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ABSTRACT

In the present work, we propose a neural-network-based data-inversion approach to reduce structured contamination sources, with
a particular focus on the mapmaking for Planck High Frequency Instrument data and the removal of large-scale systematic effects
within the produced sky maps. The removal of contamination sources is made possible by the structured nature of these sources,
which is characterized by local spatiotemporal interactions producing couplings between different spatiotemporal scales. We focus on
exploring neural networks as a means of exploiting these couplings to learn optimal low-dimensional representations, which are opti-
mized with respect to the contamination-source-removal and mapmaking objectives, to achieve robust and effective data inversion. We
develop multiple variants of the proposed approach, and consider the inclusion of physics-informed constraints and transfer-learning
techniques. Additionally, we focus on exploiting data-augmentation techniques to integrate expert knowledge into an otherwise un-
supervised network-training approach. We validate the proposed method on Planck High Frequency Instrument 545 GHz Far Side
Lobe simulation data, considering ideal and nonideal cases involving partial, gap-filled, and inconsistent datasets, and demonstrate
the potential of the neural-network-based dimensionality reduction to accurately model and remove large-scale systematic effects. We
also present an application to real Planck High Frequency Instrument 857 GHz data, which illustrates the relevance of the proposed
method to accurately model and capture structured contamination sources, with reported gains of up to one order of magnitude in
terms of performance in contamination removal. Importantly, the methods developed in this work are to be integrated in a new version
of the SRoll algorithm (SRoll3), and here we describe SRoll3 857 GHz detector maps that were released to the community.
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1. Introduction

In the last few decades, scientific instruments have been pro-
ducing ever increasing quantities of data. Moreover, as remote
sensing and instrumentation technology develops, the process-
ing complexity of the produced datasets increases dramatically.
The ambitious objectives of several scientific projects are char-
acterized by the reconstruction of the information present in
these datasets, which is often mixed with additional contami-
nation sources, such as systematic effects and foreground sig-
nals (physical components of the data that mask or blur part of
the signal of interest). The scientific community is confronted,
in a wide variety of contexts, with the need to extract, from
measurements, physical responses adapted to the different mod-
els considered, while at the same time ensuring an effective
separation between these responses and different contamination
sources. This separation is made possible by two main factors.
On one hand, the separation is achieved by exploiting the struc-
tured nature (in a stochastic sense) of the contamination sources,
which, from a mathematical point of view, is characterized by
local spatiotemporal interactions producing couplings between
different spatiotemporal scales, as opposed to Gaussian signals
where no correlation exists between observations produced at
different spatiotemporal locations. The structured nature of such
signals allows them to be accurately represented using a reduced
number of degrees of freedom, which we aim to exploit in order
to separate them from the signal of interest. On the other hand,
the separation is possible thanks to the existence of spatial or

temporal invariances and/or redundancy in the signal of inter-
est, which can be used to partially remove the signal of inter-
est from observations, as opposed to other structured but vari-
able contamination sources that cannot be easily removed from
data. It is important to notice that these two criteria are com-
plementary, and serve different but equally important purposes.
While the invariances within the signal of interest allows us
to remove it from observations, and thus focus solely on ade-
quately modeling the remaining contamination sources, such
modeling is only made possible by the structured nature of these
sources, which can be adequately represented using a reduced
number of degrees of freedom. This interdependence between
multiple criteria within the signal of interest and the contami-
nation sources naturally favors the use of approaches that are
designed to invert the data and remove the contamination sources
simultaneously. Given that the aforementioned problem exists
in multiple scientific contexts, developing efficient dimensional-
ity reduction methods to accurately extract relevant information
from data appears to be a key issue for the scientific commu-
nity. It is therefore essential to identify representations involv-
ing a reduced number of degrees of freedom to achieve robust
and effective data inversion, while providing enhanced capa-
bilities to accurately describe the complexity of the processes
and variabilities at play. In this regard, different strategies can
be envisaged, with recent advances relying most notably on
the exploitation of operators learned from data presenting some
similarities with the problem of interest (e.g., transfer learn-
ing, as explained below). Alternatively, recent works explore the
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use of generic signal decomposition operators (e.g., scattering
transforms Bruna et al. 2015). Efforts of this type have already
yielded interesting results; for example, on the expected statisti-
cal description of galactic dust emissions (Allys et al. 2019).

In the present work, we specifically consider a case study
involving the processing of Planck High Frequency Instrument
(Planck-HFI) data, with a particular focus on the separation and
removal of the large-scale systematic effects. In this context,
we aim to exploit machine learning and artificial intelligence
approaches to minimize the number of degrees of freedom of
the large-scale systematic effects to be reconstructed and sep-
arated, whereas previous works rely on exploiting spectral and
bispectral representations (Prunet et al. 2001; Doré et al. 2001;
Natoli et al. 2001; Maino et al. 2002; de Gasperis et al. 2005;
Keihänen et al. 2005, 2010; Poutanen et al. 2006; Armitage-
Caplan & Wandelt 2009; Planck Collaboration VIII 2014;
Delouis et al. 2019), which lack the ability to properly cap-
ture spatiotemporal scale interactions needed to tackle this issue.
Indeed, large-scale systematic effects are usually represented
using a large number of parameters, whereas more appropriate
low-dimensional representations could be learned directly from
data. Particularly, in the present work, we focus on exploring
neural networks as a means of learning, from data, optimal low-
dimensional representations that allow for the effective separa-
tion of the structured systematic effects from the signal of inter-
est simultaneously with the data inversion. The algorithmic orig-
inality of this work lies in the integration of analysis methods
issued from machine learning and artificial intelligence to extract
the signals of interest from data by minimizing the degrees of
freedom of the processes to be reconstructed within a classic
minimization framework. As such, the objective of the proposed
methods is to find the best low-dimensional description of the
data while ensuring an optimal separation of the signal of inter-
est from any systematic effects. We illustrate the relevance of
our approach on a case study involving contamination-source
removal and mapmaking, that is, the inversion of raw satellite
measurements to produce a physically consistent spatial map of
Planck-HFI data. We consider both Far Side Lobe pickup (FSL)
(an unwanted signal due to the nonideal response of the satel-
lite antenna) simulations from the 545 GHz Planck-HFI chan-
nel and real observations from the 857 GHz Planck-HFI chan-
nel. This case study was chosen based on the fact that the FSL
pickup is a large-scale systematic effect that currently remains
difficult to model and remove, given that the complexity of the
Planck optical system forces current FSL estimations to rely on
simplified physical and mathematical models. Specifically, cur-
rent FSL models used to fit and remove FSL pickup rely on
numerical simulations exploiting the GRASP tool (Tauber et al.
2010b), and considering mono-modal feedhorn models, whereas
the Planck-HFI 545 GHz and 857 GHz channels use specialized
multimode feedhorns. Modeling these feedhorns would require
more complex, physically relevant models better suited to accu-
rately depicting the FSL signal, but such highly complex mod-
els are not analytically or numerically feasible. In particular,
Planck-HFI 545 GHz and 857 GHz channels present a weak cos-
mic microwave background (CMB) signature and its sources of
contamination are dominated by the FSL pickup, which makes
them ideal candidates for the considered case study. Impor-
tantly, this work builds on previously developed methods for the
separation and removal of structured contamination sources –
particularly on the SRoll2 algorithm (Delouis et al. 2019)– used
for the production of the 2018 release of the Planck-HFI sky
maps. As such, the methods developed in this work are to be
integrated in a new version of the SRoll algorithm (SRoll3),

and we describe here SRoll3 857 GHz detector maps that were
released to the community. Finally, whereas the application pre-
sented provides strong evidence of the relevance of the proposed
approach for the processing of large-scale systematic effects,
the proposed methodology provides a generic framework for
addressing similar, yet complex, data inversion issues involving
the separation and removal of structured noise, foregrounds, and
systematic effects from data in many other scientific domains.

Artificial neural networks are a class of machine learning
algorithms that are designed to identify underlying relationships
in data. Generally speaking, a neural network relies on a cas-
cade of interconnected units or neurons. Each unit is capable of
simple nonlinear processing of data. To this end, a neuron per-
forms an affine transformation of a multidimensional input using
a set of weights and biases, and subsequently exploits a nonlin-
ear activation function to produce a scalar output. Neurons can
then be stacked in parallel to produce multidimensional outputs.
Moreover, by cascading multiple groups of parallelized neurons
together, a deep neural network is capable of combining these
simple processing units to model and learn highly complex non-
linear relationships directly from data. A schematic representa-
tion of this principle is included in Fig. 1. Building on this idea,
the convolutional neural network (CNN) (LeCun et al. 1998),
which considers neurons that only take into account a local sub-
ensemble of the total inputs of the layer, was later introduced. In
this way, adjacent neurons at each layer will take into account
overlapping sub-ensembles of the inputs of the layer in a sliding
window manner. Inputs considered by each neuron are thus par-
tially shared locally. Mathematically, this can be seen as a con-
volution operator, where the output of the layer can be obtained
by the convolution of the input with a convolution kernel com-
prised of the layer weights, followed by the addition of a set
of biases. Typically, a nonlinear activation function, usually a
regularized linear unit (ReLU), that is, ReLU(x) = max(0, x),
is introduced to allow for nonlinear behavior. Dimensionality
reduction or expansion is then achieved by a pooling operator,
typically a local averaging or a local maxima. By feeding the
output of one layer as input to another layer, multiple layers are
then stacked in cascade to build a larger CNN model. Network
training then consists in learning, from a training dataset, the
network weights and biases that minimize a specific cost func-
tion, which is chosen based on the problem of interest. Here,
we focus on using CNNs for extracting relevant information
by finding low-dimensional representations of data. To this end,
CNNs exploit the existence of invariances within the considered
datasets (LeCun et al. 1998).

