
1  

Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive 
publisher-authenticated version is available on the publisher Web site.  

 
Environmental Science and Pollution Research 
2022, Volume 29, Pages 43448-43500   
https://doi.org/10.1007/s11356-022-19111-3 
https://archimer.ifremer.fr/doc/00754/86594/ 

Archimer 
https://archimer.ifremer.fr 

A critical review of effect modeling for ecological risk 
assessment of plant protection products 

Larras Floriane 1, Charles Sandrine 2, Chaumot Arnaud 3, Pelosi Céline 4, Le Gall Morgane 5,  
Mamy Laure 6, Beaudoin Rémy 7, * 

 
1 INRAE, Directorate for Collective Scientific Assessment, Foresight and Advanced Studies, Paris, 
75338, France  
2 University of Lyon, University Lyon 1, CNRS UMR 5558, Laboratory of Biometry and Evolutionary 
Biology, Villeurbanne Cedex, 69622, France  
3 INRAE, UR RiverLy, Ecotoxicology laboratory, Villeurbanne, F-69625, France  
4 Avignon University, INRAE, UMR EMMAH, Avignon, 84000, France  
5 Ifremer, Information Scientifique et Technique, Bibliothèque La Pérouse, Plouzané, 29280, France  
6 Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, Thiverval-Grignon, 78850, France  
7 Ineris, Experimental Toxicology and Modelling Unit, UMR-I 02 SEBIO, Verneuil en Halatte, 65550, 
France 

* Corresponding author : Rémy Beaudoin, email address : Remy.BEAUDOUIN@ineris.fr  
 

Abstract :   
 
A wide diversity of plant protection products (PPP) is used for crop protection leading to the contamination 
of soil, water, and air, which can have ecotoxicological impacts on living organisms. It is inconceivable to 
study the effects of each compound on each species from each compartment, experimental studies being 
time consuming and cost prohibitive, and animal testing having to be avoided. Therefore, numerous 
models are developed to assess PPP ecotoxicological effects. Our objective was to provide an overview 
of the modeling approaches enabling the assessment of PPP effects (including biopesticides) on the biota. 
Six categories of models were inventoried: (Q)SAR, DR and TKTD, population, multi-species, landscape, 
and mixture models. They were developed for various species (terrestrial and aquatic vertebrates and 
invertebrates, primary producers, micro-organisms) belonging to diverse environmental compartments, to 
address different goals (e.g., species sensitivity or PPP bioaccumulation assessment, ecosystem services 
protection). Among them, mechanistic models are increasingly recognized by EFSA for PPP regulatory 
risk assessment but, to date, remain not considered in notified guidance documents. The strengths and 
limits of the reviewed models are discussed together with improvement avenues (multigenerational 
effects, multiple biotic and abiotic stressors). This review also underlines a lack of model testing by means 
of field data and of sensitivity and uncertainty analyses. Accurate and robust modeling of PPP effects and 
other stressors on living organisms, from their application in the field to their functional consequences on 
the ecosystems at different scales of time and space, would help going toward a more sustainable 
management of the environment. 
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TER Toxicity Exposure Ratio
TK ToxicoKinetics
TKTD ToxicoKinetics-ToxicoDynamics
TU Toxic Unit
UP Uniform Principles
WFD Water Framework Directive
WoS Web of Science

2 Introduction118

The European Plant Protection Product (PPP) Regulation (EC) No119

1107/2009 (European Commission, 2009) requires the PPP ecotoxicological120

properties (among others) to be fully characterized before to be placed on121

the market. Active substances (referred to "pesticides" in this review) should122

only be included in PPP where it has been demonstrated that they are not123

expected to have any harmful effect on human or animal health or any unac-124

ceptable effects on the environment (European Commission, 2009). Breakdown125

products (from environmental degradation or metabolic transformations) of126

substances have also to be identified and evaluated (Casalegno et al., 2006;127

European Commission, 2009). Considering the total number of pesticides and128

the number of related breakdown products, such task is susceptible to lead to129

many organisms testing ecotoxicological tests though animal testing has to be130

avoided. Thus, modelling approaches constitute an interesting support.131

132

Models aim at delivering insights and possible solutions to real-world133

problems, but also at supporting regulators for risk assessment. Regarding134

pesticides, they (i) allow the derivation of critical effect concentrations and135

environmental protective thresholds from animal and plant testing; (ii) could136

help to fill in data gap and thus save time, money, and reduce the number of137

animals used for experimental testing purposes (Basant et al. 2016; Casalegno138

et al. 2006); (iii) improve mechanistic understanding. For regulation, decision139

makers have to select the most appropriate models for the problem at hand140

(extrapolation from experimental data, extrapolation to other species, higher141

level of biological organization, other environmental conditions. . . ), and to142

get evidence that a model works, having demonstration that it is realistic143

while based on reliable data inputs and key assumptions. Consequently, there144

is a crucial need for a clear communication of models and of their context145

(Grimm et al., 2020). To fulfill that need, EFSA has published several rec-146

ommendations to support the development of models compatible with PPP147

regulation (EFSA PPR Panel, 2014).148

149

In this context, the objective of this work was to review the modelling150

approaches enabling ecological risk assessment of pesticides (including biopes-151

ticides) for organisms, biodiversity and ecosystem functions/services. The152

review starts with the presentation of the bibliometric methodology that led to153
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the definition of the bibliographic corpus, and with the analysis of this corpus154

(Section 3). Then, the whole reviewed models, which belong to six main model155

categories (QSAR, DR and TKTD, population, multi-species, landscape, and156

mixture models) are presented (Section 4). In particular, sub-section 4.1 gives157

full details on each type of model including the main (standard or not) out-158

puts they provide, while sub-section 4.2 further explains what are the main159

model usages. Section 5 points out the strengths and limits of the different160

model categories, including genericity and transversality, uncertainty quantifi-161

cation and reproducibility. In parallel with the corpus analysis, the Section162

6 explores the recommendations in terms of usage of modelling approaches163

in the context of the European PPP regulation. Potential contributions and164

prospects of current and future modelling tools to Environmental Risk Assess-165

ment (ERA) are discussed (Section 7). ERA of pesticides assesses the impact166

that the use of pesticides has on non-target organisms, and on soil, water, and167

air (European Commission, 2009). ERA can be done as a prospective assess-168

ment for registration of substances before products enter the market, or as a169

retrospective assessment for potentially harmful substances that are already in170

use (Forbes and Calow, 2002). Finally, the review ends with some perspectives171

to be considered to improve ecological risk assessment to preserve biodiversity.172

3 Bibliographic corpus173

Six main model categories were a priori defined to structure the biblio-174

graphic query: QSAR, DR and TKTD, population, multi-species, landscape,175

and mixture models (see Section 4):176

• (Q)SAR category refers to the mathematical models to predict the ecotox-177

icity of compounds via statistical correlation of molecular descriptors with178

the biological activity of interest.179

• DR and TKTD category refers to the static (DR) and dynamic (TKTD)180

dose-response models.181

• Population category refers to the population dynamic models, including182

all degree of detail and disaggregation (stock, matrix, life cycle, individual-183

based models. . .).184

• Multi-species category refers to the models considering several species:185

species sensitivity distribution (SSD), food web models or more complex186

community models including, in addition to trophic interactions, other inter-187

species interactions.188

• Landscape category refers to the models considering the spatial dimen-189

sion (e.g., landscape structure or variability of the exposure) to predict the190

ecotoxicity of a chemical compound.191

• The category of mixtures refers to the models used to analyse the192

interaction in terms of ecotoxicity of chemical and/or ecological factors.193
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3.1 Methodology194

Scientific articles and international proceedings screening was conducted with195

the Web of Science (WoS), the world’s leading scientific citation search and196

analytical information platform (Clarivate Web of Science © Copyright Clar-197

ivate 2020). The final paper collection from WoS was achieved in December198

2020, then manually completed over time until April 2021 from complemen-199

tary bibliographic databases, such as PubMed (McEntyre and Ostell, 2002),200

Google Scholar (López-Cózar et al., 2019), Scopus (Baas et al., 2020), publi-201

cations within authors’ own databases, even grey literature (e.g., regulatory202

documents). This paper collection covers the period 2000-2020 chosen as203

contiguous with the existence of the WoS itself.204

205

On a general point of view, the bibliographic query was performed206

according to the following steps:207

• Definition of a first query over the limited period 2018-2020 (see Section 3.2).208

