life-histories
and patterns of range-shifts (see below). We used length frequency histograms (Cattanéo &
Lamouroux, 2002; Bergerot & Cattanéo, 2017) to separate individuals into two size-classes
corresponding to young-of-the-year (0+) and older individuals (>0+). This allowed us
to study spatial variations regarding the strength of density dependence between >0+

individuals (owing to competition for resources), the productivity rate of >0+ individuals
(i.e., an equivalent of the population growth rate but tailored to this particular size-class),
the apparent recruitment rate of 0+ individuals (which depends on the density of >0+

individuals) and the apparent survival rate of 0+ individuals (Grenouillet et al., 2001).
Regarding abiotic factors, we focused on the effect of temperature, a factor known to
be a strong determinant of the abundance of 0+ individuals (Grenouillet et al., 2001)
and year-class strength (i.e., the number of larvae hatched in a given year) and which is
therefore classically considered as the most important factor in fish ecology (Mills & Mann,
1985). However, while previous studies mostly focused on changes in average temperature,
here we also considered the effect of changes in temperature variability; a component
predicted to be strongly affected by climate change (Lawson et al., 2015). We used Bayesian
inference to estimate model parameters affecting each species population dynamics and
elasticity analysis to highlight the relative contribution of biotic and temperature-related
factors to the population dynamics of the three species (Koons et al., 2015). From elasticity
measures, we then asked the following questions: (i) is the contribution of biotic and
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Table 1 Life-history attributes and range shifting patterns along the elevational gradient for the three
freshwater fish species.Values were taken from various sources (Froese & Pauly, 2021; Kottelat & Freyhof,
2007; Comte & Grenouillet, 2013).

Roach Chub Barbel

Fecundity 50,000 125,000 10,000
Body length (mm) 275 400 500
Lifespan (years) 14 16 20
Critical thermal maximum (◦C) 39.00 38.00 32.00
Range size (km2) 19,522,376 7,126,749 2,782,586
Shift trailing edge (m/yr) 0.022 0.054 0.115
Shift leading edge (m/yr) −0.873 1.542 −4.311
Shift centroid (m/yr) 0.266 0.209 −0.125
Strategy Opportunistic Periodic Equilibrium

temperature-related factors similar across species presenting different life-histories, (ii) can
we identify a spatial pattern in the contribution of the different factors and if so (iii) which
of the range-shift or the abundant-center hypothesis best explains the observed pattern? The
two latter questions were tackled through a model selection procedure testing differences
between a null model (assuming no spatial pattern), a model that includes the distance
to the geographic center as a covariate (abundant-center hypothesis) and two models that
either included latitude or elevation as covariates (range-shift hypothesis). To the best of
our knowledge, this study is the first using data from a monitoring program together with
a modelling framework integrating elasticity analyses to derive inferences about the drivers
of spatial variations in population dynamics, while accounting for stage-specific dynamics.

MATERIALS AND METHODS
Datasets
Studied species
We considered three species presenting different life-history strategies and patterns of
elevational range shifts: the barbel (Barbus barbus), the roach (Rutilus rutilus) and the
chub (Squalius cephalus) (Table 1). Following the three demographic strategies proposed
by Winemiller (1992), the barbel is an ‘equilibrium’ strategist characterized by a long
lifespan, a low fecundity and a large body size (Kottelat & Freyhof, 2007; Froese & Pauly,
2021), the roach is an ‘opportunistic’ strategist characterized by a small size and a low
fecundity whereas the chub has the opposite characteristics and can be considered a
‘periodic’ strategist. The opportunistic strategy should maximize the colonizing capability
of species in stochastic environments with frequent changes at small temporal and spatial
scales. Alternatively, a periodic strategy is favored in environments with large scale cyclic
variations (e.g., seasonal environment), whereas an equilibrium strategy is favored in
environments with low temporal variation in habitat quality and strong biotic interactions
(Winemiller, 1992).

These differences are expected to entail variations in the direction of the effect and the
relative contribution of biotic and temperature-related factors to the population dynamics
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of the three considered species. For instance, while the abundance of all three species is
expected to be positively affected by water temperature (Mills & Mann, 1985; Grenouillet et
al., 2001; Piffady et al., 2010), we expect the barbel to show a stronger regulation by density,
particularly for populations located at the center of the range, while the two other species
are expected to be rather regulated by temperature-related factors with an increasing
negative contribution as the distance to the geographic center increases (Williams, Ives
& Applegate, 2003). Similarly, we expect temperature variability to have a larger positive
contribution on roach abundances (opportunistic strategy) than on the abundance of the
two other species where average temperature could have a stronger (and positive) influence
(Winemiller & Rose, 1992).

The three species also present different patterns of elevational range shifts in the
last decades (Comte & Grenouillet, 2013), with different responses observed along the
elevational gradient (Table 1). For instance, the leading edges (high-elevation populations)
of barbel and roach have shifted downward, whereas an upward shift was recorded for
chub (Table 1). Thus, a positive influence of temperature is expected for high-elevation
populations of chub while the opposite is expected for the two other species. The trailing
edges (low-elevation populations) of the three species have been observed to shift upward
but at a different pace. The larger shift observed for barbel (Table 1) could be associated
with a stronger and negative contribution of temperature for low-elevation populations.