Autoencoder networks (Bourlard & Kamp 1988; Hinton &
Salakhutdinov 2006) are the most commonly used neural network
for producing low-dimensional representations of data. They rely
on a symmetric architecture comprised of mirrored encoder and
decoder networks, with a dimension bottleneck at the middle
layer. As such, the decoder network processes inputs to produce
a low-dimensional representation at the middle layer. This rep-
resentation is processed by the decoder network to rebuild the
original input as closely as possible. In this work, rather than
using a classical autoencoder network, we focus exclusively on
the decoder half of the autoencoder, and exploit input-training
(Tan & Mayrovouniotis 1995; Hassoun & Sudjianto 1997) to
train a deconvolutional decoder network directly from data. In
this way, both the decoder network parameters as well as the
optimal low-dimensional representation of the considered dataset
(which constitutes the input of the decoder network) are learned
simultaneously during the data inversion, without any prelimi-
nary network-training phase. The idea of a joint optimization of
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Fig. 1. Artificial neural network. An ensemble of simple processing
units or neurons are connected in parallel and cascaded to produce a
neural network capable of modeling highly complex, nonlinear, multi-
dimensional relationships. For each neuron, output y is produced by an
affine transformation of inputs xi by means of weights wi and bias b,
followed by the application of a nonlinear activation function f .

network parameters and inputs, known as input training, was first
introduced by Tan & Mayrovouniotis (1995) and later revisited
by Hassoun & Sudjianto (1997) in the context of autoencoder
training. Input training, which closely relates to nonlinear prin-
cipal component analysis (Baldi & Hornik 1989; Kramer 1991;
Schölkopf et al. 1998; Scholz 2002; Scholz et al. 2005), was
subsequently exploited for multiple applications, including error
and fault detection and diagnosis (Reddy et al. 1996; Reddy &
Mavrovouniotis 1998; Jia et al. 1998; Böhme et al. 1999; Erguo
& Jinshou 2002; Bouakkaz & Harkat 2012), chemical process
control, monitoring and modeling (Böhme et al. 1999; Liu &
Zhao 2004; Geng & Zhu 2005; Zhu & Li 2006), biogeochem-
ical modeling (Nandi et al. 2002; Schryver et al. 2006), shape
representation (Park et al. 2019), and matrix completion (Fan &
Cheng 2018), among others. Recently, this idea was applied by
Bojanowski et al. (2018) to train generative adversarial networks
(Goodfellow et al. 2014; Denton et al. 2015; Radford et al. 2015)
without an adversarial training protocol.

The underlying idea behind transfer learning is the exploita-
tion of knowledge gained by applying machine learning tech-
niques to a specific problem and its use to tackle a different but
related problem. Formally, a learning task can be defined by a
domain (or dataset) and a learning objective, usually determined

by a cost function to be minimized. In transfer learning, knowl-
edge gained from a source-learning task is used to improve per-
formance in a different target-learning task. This implies that
either the domain or the objective of these two distinct tasks
are different (Pan & Yang 2009). One may consider, for exam-
ple, training a galaxy classification algorithm on galaxies from a
given survey and then applying the gained knowledge to either
classify another set of galaxies from a different survey (differ-
ent learning domain) (Tang et al. 2019) or to classify a set of
galaxies pertaining to a different classification (different learn-
ing objective). It is important to underline that, to be considered
as transfer learning, the source and target tasks must be different
in either their learning domain and/or their learning objective.
Transfer learning usually involves training a network to solve
the source learning task, and then retraining the last layers of the
network on the target learning task. The main idea behind this
approach lies in the fact that, as the two learning tasks are related,
the first layers of the network will involve more general learning
pertaining to a more global aspect of the task (like recognizing
edges or gradients in image classification), while the final layers
exploit this knowledge to build upon it and learn more complex
rules.

Even though recent advances have yielded powerful algo-
rithms capable of training large networks from massive datasets
efficiently, neural-network-based models are not always invert-
ible, in the sense that part of the (invariant) information fed
to the network is lost. This implies that it is not possible to
reconstruct an input exclusively from the output of a CNN
designed to produce a low-dimensional representation of the
data. Nonetheless, it is indeed possible to synthesize an input that
would return a given output when fed to the considered network
(Mordvintsev et al. 2015). This synthesized input is statistically
similar to the original input that produced the output considered
(in a sense relating to the neural network architecture and its
training). However, such results cannot be used to accurately
reconstruct the input data, which is why autoencoder networks
(Bourlard & Kamp 1988; Hinton & Salakhutdinov 2006) were
developed. Autoencoder networks are specifically designed and
trained to keep enough information to be able to accurately
reconstruct the input data from a low-dimensional representa-
tion. Nonetheless, adapting neural network approaches to our
application of interest, which closely relates to the problem of
source separation in signal processing (Choi et al. 2005), is not
trivial, and would require the imposition of additional constraints
on the network weights and biases. Unfortunately, considering
additional constraints on the network parameters used for input
data reconstruction, which are determined during network train-
ing, is not straightforward for autoencoders (or even for most
neural networks). In order to consider additional constraints, it
would be necessary to explicitly rewrite the inversion used by
the autoencoder to learn the low-dimensional representation and
include any desired constraints within such an inversion scheme.
Moreover, autoencoder networks are often based on convolu-
tional approaches that cannot effectively handle partial obser-
vations and incomplete data. In this regard, rather than using
autoencoder networks, we exploit input-training to train a decon-
volutional decoder network directly from data.

The choice of an input-training deconvolutional decoder net-
work is further motivated by other known limitations of clas-
sic CNN-based methods. Indeed, even though CNNs have been
extensively used for inverse problems (McCann et al. 2017),
most CNN-based approaches learn the optimal solution (in a
probabilistic sense) of the considered problem from a very large
training dataset that not only needs to accurately represent the
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complexity of the problem of interest, but may also not take
into account any known and well-understood or well-modeled
parts of the underlying processes. As such, CNN-based meth-
ods are most effective for the analysis processes where the solu-
tion of the inverse problem can be adequately characterized by
exploiting a large ensemble of training data. Such approaches
usually aim to exploit a sufficiently large dataset, allowing for
the development of a complex model capable of generalization
to similar observations outside the training dataset. In the con-
text of the present study, however, we focus on cases where
the signal to be reconstructed is poorly known or modeled, and
where a limited amount of training data is available. In this
respect, we rather aim to exploit all the available information
to produce the most appropriate low-dimensional representation
of the available dataset. The objective of the decoder network
learning stage is then to identify an optimal low-dimensional
subspace where both the signal of interest and the systematic
effects can be represented accurately, so that the inverse problem
can be formulated as a constrained optimization of the projec-
tion of these signals onto the learned subspace. The idea is to
produce synthesized data from a set of inputs defining a low-
dimensional representation of the signals of interest and then
compare the synthesized data with real observations. In this
regard, the decoder network parameters and the low-dimensional
representation are optimized simultaneously, so that the differ-
ence between the synthesized dataset and the available observa-
tions is minimal. Importantly, this approach is robust to partial
observations and incomplete datasets. This property is particu-
larly relevant for remote sensing data, which is often derived
from satellite or airborne partial surface measurements. Particu-
larly, it is important to notice that the proposed framework does
not follow a classical deep-learning approach involving a learn-
ing stage aiming primarily to produce, from a sufficiently repre-
sentative dataset, a generalized model capable of processing new
observations outside of the learning domain. The deep network
architecture proposed here should be rather seen as a numerical
means of modeling highly complex relationships from limited
data in order to produce the best low-dimensional representation
allowing for an efficient separation of the signal of interest from
the different contamination sources involved.

Despite the fact that we do not aim primarily to pro-
duce a generalized neural-network-based model, we nonethe-
less exploit the generalizing properties of deep neural networks,
alongside transfer learning techniques, to fully exploit the poten-
tial existing within the limited available datasets. Indeed, the
idea of leveraging general knowledge learnt from a specific
task to improve a similar task is closely related to the con-
cept of generalization. In this regard, using a specific task to
extract information that is useful for a secondary task involves
identifying specific information that pertains to more general,
shared aspects of both tasks. In traditional machine-learning
approaches, generalization is achieved by building a training
dataset that accurately represents a majority of possible cases
well enough to generalize to previously unseen observations.
In transfer learning, generalization is achieved by means of a
more subtle approach that relies on discriminating information
specific to the task at hand from general information pertain-
ing globally to both tasks. This may be particularly interesting
for the processing of Planck-HFI data, where certain system-
atic effects are similar between detectors. While this prevents
them from being removed by classic averaging-based methods
(as they would be accumulated in the mean result used as the
final product), it also allows for a very efficient modeling and
transfer of shared characteristics between detectors. In this way,

transfer learning techniques allow us to better exploit the avail-
able datasets to obtain an improved low-dimensional representa-
tion, allowing for a more efficient separation between the signal
of interest and the different contamination sources present.

Finally, the integration of the decoder network training
alongside the data inversion constitutes the most important origi-
nal contribution of our approach, as it fundamentally differs from
standard dimensionality-reduction approaches (Kramer 1991;
DeMers & Cottrell 1993; Roweis & Saul 2000; Tenenbaum
et al. 2000; Saul & Roweis 2003; Aharon et al. 2006; Hinton
& Salakhutdinov 2006; Lee & Verleysen 2007; Van Der Maaten
et al. 2009; Bengio et al. 2013), which are typically used as inde-
pendent preprocessing steps and produce low-dimensional rep-
resentations that may not always be completely adapted to the
data inversion considered. As such, this dimensionality reduc-
tion helps us to better handle the lack of explicit information
about certain systematic effects so that we may effectively sep-
arate them from the signal of interest. Particular attention must
be paid to the size of the low-dimensional representation, which
will directly influence the final number of parameters to be esti-
mated, as a high number of degrees of freedom could adversely
affect the identifiability and numerical feasibility of the prob-
lem, which can lead to noisy, inaccurate, or incorrect solutions.
To tackle such an issue, one may, for example, consider adding
statistical or physically motivated constraints to the loss func-
tion minimized during the data inversion. Here, we illustrate
the importance of such dimensionality reduction by considering
applications to both synthetic and real Planck-HFI data. In par-
ticular, we achieve considerable gains, of up to one order of mag-
nitude, when considering a single input for the low-dimensional
representation of the signals of interest.

The rest of the paper is organized as follows. In Sect. 2,
we formally introduce the data inversion problem we are
interested in, as well as the proposed input-training decon-
volutional decoder-neural-network-based formulation, and an
alternative two-dimensional (2D) formulation of the decoder-
neural-network architecture. Section 3 introduces applications
to both synthetic and real Planck-HFI datasets, and provides
a comparison to state-of-the-art mapmaking methods and an
exploration of the potential of the proposed framework to syn-
thesize and remove FSL pickup. Additionally, it also illustrates
how integrating transfer learning techniques into the proposed
framework could improve the performance of contamination-
source removal. The results of these applications are presented
in Sect. 4 and are further discussed in Sect. 5. Finally, we present
our concluding remarks and future work perspectives in Sect. 6.