• First analysis on the basis of titles and abstracts of papers to identify points209

of improvement of the query.210

• Update of the query by adding and removing some terms.211

• Running the final query over the period 2000-2017, over 2018-2020 again,212

and combination of both periods.213

• Final analysis of the results with Orbit Intellixir bibliometric software214

(Copyright © Questel 2021, all rights reserved).215

Besides the query terms, we limited our paper collection to only include216

research and review papers written in English, as well as scientific articles217

published in peer-reviewed journals. The paper collection, any reference being218

duplicated, was imported into Intellixir and analyzed to quantify, for example,219

the scientific production per year, country, organization, and annual evolution220

of publication rates. Collaboration networks between countries, public insti-221

tutions and/or private companies, as well as the main research concepts, were222

graphically represented using the most relevant formats available in Intellixir.223

In particular, papers were analyzed to point out the main trends in research224

related to the use of models in ERA for PPP, as well as to highlight their225

strengths and limitations, leading to the identification of future key topics for226

research.227

228

Some papers were manually added or removed from the final collection229

before performing the analysis. The Supplementary Information (SI) is avail-230

able at https://doi.org/10.5281/zenodo.5775038 (Larras et al., 2021), where231

the full list of keywords is provided, as well as both source files with all refer-232

ences and their DOI in .csv format: the list of references in the initial corpus,233

and the list of additional references. Reasons for which some papers were added234

are the following:235

https://doi.org/10.5281/zenodo.5775038
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• Some scientific research areas were missing although corresponding keywords236

were in the final query, such as sensitivity analysis, uncertainty, calibration,237

validation and prediction. So, some papers were added accordingly.238

• Very recently published papers, not published yet (such as papers in bioRxiv239

for example), were also added by hand.240

• Some general methodological references were clearly missing as they do not241

specifically concerned pesticides.242

• All references focused on human health risk assessment were removed as we243

exclusively focused on ERA.244

3.2 Details on the bibliographic query245

The bibliographic query was composed of seven items, each of them encom-246

passed within three global items and associated with a sub-query (Table 2).247

List of keywords used in the different sub-queries were established a priori248

from the authors’ expertise (see SI at https://doi.org/10.5281/zenodo.5775038,249

Larras et al. 2021).250

Item Specific Global Nbr of
nbr item item references
1 (Q)SAR model 427
2 DR and TKTD Pesticides 143
3 Population General 392
4 Multi-species Modelling 79
5 Landscape Ecotoxicology 202
6 Mixture 398
7 Regulation 399

Table 2 Combination of the keyword lists composing the first bibliographic query.
Columns were joined together with the logical operator AND. All keyword lists are
available in Supplementary Information at https://doi.org/10.5281/zenodo.5775038
(Larras et al., 2021).

251

Running the first bibliographic query over the limited period 2018-2020252

led to 380 references. This short list was quickly analysed from titles and253

abstracts to improve the different items and their associated sub-queries. Of254

these 380 references, only 130 were kept (35%).255

256

The updated sub-queries we obtained were run over the period 2000-2017,257

then again on the period 2018-2020. The combination of both finally provided258

the final paper collection we in-depth analysed. This collection was composed259

of a total of 1259 papers. From this total, relevant papers for the review were260

checked one-by-one finally leading to a paper collection of 376 references (∼261

30%) that were analysed by Intellixir.262

3.3 Simple bibliometric measurements263

As first results, we provide here simple bibliometric measurements giving a264

factual description of the paper collection (n = 376).265

https://doi.org/10.5281/zenodo.5775038
https://doi.org/10.5281/zenodo.5775038
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The time course of the selected references (Figure 1) clearly shows an266

increase in work integrating modelling tools over the last twenty years, together267

with a strong inequality between contributing countries. The countries with the268

highest number of contributions in our bibliographic corpus could be explained269

by the nationality of the main producing and R&D companies (BASIC, 2021),270

which are in the main contributing institutions (see below), and/or by the271

leading countries in natural sciences research (index, 2020).272

Fig. 1 Cross-view of the origin country of the first author with the time course of the paper
collection. Numbers correspond to the number of papers.

Looking at the main research topics, that is words found in titles and273

abstracts, as automatically extracted by Intellixir, makes emerge the main274

keywords. The three main keywords are Model (in 98.5% of the papers),275

Pesticide (69.0%), and Exposure(66.4%). Aquatic (31.3%) is the first liv-276

ing environment found (10th position) and the first PPP usages found are277

Insecticide (24.8%) and Herbicide(19.6%).278

279

Figure 2 below describes the main collaborations between host institutions280

of all co-authors who contributed to each paper. These main collaborations281

are defined as at least one reference authored by each institution plus at282

least four co-publications between institution pairs. The ten main contribut-283

ing institutions (accounting for multiple affiliations) represent 42% of the284

total contributing ones, among which the top-five is composed of SYNGENTA285

JEALOTTS GROUP (6.8%), UNIV WAGENINGEN IMARES (NL, 6.6%), BAYER (DE,286
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3.9%) and CNRS (FR, 3.9%). All affiliations of the first authors have been taken287

into account, and for example, ALTERRA WAGENINGEN and UNIV WAGENINGEN288

IMARES are used for a same author in 90% of the articles.289

Fig. 2 Network between host institutions of first authors.The institutions represented have
published at least three papers and three co-publications with other institutions.

3.4 Advanced bibliometric measurements290

In order to refine the previous bibliometric description, we went further into291

the analysis of the main concepts appearing within the paper collection. Figure292

3 shows all words appearing at least 35 times within the references. We notice293

that some words form well identified groups, four in total, distinguished by294

different colors and corresponding to the semantic proximity of words. The295

Model group is strongly related to the Pesticide group of words, while rela-296

tionships with more general terms, such as Environment risk assessment297

(left side of Figure 3), are tinier. Nevertheless, single word Risk and pair Risk298

assessment are within the big Pesticide group, the Risk word appearing299

almost at the same frequency than the Pesticide word (267 versus 223 occur-300

rences). It is particularly interesting to note that the Regulatory word belong301

to the Model group.302
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Fig. 3 Main concepts appearing at least 35 times within the paper collection; the different
colors correspond to the semantic proximity of words.

Coming back to the time course of the references, and refining the anal-303

ysis by model types, leads to Figure 4. To this aim, all the models used in304

each paper was noted, and thus, a same article could be counted in different305

model categories. It is worth noting that models diversify over time, with an306

increase in the use of TKTD models, especially since 2018, the year at which307

the Scientific Opinion on the state-of-the-art of TKTD models was published308

by EFSA (Ockleford et al., 2018). We also notice that mixture models are309

widely used all along the period 2000-2020 with a regular increase for almost310

15 years. Regarding (Q)SAR models, if used a few in the past, there is an311

upsurge in PPP references involving these models since 2017. The bibliometric312

evolution of the use of population models within our corpus focused on PPP313

literature is interesting to analyse further, as it can be compared to the gen-314

eral evolution of population modelling practices in applied ecology. We used315

as a reference the review of Accolla et al. (2021), who gathered a corpus of316

450 population models used for risk assessment in ecology, including conser-317

vation science studies. The rate of publication related to the use of population318

models for PPP ERA has experienced a strong growth since 2010 (1.5 arti-319

cles per year over the period 2000-2010, 4 per year over 2011-2015 and 9 per320

year over 2016-2020). This dynamic is specific to the field of PPP ERA, as321

we do not observe the same inflation in the corpus of Accolla et al. (2021):322

50% increase in the rate of publications in 2011-2014 compared to 2004-2010,323

while PPP studies exerted a 100% increase on the similar periods. We can324

also note a recent amplification of population modelling applications to PPP325

impacts in pollinators, 30% of the population studies since 2017, against 10%326

before this date in our corpus. The dynamics recorded from 2010 onwards cor-327

relates with the structuring of a community of European and North American328
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researchers, both academic and industrial, on ecological modeling for regula-329