Species data
Fish population abundances and individual sizes were extracted from the freshwater fish
monitoring database of the French Biodiversity Office (OFB, http://www.image.eaufrance.
fr). We selected 182 sites where data was collected between 1982 and 2011 (3,143 sampling
operations) by electrofishing. Streams were sampled by wading, during periods of low
flow (from May to October), after the reproduction time, using a point sampling strategy
covering the different habitats (e.g., pools, riffles, submerged vegetation) observed over
the study sites (Poulet, Beaulaton & Dembski, 2011). Fish were identified to species level,
measured for total body length, counted, and released to the river. For the three species,
we selected time series that were composed of at least 15 years of data during which the
sampling protocol remained the same and contained at least 50% of non-null captures at
the population level (i.e., 0+ and >0+ individuals confounded). This selection was made to
reduce the number of zeroes while keeping times series of sufficient length to allow for an
appropriate estimation of the temporal dynamic of populations. We further discarded time
series with more than three consecutive years missing to ensure that the loss of information
in population change during the missing years is minimized (Engen et al., 2005). Missing
values were ignored during the modelling process. This selection process ensures reliable
model inference and left us with 71 (mean length = 17.09 years), 175 (mean length =
17.24 years) and 152 (mean length = 17.26 years) time series for barbel, chub and roach,
respectively. In total, 326,234 individuals were collected. Further details about abundance
and size data are provided in Appendix S1, Figs. S1 and S2.
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Temperature data
Daily air temperatures from 1982 to 2011 were provided by Météo France and extracted
from the high resolution (8 km by 8 km grid) SAFRAN atmospheric analysis over
France (Le Moigne, 2002). Daily water temperature data measured from 2009 to 2012
at 135 sites located throughout France were provided by the French Biodiversity Office
(https://ofb.gouv.fr/). From these two datasets, we used a random forest algorithm where
we modelled model water temperature as a function of three covariates: air temperature,
month and elevation. The model showed a very good performance and was therefore
used to predict daily water temperatures for all sampling sites over the course of the study
period. For further details see Chevalier et al. (2018). From daily predictions, we calculated
the annual mean and intra-annual variability of water temperature between consecutive
sampling occasions at each site and used these temperature variables as covariates in the
population dynamic models. For each species, a summary of both variables is provided in
Appendix S1; Fig. S3. These variables were transformed to z-scores before model fitting to
improve model convergence.

Geographic range data
The above-mentioned abundance data do not encompass the full geographic range of the
species, potentially leading to niche truncation issues and biased location of geographic
range centers (Knouft, 2018; Soberón, Townsend Peterson & Osorio-Olvera, 2018; Dallas,
Pironon & Santini, 2020). To obtain an unbiased estimate of the location of range centers,
we used IUCN range maps (https://www.iucnredlist.org/resources/spatial-data-download).
Specifically, for each species, we computed its geographic range center as the center of
IUCN polygons (based on geographic coordinates) using the gCentroid function of the
package rgeos (Bivand & Rundel, 2018).

Statistical analyses
The modelling workflow (Fig. 1) can be decomposed in four steps, where (1) abundance
data are determined for each size class based on individuals’ length measured at each
sampling operation, (2) the dynamic of the two size-classes is modelled using Bayesian
inference, (3) an elasticity analysis is conducted to estimate the contribution of biotic and
temperature-related factors on the dynamic of each size class, and (4) a model selection
procedure is conducted to investigate the spatial pattern in the contribution of the different
parameters and determine whether this pattern rather corresponds to the range-shift or
the abundant-center hypothesis.

Discriminating 0+ and >0+ individuals
For each species, we used the length-frequency histograms of each sampling event to
separate individuals into two size classes (Bergerot & Cattanéo, 2017) using Gaussian
components (McLachlan & Peel, 2004). This algorithm assumes that length data can be
described by a mixture of two normal distributions which correspond in our case to the
length frequency distributions of 0+ and >0+ individuals. The parameters of the two
distributions were estimated using an expectation–maximization algorithm and the limit
between the two size classes was fixed at the length where the two distributions crossed.
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Figure 1 Analyses workflow. Analyses workflow describing (first column) how length-frequency his-
tograms were used to discriminate the two size-classes and obtain abundance data for each size-class for all
sampling operations and (second column) how abundance data were used to extract population dynamics
parameters, perform the elasticity analysis and investigate the spatial patterns in the contribution of biotic
and abiotic factors to the population dynamics of the three species.

Full-size DOI: 10.7717/peerj.12857/fig-1

Chevalier et al. (2022), PeerJ, DOI 10.7717/peerj.12857 7/28

https://peerj.com
https://doi.org/10.7717/peerj.12857/fig-1
http://dx.doi.org/10.7717/peerj.12857


However, because the algorithm performed poorly when the separation between the two
size classes was not evident, e.g., when there were few individuals in each group, this
procedure cannot be routinely applied to discriminate 0+ and >0+ individuals for each
sampling operation. Therefore a few additional steps had to be considered (see Fig. 1; left
column). For each species, we first selected 20 length-frequency histograms for which the
discrimination between the two size classes was visually clear and assigned each individual
to the 0+ or >0+ group based on the estimated length limit (Fig. 1). To discriminate
0+ from >0+ individuals for the remaining sampling events, we used a random forest
approach (Liaw &Wiener, 2002) where individual status (0+ or >0+) was modeled as a
function of individual size, individual numbers (to account for potential effects of density
dependence) and annual cumulative degree-days where the water temperature was above
12 ◦C (i.e., the temperature below which growth is assumed inhibited; Nunn et al., 2003).
The model was calibrated using the 20 sampling events for which individual status was
assumed unbiased. The predictive performance of our model was tested by running a
split-sample cross-validation procedure 100 times. This procedure revealed a very good
model performance in predicting individual status, as measured with the Cohen’s kappa
coefficient (κ > 0.99 for the three species; Cohen, 1960). We therefore used this model to
predict individual’s status for the remaining sampling events. For each species, individuals
in each size class were summed for each sampling event to obtain abundance time series
(Appendix S1; Fig. S2).