2. Method

2.1. Problem formulation

Following standard mapmaking formulations, we cast our data
inversion problem as a linear inversion:

mt = Atpsp + ctp + εt, (1)

where mt is the time-ordered observation data, indexed by a
time-dependent index t, sp is the spatial signal to recover,
indexed by a spatial-dependent index s, Atp is a projection matrix
relating observations mt to signal sp, encompassing the obser-
vation system’s geometry and any raw data preprocessing, ctp
is a spatiotemporal-dependent signal comprising all structured,
nonGaussian foregrounds and/or systematic effects, and εt is a
time-dependent white noise process modeling instrument mea-
surement uncertainty as well as model uncertainty.
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The main objective of mapmaking approaches is to recover
spatial signal sp from time-ordered observations mt, which also
involves ensuring an effective separation between mt and fore-
grounds and systematic effects ctp, so that there is no cross-
contamination in the final produced map. It should be noted that,
even though general mapmaking approaches include both fore-
grounds and systematic effects in signal ctp, we focus here on
cases where ctp comprises only, or is dominated by, large-scale
systematic effects. The application of the proposed methodology
for the analysis and removal of foregrounds is out of the scope of
this work (but remains an interesting further research avenue).

2.2. Decoder CNN-based inversion method

As previously stated, our proposed approach relies on a decon-
volutional decoder network to find a low-dimensional repre-
sentation of large-scale systematic effects ctp, so that it can be
effectively separated from spatial signal sp. We exploit a cus-
tom network-training loss function to ensure the effective sep-
aration of spatial signal sp from large-scale systematic effects,
coupled with an input-training approach to allow for the simul-
taneous learning of both the network parameters and the low-
dimensional representation of ctp.

Specifically, the proposed network architecture takes N low-
dimensional feature vectors αn, n ∈ ~1,N� of size 2K as input,
where N is the number of samples in the training dataset, so
that the input data are initially arranged in a 2D tensor of size
[N, 2K]. Input feature vectors are then projected onto a higher-
dimensional subspace by means of a deep neural network with
multiple deconvolutional layers1. For all feature vectors αn, n ∈
~1,N�, a reshape operation followed by a nonlinearity, provided
by a ReLU operator, converts the input data into K channels of
size n0 = 2, with the result of such operation being a tensor
of size [N, 2,K]. A first circular deconvolutional layer dilates
these K channels into 2K channels of sizes n1 = 8. M − 2 sub-
sequent convolutional layers further dilate these 2K channels to
sizes n2 = 32, . . . , nm = 2 · 4m, . . . , nM−1 = 2 · 4M−1, with the
corresponding results of such operations being tensors of size
[N, 8, 2K], [N, 32, 2K], . . . , [N, 2 · 4m, 2K], . . . , [N, 2 · 4M−1, 2K],
respectively. A final circular deconvolutional layer combines the
existing 2K channels to produce the final output of the decoder
network, a 2D tensor o(n, b) of size [N, 2 · 4M]. Each of the
N lines of this output tensor corresponds to one of the N low-
dimensional input feature vectors αn.

Finally, a piece-wise constant interpolation scheme is used
to interpolate the N network outputs of size 2 · 4M into N higher
dimensional output vectors relating to observations mt. To this
end, for each observation n, time-ordered data are binned into
2 ·4M bins so that all data points corresponding to bin b in obser-
vation n are interpolated as o(n, b). The binning strategy for this
final step is directly dependent on the considered problem and
dataset. For Planck-HFI 545 GHz data, this binning is detailed
in Sect. 3. A schematic representation of the network structure is
presented in Fig. 2.

1 A deconvolutional layer exploits a convolutional kernel to project a
low-dimensional input into a higher dimensional subspace by applying
an “inverse” convolution (in the sense that the produced output would
be projected onto the input by regular convolution with the considered
convolutional kernel). Given that a thorough exploration of convolu-
tion arithmetic is outside the scope of this work, we refer the reader to
Dumoulin & Visin (2016) for an in-depth analysis of deconvolution in
the context of deep neural networks.
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N

N

Fig. 2. Considered Decoder CNN architecture.

As previously explained, neural-network-based dimension-
ality reduction is classically performed by exploiting autoen-
coders, which usually involve deep symmetrical architectures
with a bottleneck central layer providing the low-dimensional
representation. This is achieved by using observations as both
input and output at training, so that the considered net-
work learns the optimal low-dimensional representation space
that minimizes reconstruction error. However, in the proposed
approach, we rather exploit an input-training scheme to avoid
training an encoder network. Input training is achieved by opti-
mizing the network input, in our case the low-dimensional repre-
sentation αn, alongside the remaining network parameters. Pro-
vided that the considered loss function is differentiable with
respect to inputs, classic neural-network training approaches can
be used to backpropagate gradients through the input layer and
optimize the inputs themselves.

2.2.1. Custom loss function

In our framework, we wish to ensure an efficient separation
between the spatial signal sp and the large-scale systematic
effects ctp modeled by the proposed neural-network architec-
ture. To this end, we follow classic mapmaking approaches and,
under the hypothesis that the projected spatial signal Atpsp for
any given pixel p remains constant in time, we exploit spatial
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redundancy in observations mt, provided by spatial crossings or
co-occurrences in observations at different times, to remove sig-
nal sp from observations mt. For a given pixel p, this means com-
puting the mean observation Mp and subtracting it from any and
all observations mt corresponding to pixel p:

Mp =
1

H(p)

∑
t

p(t)=p

mt =
1

H(p)

∑
t

p(t)=p

(
Atpsp + ctp + εt

)
= Atpsp +

1
H(p)

∑
t

p(t)=p

ctp + εt, (2)

m̂t = mt − Mp = mt −
1

H(p)

∑
t

p(t)=p

mt = ctp −
1

H(p)

∑
t

p(t)=p

ctp, (3)

where p(t) designates the pixel corresponding to observation mt
at time t, and H(p), known as the hit-count, is the total number
of observations at pixel p.

In the proposed decoder-network-based approach, observa-
tions mt are used for training by considering the output of the
decoder network to provide a parametrization of large-scale sys-
tematic effects:

ctp = f (αn) , (4)

so that the network, including its inputs αn, can be trained to
minimize reconstruction error with respect to signal free obser-
vations m̂t. The appropriate training loss function can then be
directly derived from Eqs. (3) and (4):

L =
∑

p

∑
t

p(t)=p

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
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1
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∑
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p(t)=p
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 −
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1
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∑
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p(t)=p

ctp
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∣∣∣∣∣∣∣∣∣∣
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2
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p

∑
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p(t)=p

∣∣∣∣∣∣∣∣∣∣
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(
mt − Mp

)
−

ctp −
1

H(p)

∑
t

p(t)=p

ctp
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2

=
∑

p

∑
t

p(t)=p

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
(
mt − Mp

)
−

 f (αn) −
1

H(p)

∑
t

p(t)=p

f (αn)


∣∣∣∣∣∣∣∣∣∣
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2

2

. (5)

From Eqs. (3)–(5), it can be concluded that the time invari-
ance hypothesis of projected spatial signal Atpsp ensures that all
traces of signal sp can be adequately removed from observations
mt during the data inversion. Even though this hypothesis may
not always be formally respected depending on the considered
dataset and application, it still remains a valid approximation for
a large number of applications, provided that the appropriate spa-
tiotemporal scales and sampling frequencies for observations are
chosen.

Following recent trends in machine learning (Raissi et al.
2017a,b, 2018; Karpatne et al. 2017; Lusch et al. 2018; Nabian
& Meidani 2018; Raissi & Karniadakis 2018; Yang & Perdikaris
2018, 2019; Erichson et al. 2019; Lutter et al. 2019; Roscher
et al. 2020; Seo & Liu 2019), we designed a custom loss func-
tion including a standard reconstruction error term (as in most
machine learning applications) coupled with physically derived
terms introducing expert knowledge relating to the application
and dataset considered (see Sect. 3 for detailed examples).

2.2.2. 2D Decoder CNN alternative formulation

Besides the previously introduced Decoder CNN architecture,
we propose an alternative 2D formulation of the original
Decoder CNN. The novel 2D formulation amounts to modi-
fying the network so that the intermediate convolutional lay-
ers involve 2D convolutional kernels. In this regard, this alter-
native formulation relies on a 2D binning of observations mt
for training. In particular, here we exploit a fully connected
layer to allow us to considerably reduce the dimension of the
low-dimensional representation of the signals of interest at the
expense of increasing the number of weights and biases to be
learned during training. Contrary to a convolutional layer, which
involves a convolution where each value of the produced mul-
tidimensional output depends only on a local subset of a mul-
tidimensional input (due to the convolution operation), a fully
connected layer produces the output by means of a linear com-
bination of all values in the input. In a fully connected layer,
the weights and biases to be learned are those of the linear
combination that produces the output. This implies that train-
able inputs, that is, the low-dimensional representation, αn, n ∈
~1,N� of size K should now be arranged into a 2D tensor
of size [N,K], which will be converted by a fully connected
layer into K channels of size [2, 2], with the result of such an
operation being a tensor of size [2, 2,K]. A first convolutional
layer further expands this tensor into 2K channels, producing
an output of size [8, 8, 2K]. In a similar fashion to the original
Decoder CNN, M − 2 subsequent circular deconvolutional lay-
ers dilate these 2K channels along the first two dimensions into
sizes n1 = 8, n2 = 32, . . . , nm = 2, ·4m, . . . , nM−1 = 2 · 4M−1,
with the corresponding results of such operations being ten-
sors of size [8, 8,K], [32, 32,K], . . . , [2 · 4m, 2 · 4m,K], . . . , [2 ·
4M−1, 2 · 4M−1,K], respectively. A final circular deconvolutional
layer combines the existing 2K channels to produce a tensor of
size [2 · 4M , 2 · 4M].

Finally, a piece-wise constant interpolation scheme is used to
interpolate the network outputs of size [2 ·4M , 2 ·4M] into outputs
corresponding to observations mt. To this end, time-ordered data
is binned two-dimensionally into (2 · 4M) × (2 · 4M) bins. The
binning strategy for this final step is directly dependent on the
considered problem and dataset. A schematic representation of
the network structure is presented in Fig. 3.

2.3. Map constraint

Given that the proposed approach exploits spatial redundancy in
the observations by minimizing loss function (5), which is com-
puted on observation co-occurrences only, no strong constraint
is imposed on the large-scale signature of the network output.
In this regard, the network output may, in some cases, resort
to adding a large-scale signal that remains close to zero around
the ecliptical poles where most signal crossings occur in order
to further minimize the loss function. As few crossings exist in
between the ecliptical poles, this large-scale signal will not be
adequately constrained by observations and will rarely produce
a physically sound reconstruction. To prevent such behavior, the
following additional constraint on the final correction map, given
by

∑
t

p(t)=p

f (αn) is considered:

Lmap =
∑

p

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣Mp −

1
H(p)

∑
t

p(t)=p

f (αn)

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
2

2

. (6)
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Fig. 3. Considered 2D Decoder CNN architecture.