tory chemical risk assessments (LEMTOX workshop 2007 Forbes et al. 2009,330

US-EPA Risk Assessment Forum Technical Workshop on Population-Level331

ERA 2008, Roskilde Workshop on Integrating Population Modeling into ERA332

2009, MODELINK workshop 2012-2013, 7th Framework European Program333

CREAM 2009-2013, SETAC interest group on Effect Modeling). For instance,334

the European CREAM project (https://cream-itn.eu/) was responsible for a335

strong increase in papers on TKTD and population models in pesticide effect336

modelling in this period. The agrochemical industry has invested heavily in this337

dynamics, signing nearly 40% of the publications on PPP population models338

since 2011, whereas before this date it was practically absent from the author-339

ship (less than 10%). This rising interest of PPP ERA community in population340

models is explained by the fact that the protection goal in revised PPP regis-341

tration procedures for most species is either the population or the community342

(Hanson and Stark, 2012; Dohmen et al., 2016; EFSA Scientific Committee,343

2016). Moreover, the use of higher Tier risk assessment, which aims at inte-344

grating fine ecological realism, allows overcoming the conservatism inherent in345

risk assessment based on the application of safety factors to lower Tier assess-346

ment outputs (Maund et al., 2001; Dalkvist et al., 2009; Brain et al., 2015). In347

this context, population and landscape models are mobilized particularly to348

assess (i) the relative importance of PPP toxic stress compared with natural349

stochastic fluctuations (Topping and Odderskær, 2004), (ii) the influence of350

biological and environmental factors conditioning population state and sensi-351

tivity to PPP (Dalkvist et al., 2009; Forbes et al., 2015; Thorbek et al., 2017;352

Schmolke et al., 2019; Abi-Akar et al., 2020), especially possible compensatory353

effects due to the interplay between PPP demographic effects and the natural354

density control of populations (Wang and Grimm, 2010; Mintram et al., 2018),355

(iii) the ability to recovery related to demographic resumption after short term356

exposure or recolonization processes from refuge areas that could make PPP357

impacts ecologically acceptable at larger time or spatial scales (Galic et al.,358

2012; Hanson and Stark, 2012; Focks et al., 2014; Dohmen et al., 2016).359
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Fig. 4 Time course of references sub-divided by model categories. Model classes were
defined according to the keyword lists presented in Table 1. Methods refers to general method-
ological papers not necessarily related to pesticides.

We crossed the analysis of categories of biological group with the model360

types (Figure 5). Articles were classified following these different groups361

of taxa : micro-organisms (e.g. single species bacteria from water or soil362

media), aquatic microbial communities (e.g. biofilm), aquatic primary pro-363

ducers (microalgae and macrophytes), aquatic invertebrates, various aquatic364

groups (studies gathering more than one aquatic biological group, such as365

food-web studies), teleost fish, amphibians, reptiles, terrestrial invertebrates366

(including bees), terrestrial primary producers, mammals and birds. A large367

majority of papers concerned aquatic invertebrates (29.5%), all categories of368

models having been employed. At the second and third positions, with close369

number of occurrences, are terrestrial invertebrates (17.3%) and fish (13.3%).370
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Fig. 5 Distribution of models by biological groups, each category being sub-divided accord-
ing to the model categories. The Methods word refers to general papers and/or those including
several model categories. Abbreviation NA means Not Available.

In addition to the previous cross-analysis on biological group categories,371

Figure 6 provides an overview of the level of biological organization at which372

the models were built, sub-divided by the type of living environment where the373

studied species in the papers referred to. As expected, almost half of the papers374

deal with the individual level (48.7%), followed by a quarter of the papers375

at the population level (25.5%). Community level models are less numerous376

(11.2%) while models accounting for abiotic factors are largely in the minority.377

A rather important part of the papers (10.6%) do not refer to a specific level378

of biological organization. Several reasons may explain this fact: for example379

no model was employed; landscape or ecosystem was concerned as a whole (so380

that several levels may be concerned); or several levels were concerned with-381

out one more important than the others (so that they could not be classified382

into one specific category). Combining this information with the living envi-383

ronment of the studied organisms provides information rather redundant with384

those extracted from Figure 5. Indeed, whatever the model category or almost,385

freshwater species have been the most studied, then the terrestrial ones, equiv-386

alently followed by the other types of species living environment. Saltwater387

species are less represented because saltwater ecosystems are not considered388

in the European regulation.389
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Fig. 6 Overview of the level of biological organization accounted for in the models for each
type of species living environment. Abbreviation NA means Not Available.

4 ERA modelling for PPP on organisms,390

populations, biodiversity and ecosystem391

functions/services392

4.1 Description and classification of existing models393

As stated by Horig et al. (2015), based on the Scientific Opinion from EFSA394

regarding Good Modelling Practices (EFSA PPR Panel, 2014), as well as con-395

sidering the guidance document for predicting environmental concentrations396

of active substances of PPP and transformation products of these active sub-397

stances in soil (European Food Safety Authority, 2017), models of special398

interest for the risk assessment of PPP are:399

1. models that may be used for the quantification of specific protection goals400

and the setting of trigger values.401

2. models that account for the effect or exposure assessment.402

3. models that help with the interpretation of higher Tier study data.403

4. models that complement and integrate information from higher Tier studies.404

5. models that may extrapolate to scenarios not covered by higher Tier testing405

or may be used in situations where field studies are not feasible.406

Based on our literature review, we identified six categories of models that407

fulfill all or a part of the above requirements. They are described below.408

4.1.1 (Q)SAR models409

The knowledge about systematic relationships between the structure and410

activities of the chemicals dates back to the prime infancy of the modern phar-411

macology and toxicology (Devillers, 2001). Since the pioneering work of Corwin412

Hansch in the 60’s, the development and utilization of structure-activity rela-413

tionships have become increasingly more important over the past years for414

industrial and regulatory applications (Mombelli and Ringeissen, 2009). In415
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particular, a large number of models have been developed recently for the pes-416

ticides: 38 papers from 2000 and 2020, including 28 on the last five years, in417

our bibliographic corpus.418

Current structure - activity relationship usage in pesticide safety assess-419

ment can be divided into rule based expert systems (SAR models) and420

statistical systems ((Q)SAR models). The notation (Q)SAR includes both421

types of models.422

Expert systems (SAR) use rule-based methods to qualitatively predict spe-423

cific endpoints by matching identified molecular (sub) structures or fragments424

of the compound to similar structures (known as structural alerts) with known425

adverse effects (e.g., liver toxicity, skin irritation, mutagenicity) (Herrmann426

et al., 2020).427

Statistical systems ((Q)SAR systems) use mathematical models to predict428

the toxicity of compounds via statistical correlation of molecular descriptors429

with the biological activity of interest. (Q)SAR model is composed by three430

elements: (i) data on the biological properties to be predicted, (ii) data on431

molecular descriptors which translate chemical structures into numbers, and432

(iii) a modelling algorithm that is able to identify the relationship between433

molecular descriptors and biological activity. The basic assumption of these434

models is that similar chemicals (biological, chemical, and/or physical prop-435

erties) induce similar effects (from a qualitative and quantitative point of436

view) in living beings (Lo Piparo et al., 2006). Some authors had therefore437

proposed specific sub-names for (Q)SAR models to stress these differences,438

e.g., Quantitative Structure - Property Relationship (QSPR) models (Basant439

et al., 2016), Quantitative Structure - Toxicity Relationship (QSTR) models440

(Lo Piparo et al., 2006), Quantitative Activity - Activity Relationship (QAAR)441

models (Furuhama et al., 2019) or Quantitative Structure - Activity - Activity442

Relationship (QSAAR) models (Furuhama et al., 2019).443

(Q)SAR models could also be classified according to a trade-off between444

their accuracy and genericity. Depending on the intended purpose and on445

the underlying data set of the model, (Q)SAR models are used to predict446

the properties of con-generic compounds (local (Q)SAR) or of more diverse447

compounds (global (Q)SAR) (Furuhama et al., 2019; Herrmann et al., 2020;448

Jia et al., 2020). These authors proposed that depending on the respective449

requirements of sensitivity (correct positive) and specificity (correct negative),450

appropriate models (global/local), accounting for the chemical space of query451

structures, have to be selected.452

Basant et al. (2015a) proposed a figure clearly describing the (Q)SAR mod-453

elling procedure (Figure 7). This procedure follows the OECD principles for454

(Q)SAR models (OECD, 2014). These five principles were proposed to facili-455

tate the consideration of a (Q)SAR model for regulatory purposes (explained456

in Mombelli and Ringeissen 2009):457

1. a defined endpoint.458

2. an unambiguous algorithm.459

3. a defined domain of applicability (AD).460
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4. appropriate measures of goodness-of–fit, robustness and predictivity.461