Population dynamics model
The abundance of individuals in each size class was modelled on the log-scale using two
normal distributions (one for each size class):

X 0+
i,t ∼Normal(λ0

+

i,t ,σ
0+)

X>0
+

i,t ∼Normal(λ>0
+

i,t ,σ>0
+

)

where Xi,t is the log-abundance of individuals in each size class (0+ and >0+) at site i and
time t, λi,t is the expected log-abundance and σ is the associated process error variance. The
means of the two distributions (i.e., λ0

+

i,t and λ
>0+
i,t ) were modeled with different functional

forms to account for variation in the underlying demographic process (see Grenouillet et
al., 2001 for a similar approach). Specifically, the dynamic of 0+ individuals was modelled
as:

λ0
+

i,t =α
0+
i +β

0+
i ×

X>0
+

i,t

log(Si,t )
+

J∑
j=1

γ 0+
i,j ×Uj,i,t + log(Si,t )

where α0
+

i is a site varying intercept, β0+
i is a density-dependent parameter reflecting the

dependency of 0+ individuals to the abundance of >0+ individuals at time t and can be
interpreted as the apparent recruitment rate (since sampling takes place after reproduction)
and Si,t is the sampling area (offset term). Note that the recruitment rate is only ‘apparent’
because (1) the >0+ size-class includes both spawners and non-spawners (reported age
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at maturity for females is 3–4 years for the chub, 2–3 years for the roach and 5 years
and more for the barbel; Keith et al., 2011; Keith et al., 2020) and thus also accounts for
the effect of competition with non-spawners and (2) inferences are based directly on the
abundance of recruits (i.e., 0+ individuals that successfully hatched), hence not accounting
for variation in the per capita reproductive investment (i.e., the number of eggs laid by a
given individual). A more accurate estimation of the recruitment rate could be achieved
using egg data together with data on spawner biomass/abundance. The parameters γ 0+

i,j are
regression coefficients applied to the array Uj,i,t which contains the raw and the squared
values of the mean and the variability of water temperatures at site i and time t. Thus, γ 0+

i,j
is a vector of coefficients representing the linear and the quadratic effect of the mean and
the variability of water temperature on 0+ abundance at each site.

The dynamic of >0+ individuals was represented using a modified version of the
stochastic Gompertz model of population growth as:

λ>0
+

i,t =α
>0+
i +X>0

+

i,t−1+β
>0+
i ×

X>0
+

i,t−1

log(Si,t−1)
+δ>0+i ×

X 0+
i,t−1

log(Si,t−1)
+

J∑
j=1

γ>0
+

i,j

×Uj,i,t + log
(

Si,t
Si,t−1

)
where α>0

+

i is a site varying intercept representing the intra-class productivity rate (an
analog to the population growth rate with values above one indicating positive productivity
rates), β>0

+

i is a density-dependent parameter representing the competition between >0+

individuals for access to resources and δ>0
+

i represents the transition probability between
the two size classes (i.e., the apparent survival rate of 0+ individuals). Similar to the
recruitment rate, we note here that the survival rate is only ‘apparent’ because the >0+

size-class includes individuals in different ages. This survival rate thus also accounts for the
survival probability of all other size-classes. The parameters γ>0

+

i,j are regression coefficients
representing the linear and the quadratic effects of the two temperature variables on >0+

abundance.
Quadratic effects were included in both dynamics to account for potential bell-shaped

response curves along the temperature gradient (Austin, 1999). The model was fitted
to each species separately, and included random site effects for all population dynamic
parameters, ultimately making it possible to analyze spatial patterns in the contribution of
biotic and temperature-related factors to the dynamic of each size-class.

Parameter estimation and model goodness of fit
The model was fitted to each species using Bayesian inference and weakly informative
priors. Site-specific parameters (α0

+

i ,β
0+
i ,γ

0+
i,j ,α

>0+
i , β>0

+

i , δ>0
+

i , γ>0
+

i,j ) were assumed to
follow normal distributions with a vector of means µ{µα0+ , µβ0+ , µγ 0+

j
, µα>0+ , µβ>0+ ,

µ
γ>0
+

j
, µδ>0+ } and of standard deviations σ { σα0+ , σβ0+ , σγ 0+

j
, σα>0+ , σβ>0+ , σγ>0+j

, σδ>0+ }.
The vector µrepresents the average value of the parameters across all sampling sites whereas
the vector σ represents departures from the mean and therefore the spatial variability in
parameter values. We used normal distributions with mean zero and standard deviations
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of 10 as priors for all µ. For σ , σ 0+ and σ>0
+

, we used half-Cauchy distributions (Gelman,
2006). For each species, we generated three chains of length 11,000 with initial values in
different regions of parameter space and discarded the first 1,000 iterations as burn-in.
Chains were sampled every 10 iterations. Convergence was visually assessed and confirmed
using the Gelman and Rubin statistic with a threshold value of 1.1 (Gelman & Rubin,
1992). Highest Posterior Density (HPD) intervals were used as 95% credible intervals. For
each parameter, differences between species were assessed by computing the proportional
overlap between the two posterior distributions. A low overlap (threshold set to 5%
meaning that only 5% of MCMC samples were common between the two distributions)
was taken as evidence that estimated parameters were different between species.