Such a constraint will penalize solutions where the final correc-
tion map diverges from the input map, thus avoiding the inclu-
sion of a strong large-scale signature on the network correction.

The compromise between the original loss function (5) and
the additional map constraint (6) is controlled by means of a
user-set weight Wmap, so that the final modified loss function is
given by:

Ltotal = L + WmapLmap

=
∑

p

∑
t

p(t)=p
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p
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∑
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f (αn)
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2

2

. (7)

2.4. Transfer learning

In the context of the processing of Planck-HFI observations,
transfer learning techniques are of particular interest given the
limited amount of data available. This is in perfect agree-
ment with the main motivation behind transfer learning, which
aims to leverage knowledge from previously learned models to
tackle new tasks, thus going beyond specific learning tasks and
domains to discover more general knowledge shared among dif-
ferent problems. As illustrated below, transfer learning allows us
to do this using data from different bandwidths and by exploiting
different detectors to complement each other and produce more
accurate sky maps.

To further constrain the proposed decoder network, particu-
larly for identifying and removing contamination sources shared
among multiple detectors, we explore classic transfer learning
techniques. As previously explained, transfer learning relies on
learning and storing knowledge from a particular problem or
case study and applying such knowledge to solve a similar but
different problem or case study.

Given the specificities of the proposed Decoder CNN archi-
tecture, we train the whole network on a source task and
only retrain the low-dimensional representation (i.e., the low-
dimensional inputs αn) on the target task. Such an approach can
be seen as a particular case of feature-representation transfer
learning (Pan & Yang 2009), because the knowledge transferred
between tasks lies in the way the signals and processes of interest
are represented in the low-dimensional subspace of the inputs.
Indeed, as we may consider the Decoder CNN as a projection of
the observations onto the low-dimensional space of the inputs,
transferring the network weights and biases and only retrain-
ing the inputs amounts to considering that the projection onto
the space of the inputs is shared between the two learning tasks
considered. This means that the source learning task will learn
a projection, defining a low-dimensional representation, which
will then be used as is by the target task.

In the context of the proposed application, we exploit trans-
fer learning to better learn structured large-scale systematic
effects by training the proposed Decoder CNN on a dataset accu-
rately depicting these large-scale systematic effects. Given that
we focus on learning the projection that most accurately cap-
tures the structure of large-scale systematic effects, the Decoder
CNN is trained on the whole dataset rather than on observa-
tion co-occurrences (as is done with cost function (5)), which
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amounts to considering the following training cost function:

LTL =
∑

p

∑
t

p(t)=p

∣∣∣∣∣∣mt − ctp

∣∣∣∣∣∣2
2 =

∑
p

∑
t

p(t)=p

||mt − f (αn)||22 . (8)

After training, the resulting Decoder CNN is transferred to a new
dataset, which amounts to retraining the Decoder CNN inputs
only using the original cost function (Eq. (5)), while keeping the
previously trained weights and biases.

In this context, two distinct cases can be discerned. The first
case involves two detectors that measure the sky signal in the
same frequency band, while the second case involves two detec-
tors measuring the sky signal on different frequency bands. Both
cases rely on training the Decoder CNN on a dataset from a
specific detector, and then retraining inputs only on a different
dataset pertaining to a different detector. As the learning tasks
for both detectors are different (the considered cost functions
are different), such a procedure effectively amounts to transfer
learning. This is further reinforced if the second detector dataset
differs significantly from the first detector dataset, that is, if we
choose, for example, to train the Decoder CNN on a 545 GHz
detector dataset and retrain the inputs using a 857 GHz detector
dataset. The simpler case where both detectors measure the sky
signal in the same frequency band still amounts to transfer learn-
ing, but may involve more accurate knowledge transfer, given the
strong similarities between the source and target datasets.

3. Planck -HFI case study

3.1. Planck observation strategy

The Planck satellite scanning strategy, a clear schema of which
can be found in Sect. 1.4 of Planck Collaboration ES (2018), is
determined by a halo orbit around the Lagrange L2 point. The
satellite rotates around an axis nearly perpendicular to the Sun
(Tauber et al. 2010a) and scans the sky in nearly great circles at
around 1 rpm, which means that the ecliptic poles are observed
considerably more frequently, and in many more directions, than
the ecliptic equator. Thus, ecliptic poles concentrate most of the
observation crossings and co-occurrences providing the required
redundancy to ensure effective separation and removal of large-
scale systematic effects. This can be clearly observed in Fig. 4,
where we present a Planck-HFI 545 GHz channel hit-count map,
that is, the number of observations at each pixel.

The redundancy pattern produced by the Planck-HFI scan-
ning strategy is particularly relevant for our approach, given that
the network training takes spatial redundancy into account for
the removal of signal sp to ensure that the CNN is trained to
capture and model large-scale systematic effects ctp = f (αn)
only. In this regard, the choice of a scanning strategy is a critical
point in the design of most remote sensing satellite missions, as
it determines a compromise between spatial redundancy (neces-
sary for accurate removal of spatially redundant sources of con-
tamination) and spatiotemporal sampling resolution (necessary
to obtain accurate and reliable measurements of the signal of
interest). For most remote-sensing satellite mission designs, the
choice of scanning strategy is usually the product of extensive
research based on multiple end-to-end simulations of the observ-
ing system.

3.2. Planck data preprocessing and compression

Time-ordered data from the Planck satellite are sampled in con-
secutive 1 rpm rotations of the satellite. These observations can

545 Ghz full mission hit count

0 10000

Fig. 4. Full-mission observation hit-count map, that is, the total number
of observations at each pixel, for the Planck-HFI 545 GHz channel.

be naturally organized into discrete packages, with measure-
ments corresponding to each full rotation being grouped together
into units called circles. Given the relationship between the rota-
tional velocity of the satellite and its orbital velocity around
the Sun, consecutive circles can be grouped together every 60
rotations and averaged to produce a composite measurement,
called a ring, under the approximation that the region of the sky
observed by 60 consecutive circles (∼1 hour) remains constant.

Given that a ring corresponds to 60 averaged rotations at a
constant angular velocity, the sampling frequency of the instru-
ment then determines a uniform sampling of the phase space
within each ring. In this way, the phase of a full rotation is dis-
cretized into B points, so that each measurement in a ring corre-
sponds unequivocally to a phase bin of amplitude 2π

B .
Further compression of the information present in the

Planck-HFI 545 GHz and 857 GHz datasets is achieved by con-
sidering a HEALPix pixelization (Górski et al. 2005) with
Nside = 2048 and averaging, for each ring, all measurements
that fall within the same pixel. As far as phase information is
concerned, each new averaged measurement is associated with
a composite phase value obtained by averaging the phase of all
measurements falling within the considered pixel. In this way,
phase information loss due to averaging, and the associated sub-
pixel artifacts (i.e., inconsistent pixel values related to the loss
of phase information) are minimized. As the considered com-
pression stage produces results of varying length depending on
each ring’s orientation with respect to the pixelization grid, zero
padding is used to produce a homogeneous dataset by converting
the length of all rings to l = 27 664, which is the length of the
largest compressed ring in the dataset.

3.3. Far side lobe pickup large-scale systematic effect

For the application considered in the present work, we focus
specifically on one large-angular-scale systematic effect, namely
the FSL pickup, which consists of radiation pickups far from
the Planck telescope line of sight, primarily due to the existence
of secondary lobes in the telescope’s beam pattern, which cre-
ates what is commonly known as “stray-light contamination”
(Tauber et al. 2010b; Planck Collaboration III 2016). Regard-
ing the FSL data used for the present study, we consider sim-
ulation data obtained using a customized and improved vari-
ant of the GRASP simulation tool (Tauber et al. 2010b). The
interested reader can find full implementation details of these
simulations in Tauber et al. (2010b). Particularly, Fig. 5 of
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Tauber et al. (2010b) includes a depiction of a typical FSL
pattern obtained using this method. Typically, FSL pickup is
characterized by a highly structured large-angular-scale signa-
ture, which makes it an ideal candidate to evaluate the proposed
method’s ability to exploit such structure to project the signals
of interest onto a low-dimensional subspace where such struc-
tured information is adequately represented with a reduced num-
ber of degrees of freedom. In this regard, we focus our analysis
on larger spatial scales (below multipole ` = 100, that is, angular
scales over 1◦), given that FSL pickup is primarily a large-scale
systematic effect. Moreover, the dominant contamination source
at small scales in Planck-HFI data is the detector noise, which
can be modeled as an unstructured Gaussian signal that can-
not be effectively removed by the proposed method, which fur-
ther motivates our choice to focus on large spatial scales. How-
ever, it should be noted that even though we focus here on the
FSL pickup, other structured contamination sources present in
intermediate spatial scales not yet dominated by detector noise
may also be removed with the proposed methodology, but this is
beyond the scope of this work.

3.4. Planck-HFI 545 GHz dataset

To illustrate the relevance of the framework introduced in
Sect. 2, we consider synthetic simulation data from the Planck-
HFI 545 GHz dataset of the Planck mission (Tauber et al. 2010a).
As previously explained, the choice of the Planck-HFI 545 GHz
channel is motivated by its weak CMB signature, which simpli-
fies both the data processing and the interpretation of obtained
results. In particular, we exploit FSL pickup synthetic 545 GHz
data to validate the ability of our method to learn suitable low-
dimensional representations of the FSL pickup under both ideal
and nonideal settings, including cases considering incomplete,
gap-filled, and inconsistent datasets.

3.5. Planck-HFI 857 GHz dataset

Besides Planck 545 GHz synthetic simulation data, we also con-
sider Planck 857 GHz real observation data to evaluate how
data augmentation techniques can be exploited to improve
the contamination source removal performance of the Decoder
CNN architecture, as explained in Sect. 4.2. Similarly to the
Planck-HFI 545 GHz channel, the Planck-HFI 857 GHz chan-
nel presents a weak CMB signature, which simplifies both
the data processing and the interpretation of obtained results.
This implies that the detector difference maps between differ-
ent detectors will predominantly depict large-scale systematic
effects, with the FSL pickup being the dominant systematic
observed (Planck Collaboration III 2020). As such, Planck-HFI
857 GHz real observation data provide an ideal setting to eval-
uate the ability of the proposed method to capture and remove
large-scale systematic effects, and especially the FSL pickup.
Importantly, the Planck-HFI 857 GHz channel has the particu-
larity that, given the position of its associated detectors on the
focal plane, detector 8572 presents very little FSL pickup.