5. a mechanistic interpretation, if possible.462

The computation of internal and external validation metrics (on the species463

included in the training set or on other species) and the definition of the464

domain of applicability appear as important steps, as proposed by the OECD465

principles. The domain of applicability is defined as “the physico-chemical,466

structural, or biological space, knowledge or information on which the training467

set of the model has been developed, and for which it is applicable to make468

predictions for new compounds [. . . ]. Ideally, the (Q)SAR should only be used469

to make predictions within that domain by interpolation not extrapolation”470

(Carnesecchi et al., 2020; Eriksson et al., 2003). It is important to note that471

the Figure 7 does not explicitly include the “data curation” step (included472

in OECD principle 1, “a defined endpoint”) described as essential by other473

authors: data curation contributes to define unambiguously an endpoint (e.g.,474

identical exposure time for EC50)(Khan et al., 2019; Villaverde et al., 2020).475

Fig. 7 Flow chart adapted from Basant et al. (2015b) showing the (Q)SAR modeling pro-
cedure. pLD50 is effective concentration data converted to a molar basis and logarithmically
transformed. exp and pred are experimental and predicted data, respectively.

Indeed, the (Q)SAR models can only be as reliable as the experimental476

data that are used for their calibration, and therefore, the standardisation477

procedures to obtain each data and to curate the data set of compounds478

should be considered with care (Villaverde et al., 2020).479

480
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As reported by Villaverde et al. (2020), there are several easily accessible481

databases that can be used to develop (Q)SAR models (e.g., ACToR, Bind-482

ingDB, CCRIS...). In the bibliographic corpus analysed, other databases were483

frequently used to develop (Q)SAR: EFSA’s chemical hazards database “Open-484

FoodTox”, US-EPA ECOTOXicology knowledge-base (ECOTOX), Pesticide485

Properties DataBase (PPDB), OECD (Q)SAR toolbox, Office of Pesticide486

Programs (OPP), Pesticides Ecotoxicity Database (produced by the Interna-487

tional Center for Pesticides and Health Risk Prevention), AMBIT (developed488

by Cefic-LRI, current version 2.0 at https://apps.ideaconsult.net/data/ui),489

and BBA (Biologische Bundesanstalt – Federal Biological Research Center490

for Agriculture and Forestry).491

492

Nevertheless, ideally, databases for model calibration should be developed493

in a single laboratory and by means of a single protocol to enhance the signal494

to noise ratio. However, these conditions are not met in most of the (Q)SAR495

models that are developed today, and much less in those developed from496

databases in which the information is deposited by numerous contributors497

(Khan et al., 2019; Villaverde et al., 2020). Consequently, (Q)SAR modellers498

should always subject to curation the systematic and random errors present499

in all databases by special and well-established protocols and tools (Khan500

et al., 2019; Villaverde et al., 2020).501

502

A large diversity of chemical descriptors (experimental measurements or503

theoretical molecular descriptors) is used to develop (Q)SAR models specific504

to the pesticides. The most common descriptor is the octanol–water partition505

coefficient Kow (Devillers, 2001). However, the rapidly falling price of comput-506

ing power has stimulated the use of more sophisticated statistical methods for507

increasing the domain of application of the (Q)SAR models (Devillers, 2001).508

Hence, the spatial dimension of the chemical descriptors (one, two, three or509

four dimensions) have been used to distinguish different (Q)SAR models on510

the descriptor basis. In the literature, over 6000 descriptors have been pro-511

posed and the number is still growing (Hamadache et al., 2018). Considering512

the large number of calculated descriptors, it was necessary to use approaches513

of variable reduction, which consists in the selection of a subset of variables514

able to preserve the essential information contained in the whole data set but515

eliminating redundancy (Carnesecchi et al., 2020; Hamadache et al., 2018).516

Hence, severe selection steps using a range of methods were applied to reduce517

the number of descriptors. Classically, all highly correlated descriptors (pair-518

wise correlation coefficient above 0.9) and those with low variance (s2 < 0.3)519

or the semi-constant descriptors (more than 80% of the data with the same520

value) were excluded (Venko et al., 2018; Yang et al., 2020). To this goal, after521

centring and scaling the descriptors, Carnesecchi et al. (2020) used the fol-522

lowing methods: Decision Trees (DT), k-nearest neighbours (k-NN), Multiple523

Linear Regression (MLR), Partial Least Squares (PLS) regression (based on524

Genetic algorithm), and Random Forest (RF). Additionally, the Norm index525

https://apps.ideaconsult.net/data/ui
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concept was proposed by Jia et al. (2020), and a series of normed descriptors526

based on molecular structure were defined and used to develop (Q)SAR mod-527

els with satisfactory prediction results for the aquatic acute toxicity of various528

pesticides (Jia et al., 2018, 2020). (Q)SAR models for pesticides could also529

be based on descriptors computed by other in silico methods, using a com-530

bination of fingerprint, structure-based pharmacophore approaches, homology531

modelling, molecular-docking and molecular dynamics simulation (Chaudhuri532

et al., 2020; Marimuthu et al., 2019).533

Globally, and in the pesticide bibliographic corpus, the most common534

techniques for establishing (Q)SAR models are based on regression-based535

approaches, and the methods of MLR (Furuhama et al., 2019; Yang et al.,536

2020; Yang et al., 2020) and PLS (Jackson et al., 2009; Khan et al., 2019;537

Marimuthu et al., 2019) are classical approaches to regression problems in538

(Q)SAR models. In pesticide (Q)SAR, genetic algorithms are often used to539

fit MLR (Furuhama et al., 2019; Yang et al., 2020; Yang et al., 2020) or540

PLS models (Jackson et al., 2009; Khan et al., 2019). For these techniques,541

a postulate is made that only linear relationships exist between the variables542

involved in the modelling process while it is generally not true (Devillers543

and Flatin, 2000). The Artificial Neural Networks (ANN) have shown their544

usefulness for deriving complex structure-activity relationships possibly non-545

linear (Devillers and Flatin, 2000; Hamadache et al., 2018). Several different546

neural networks were used to develop (Q)SAR models for pesticides: Multi-547

layer perceptron (MLP) (Devillers and Flatin, 2000; Hamadache et al., 2018),548

Counter-propagation ANN (Drgan et al., 2016; Venko et al., 2018), and GMDH549

neural networks (Lo Piparo et al., 2006). Diverse methods of linear classifica-550

tions were also used in the field of pesticide ecotoxicity. Mazzatorta et al. (2004)551

provided an overview of the classification techniques and conclude that no gen-552

eral rule exists to define the best approach to a specific classification problem.553

Recent research in Machine Learning and Statistics resulted in several efficient554

approaches to perform a linear or a non-linear classification : Support-Vector555

Machines (SVM) (Mazzatorta et al., 2006), quantile support vector machine556

regression (QSVMR) (Villain et al., 2014), DT and RF (Basant et al., 2015b,557

2016; Carnesecchi et al., 2020)558

In our literature analysis on (Q)SAR for pesticides, a large majority of559

the (Q)SAR models were developed to predict the acute toxicity on aquatic560

animals: mainly fish and crustaceans (55% of the (Q)SAR models reviewed;561

Table 3). Insects (i.e., 100% of the terrestrial invertebrates) represent the562

third group of non-target species for which (Q)SAR models have been devel-563

oped (half of them concerns honeybees). Despite the extent of the harmful564

effects of pesticides on bees, studies specifically devoted to (Q)SAR models565

for the prediction of pesticide toxicity on this pollinator (six articles from566

2000 to 2020) remain rather limited (Hamadache et al., 2018).567

568
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Taxa % of reviewed (Q)SAR papers (n = 39)
Fish 33%
Aquatic invertebrates 22%
Terrestrial invertebrates 16%
Birds 10%
Algae 10%
Mammals 6%
Plants 4%

Table 3 Percentage of (Q)SAR models by taxa (39 papers were analysed; one
paper can be counted for different biological models).