Weused posterior predictive checks (Gelman, Meng & Stern, 1996) to assess the goodness
of fit of our model for the three species. Specifically, we used χ2 discrepancy metrics
to compute the posterior predictive p-value, which quantifies the extent to which the
proportion of samples in which the distance of observed data to the model is greater than
the distance of replicated data to the model. Values close to 0.5 indicate a good model
fit, whereas values close to 0 or 1 indicate lack of fit. Bayesian p-values were calculated
regarding the log-abundance of both 0+ and >0+ individuals. We fitted the models using
JAGS 4.3.0 (Plummer, 2003), run through the R environment (R Core Team, 2019) using
the packages R2jags (Su & Yajima, 2013) and rjags (Plummer, 2014). The JAGS code is
available in Appendix S2.

Elasticity analyses
We applied an elasticity analysis to species model outputs in order to highlight the relative
contribution of biotic (α0

+

i ,β
0+
i ,β

>0+
i and δ>0

+

i ) and temperature-related (γ 0+
i,j and γ>0

+

i,j )
factors to the population dynamics of the three species following the framework developed
by Koons et al. (2015). Specifically, for each species, we used the median of the posterior
distribution of parameters obtained from the fitted model to project the log-abundance
of both size-classes at each site over the study period (Haridas, Tuljapurkar & Coulson,
2009). This was done by iteratively updating the parameter λi,t for both 0+ and >0+

individuals using observed predictor values for the parameter for which elasticity needs
to be calculated but average predictor values for the other parameters. We measured the
contribution of biotic and temperature-related factors separately for each size-class by
comparing the log-abundance computed using parameter values predicted by the model
(θori) to the log-abundance computed by changing each parameter value, one at a time by
10% (θper; both the linear and the quadratic terms were changed for temperature-related
factors). Specifically, elasticities were computed numerically as:

eω,i,t=
θper,i,t−θori,i,t

θori,i,t
×

1
δ

where θ is the response parameter (i.e., log-abundance of the considered size-class original
and perturbed) at site i and time t, ω is the parameter of interest and δ is the proportional
change in ω (i.e., 10%). The mean of all e, therefore represents the estimated elasticity of
parameterω at the species level (eω,sp). For each parameter, differences between species were
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tested using Wilcoxon signed-rank tests with p-values adjusted for multiple comparisons
using the Bonferroni correction.

Spatial patterns in the contribution of biotic and temperature-related factors
In order to establish how the contribution of biotic and temperature-related factors varied
spatially, we built four different linear models: an intercept-only model (null model against
which the other models are compared to), a model with elevation as covariate (elevation
range-shift model), a model with latitude as covariate (latitude range-shift model) and a
model with the Haversine distance (i.e., Euclidean distance accounting for the curvature
of the Earth) to the geographic range center (abundant-center hypothesis model; Soberón,
Townsend Peterson & Osorio-Olvera, 2018) as covariate. The three models with covariates
included quadratic terms to account for non-linear effects. Models were run for the eight
parameters for which elasticity was computed and compared using AIC (Burnham &
Anderson, 2002). For each species, further details for the three covariates is provided in
Appendix S1; Fig. S4.

RESULTS
The Bayesian population dynamics models converged well for all three species (potential
scale reduction factor less than 1.1 for all parameters). The posterior predictive checks
revealed very good model fits either for 0+ or >0+ log-abundance with Bayesian p-values
close to 0.5 in all cases.

Global patterns
Despite different life-history strategies, the large-scale ecological determinants of the
population dynamics of the three species were similar, though the magnitude of effects
varied across species (Fig. 2). For all species, the productivity rate of >0+ individuals
suggested that populations had the potential to grow from low densities (α>0

+

>1; Fig. 2),
particularly for chub (HPD95% = [1.42–1.71]). Furthermore, all species presented a
positive recruitment rate (β0+ > 0) as well as evidence for a regulation of the dynamic
of >0+individuals by density (β>0

+

< 0) potentially owing to competition for resources
(Fig. 2). However, barbel presented a tendency for a lower recruitment rate (HPD95%

[1.03–2.18]) and a stronger regulation by density (HPD95% = [−4.11 to −5.19]) than
the two other species. Chub (HPD95% [0.24–0.60]) and particularly roach (HPD95%

[0.56–1.11]) also presented evidence for a positive survival rate of 0+ individuals (δ>0
+

>0)
whereas the effect was more uncertain for barbel (HPD95% [−0.28–0.46]; Fig. 2). All species
presented a tendency for a linear (all quadratic terms have their HPD95% overlapping zero)
and rather positive effect of temperature-related factors on the dynamic of both 0+ and
>0+ individuals, although with some uncertainty (Fig. 2). For instance, barbel (HPD95%

[0.14–0.48]) and to a lower extent chub (HPD95% [0.04–0.27]) presented evidence for a
positive effect of temperature variability on 0+ abundances whereas for roach we rather
found a positive effect of average temperature on the abundance of >0+ individuals
(HPD95% [0.02–0.18]).
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Figure 2 Posterior summary of model parameters. Posterior summary of model parameters (small-size
panels with dots representing the median of the posterior distribution and the vertical line representing
the associated 95% credible interval; horizontal dashed line point to the zero value) and corresponding re-
lationships (large-size panels with lines representing the median of the posterior distribution and shaded
areas representing the associated 95% credible interval) for the three species and the two size classes. The
first column (except the first panel) highlights the effect of biotic (β0+ ) and abiotic (γ 0+ ) factors on the
abundance of 0+ individuals whereas the second column (and the first panel of the first column) high-
lights the effect of biotic (α<0+ , β<0+ , δ<0+ ) and abiotic (γ <0+ ) factors on the growth rate (log) of>0+ in-
dividuals. Differences between model parameters were tested by computing the proportional overlap be-
tween posterior distributions (ns> 5% overlap, ∗ < 5% overlap, **<0.01% overlap, ***<0.001% over-
lap).