Moreover, the considered Planck 857 GHz dataset shares
many similarities with the previously introduced Planck
545 GHz dataset, including the circle-averaging used to produce
rings and the HEALPix pixelization-based information compres-
sion (presented in Sect. 3.2). Besides the difference in frequency
bands, the main difference lies in the slightly different observa-
tion spatial distribution produced by the differences in location
and orientation of the detectors involved. Specifically, the con-
sidered dataset corresponds to real calibrated data from the 2018

Planck release (available at the Planck Legacy Archive2), which
implies several preprocessing steps have already been performed
on the dataset, such as cosmic-ray-glitch removal and transfer-
function correction at the time-ordered data level, among others.
This implies that, besides the FSL signal, other systematic effects
(CMB solar dipole, calibration discrepancies between detectors,
etc.) are also present. The SRoll algorithm takes into account
most of these residual systematic effects using templates. Thus,
for the 857 GHz channel, many such residual sources of con-
tamination are either considerably weak with respect to the FSL
residual signal, as seen in the differences between detector maps,
or not relevant at the large scales considered (as is the case, most
notably, for cosmic-ray glitches).

3.6. Decoder network training

Taking Planck-HFI 545 GHz and 857 GHz data specificities
into consideration for the proposed decoder-network-based
approach, we chose to train our decoder network on compressed
rings directly, so that the final step of the decoder network,
considering M = 3, uses a piece-wise constant interpolation
to interpolate l = 27 664 values from the 2(43) = 128 larger
bins produced as output by the decoder network. Using phase
values as the independent interpolation variable, network out-
puts are thus interpolated to length l = 27 664, and compared
to compressed rings during training. Network parameters and
inputs are jointly optimized in order to minimize reconstruction
error while ensuring the effective removal of large-scale system-
atic effects by minimizing the custom loss function (Eq. (5)).
Moreover, an additional map constraint term, as introduced in
Sect. 2.3, is added to the loss function (Eq. (5)) to introduce
physics-informed constraints and leverage domain knowledge
on the inversion problem. Finally, transfer learning strategies, as
presented in Sect. 2.4, are also explored as a means to share and
transfer relevant information between datasets.

4. Results

4.1. Validation on 545 GHz FSL simulations

We explore the ideas introduced in Sect. 3 by training our
Decoder CNN on FSL simulation data from a 545 GHz detec-
tor (detector 5451). For the considered case study, data from all
Planck-HFI 545 GHz detectors was considered. The proposed
method was applied to each detector individually, with similar
results being obtained. For the sake of simplicity, only results for
detector 5451 are presented. Given that we focus here on eval-
uating the capacity of neural-network-based representations to
accurately depict large-scale systematic effects, we do not con-
sider, for the validation stage, multidetector approaches com-
bining data from several sources. However, it should be noted
that the SRoll algorithm was originally developed in a multide-
tector setting. Further tests considering multiple detectors were
not considered for the validation stage, as we consider them to
be beyond the scope of our validation objectives. As we fur-
ther underline in our conclusions, this does nonetheless remain
an interesting avenue to further explore the potential of neural-
network-based approaches and transfer-learning strategies in the
context of the removal of large-scale systematic effects. The
objective of this validation stage is to demonstrate the ability
of the method to adequately learn a suitable low-dimensional
representation for the signals of interest from data. In this

2 http://pla.esac.esa.int/pla/
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regard, the learned representation embeds knowledge learnt from
the available dataset that facilitates the separation and removal
of structured large-scale systematic effects (provided that such
knowledge effectively exists within the dataset), while also being
optimized with respect to the data inversion itself. Moreover,
transfer-learning techniques are evaluated using phase-shifted
data from the same detector. As Planck-HFI datasets are binned
in phase, phase shift amounts to a simple circular shift operation
at the ring level, so that all rings are shifted a fixed number of
bins bs and overflowing bins at one end are reintroduced into the
ring at the other end. The number of bins bs to be shifted is deter-
mined as a function of the number of bins used for phase binning
B and the desired shift angle αs: bs = B

2παs. In this regard, con-
sidering phase-shifted data allows us to simulate either partially
similar detector datasets, and/or cases where the FSL pickup
is partially or poorly modeled. It should be noted that phase-
shifted data is purely exploited as a means to emulate missing
knowledge within the training dataset. In this regard, the con-
sidered phase shift is not necessarily a representation of the real
physical phenomena occurring within the satellite’s optical sys-
tem, but it is rather a simplified scheme to demonstrate how the
proposed inversion method responds to training on incomplete
or inconsistent datasets. Indeed, one may consider introducing
a phase shift in data as a simple means to distort the learning
dataset, thus simulating either acquisition errors or the use of
data from a different detector for the network training. This is
particularly relevant for the Planck mission, given that differ-
ent detectors have slightly different positions in the satellite’s
focal plane, which can be modeled, albeit in a simplified way,
by phase shifts in data. In this regard, among the tests consid-
ered, we include a direct fit, as a template, of phase-shifted data
onto nonshifted data. We expect this fit to emulate the result we
would obtain if the direct fit technique exploited by the origi-
nal SRoll2 algorithm was used to fit and remove distorted data
(either by acquisition errors or differences in focal plane posi-
tion) from nondistorted data. This result is used primarily for
comparison and benchmarking purposes as a ground-truth refer-
ence to evaluate the gain obtained when exploiting our proposed
methodology, with respect to the original SRoll2 approach. All
considered datasets consist of 747 093 984 observations packed
into rings of size 27 664, for a total ring count of N = 27 006
rings.

We evaluate performance by presenting and comparing
results obtained for the following approaches:

– A classic destriping (Planck Collaboration VIII 2016) of
detector 5451 FSL simulation data (referred to as CD here-
after).

– A direct fit of a FSL template computed from 20◦ phase-
shifted detector 5451 FSL simulation data onto detector 5451
FSL simulation data (referred to as TFIT hereafter).

– The Decoder CNN in its original one-dimensional (1D) ver-
sion trained and applied directly on detector 5451 FSL simu-
lation data (referred to as CNN1D hereafter).

– The Decoder CNN in its original 1D version trained and
applied directly on detector 5451 FSL simulation data and
considering an additional weighted map constraint (referred
to as CNN1D-Wmap hereafter).

– The Decoder CNN in its original 1D version trained on 20◦
phase-shifted detector 5451 FSL simulation data and applied
to nonshifted detector 5451 FSL simulation data by retrain-
ing inputs only (referred to as CNN1D-TL hereafter).

Subsequently, we also perform additional tests to evaluate:
– the performance of the 2D alternative formulation of the

Decoder CNN for the original case studies and datasets

(referred to as, respectively, CNN2D, CNN2D-Wmap and
CNN2D-TL hereafter);

– the performance of the proposed algorithms when applied
to a gap-filled dataset generated by subsampling available
observations.

For comparison and benchmarking purposes, we include, among
the methods considered, a classic destriping approach. This
result is used as a baseline for evaluating the performance of
the proposed methodology. For the considered methods, results
are evaluated qualitatively by means of final full-mission-output
maps and half-mission-difference maps, which are presented for
visual comparison.

Regarding the processing of Planck-HFI data, several ways
of splitting the datasets for their analysis are described in Planck
Collaboration III (2020). Here, we use half-mission-difference
maps, which are computed by dividing the whole time-ordered
data-series in two equal halves, processing each half indepen-
dently and then computing the difference between the obtained
maps. As such, half-mission-difference maps remove all spa-
tially redundant information, allowing analysis of the informa-
tion remaining once structured spatial signals are removed. This
implies that half-mission-difference maps provide relevant infor-
mation regarding the training of the Decoder CNN, because it
is trained using a custom cost function that explicitly removes
redundant spatial information, but they do not provide much
information regarding the real performance of contamination-
source removal.

Moreover, a quantitative performance evaluation is given by
means of the power spectra of the presented maps, which are
computed using a spherical harmonics decomposition. In this
spectral representation, multipole scale number ` relates to dif-
ferent spatial angular scales. As such, the power spectra depict
how energy is distributed across angular scales, thus providing a
multiscale measurement of the power per surface unit within the
analyzed map.

4.1.1. One- and two-dimensional Decoder CNNs

The first considered case study involves exploiting data from
the Planck-HFI 545 GHz channel only. In this context, transfer
learning amounts to training the Decoder CNN on phase-shifted
data from detector 5451, and exploiting this network to process
nonshifted data from detector 5451 by retraining inputs only. As
previously stated, such an approach can be considered as trans-
fer learning despite the similarities between the two datasets,
because the source and target learning tasks are different.

For the considered case study, the 1D Decoder CNN consid-
ers K = 4 channels and M = 3, meaning that the 1D Decoder
CNN architecture uses four deconvolutional layers to project a
total number of 8N inputs onto time-ordered data binned into
128 phase bins. For the map-constrained version of the Decoder
CNN (trained with loss function (7)), we consider Wmap = 10−2,
which was chosen empirically as it produced the best results
when testing the sensitivity of the method to this parameter,
evaluated quantitatively by means of the final half-mission-map-
difference power spectra.

We further complement our performance study by analyz-
ing and comparing results obtained by contamination-source
removal from FSL simulation data with the 2D variants of the
Decoder CNN introduced in Sect. 2.2.2. To this end, we exploit
a 2D Decoder CNN to process 545 GHz data under identical
conditions to those analyzed for the 1D Decoder CNN. In this
regard, the results for the 2D CNN Decoder were also obtained
by considering K = 4 and M = 3, meaning that the considered

A65, page 10 of 18



M. Lopez-Radcenco et al.: SRoll3: A neural network approach to reduce large-scale systematic effects in the Planck-HFI maps

2D Decoder CNN consists of four 2D deconvolutional layers
and will project 16 (4 × 4) inputs onto time-ordered data vec-
tors binned into 128 × 128 bins in phase and time. For the map-
constrained version, user-set weight Wmap is once again set to
Wmap = 10−2.