569

Although the majority of the (Q)SAR models were developed for aquatic570

species, these models are available for a broad range of chemicals but predict571

toxicity to only a few standard test organisms and do not address the broader572

range of taxa within aquatic communities (Raimondo and Barron, 2020). Bas-573

ant et al. (2016) have proposed that, for a comprehensive safety evaluation of574

chemicals by means of (Q)SAR models development, toxicity data in multiple575

test species of different trophic levels and complexities are needed. Therefore, if576

new ecotoxicological data are produced, (Q)SAR models with a single species577

toxicity analysis could replace and/or be enhanced by multi-species models578

(Basant et al., 2016; Furuhama et al., 2019).579

As noted by other authors on (Q)SAR non-specific of the pesticide toxicity580

and confirmed by our analysis of (Q)SAR for pesticides, there are few appli-581

cable (Q)SAR models for algal toxicity due to the lack of a consistent data582

set with experimental algal test results and because of the variability of the583

results (Villain et al., 2014; Douziech et al., 2020).584

4.1.2 DR and TKTD models585

In total, 58 papers were selected to embrace various types of dose-response586

(DR) and toxicokinetic-toxicodynamic (TKTD) models. DR models are less587

represented (18.9%) compared to TKTD models (72.4%, see Table 4 for588

details). DR and TKTD models make the link between chemical concentra-589

tions to which living organisms are exposed to and the potential effects on590

their life-history traits (survival, growth rates, reproduction features). The591

main difference between DR and TKTD approaches is that time is taken into592

account or not. On an ERA point of view, only DR models are used today at593

Tier-1 assessment in support of the daily work of regulators (see Section 6).594

Nevertheless, in order to better address risks of time-variable exposures, a sit-595

uation that often occurs with pesticides, the Tier-2 assessment may be refined596

by the use of TKTD models (EFSA PPR Panel, 2013) (namely to conduct a597

Tier-2C assessment). In addition, based on a recent Scientific Opinion on the598

state of the art of TKTD effect models for regulatory risk assessment of pes-599

ticides for aquatic organisms (Ockleford et al., 2018), EFSA emphasized the600

added-value of TKTD models for the Tier-2C assessment, even considering the601

General Unified Threshold models of Survival (namely, GUTS models, Jager602

et al. (2011); Jager and Ashauer (2018)) as ready-to-use for ERA in their two603
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reduced versions (GUTS-RED models), when analysing standard toxicity test604

data for survival (see Section 6). A full application case study of GUTS models605

for ERA has been published by Brock et al. (2021).606

In addition to GUTS models already recommended as they are to handle607

survival data, others TKTD models allow considering sublethal effects such608

as growth for plants, or both reproduction and growth for ectotherms with609

DEBtox models. Note that DEB stands for Dynamic Energy Budget with ’tox’610

extension referring to additional stress functions that can be applied on some611

DEB parameters to account for different modes of action of potentially toxic612

chemical substances (Jager, 2020). Among plant models, the Lemna model is613

also considered ready to be used in ERA (EFSA Scientific Committee, 2018).614

Regarding DEBtox models, EFSA only considers their current state limited to615

research applications, mainly because they still lack enough documented and616

evaluated case studies (EFSA Scientific Committee, 2018). An explanation617

may come from the diversity of DEB models themselves for which a unify-618

ing framework seems difficult to establish regarding the diversity of biological619

species fitness they are able to describe (Add-my Pet, 2021).620

It is worth to note that TKTD models, even if recommended today at621

Tier-2C assessment (EFSA PPR Panel, 2013), could also be used at Tier-1622

assessment (Brock et al., 2021; Charles et al., 2021). Indeed, TKTD models623

translate the chemical exposure (even if time-variable) into expected effects624

on the life-history traits of living organisms. TKTD models explicitly describe625

the chemical dynamic within organisms and the related damages (namely the626

TK part) together with the dynamic of the effects (namely the TD part). In627

doing so, TKTD models allow to connect the external exposure concentration628

dynamics to the prediction of effects over time. Consequently, TKTD models629

allow to calculate any x% effect at any time t, thus providing ECx,t or LCx,t630

(Baudrot and Charles, 2019), in particular EC50 or LC50 values at final time631

as requested for ERA.632

633

Focusing only on the TK dynamics, we face with a wide diversity of mod-634

els that are all compartment first-order kinetic models. These so-called TK635

models either consider an organism as a whole, thus written with only one636

compartment (Charles et al., 2021; Ratier et al., 2021; Rubach et al., 2010),637

or consider several compartments that may represent internal entities such638

as the digestive system or a set of organs, or even defining compartments639

as organs or physiological fluids to finely decipher chemical fluxes between640

compartments (see Grech et al. (2017) for a review). These latest category of641

refined TK models are called Physiologically-Based TK (PBTK) models. They642

are equivalent to PB pharmacological (PBPK) models in their writing, the643

way they are rather called when vertebrate or mammal species are concerned644

(Berntssen et al., 2020; Li et al., 2018; Maclachlan, 2009, 2010; Mavroudis645

et al., 2018). Except work by Weijs et al. (2013) who implemented a Bayesian646

approach to infer their model parameters, PBPK models are mainly used to647

perform simulations, parameters being valued from the scientific literature.648
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These simulations typically serve to extrapolate between species or from649

mammals species towards humans. It is worth noting that Berntssen et al.650

(2020) proposed to account for the seasonal fluctuations in their PBTK model.651

Today, only few PBTK models are developed for ecotoxicological purpose (42652

models published until 2019 as reviewed in Grech et al. 2017; Gestin et al.653

2021), and, to our knowledge, very few PBTK models exist for PPP (Abbas654

and Hayton, 1997; Pery et al., 2014; Mit et al., 2021; Grech et al., 2019).655

656

Model type % of reviewed DR and TKTD papers (n = 58)
DR models 18.9% (n = 11)
DEBtox 6.9% (n = 4)
GUTS 20.7% (n = 12)
PBPK 8.6% (n = 5)
TK models (bioaccumulation) 27.6% (n = 16)
TKTD 8.6% (n = 5)
Others(∗) 8.6% (n = 5)

(∗) Others refer to two ordinary differential equation (ODE) models (Booton et al., 2018; Pisani et al.,
2008) and one model based on stepwise behavioural responses combined with a Self-Organizing Map
(Ren et al., 2013).
Table 4 Quantitative overview of dose-response (DR) and toxicokinetic-toxicodynamic
(TKTD) models (n = 58).

657

4.1.3 Population models658

Aiming at an ecologically-relevant assessment of PPP hazard for ecosystems,659

the scaling-up of toxicological effects usually assessed at the organism level now660

benefits from the development of population models. Mechanistic population661

models can also be employed to analyse demographic responses in experimen-662

tal model ecosystems or in the field. They have long been developed in species663

conservation science as tools for projecting the viability of populations and the664

long-term outcomes of management actions or biological resource exploitation665

(Forbes et al., 2016). These models are increasingly recognized as important666

tools in PPP risk assessment (Forbes et al., 2009; Stark, 2012; Forbes et al.,667

2015, 2016; Schmolke et al., 2017, 2018). We identified 87 papers related to668

population models and pesticides (2000-2021). This includes 55 case studies669

specific to the impacts of PPP on non-target species: 25% in aquatic inverte-670

brates - with only 2 marine studies (Lindsay et al., 2010; Thursby et al., 2018)671

-, 25% in terrestrial invertebrates (two thirds of which on pollinators), 30% in672

vertebrates (half in mammals and one third in birds), and 20% of the studies673

in primary producers (algae and plants equally).674

Using the classification established in previous reviews of population model675

implementation in ERA (Forbes et al., 2016; Accolla et al., 2021), three main676

categories of models can be identified regarding the way in which they describe677

populations: unstructured, structured and Agent-Based Models (ABMs). In678

unstructured population models (e.g., scalar models, ordinary differential679

equation. . . ), a unique state variable (population size or total biomass) is680
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considered. The population is viewed as a random mixture of individuals, par-681

ticularly with respect to their exposure and sensitivity to the contaminant.682

Unstructured models represent only 15% of PPP population modeling case683

studies in our corpus, with a strong bias towards taxonomic groups: they684

concern the totality of the studies on unicellular algae and half of the plant685

population studies (e.g., Weber et al. 2012; Schmitt et al. 2013; Hommen686

et al. 2016) against less than 5% of the animal studies (only one study in687

rodents, Wang et al. 2001, and one in birds, Millot et al. 2015). Structured688

models (matrix models, Leslie, Lefkovitch, metapopulation models, differen-689

tial equation systems, compartment models. . .) take into account a structure690

within populations (e.g., age classes, sex, developmental stages, spatial distri-691

bution) to model their response to toxic stress based on the alterations of life692

history traits under PPP exposure. A very underdeveloped option in this cat-693

egory is compartment models relative to the healthy, contaminated or affected694

status of individuals (very used in epidemiology) with only one example of a695

bee colony model exposed to a neonicotinoid insecticide (Bryden et al., 2013).696