Full-size DOI: 10.7717/peerj.12857/fig-2
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Figure 3 Boxplots representing site-specific elasticities on log-abundances of 0+ or> 0+ individuals to a 10% proportional change in the value
of coefficients associated to biotic and abiotic factors for the three species with negative values pointing to a decrease in population abundance.
Dots represent the average elasticity for a given site. The horizontal dashed line points to the zero value. Grey zones show coefficients affecting the
dynamic of 0+ individuals whereas white zones show coefficients affecting the dynamic of> 0+ individuals. For temperature-related factors, both
the linear and the quadratic coefficients were changed when calculating elasticities in order to obtain one elasticity value for each variable. Note that
a boxplot overlapping zero does not mean that there is no effect but that the positive effect of the variable on some populations is counterbalanced
by the negative effect of that variable on other populations.

Full-size DOI: 10.7717/peerj.12857/fig-3

Relative contribution of biotic and temperature-related factors to
population dynamics
Globally, the elasticity analysis indicated that the log-abundance of the three species was
most sensitive to changes in biotic factors acting on the dynamics of >0+ individuals than on
the dynamics of 0+ individuals (Fig. 3). For instance, a 10% change in the strength of density
dependence (β>0

+

) would, on average, induce a 10.1% decrease in the log-abundance of
>0+ individuals while a 10% change in the recruitment rate of 0+ individuals (β0+) would
only entail a 0.9% increase in the log-abundance of 0+ individuals. Temperature-related
factors only had a marginal contribution with the cumulative effect over both size classes
only inducing a 0.7% change in log-population abundance on average. Yet, a number of
populations presented elasticity values close to 0.4 (meaning a 4% change), indicating
that temperature-related factors can have important local effects on the dynamic of both
size-classes (Fig. 3).

Overall, chub was the species presenting the largest elasticities (mean= 0.34, SD= 0.47)
followed by roach (mean = 0.32, SD = 0.25) and then barbel (mean = 0.16, SD = 0.19).
This tendency was congruent and statistically significant (Wilcoxon test p-value < 0.05)
for most biotic parameters, except the recruitment rate, were roach presented the largest
elasticity (Fig. 3). Regarding temperature-related factors, although most comparisons were
statistically significant, the differences were anecdotal relative to biotic factors.
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Figure 4 Species range (grey polygons) and associated geographic centers (black square) along with spatial variation in the contribution of bi-
otic and abiotic factors to the population dynamic of the three species across metropolitan France. Species are in lines while coefficients are in
columns. Each point represents a population with colors corresponding to the estimated elasticity. The background surface represents elevation.
Maps on grey background show coefficients affecting the dynamic of 0+ individuals while the other maps show coefficients affecting the dynamic of
> 0+ individuals. Note that the color scale is different in each panel.

Full-size DOI: 10.7717/peerj.12857/fig-4

Spatial patterns in the contribution of biotic and temperature-related
factors to population dynamics
Despite evidence for large-scale determinants of population dynamics, the contribution of
biotic and temperature-related factors strongly varied depending on the spatial location of
populations (Fig. 4). For most factors we found that these spatial variations were mostly
related to elevation and less so to latitude or the distance to the geographic range center
(Table 2).

Regardless of the species or the parameter considered, the null model was never ranked
as the best model (Table 2). For barbel, four out of the seven factors were related to
elevation, three to latitude (productivity rate, strength of density dependence and survival
rate) and only one to the geographic range center (recruitment rate). For chub, six factors
were related to elevation, two to latitude (strength of density dependence and recruitment
rate) and zero to the geographic range center. All parameters of roach were related to
elevation.

For all species and both size-classes, we always found stronger support for a differential
contribution of temperature-related factors along elevation than along latitude or the
distance to the geographic range center (Table 2). Furthermore, the contribution of
temperature-related factors varied similarly along elevation for the three species and
the two size-classes (Fig. 5). Indeed, we mostly found negative relationships between
elasticities and elevation indicating (1) a rather negative effect of both factors on high
elevation populations but a positive effect on low elevation populations and (2) a stronger
contribution of temperature variability on high elevation populations but a stronger
contribution of average temperature on low elevation populations (Fig. 5). Departures
from this global pattern were nevertheless detected with e.g., an increasing and positive
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Table 2 Results of model selection performed on the different populations dynamic parameters for the three species. For coefficients and R2

values of the most supported model; see Fig. 5.

Species Factor name Parameters AIC null
model

AIC
elevation
model

AIC
distance
model

AIC
latitude
model

Most
supported
model

µ
γ>0
+ −193.66 −298.93 −190.39 −189.93 ElevationAverage

temperature µ
γ 0
+ −155.03 −178.19 −158.49 −163.56 Elevation

µ
γ>0
+ −200.43 −235.13 −196.56 −197.42 ElevationTemperature

variability µ
γ 0
+ −50.54 −82.55 −47.24 −46.72 Elevation

Productivity rate µα>0+ −115.69 −116.98 −118.07 −131.06 Latitude
Recruitment rate µβ0+ −363.13 −359.26 −369.61 −363.16 Distance
Strength of density dependence µβ>0+ −8.38 −8.43 −12.25 −23.19 Latitude