Figure 5 presents, for the different considered approaches,
the power spectra of the full-mission maps and the half-mission-
difference maps for the different variants considered. For a
qualitative analysis of these results, Fig. 6 presents these full-
mission and half-mission-difference maps themselves. Addition-
ally, Figs. 5 and 6 also include maps, and their corresponding
power spectra, for the best result obtained when exploiting the
2D formulation of the Decoder CNN, that is, for CNN2D-TL
(exploiting CNN weights and biases learnt on 20◦ phase-shifted
detector 5451 FSL simulation data). For the sake of simplicity
and readability, the lesser performing variants of the 2D formu-
lation are not included in Figs. 5 and 6. Moreover, as we consider
idealized synthetic simulation data here, numerical results have
no real physical interpretation, and are therefore presented using
arbitrary units.

Concerning the 1D variants of the Decoder CNN, Fig. 5
shows that both CNN1D and CNN1D-Wmap provide a sub-
stantial gain for the filtering of smaller scale FSL structures,
while not being able to accurately remove the large-scale FSL
signature. However, CNN1D obtains the best performance in
terms of large-scale contamination source removal (at multi-
pole ` = 0). CNN1D-TL (trained on a phase-shifted detec-
tor dataset) degrades performance overall, while TFIT provides
the best results at larger scales while not being able to capture
smaller scale structures. As far as the 2D variant of the Decoder
CNN is concerned, it seems that CCN2D-TL shows considerable
improvement in terms of performance in contamination-source
removal for larger spatial scales, even outperforming TFIT. For
smaller spatial scales, however, the use of CNN2D-TL does not
seem to provide any performance gain, with respect to CD, and
may even degrade performance for larger ` values. Similarly,
from Fig. 5, one can observe a considerable gain for all spa-
tial scales in the half-mission difference maps when considering
CNN1D and CCN1D-Wmap. Globally, CNN1D seems to provide
the most substantial gain for most spatial scales. In agreement
with these findings, the half-mission-difference map for CNN1D
is less energetic and closer to a Gaussian white noise in space
(even though some residual signal can still be observed) than
the other analyzed Decoder CNN variants. However, the use
of CNN1D-TL does seem to provide some gain for all spatial
scales, even though it is marginal when compared to CNN1D and
CNN1D-Wmap, especially for smaller spatial scales. TFIT pro-
duces an even smaller performance gain, remaining quite close
to the performance levels of CD, while CNN2D-TL appears
to be the worst performing variant overall for half-mission-
difference-map contamination-source removal. Indeed, CNN2D-
TL, the best performing 2D variant of the Decoder CNN, does
not seem to provide any significant performance gain for half-
mission-difference-map contamination-source removal, with a
slightly worse performance level than TFIT at larger spatial
scales, and a clear degradation in performance of contamination-
source removal with respect to a CD for smaller spatial scales.
Overall, the half-mission-difference maps are in strong agree-
ment with this analysis.

Given that previous results showed little degradation in terms
of half-mission-difference-map contamination-source removal,
results presented in the following sections focus specifically
on the performance of contamination-source removal for full-
mission maps. Moreover, for the sake of readability, we focus
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Fig. 5. Power spectra (in arbitrary units) of full-mission maps (top)
and half-mission-difference maps (bottom) of detector 5451 FSL sim-
ulations after contamination-source removal using 1000 iterations of a
classic destriping approach (CD), a direct fit of 20◦ phase-shifted detec-
tor 5451 FSL simulation data as a template (TFIT), the original 1D
Decoder CNN (CNN1D), the 1D Decoder CNN variants using the addi-
tional map constraint (CNN1D-Wmap) and transfer learning by training
the Decoder CNN weights and biases on 20◦ phase-shifted data from
detector 5451 FSL simulations (CNN1D-TL), and the 2D variant of the
Decoder CNN using transfer learning by training the Decoder CNN
weights and biases on 20◦ phase-shifted data from detector 5451 FSL
simulations (CNN2D-TL).

exclusively on a quantitative analysis by means of power spec-
tral plots, and do not include additional map plots.

4.1.2. Partial observations with large gaps

To further illustrate the relevance of transfer-learning techniques,
we now consider the previously introduced Planck-HFI 545 GHz
dataset but subsample one every ten rings, which amounts to
considering a partial dataset involving large gaps. We consider
an identical configuration for the considered Decoder CNN to
the one used for previously presented results, namely K = 4
channels and M = 3, for a total of 128 phase bins for the 1D
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Fig. 6. Full-mission and half-mission-difference maps (in arbitrary units) of detector 5451 FSL simulations after contamination-source removal
using 1000 iterations of a classic destriping approach (CD), a direct fit of 20◦ phase-shifted detector 5451 FSL simulation data as a template
(TFIT), the original 1D Decoder CNN (CNN1D), the 1D Decoder CNN variants using the additional map constraint (CNN1D-Wmap), and transfer
learning by training the Decoder CNN weights and biases on 20◦ phase-shifted data from detector 5451 FSL simulations (CNN1D-TL), and the
2D variant of the Decoder CNN using transfer learning by training the Decoder CNN weights and biases on 20◦ phase-shifted data from detector
5451 FSL simulations (CNN2D-TL). Leftmost columns present full-mission maps, rightmost columns present half-mission-difference maps.

Decoder CNN and 128 × 128 bins in phase and time for the 2D
Decoder CNN. For the map-constrained versions of the Decoder
CNN, Wmap is kept at its original value of Wmap = 10−2.

We present similar results to those introduced in Sect. 4.1;
that is, full-mission map power spectra in Fig. 7. Our initial
analysis of the obtained results indicates that, given the large
gaps in the considered dataset, the Decoder CNN tends to add
a considerable spatial offset to the whole map in order to fill
in those gaps. During our tests, this effect was partially limited
by the additional map constraint, even though this does suffice to
completely remove the offset. From the full-mission maps before
removing offsets, we observed that both CNN1D and CNN1D-
Wmap were unable to correctly capture and filter the FSL signal.
CNN1D-TL on the other hand considerably improves perfor-
mance when considering partial datasets involving large gaps,
most notably for smaller spatial frequencies.

After subtracting the spatial mean, we observe that perfor-
mance is considerably improved, particularly for CNN1D-TL,
which, among all 1D Decoder CNN variants, produces the best
results for larger spatial scales, closely followed by CNN1D-
Wmap, which also presents the best overall performance for
smaller scales. On the other hand, CNN1D is poorly suited to
handling incomplete datasets involving large gaps, as can be con-
cluded by its subpar performance with respect to CNN1D-Wmap
and CNN1D-TL. Similarly to previous results, none of the 1D
variants are capable of outperforming TFIT, which does indeed
present a better contamination source removal performance for
large spatial scales. CNN2D-TL on the other hand outperforms
TFIT for larger spatial scales, at the expense of a slightly worse

contamination-source-removal performance than that of CD for
smaller spatial scales.

4.1.3. Transfer learning for phase-shift correction

To further illustrate the relevance of transfer-learning strate-
gies for improving the characterization of large-scale systematic
effects, we consider a case study involving 545 GHz FSL simula-
tions with additional phase-shift values. The primary objective is
to evaluate the ability of the proposed approach to extract knowl-
edge from an incomplete or inconsistent dataset that nonetheless
contains relevant information that may be exploited to learn a
suitable low-dimensional representation of the signals of inter-
est. As previously explained, considering phase-shifted data
at different phase shift values allows us to emulate both par-
tially similar detectors and inaccurate FSL templates. As such, a
phase-shifted version of the original FSL simulation is exploited
to learn the Decoder CNN weights and biases, which are then
applied to the mapmaking and contamination source removal of
the original FSL simulation. Moreover, we also explore the pos-
sibility of combining multiple phase-shifted datasets as a means
to construct an enriched dataset that better represents the relevant
information to be learnt by the CNN. To this end, the weights and
biases computed from the 20◦ phase-shifted FSL data are fixed,
and only the low-dimensional inputs are retrained on the original
(nonshifted) FSL observations.

We evaluate performance by presenting and comparing
results obtained for the following approaches:
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Fig. 7. Power spectra (in arbitrary units) of full-mission maps of detec-
tor 5451 FSL simulations considering one in every ten rings after
contamination-source removal using 1000 iterations of a classic destrip-
ing approach (CL), a direct fit of 20◦ phase-shifted detector 5451 FSL
simulation data as a template (TFIT), the original 1D Decoder CNN
(CNN1D), the 1D Decoder CNN variants using the additional map con-
straint (CNN1D-Wmap) and transfer learning by training the Decoder
CNN weights and biases on 20◦ phase-shifted data from detector 5451
FSL simulations (CNN1D-TL), and the 2D variant of the Decoder
CNN using transfer learning by training the Decoder CNN weights and
biases on 20◦ phase-shifted data from detector 5451 FSL simulations
(CNN2D-TL).

– a classic destriping of 5◦ phase-shifted detector 5451 FSL
simulation data (referred to as CD5 hereafter);

– a direct fit of a FSL template computed from nonshifted
detector 5451 FSL simulation data onto 5◦ phase-shifted
detector 5451 FSL simulation data (referred to as TFIT0→5
hereafter);

– the Decoder CNN in its original 1D version trained on non-
shifted detector 5451 FSL simulation data and applied to 5◦
phase-shifted detector 5451 FSL simulation data by retrain-
ing inputs only (referred to as CNN1D0→5 hereafter);

– the Decoder CNN in its 2D version trained on nonshifted
detector 5451 FSL simulation data and applied to 5◦ phase-
shifted detector 5451 FSL simulation data by retraining
inputs only (referred to as CNN2D0→5 hereafter);

– the Decoder CNN in its 2D version trained on a catalog
built from detector 5451 FSL simulation data shifted by
[6◦, 8◦, . . . , 18◦, 20◦] and applied to 5◦ phase-shifted detector
5451 FSL simulation data by retraining inputs only (referred
to as CNN1D[6,20]→5 hereafter);

– the Decoder CNN in its 2D version trained on a catalog
built from detector 5451 FSL simulation data shifted by
[0◦, 2◦, . . . , 18◦, 20◦] and applied to 5◦ phase-shifted detector
5451 FSL simulation data by retraining inputs only (referred
to as CNN1D[0,20]→5 hereafter).