Structured models represent one third of the case studies identified in our cor-697

pus, covering a large taxonomic spectrum: aquatic invertebrates, terrestrial698

invertebrates, birds, fish and plants. ABMs (50% of the 55 case studies) cover699

all taxa as well, with a large collection of Individual-Based Models (so-called700

IBM in the majority of studies in the literature). ABMs have been proposed701

for a wide variety of ecosystem organization scales, ranging from social rela-702

tionships within pollinator hives (Crall et al., 2019), or population dynamics703

of earthworms in contaminated soil columns (Johnston et al., 2014; Forbes704

et al., 2021), up to the occupancy of river networks by aquatic invertebrate705

populations at the watershed scale (Focks et al., 2014). This demonstrates the706

high generic value of the population modeling framework to studying the unin-707

tended effects of PPP in ecosystems. In ABMs, each individual is represented708

and can differ from all other individuals, depending on biological or state709

attributes or location. This formalism explains that the sub-individual effects710

of PPP (behavior modification, food limitation. . . ) or other abiotic influences711

and biotic interactions (competition, predation. . . ) are directly integrated in712

ABMs (e.g., Topping and Odderskær 2004). For structured and unstructured713

models, sub-individual effects and environmental influences are treated by714

means of external “sub-models” (e.g., Lopes et al. 2005; Topping et al. 2005)715

that link them to the modification of life history traits (e.g., survival, growth,716

fecundity. . . ) or directly to population criteria (e.g., carrying capacity) (see717

Accolla et al. 2021, for the review of methodological aspects).718

The population endpoints supplied by these models can be of different719

natures. Under certain stability assumptions of environmental condition regime720

during population exposure scenarios (constancy, periodicity, even stochastic-721

ity), the unstructured and structured models can be analytically studied to722

provide demographic indicators (population growth rate, equilibrium densi-723

ties, stable structure, perturbation analysis. . . ), which guarantee robustness724

and genericity of the results obtained by these so-called projection methods725
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(Caswell, 2001). ABMs proceed by simulation to provide population outcomes726

with respect to different tested scenarios (e.g., evolution of population size).727

Nevertheless, we observe that a large proportion of structured population728

models dedicated to PPP abandons the analytical approach and proceeds by729

numerical simulations as well, in particular when describing transient dynam-730

ics of response to pulse exposure to PPP (see below recovery aspects) or to731

formalize population viability analysis via the empirical calculation of popu-732

lation extinction probabilities. Furthermore, the vision that opposes generic733

structured models with low environmental realism versus complex hyper-734

parameterized ABMs specific to each case study seems to be vanished by the735

literature, as both types of formalism can implement all key determinisms and736

processes of population dynamics (density-dependence, spatialization, influ-737

ences of environmental conditions, phenology. . . ) (Topping et al., 2005; Wang738

and Grimm, 2010; Forbes et al., 2016; Accolla et al., 2021). On the other739

hand, several publications propose decision guides for the development of pop-740

ulation models in PPP ERA (Schmolke et al., 2017; Awkerman et al., 2020;741

Raimondo et al., 2021), stressing on the importance of selecting the processes742

encompassed in the population model consistently with the question that the743

modelling approach must answer. This point should always drive the trade-744

offs to be made between ERA genericity, realism, and precision in each case,745

rather than the type of adopted formalism.746

There is a bias towards the use of ABMs in the assessment of the unin-747

tended population effects of PPP: ABMs represent half of the 56 population748

models in our corpus compared with only 15% in the 450 studies implementing749

population models in applied ecology reviewed by Accolla et al. (2021). At the750

same time, structured models seem to be underused (33% of PPP studies com-751

pared to 75% of the studies in ERA in general). The habits and background of752

the modeler communities -with a strong contribution of the European CREAM753

project to this development-, but above all the choice of questions specifi-754

cally addressed in the majority of these studies (recovery, spatialization. . .)755

and the suitability of ABMs to treat these aspects, seem to explain this bias.756

We will see further (Section 5.2.3), how some authors propose to mobilize the757

different types of population models to broaden the scope of questions to be758

addressed when evaluating the effects of PPP on non-target species (Raimondo759

and McKenney Jr, 2005; Topping et al., 2005; Forbes et al., 2015; Rico et al.,760

2016; Hayashi et al., 2016; Thursby et al., 2018; Rueda-Cediel et al., 2019).761

4.1.4 Multi-species models762

Species Sensitivity Distributions (SSD)763

Within the original corpus, 29 papers mentioned the used of Species Sen-764

sitivity Distributions (SSD), or related ones, to study pesticide effects on sets765

of several species under various environment types. If works by van Straalen766

and Denneman (1989), Aldenberg and Jaworska (2000), Solomon et al. (2001)767

and Sanchez-Bayo et al. (2002) can be seen as precursors of the SSD as known768

today, van Straalen and Denneman (1989) already used the idea of the p%769
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Hazard Concentration (HCp), the book from Posthuma et al. (2002) posing770

all the bases of this concept. SSD is used to reduce the uncertainty related771

to differences in sensitivity of standard test species and those expected to be772

exposed in field from the inter-specific variability in sensitivities to contami-773

nants in order to predict effects at the community level (Maltby et al., 2005;774

Van Den Brink et al., 2006). More broadly, SSD allow quantifying relation-775

ships between species richness and single environmental factors, thus helping776

in better understanding and predicting biodiversity patterns, identifying envi-777

ronmental management options and setting Environmental Quality Standards778

(EQS) (Schipper et al., 2014).779

On a theoretical point of view, the SSD approach is defined as a Cumulative780

Distribution Function (CDF) of the toxicity of a single compound or mixture781

to a set of species that is considered as an assemblage or a community. A782

small cut-off value in the left tail of the distribution is used to estimate a783

concentration below which a certain fraction of species exposed above their784

toxicity threshold level is considered acceptable. Usually a cut-off value of 5785

or 10% is chosen and their corresponding concentrations are named HC5 and786

HC10 (Hazardous Concentration to 5 or 10% of the species). The use of the787

SSD concept in ERA relies on several hypotheses, among the following ones:788

1. The species sample on which the SSD is fitted is a random and representa-789

tive selection of the community of interest.790

2. Interactions among species do not influence the sensitivity probability791

distribution.792

3. Because functional endpoints are usually not incorporated in the SSD, the793

community diversity is the target of concern.794

4. The laboratory sensitivity of a species approximates its field sensitivity.795

5. The protection of the prescribed percentile of species ensures a sufficient796

protection of field ecosystems.797

Note that HCp estimates based on laboratory toxicity tests do not provide798

information neither on the recovery potential of sensitive endpoints nor on799

indirect effects, which may be important for regulatory decision-making (Brock800

et al., 2004).801

Within a community, some species are very intolerant while others are more802

tolerant. Consequently, the CDF is expected to exhibit a sigmoidal increas-803

ing shape, and a low exposure concentration is expected to affect only a small804

proportion of the species. The derivation of this trigger value (namely the805

HCp as mentioned above) thus requires to fit a presupposed probability distri-806

bution (usually a log-normal or a log-logistic probability distribution) to the807

toxicity values of all the sampled species. Even if some authors are still using808

No Observed Effect Concentrations (NOEC) or Lowest Effect Concentrations809

(LOEC) entries for SSD analyses (Brock et al., 2004; De Zwart, 2005; Iwasaki810

et al., 2015; Cederlund, 2017), the toxicity values used as SSD inputs usually811

come today from DR models (thus being LCx or ECx values, with usually812
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x = 50%), more rarely from TKTD model (e.g., the No Effect Concentration,813