Barbel

Survival rate µδ>0+ −62.54 −62.64 −65.39 −68.88 Latitude
µ
γ>0
+ −682.02 −800.46 −692.26 −679.58 ElevationAverage

temperature µ
γ 0
+ −860.57 −967.08 −876.46 −858.79 Elevation

µ
γ>0
+ −587.89 −698.38 −584.56 −586.36 ElevationTemperature

variability µ
γ 0
+ −361.64 −419.49 −358.73 −359.85 Elevation

Productivity rate µα>0+ −278.44 −323.66 −281.23 −283.25 Elevation
Recruitment rate µβ0+ −571.99 −573.06 −584.55 −597.6 Latitude
Strength of density dependence µβ>0+ 131.5 124.65 135.05 124.34 Latitude

Chub

Survival rate µδ>0+ −206.12 −214.43 −204.24 −206.63 Elevation
µ
γ>0
+ −455.68 −558.56 −458.19 −455.13 ElevationAverage

temperature µ
γ 0
+ −797.41 −866.15 −806.89 −795.79 Elevation

µ
γ>0
+ −424.75 −511.74 −421.17 −428.4 ElevationTemperature

variability µ
γ 0
+ −755.84 −784.64 −757.28 −752.73 Elevation

Productivity rate µα>0+ −357.98 −411.26 −367.68 −355.22 Elevation
Recruitment rate µβ0+ −299.57 −335.09 −295.97 −299.99 Elevation
Strength of density dependence µβ>0+ 59.26 32.43 62.13 49.66 Elevation

Roach

Survival rate µδ>0+ −143.24 −149.86 −140.85 −148.36 Elevation

contribution of average temperature on the dynamic of >0+ individuals along elevation
for barbel.

More complex spatial patterns were detected when considering the contribution of biotic
factors (Fig. 5). Regarding the productivity rate (µα>0+ ), the barbel presented a negative
relationship with latitude indicating a stronger and positive contribution of this parameter
to the dynamic of >0+ individuals for populations located at low latitudes whereas the
opposite trend was observed for chub and roach along the elevation gradient (i.e., a higher
contribution for populations located at high elevations). We also found evidence for a
decrease in the contribution of the survival rate on the dynamic of >0+ individuals (µδ>0+ )
along elevation (for roach and chub) or latitude (for barbel). Similarly, the three species
presented a positive relationship between the strength of density dependence (µβ>0+ )
and either latitude (barbel and chub) or elevation (roach), thus indicating a stronger
negative contribution (since the parameter was negative, a positive relationship indicated
a trend toward zero) of this parameter in low elevation populations. For the recruitment
rate (µβ0+ ), while barbel presented evidence for an increasing positive contribution of this
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Figure 5 Spatial patterns in the contribution of biotic and abiotic factors to the population dynamics of the three species as a function of the
distance to the geographic range center, latitude or elevation.Only relationships of the most supported models are displayed. In each panel, points
represent elasticity values for a given population with size proportional to the corresponding absolute value and colors indicative of the sign of the
value (green= positive; blue= negative). For each panel, the adjusted R2 is provided. Likelihood ratio tests were all significant (p < 0.01 in all
cases). Grey zones show coefficients affecting the dynamic of 0+ individuals whereas white zones show coefficients affecting the dynamic of> 0+ in-
dividuals.

Full-size DOI: 10.7717/peerj.12857/fig-5

parameter as the distance to the geographic center increases, the two other species presented
a negative relationship along latitude (for chub) or elevation (for roach) indicating a lower
contribution of the recruitment rate on high elevation/latitude populations.

DISCUSSION
Identifying the factors driving population dynamics is paramount if we are to effectively
manage populations and prevent local extinction. To date, most studies have focused
on explaining temporal variation of single population abundances (Coulson, 2001; Koons
et al., 2015), hence ignoring spatial variation across populations (Frederiksen, Harris &
Wanless, 2005; Pearce-Higgins et al., 2015). Here, we used length-frequency histograms
and population abundance data to better understand the spatial drivers of the population
dynamics of three freshwater fish species. Importantly, by integrating elasticity analyses into
the modeling framework, we not only estimate the effect of biotic and temperature-related
factors on fish population dynamics, but also evaluate their relative impacts (Koons et al.,
2015). Despite contrasted life-histories of the three species, we found that the large-scale
ecological determinants of their population dynamicswere similar, with a stronger influence
of biotic factors over temperature-related ones. Yet, the contribution of the factors strongly
varied depending on the location of population within species’ distributional ranges and
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appeared to vary depending on elevation, latitude and the distance to the geographic range
center.

The hierarchical structure of our modelling framework allowed us to investigate the
large-scale ecological determinants of population dynamics while accounting for site-
specific effects (Clark, 2005; Dorazio, 2016). Interestingly, we found that spatio-temporal
variations in the abundance of the three species were driven by similar processes and were
mostly influenced by factors acting on the dynamics of >0+ individuals. Specifically, >0+

abundances appeared to be strongly affected by density dependence, thus suggesting that
most populations are at their carrying capacity and are regulated by competition between
individuals for resources (Sæther et al., 2008). Though the effect was less clear, the dynamics
of the three species also tended to be similarly affected by temperature-related factors, with
both the mean and variability of temperature affecting freshwater fish population dynamics
(Lawson et al., 2015). Overall, we found a positive relationship between temperature
variability and the population growth rate, suggesting that conservation actions designed to
buffer populations against environmental variability could in some cases reduce population
growth rate (Lawson et al., 2015). The convex relationships found for the three species along
the gradient of average temperature suggest that abundances are higher at both extremes of
the temperature gradient. While this could be explained by local adaptations or the effect of
other ecological processes (e.g., release of competition pressures due to competing species
being negatively affected at both ends of the gradient), this result contrasts with both
theoretical expectations (Pironon et al., 2017) and recent empirical patterns (Waldock et
al., 2019) showing concave relationships between population abundance and temperature.
An alternative explanation for these convex shapes could be that the sampled populations
do not cover the full distributional range of the species, implying that species response
curves are likely truncated (Thuiller et al., 2004). Furthermore, 95% credible intervals
are rather wide suggesting some uncertainties in the estimated relationships. The similar
responses observed for the three species, despite contrasting life-histories, either suggest
that differences in traits are not strong enough to entail differences in population dynamics
or that other factors not accounted for in this study (e.g., habitat quality, discharge) have
an overwhelming influence on the observed dynamics. Such common dynamics are in line
with the widespread phenomenon of population synchrony, whereby populations tend to
fluctuate in a similar way in various taxonomic groups (Liebhold, Koenig & Bjørnstad, 2004)
including fishes from French streams (Chevalier, Laffaille & Grenouillet, 2014; Chevalier et
al., 2015).