Given that we are interested in evaluating the potential of the
transfer-learning-based 2D Decoder CNN to accurately learn the
shape of FSL pickups, all considered networks rely on a sin-
gle input for the low-dimensional representation of the signals
of interest. The principle behind such an architecture is that
the CNN weights and biases will capture the overall shape of
FSL pickups, which implies that the free low-dimensional input
should capture the phase shift between the different datasets con-
sidered. As such, we consider an asymmetrical variant of the 2D
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Fig. 8. Power spectra of full-mission maps of 5◦ phase-shifted detec-
tor 5451 FSL simulations after contamination-source removal using
1000 iterations of a classic destriping approach (CD5), a direct fit of
nonshifted detector 5451 FSL simulation data onto 5◦ phase-shifted
detector 5451 FSL simulation data as a template (TFIT0→5), the 1D
Decoder CNN trained on nonshifted detector 5451 FSL simulation
data and applied to 5◦ phase-shifted detector 5451 FSL simulation
data (CNN1D0→5), the 2D Decoder CNN trained on nonshifted detec-
tor 5451 FSL simulation data and applied to 5◦ phase-shifted detector
5451 FSL simulation data (CNN2D0→5), the 2D Decoder CNN trained
on a catalog built from detector 5451 FSL simulation data shifted by
[6◦, 8◦, . . . , 20◦] and applied to 5◦ phase-shifted detector 5451 FSL
Simulation data (CNN2D[6,20]→5), and the 2D Decoder CNN trained
on a catalog built from detector 5451 FSL simulation data shifted by
[0◦, 2◦, . . . , 20◦] and applied to 5◦ phase-shifted detector 5451 FSL sim-
ulation data (CNN2D[0,20]→5).

Decoder CNN, such that the two dimensions of the network out-
put can be of different sizes. This choice allows us to have a
better control over the quantization of the spatial and temporal
binnings considered. The 2D architecture consists of an initial
fully connected layer that projects a single input onto K = 32
channels to produce a tensor of size [1, 42, 2 · 41, 32], followed
by M − 1 2D deconvolutional layers to dilate these K channels
and produce tensors of sizes [16, 8,K], [64, 32,K], . . . , [4m+1, 2 ·
4m,K], . . . , [4M+1, 2 · 4M ,K], respectively. A circular deconvolu-
tional layer then combines the existing K channels to produce
a tensor of size [4M+2, 2 · 4M+1]. For training, time-ordered data
are binned into 4M+2 × 2 · 4M+1 bins in ring and phase space,
respectively, to match the network output.

For the present case study, we consider M = 3, meaning
that the proposed network outputs relies on a 1024 × 512 bin-
ning of time-ordered data in ring and phase space. We present
similar results to those introduced in previous sections, that is,
full-mission power spectra in Fig. 8.

From Fig. 8, we conclude that CNN1D0→5 is only able
to marginally improve performance of contamination-source
removal (with respect to CD5) for smaller spatial scales. This
is expected, as the 1D variant of the Decoder CNN processes
each ring independently and thus has a limited potential to
model 2D information, which appears to be essential for the
accurate capture and modeling of the phase difference to be
transferred between the datasets involved. CNN2D0→5 performs
similarly to TFIT0→5, and both approaches provide a significant
improvement in terms of performance of contamination-source
removal at all spatial scales. Such a result is explained by the
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fact that, as the CNN was trained on nonshifted data, it is
unable to model phase shifts, as these phenomena are not accu-
rately represented in the training dataset. Indeed, performance of
contamination-source removal is considerably increased when
CNN2D[6,20]→5 is considered, which further supports the fact
that the inclusion of phase-shifted data is necessary to ensure
that the trained CNN learns to accurately represent phase shifts.
Performance of contamination-source removal, particularly for
larger spatial scales, is further improved with CNN2D[0,20]→5,
when additional phase-shifted data (between 0◦ and 4◦) are con-
sidered. This is to be expected, as deep neural networks per-
form well for interpolation, but lack the necessary information
to have similar performance for extrapolation. Adding phase-
shifted data for smaller phase shift values means that the 5◦
phase shift of the target dataset is now within the phase-shift
training range, and the trained network is better able to model
such phase shifts.

4.2. Application to 857 GHz data

Following the validation of the proposed methodology on
Planck-HFI 545 GHz FSL synthetic data, we evaluate its per-
formance on real Planck-HFI 857 GHz observations. As previ-
ously explained, the Planck-HFI 857 GHz channel provides an
ideal setting for evaluating the ability of the proposed approach
to model and remove large-scale systematic effects, and FSL
pickup in particular, given that the detector difference between
the four 857 GHz detectors will mostly depict large-scale
systematic effects, and predominantly the FSL pickup (Planck
Collaboration III 2020). The 857 GHz dataset consists of time-
ordered data from four independent detectors (named hereafter
857d, d = 1, . . . , 4).

In this context, we exploit the 2D variant of the Decoder
CNN using a single input for the low-dimensional representa-
tion of the signals of interest. The 2D architecture is then iden-
tical to the one used to explore the potential of transfer-learning
techniques to correct for phase shifts in Sect. 4.1.3, and consists
of an initial fully connected layer that projects a single input
onto K = 32 channels to produce a tensor of size [42, 2 · 41,K],
followed by M − 1 2D deconvolutional layers to dilate these K
channels to produce tensors of sizes [64, 32,K], . . . , [1, 4m+1, 2 ·
4m, . . . , [1, 4M+1, 2 · 4M ,K], respectively. A circular deconvolu-
tional layer combines the existing K channels to produce a tensor
of size [4M+2, 2·4M+1]. For training, time-ordered data are binned
into 4M+2 × 2 · 4M+1 bins in ring and phase space, respectively, to
match the network output.

We also explore the potential of data augmentation to
integrate expert knowledge into the training of the Decoder
CNN and thus provide enhanced modeling capabilities for the
FSL pickup. To this end, the training dataset is enhanced
by integrating information from all four detectors into the
contamination-source-removal procedure of each individual
detector. Specifically, for each detector, the training dataset is
enriched by integrating the residue of detectors 8571, 8573, and
8574 with respect to detector 8572. Detector 8572 is chosen as
the common base for all residues considered simply because its
position in the focal plane within the detector array effectively
reduces its FSL pickup. The computation of these residues is
performed after the data are binned in ring and phase spaces. We
consider M = 3, so that time-ordered data are initially binned
into 1024 bins in ring space and 512 bins in phase space. Once
datasets for the four detectors have been binned, each detector
dataset is enriched by adding the residue, that is, the difference,
between detector 8572 binned data and binned data from the

three remaining detectors. These residues are then subjected to a
thresholding procedure, such that all data whose absolute value
is below a user-set threshold is set to zero. The idea behind this
procedure is that the considered residues will not only contain
relevant FSL pickups that can be used for training the Decoder
CNN, but also other noise signals that should not be taken into
account and that should ideally be filtered by the threshold-
ing operation. As such, a coarse value for the threshold is set
empirically by taking into account the noise levels within the
considered dataset, and then fine-tuned by performing multiple
simulations at different threshold values. Given that the thresh-
old is user-set, this procedure can be seen as the integration of
expert knowledge into the otherwise unsupervised procedure of
network training. The final approach could therefore be quali-
fied as a weakly supervised network training method. The pro-
posed augmented datasets are used to train the Decoder CNN
weights and biases (independently for each detector), with net-
work inputs then being retrained directly on the original nonaug-
mented detector datasets.

As previously explained, Planck-HFI 857 GHz detector dif-
ference maps are dominated by the FSL pickup signal, which
makes them an ideal gauge for the capacity of the proposed
approach to remove the FSL pickup from the final maps. Tak-
ing this into account, we illustrate our results by presenting the
power spectra of Planck-HFI 857 GHz detector difference maps
in Fig. 9, and the Planck-HFI 857 GHz detector difference maps
themselves in Fig. 10. For visualization and comparison pur-
poses, all detector difference maps are normalized to a com-
mon baseline amplitude level, and any existing carbon monoxide
(CO) difference map signatures are removed using the same tem-
plate fit procedure used by SRoll2 to produce the 2018 release of
the Planck-HFI sky maps. We compare results for three different
cases, namely:

– the mapmaking of Planck-HFI 857 GHz real data using a
classic destriping approach (CD);

– the mapmaking of Planck-HFI 857 GHz real data using
SRoll2 (Delouis et al. 2019) to produce a direct fit of a syn-
thetic FSL simulation as a template (referred to as SRoll2
hereafter);

– the mapmaking of Planck-HFI 857 GHz real data using 1000
iterations of the 2D Decoder CNN exploiting data augmenta-
tion to include interdetector residuals in the learning dataset
(referred to as CNN2D-DA hereafter).

Besides detector difference maps and their corresponding power
spectra, Fig. 11 presents, for illustration purposes, an example
plot of the evolution of the loss function for the training of
the CNN2D used to process 857 GHz channel data from detec-
tors 8571, 8572, 8573, and 8574, as a function of the number of
epochs considered (in logarithmic scale).

From the power spectra depicted in Fig. 9, we can con-
clude that the interdetector data augmentation strategy, coupled
with the introduction of expert knowledge via the threshold-
ing of binned data residues, allows considerable improvement
in performance of contamination-source removal for all spa-
tial scales and for most detector pairs, with a considerable
gain for larger spatial scales. As such, as far as large-scale
contamination-source removal is concerned, CNN2D-DA seems
to outperform SRoll2 for most detector pairs. Indeed large-scale
contamination-source removal performance is only marginally
degraded for a single detector pair (8572−8574) and only for
larger spatial scales (around ` < 20). For the remaining detec-
tor pairs, we report considerable gains, typically up to one order
of magnitude, in performance in terms of contamination-source
removal for large spatial scales. This demonstrates the relevance
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Fig. 9. Power spectra for detector difference maps of Planck-HFI 857 GHz real data. For all detector pairs, power spectra are computed from
detector difference maps for three distinct cases: the mapmaking of Planck-HFI 857 GHz real data using a classic destriping approach (CD), the
mapmaking of Planck-HFI 857 GHz real data using SRoll2 to produce a direct fit of a synthetic FSL simulation as a template (SRoll2), and the
mapmaking of Planck-HFI 857 GHz real data using 1000 iterations of the 2D Decoder CNN exploiting data augmentation to include interdetector
residuals in the learning dataset (CNN2D-DA).

of the proposed methodology to correctly capture and remove
the FSL pickup signal during the data inversion. These conclu-
sions are further supported by the detector difference maps pre-
sented in Fig. 10, where one can observe a considerable improve-
ment in performance of contamination-source removal for most
detector pairs with respect to SRoll2 for CNN2D-DA. Interest-
ingly, a particularly strong large-scale signal can be observed to
the north of the Galactic plane, near the Galactic origin. Given
that we are working with Planck-HFI 857 GHz real data, we
hypothesize that this signal is caused by other contamination
sources, which explains the inability of CNN2D-DA to com-
pletely remove it, as it has been extensively adapted in the pre-
sented application to deal specifically with FSL pickups.