Kon Kam King et al. 2015). Then, the SSD is performed in two steps:814

1. The choice of a probability distribution, suited to the data set to be815

analysed: parametric distributions or non-parametric methods are possible816

choices. Parametric distributions are more reasonable with small data sets,817

while log-normal and log-logistic distributions are the customary choices818

among parametric ones.819

2. Using a parametric distribution, all the parameters need to be estimated.820

In this perspective, several methods exist (Belanger and Carr, 2019):821

• Moment matching as in the ETX free software (current version is 2.3), an822

Excel spreadsheet with embedded Visual Basic macro-driven calculation823

tools to calculate HCp and Potentially Affected Factions (PAF ) from824

normally distributed toxicity data (Van Vlaardingen et al., 2004); ETX825

is one of the most used software (Brock et al., 2004; Van Den Brink et al.,826

2006; Daam et al., 2010; Silva et al., 2015; Van Den Brink et al., 2019).827

• Least-square regression on the empirical CDF as in the Excel spreadsheet828

with the built-in macro SSD generator (current version V1) developed829

from the Causal Analysis/Diagnosis Decision Information System (CAD-830

DIS) of the US Environmental Protection Agency based on the US EPA’s831

2000 Stressor Identification Guidance document (Us, 2000, 2018). Men-832

sah et al. (2013) used the US EPA SSD generator to deal with indigenous833

aquatic biota in South Africa, while Giddings et al. (2019) used it to834

derive a combined SSD for acute toxicity of nine pyrethroids to aquatic835

animals.836

• Maximizing the likelihood, i.e., selecting parameters for which the proba-837

bility of observing the data is the highest, as e.g., in the software Burrlioz838

(current version 2.0) used as the standard software to derive water qual-839

ity guideline values for toxic compounds in Australia and New Zealand840

(Campbell et al., 2000; Barry and Henderson, 2014): Burrlioz uses a log-841

logistic distribution for data sets that comprise less than eight toxicity842

values and a Burr Type III distribution for data sets of eight or more843

toxicity values (Anzecc, 2000). Regarding pesticides, Burrlioz has been844

used by Chen et al. (2015); Li and You (2015).845

• Maximizing the likelihood, accounting for interval-censored values and846

providing 95% bootstrap confidence intervals on HCp estimates (particu-847

larly robust with small-size samples) in the MOSAICSSD web tool (Kon848

Kam King et al., 2014) used for pesticides by Kon Kam King et al. (2015);849

Brock et al. (2018); Gabsi et al. (2018); Charles et al. (2021).850

• An amalgam of the above algorithms (maximum likelihood, moment851

estimators, linearization and the Metropolis-Hastings algorithm), also852

handling censored data to support fitting and visualization of simple SSD853

according to the choice of a distribution among six possibilities, in the854

SSD Toolbox from the US EPA (Etterson, 2020).855
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All above software are based on a frequenstist inference method, while other856

authors attempted to use Bayesian approaches: Jesenska et al. (2013) fitted857

SSD in the R software (R Core Team, 2021) with the winBUGS language;858

He et al. (2014) developed a novel platform, named the Bayesian Matbugs859

Calculator (BMC), in order to select the best SSD fit to assess ecological risk860

at high-, mid- and low-levels of the 95% credible interval and to set the priority861

of toxic substances.862

Food web and Community models863

The food web and community models represented 21 papers within the864

final bibliometric corpus. They encompass a wide diversity of models, from865

simple ones involving only two species in competition (Damgaard et al., 2008;866

Joncour and Nelson, 2021), to the most complex ones considering as many867

as possible species for field studies, the one of Galic et al. (2019), further868

developed by Bartell et al. (2020), the CASM model, being maybe the most869

complete, addressing even ecosystem services within a lake. Most of the models870

are specific to particular situations which makes it difficult to present a short871

overview and to identify common denominator as there are so many different872

mathematical formalisms that have been used, as well as species-contaminant873

combinations that have been studied.874

Nevertheless, we can distinguish food-web models from those accounting875

for other types of ecological interactions such as competition for example. The876

simplest food-web model we identified is the one of De Hoop et al. (2013)877

only involving two species whose dynamics is described by the Rosenzweig-878

MacArthur equation (namely a two-dimensional ODE system). Pioneer works879

with food-web models were done by Rose et al. (1988), calibrating a multi-880

species phytoplankton-zooplankton simulation model from laboratory data,881

Hommen et al. (1993), predicting pollutant effects on freshwater plankton com-882

munities, or Hanratty and Liber (1996), modelling the effects of diflubenzuron883

within a littoral ecosystem. Some years later, Traas et al. (2004) proposed a884

food-web model to analyse a microcosm experiment studying the combined885

effects of nutrients and insecticides for their impact on recovery of a model886

freshwater ecosystem; the final aim was to link eutrophisation and contamina-887

tion. De Laender et al. (2011) also focused on microcosms to study the effect of888

linuron, a pesticide also studied by Viaene et al. (2013) with the use of diver-889

sity indices; while Nfon et al. (2011) developed a dynamical combined fate-890

and food-web model to estimate the food-web transfers of chemicals in small891

aquatic ecosystems. Their innovation lies in the fact that aquatic macrophytes892

were included in the fate model and also as a food item in the food-web model.893

Based on simulation, Nfon et al. (2011) were able to determine the influence894

of macrophytes on fate and bioaccumulation of several hypothetical pesticides895

showing in particular that macrophytes have a significant effect on the fate and896

food-web transfer of highly hydrophobic compounds. More recently, Bartell897

et al. (2018) proposed two integrated bio-energetics-based and habitat quality898

models to describe the daily biomass values of selected producer and consumer899

populations both in ponds and wetlands within farms.900
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The bee biological model has been used in two models to deal with the com-901

munity level of biological organization. Becher et al. (2018) capitalized on the902

already existing BEEHAVE model (Becher et al., 2014) to simulate the colony,903

population and community dynamics of up to six UK bumblebee species living904

in any mapped landscape, based on an agent-based spatially-explicit model.905

This kind of modelling approach has also been used for example by Reeg et al.906

(2017), Reeg et al. (2018) and Reeg et al. (2018) to extrapolate individual-level907

effects to the population and community level of non-target plant commu-908

nities (the individual-based plant community or IBC-grass model). It has909

also been used to extrapolate from laboratory to field information in order910

to highlight herbicide effects with direct and indirect effects on population911

level. The herbicide effect extent depends not only on the distance to the912

field, but also on the specific plant community, its disturbance regime and913

the resource level. Strauss et al. (2017) successfully merged an individual-914

based population model for Daphnia magna with a dynamic ecosystem lake915

model, utilising the accuracy of the former and the dynamic environment of916

the latter to simulate realistic field populations. They thus created the DaLaM917

model (Daphnia Lake Model) to simultaneously predict population dynamics918

of D. magna and phytoplankton within a simplified daphnid-dominated food919

web under relevant variable field environmental conditions, such as underwa-920

ter light climate, water temperature, turbulence and nutrient availability. As a921

main result, their hybrid modelling approach is capable of extrapolating single-922

species data from the laboratory to the field level as well as of decreasing the923

model uncertainty by including an appropriate level of complexity. Regard-924

ing lake ecosystems, two other types of models have been proposed: (1) Ren925

et al. (2017) applied a fugacity-based dynamic bioaccumulation model (namely926

mass-balanced equations) to study short food chains in high-altitude alpine927

lakes, that was specifically adapted to the fish species living in the Central928