Yet, despite obvious commonalities in large-scale drivers, specific patterns in line with
species’ ecology were apparent. For instance, chub presented a higher contribution of the
productivity rate to population dynamics than the two other species, suggesting that this
species has a greater ability to grow from low density - and therefore to recover from
disturbance (Oliver et al., 2015). This pattern matches well with the periodic strategy of
chub that is favored in predictable (e.g., seasonal) and extended environments (Winemiller,
1992). Similarly, and despite the limited information contained in the data (see methods),
we found a tendency toward a stronger contribution of the recruitment rate for roach and
chub than for barbel, a pattern in line with the reported fecundities of the three species
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(Table 1; Kottelat & Freyhof, 2007). The populations dynamics of chub and roach also
appeared to be more strongly influenced by the survival rate than for barbel. However,
given data limitation, this results must be interpreted carefully as it may simply reflect
the fact that barbel females tend to mature at a later stage (∼5 years) than the two other
species (∼2–4 years; Keith et al., 2020). Overall, the general evidence we found for a
larger contribution of biotic than temperature-related factors on the dynamics of both
size-classes suggests that these species are rather controlled by deterministic processes which
could be interpreted as evidence that they are unlikely to be strongly affected by future
climate warming. However, density-dependence can also be an important mechanism in
disturbed populations which can limit its ability to withstand climate change. For instance,
if external factors suddenly change the availability of resources, an already disturbed
population can become increasingly dependent on biotic control (either bottom up or top
down) (Henley et al., 2000). The fact that we found strong spatial variations in the relative
contribution of temperature-related factors indicates that environmental conditions can
still have important effects on local populations. Furthermore, the overall low contribution
of temperature evidenced here could be explained by a number of factors, including a
poor correlation between air and water temperatures, the use of a coarse resolution not
representing the conditions at the sampling sites, or potential interactions with other
drivers not accounted for in this study (e.g., discharge or habitats).

Some factors displayed stronger spatial variation than others. For instance, we found
larger spatial variation in the contribution of biotic factors affecting the dynamics of
>0+individuals (productivity rate, strength of density dependence and apparent survival
rate) than for 0+ individuals (apparent recruitment rate). The contribution of temperature
variability also tended to be more spatially variable than the one of average temperature.
Such spatial variations have been related to a number of geographic gradients including
elevation (Dostálek, Rokaya & Münzbergová, 2018), latitude (Turchin & Hanski, 1997),
species thermal maximum (Jiguet et al., 2010) or the distance to species’ range limits
(Williams, Ives & Applegate, 2003). These geographic patterns suggest that intraspecific
variation in population dynamic processes may be predicted from knowledge about the
geographic location of populations (Sæther et al., 2008). While some species seem to
conform to a given geographic gradient (e.g., elevation), results are not always consistent,
with other species showing no patterns and sometimes even opposite patterns (Dallas,
Decker & Hastings, 2017; Santini et al., 2019). These inconsistencies do not necessarily
mean that there is no pattern, but perhaps that the geographic gradient considered is
not appropriate. We here sought for evidence of two common geographic patterns: one
related to elevation or latitude and the other related to the distance to the geographic range
center. These two gradients have both theoretical and empirical underpinnings (Turchin
& Hanski, 1997; Sæther et al., 2008; Pironon et al., 2017; Yañez Arenas et al., 2020) but were
never confronted to date.