5. Discussion

5.1. Data-driven modeling of systematic effects

5.1.1. Map constraint

As explained in Sect. 2.3, the Decoder CNN may introduce an
erroneous large-scale signal to its reconstructed output. Indeed,

the Decoder CNN is trained on signal co-occurrences only, and
so cost function (5) may be artificially decreased by adding an
adequately chosen large-scale offset, whereas the introduction
of this offset does not necessarily relate to the contamination-
source removal of the final map. According to our results, such
a large-scale signature may appear in the form of a large-scale
offset, or even higher order moments such as a large-scale spa-
tial dipole. In particular, this was observed for results presented
in Sect. 4.1, specifically for the case considering one every
ten rings, that is, for partial datasets involving large gaps. This
is expected, given that in such cases the lack of observations
between the ecliptic poles is exacerbated, thus further strength-
ening this effect. As can be observed in our results, the introduc-
tion of a map constraint (Eq. (6)) helps to limit the introduction
of a large-scale offset, given that it improves the network condi-
tioning in difficult cases, such as those considering partial, gap-
filled, or irregularly sampled datasets. This demonstrates both
the flexibility of the proposed framework to be adapted to the
dataset and/or problem to be treated by incorporating appropriate
additional terms to the custom cost function (5) and its capability
to adequately handle partial, gap-filled datasets.
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Fig. 10. Detector difference maps of Planck-HFI 857 GHz real data. For all detector pairs, detector difference maps are computed for three distinct
cases: the mapmaking of Planck-HFI 857 GHz real data using a classic destriping approach (not shown), the mapmaking of Planck-HFI 857 GHz
real data using SRoll2 to produce a direct fit of a synthetic FSL simulation as a template (SRoll2, two leftmost columns), and the mapmaking of
Planck-HFI 857 GHz real data using 1000 iterations of the 2D Decoder CNN exploiting data augmentation to include interdetector residuals in the
learning dataset (CNN2D-DA, two rightmost columns).
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Fig. 11. Evolution of the loss function as a function of the epochs con-
sidered for the training of the CNN2D for detectors 8571, 8572, 8573,
and 8574 (logarithmic scale).

5.1.2. Transfer learning

As observed, the exploitation of transfer-learning techniques
allows the characterization of the “shape” of the large-scale sys-
tematic effects we are trying to separate from our signal of inter-
est. This is achieved by constraining the smaller dimensional

subspace onto which the considered signals are projected. The
“shape” of large-scale systematic effects is indeed encoded into
a projection operator, which is parameterized by the Decoder
CNN by minimizing the loss function on the training dataset.
The trained Decoder CNN is then applied to a second dataset
by retraining the inputs only. As previously stated, this can be
seen as a way of identifying and learning the common knowl-
edge between the different datasets (i.e., the projection) and
transferring such knowledge between different datasets. Such an
approach is particularly relevant for applications where similar
large-scale systematic effects exist between different datasets, as
is the case for the FSL pickup. Indeed, in the presented appli-
cation, the Decoder CNN training stage seems to learn general
characteristics of the FSL pickup signal, such as its large-scale
signature, which is then transferred to the second dataset (by
retraining inputs) in order to improve performance in terms of
contamination-source removal. From a mathematical point of
view, retraining the inputs can be thought of as finding the rep-
resentation in the projection subspace that best approximates
the second dataset. This amounts to finding the best-fitting FSL
pickup signal approximation under the constraint that the char-
acteristics of this approximation were previously learnt from the
first dataset and encoded in the Decoder CNN weights and biases.

5.2. Neural-network-based removal of large-scale systematic
effects

Results obtained for Planck-HFI 857 GHz real data illus-
trate how data-augmentation techniques coupled with expert
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knowledge integration can improve performance in terms of
contamination-source removal. Indeed, introducing, for each
857 GHz detector, interdetector residuals with respect to detec-
tor 8572 amounts to exploiting data augmentation to transfer
relevant information between datasets. As such, this procedure
is closely related to the idea of transfer learning, because both
seek to exploit information shared between datasets to improve
the performance of contamination-source removal. Moreover,
the inclusion of a user-set threshold for interdetector binned
data residues allows us to integrate expert knowledge into an
otherwise completely unsupervised learning scheme. This is
particularly relevant for the processing of data containing both
well-known and badly modeled signals, as is the case for large-
scale systematic effects present in Planck-HFI observations.

6. Conclusions

6.1. Overall summary

In the present work, we propose a neural-network-based data-
inversion approach to reduce structured contamination sources,
with a particular focus on the mapmaking for Planck-HFI data
and the removal of large-scale systematic effects within the pro-
duced sky maps. The proposed approach relies on a generative
decoder convolutional neural network to project the signals of
interest onto a low-dimensional subspace learnt simultaneously
with a data inversion, so that the low-dimensional subspace is
optimized with respect to the contamination-source removal and
mapmaking objectives. This optimization is achieved by means
of a loss function that takes such objectives into account dur-
ing the network-training stage. The exploitation of such a cus-
tom loss function also allows the introduction of physics-based
constrains to further improve the performance of contamination-
source removal. The low-dimensional subspace learning is pos-
sible thanks to an input-training scheme, which also allows
incomplete and/or gap-filled datasets to be processed. We pro-
pose multiple variants of the proposed approach: a 2D version
capable of taking time dependencies into account, and variants
exploiting transfer learning, data augmentation, and the intro-
duction of expert knowledge to further improve reconstruction
performance. Importantly, the proposed method is capable of
exploiting spatiotemporal scale couplings within contamination
sources to learn, simultaneously with the data inversion, a low-
dimensional representation that facilitates the removal of these
contamination sources. Whereas this is illustrated here with an
example considering Planck-HFI data, the method provides a
general framework for structured contamination-source removal,
and may be used to tackle similar problems in other scien-
tific contexts. Indeed, the proposed approach can potentially be
applied to any data-inversion problem dealing with contamina-
tion sources, provided that these sources are sufficiently struc-
tured to allow the determination of a suitable low-dimensional
subspace that is optimized to facilitate the data inversion.

We validate the proposed approach on synthetic 545 GHz
Planck-HFI data comprising simulated FSL pickups. This vali-
dation on synthetic datasets demonstrates the relevance of the 2D
variant of the proposed approach to better remove FSL pickup
signals simultaneously with the data inversion, as compared to
both a classic destriping approach and the direct fit of simulated
FSL pickups as a template, particularly for partial, gap-filled
observation datasets (comprising a subsampling of one every ten
rings). Moreover, the relevance of the 2D variant to efficiently
exploit transfer-learning approaches to model and capture phase
shifts in observations is also demonstrated during the validation
on synthetic simulated data.

Following validation, we further explore the proposed
approach by applying it to the contamination-source removal
and mapmaking of real 857 GHz Planck-HFI observations. We
exploit the 2D variant of the proposed method alongside data
augmentation to demonstrate the relevance of the proposed
framework to outperform both a classic destriping approach and
a direct fit of FSL pickup simulation data as a template for the
removal of large-scale systematic effects in real data. In partic-
ular, the case study clearly depicts how interdetector data aug-
mentation and the integration of expert knowledge by means of
a user-set threshold for noise removal in the augmented dataset
leads to a considerable gain in terms of FSL pickup removal, thus
improving mapmaking and the performance of contamination-
source removal.

Generally speaking, the present work underlines the rel-
evance of data-driven neural-network-based approaches to
improve on current contamination-source removal and mapmak-
ing approaches and to go beyond their limitations by providing
enhanced capabilities for the separation and removal of struc-
tured, nonGaussian information, such as systematic effects and
foregrounds, which should allow for the creation of more accu-
rate CMB maps and thus improve current parameter likelihood
estimates in order to better constrain and/or validate cosmologi-
cal models.

Importantly, this work builds on previously developed meth-
ods for the separation and removal of structured contamination
sources, and particularly on the SRoll2 algorithm (Delouis et al.
2019). As such, the methods developed in this work are to be
integrated in a new version of the SRoll algorithm (SRoll3), and
we describe here the SRoll3 857 GHz detector maps that were
released to the community, and are available at the SRoll project
home page3.

6.2. Future work

The possible research avenues stemming from the proposed
approach include a wide range of both theoretical and practi-
cal issues. As previously explained, the SRoll algorithm was
originally developed in a multidetector setting, which moti-
vates further exploration of the potential of neural-network-
based approaches and transfer-learning strategies in the context
of the removal of large-scale systematic effects considering mul-
tiple detectors. Further tests evaluating, for example, the combi-
nation of multiple synthetic datasets during training, either via
data augmentation or transfer learning, to enhance reconstruc-
tion performance and/or obtain more accurate low-dimensional
representations of large-scale systematic effects, appears to be
an interesting research direction. In this work, we illustrate
the relevance of the proposed approach for the modeling and
removal of large-scale systematic effects, although we under-
line the suitability of the proposed methodology for the mod-
eling and removal of any structured signal, including modeling
errors, observation errors, and foregrounds, among others. This
implies that the proposed framework could be applied to a wide
range of similar problems in multiple scientific domains, rang-
ing from mapmaking and contamination-source removal using
Planck-HFI data to the removal of structured noise sources
in new-generation, ocean remote-sensing satellite missions, or
even the processing of ground-based and balloon-borne sky
observations. Furthermore, one may also consider, for exam-
ple, exploiting the proposed Decoder CNN to apply transfer-
learning techniques to the component-separation problem in
Planck data. In this regard, a multichannel Decoder CNN could

3 http://sroll20.ias.u-psud.fr/

A65, page 17 of 18

http://sroll20.ias.u-psud.fr/


A&A 651, A65 (2021)

be exploited to separate different components, with different
channels representing different sources. In this context, transfer-
learning techniques could be used on specific channels to better
capture the source considered, similarly to the approach illus-
trated above for the FSL systematic effect. The modeling and
correction of analog-to-digital converter (ADC) nonlinearities
(Planck Collaboration VII 2016) also appears to be a current
issue that could greatly benefit from the proposed transfer-
learning-based formulation. Indeed, we expect that transfer
learning techniques should allow us to better understand and
model the ADC nonlinearities that exist within the Planck-
HFI data by exploiting simulated and/or real data to learn a
low-dimensional representation where such nonlinearities may
become easier to correct. Finally, the processing of ground-based
cosmological observations may also be considered as a potential
application of the proposed approach, particularly with respect
to the removal of atmospheric-turbulence-related noise, given its
slow temporal variation.
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