For the three species we considered, most of the factors contributing to population
dynamics showed stronger empirical support for an elevational rather than for a distance-
based or latitudinal gradient. This was particularly the case regarding temperature-related
factors. Nonetheless, the spatial pattern was not always consistent with the range shift
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hypothesis (Comte & Grenouillet, 2013; Comte et al., 2020). For instance, while an upward
shift has been documented for the three species at the trailing edge (meaning extirpations;
Table 1), we estimated a rather positive effect of both temperature-related factors on
low-elevation populations. Discrepancies were also evident at the leading edge for chub
and barbel. For instance, the leading edge of chub was predicted to shift upward whereas
we estimated a negative effect of both temperature-related factors on high-elevation
populations. The opposite pattern was observed for barbel, i.e., estimated downward shift
but positive effect of average temperature. While these discrepancies can be explained
by different factors, including abiotic factors not accounted for (e.g., water quality—
Britton, Davies & Pegg, 2013; river flow—Bergerot & Cattanéo, 2017), extinction debts at
the trailing edge (Kuussaari et al., 2009) or colonization credits at the leading edge (Rumpf
et al., 2019), the dendritic structure and the flow directionality of the river network that
strongly constrains population dynamics (Larsen et al., 2021), the way range shifts were
estimated (Comte & Grenouillet, 2013) and how population dynamics were modelled (this
study); they can also be explained by the fact that temperature-related factors contributed
little to the population dynamics of the three species. The fact that the contribution of
biotic and temperature-related factors varies differently along geographic gradients can
explain why many studies failed to find general evidence for abundance-distribution
patterns in natural settings (Dallas, Decker & Hastings, 2017; Santini et al., 2019). Similar
to our results, other studies have shown that different demographic parameters can present
opposite geographic trends, through different responses along environmental gradients; a
process known as demographic compensation (Csergő et al., 2017). Altogether, these results
call for more detailed approaches (i.e., considering different components of population
dynamics along with their contribution) if we are to better understand the spatial drivers
of population dynamics and the associated species range dynamic at large spatial scales.
Moreover, although we highlighted spatial gradients, the spatial factors we have considered
are ‘‘indirect predictors’’ in the sense that they do not affect species directly. They are
however useful because they usually correlate well with other important variables that have
a direct influence on species’ physiology (e.g., temperature) andwhich are of great interest to
managers and stakeholders (Guisan & Zimmermann, 2000). Therefore, instead of searching
for general spatial patterns, future studies should seek at identifying what are the proximal
determinants of spatial variations in population dynamics. Such factors have already
been identified for some species. For instance, water quality (Britton, Davies & Pegg, 2013)
and habitat availability (Farò, Zolezzi & Wolter, 2021) have been shown to be important
determinants of spatial variations in barbel’s population growth rate. In marine fishes,
Wang, Kuo & Hsieh (2020) have recently shown that truncated age structure, warming and
spatially heterogeneous temperatures can enhance population spatial variability. Regarding
our three studied species, population dynamics mainly varied along elevation which is
strongly correlated with a number of direct predictors including temperature, discharge,
depth or particle size of sediment.

This study can be expanded in different ways to improve our understanding of spatial
variation in population dynamics. First, our data only allowed us to discretize two
size classes, thus limiting our ability to go deeper into the demographic mechanisms
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underpinning population dynamics (Bergerot & Cattanéo, 2017). For instance, the
recruitment rate can be influenced by many factors which are not considered here,
such as age, maturity stage, sex ratios and size that can have strong influence on the
fecundity of spawning individuals and the associated recruitment success (Vilizzi, Copp &
Britton, 2013). Stage structured population models (Caswell, 2001) and integral projection
models (Merow et al., 2014) could be used to gain further insights about the drivers of
population dynamics, e.g., by drawing inferences on survival probabilities or reproductive
rates for different age classes or individual states. These models are however extremely data-
demanding which may preclude their application at large spatial scales, though large-scale
databases are being developed (http://demography-portal.ex.ac.uk/). Despite providing
limited information on demographic parameters, the biodiversity monitoring data and the
analysis workflow we have used made it possible to gain additional insights on population
dynamics, compared to traditional models that only focus on population abundance
without accounting for size-specific differences. In this sense, our modelling framework
can be seen as something in between traditional population dynamic models (Keith et al.,
2008) and matrix population models (Caswell, 2001). Second, our modelling framework
could be improved in different ways. For instance, depending on the data at hand (e.g.,
spatial or temporal replicate), one can include a state-space or N-mixture component to
the Bayesian population dynamic model to account for spatial (and temporal) variation in
detection probability (Zipkin et al., 2014). Similarly, one can imagine computing parameter
elasticities and testing the effect of spatial covariates directly within the Bayesian model to
allow uncertainty to fully propagate along the different layers of the model. We here chose
not to use this approach because we built on previous studies that used a similar approach
as ours (Grenouillet et al., 2001; Koons et al., 2015), but also because such modifications
would lead to a very complicated model with an associated lower interoperability and
a higher computation time. Third, we only considered the effect of temperature but
future studies should also consider other potentially important variables (e.g., hydrology,
habitat diversity) to evaluate the cumulative contribution of different abiotic factors
to population dynamics. Considering other abiotic factors would also make it possible
to account for synergistic effects that may sometimes affect populations in unexpected
ways (Morrongiello et al., 2021). Such effects could for instance help explain the apparent
contrast between a leading edge for chub predicted to shift upward but a negative effect of
temperature on high-elevation populations (e.g., species running out of optimal niche and
slowly forced to extend in potentially sub adequate environments). Fourth, the abundance
data we had covered a much wider gradient for elevation than for the two other spatial
covariates, particularly concerning the distance to the geographic range center (Fig. 4).
If our populations had been more evenly distributed across the whole range, perhaps the
distance to the geographic range center or the position along the latitudinal gradient would
have had stronger effects.

CONCLUSIONS
Illuminating the factors driving spatial variations in population dynamics is a long-standing
goal in Ecology (Brown, 1984; Sæther et al., 2008). Here, we evaluated whether spatial
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variations in the contribution of different factors affecting the population dynamics of
three freshwater fish species could be explained by two commonly observed biogeographical
patterns: one related to elevation or latitude (range-shift hypothesis) and the other related
to the distance to the species geographical range (abundant-center hypothesis). We found
that both, biotic and abiotic factors rather tended to vary along elevation or latitude
providing stronger support for the range-shift hypothesis. Yet, the contrasted spatial
patterns highlighted here suggest that observed spatial variations in population dynamics
can be the result of different processes acting in opposite ways with e.g., one process
(e.g., climate change) driving spatial variation in one way and another process (e.g.,
competition for resources) driving spatial variation in another way. This dual influence
may partly explain why some recent studies found low evidence for geographic gradients
(Dallas, Decker & Hastings, 2017). Overall, our results call for more detailed approaches
(considering different demographic parameters along with their contribution) if we are to
better understand the drivers of spatial variation in population dynamics and associated
abundance-distribution patterns.
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