Tibetan Plateau; (2) Galic et al. (2019) used the existing model AQUA-929

TOX (Park et al., 2008) to quantify insecticide-induced impacts on ecosystem930

services provided by a lake from toxicity data for organism-level endpoints.931

The AQUATOX model integrates environmental fate of chemicals and their932

impacts on food webs in aquatic environments. Galic et al. (2019) highlighted933

that complex response of fishing services are mainly due to non-linear feed-934

backs in the lake food web, and that the water clarity increased with reduced935

insecticide use being mostly driven by changes in food web dynamics. This936

AQUATOX model was also used by Scholz-Starke et al. (2018) to simulate the937

dynamics of trophic guilds of aquatic organisms, hydrodynamics and nutrients938

including the dynamics of the exposure substance and its metabolites. They939

found that there were several interconnected trophic levels and a significant940

biomagnification of metabolites.941

As Strauss et al. (2017) with their DaLaM (Daphnia Lake) model, Kat-942

twinkel et al. (2016) took advantage of ecotoxicological mesocosm data to943

develop a mechanistic food-web model that they specifically called Streambugs,944

in order to investigate the dynamics of the macro-invertebrate community945
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exposed to pulses of the insecticide thiacloprid. They used Bayesian infer-946

ence to estimate parameters (in particular their uncertainty) then investigated947

vital rates (such as the emergence process and sub-lethal effects) and limiting948

environmental factors in the model. They thus yielded insights into recovery949

dynamics and supported the use of more accurate modeling approaches in gen-950

eral. A statistical model based on multiple linear regressions was specifically951

used for biofilms (Bhowmick et al., 2021) to better understand the influ-952

ence of diuron, chlorophyll a concentrations and photosynthetic efficiency on953

changes in the river biofilm community structure and growth pattern of lotic954

ecosystems.955

Even if of strong interest (Crocker, 2005), birds and mammals are probably956

the less studied category of animals. Let’s cite the recent proposal by Dittrich957

et al. (2019) who assessed the potential effects of chlorpyrifos on bird communi-958

ties based on a multi-year and multi-site monitoring program that was carried959

out in treated cider orchards (in the UK) and in treated citrus orchards (in960

Spain). The authors used N-mixture models fitted to the number of trapped961

birds (capture data) using the p-count function of Royle (2004). They come962

to the conclusion that the abundance of most bird species was strongly and963

significantly affected by seasonality, while no species showed any tendency of964

reduction in their population size over the years.965

4.1.5 Landscape models966

At the frontier with population models, our literature searches identified a967

corpus of 24 studies that introduce a spatial representation to implement inte-968

grated modeling approaches at the scale of agricultural landscapes assessing969

unintended ecological impacts of PPP. Seventy-five percent of them concern970

terrestrial species (more than half in mammals or birds). Population endpoints971

related to the maintenance of non-target species inhabiting the landscape con-972

stitute the outputs of the model in two thirds of the studies. The other ones973

predict contamination levels in non-target species (e.g., in hare Kleinmann974

and Wang 2017; Mayer et al. 2020) or the exceeding of toxicity thresholds at975

the individual level (e.g., in a warbler, Moore et al. 2018, or an owl, Engelman976

et al. 2012) as a function of habitat occupancy, spatial or dietary behaviors, or977

landscape structure. Two thirds of the 24 landscape studies consider a spatially978

explicit representation of the transfer and fate of PPP, 85% the spatialization979

of species life cycle (in particular for the use of trophic resources or habitats).980

Surprisingly, only less than 50% of them consider the contamination history981

of individuals with regard to the realization of the whole life cycle in hetero-982

geneous landscape conditions. ABMs are again very much used (90% of the983

studies) for the integration of spatial and temporal dynamics of life cycles, and984

they are recommended for tracing the complex histories of individual exposures985

in landscape contexts (Ockleford et al., 2018). Contrary to our expectations,986

the spatialization of population dynamics (metapopulation, sink-source rela-987

tionships, migration, colonization. . . ) is of interest to only two-thirds of the988
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PPP landscape-scale studies. Landscape models thus gather a set of rather het-989

erogeneous objects with different objectives, where landscape spatio-temporal990

dynamics can be taken into account either in the environmental fate of the991

PPP, or/and in the realization of the life cycle of the individuals, or/and in992

the demographic response of the populations, depending on the objectives of993

each study or risk evaluation to be carried out. The spatio-temporal dimen-994

sion of the “treatment-transfer-exposure-toxicity-ecological impacts” chain is a995

major aspect of the understanding and the management of untargeted effects996

of PPP on biodiversity in agricultural ecosystems. For this reason, we chose to997

gather in a specific category all the mechanistic modeling studies, when any998

element of which falls within a landscape framework. Our literature searches999

also revealed the existence of a few PPP studies at the landscape level that1000

are based on spatial statistical approaches (species distribution models, Szabo1001

et al. 2009; Richardson et al. 2019, pressure-impact relationships, Kattwinkel1002

et al. 2011). These studies, while not based on dynamic mechanistic models, do1003

incorporate various elements of spatially explicit modeling related to PPP uses1004

and environmental fate, or ecological determinisms of non-target population1005

exposure.1006

4.1.6 Mixture models1007

More and more studies are reporting the occurrence of various PPP in a vari-1008

ety of environmental compartments such as water, soil, or air, meaning that1009

aquatic, terrestrial and aerial biodiversity is often exposed to cocktails of pes-1010

ticides and contaminants from different sources (e.g., Pelosi et al. 2021). In the1011

early 20th century, several mathematical models have been developed to assess1012

and support the prediction of joint effects caused by mixtures of chemicals1013

(Jonker et al., 2005; Schell et al., 2018) (Figure 8).1014
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Fig. 8 Tier-2 approach to analyze the mixtures of contaminants, tested for interactions
(regressions). The interactions are then characterized by a qualitative comparison of the
mixing data with concentration addition (CA) and independent action (IA) models (from
Hoffmann et al. 2016).

1. The Concentration Addition (CA) model assumes that all components of1015

a mixture share a common Mode of Action (MoA) (Claudio Cacciatore1016

et al., 2018). The CA model is also known as “toxic unit summation”1017

since one chemical can be replaced by an equal fraction of an equi-effective1018

concentration of another, without changing the overall effect (Qiu et al.,1019

2017).1020

2. The Independent Action (IA) model, also called RA (Response Addition)1021

or Multiplicative Survival Model (MSM), addresses mixtures of chemicals1022

with dissimilar MoA (García-Gómez et al., 2019; Englert et al., 2017) as it1023

considers that the probability of the effect of one chemical is independent1024

of the probability of the effect of the other chemicals in the sample.1025

3. The Simple Interaction (SI) model assumes that one substance in the1026

mixture, at a non-toxic concentration, is able to influence the toxicity of1027

other substance through an indirect mechanism. These interactions between1028

chemicals can be due to chemical and physico-chemical interactions with1029

the constituents of the matrix (e.g., soil), toxicokinetic interactions affect-1030

ing uptake and elimination (e.g., Roesch et al. (2017) or toxicodynamic1031

interactions affecting compound metabolism or associations at the target1032

site (Gomez-Eyles et al., 2009).1033
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Both CA and IA models assume no interaction among mixture components1034

(Schell et al., 2018) while, in some mixtures, interactions between chemicals1035

can result in stronger (synergistic) or weaker (antagonistic) effects than those1036

expected of the toxicity of single components. CA and IA models thus fail1037

to predict cases where interactions occur (e.g., Olmstead and Leblanc 2003).1038

Moreover, there are some limitations in the application of CA and IA models1039

to predict the impacts of more complex multi-chemical (e.g., ternary or more)1040

mixtures (Jonker et al., 2005), and the exact modes of action are often unknown1041

for the majority of compounds (Ginebreda et al., 2014; Wilkinson et al., 2015).1042

Considering the broad range of pesticides applied on agricultural fields, it is1043

likely that pesticide mixtures in streams are composed of compounds with1044

both similar and dissimilar MoA. Moreover, there is a growing awareness that1045

the MoA of a pesticide may vary among organisms. In addition, if the MoA of1046

pesticides is known for the target organisms, it remains largely unknown for1047

the non-target species (Verro et al., 2009).1048

Although interactions of chemicals cannot be tested directly from the CA1049

and IA models, they can be detected from the deviations between predicted1050

and actually observed values (Qiu et al., 2017; Filimonova et al., 2018; Tao1051

et al., 2020). Deviations from the CA and IA models are referred to as antag-1052

onism (when the toxicity of the mixture is less than that predicted by each1053

model) and synergism (when the toxicity of the mixture is greater than that1054

predicted by each model, Phyu et al. 2011). The reported inability of the CA1055

and IA models to consistently model mixture toxicity led Jonker et al. (2005)1056

to propose three additional functions that may be added to the basic CA and1057

IA models to describe the three types of biologically relevant deviations from1058

additivity: antagonistic deviation, dose level–dependent deviation, and dose1059

ratio–dependent deviation.1060

To explore the joint action of chemical mixtures, the isobologram model1061

(Combination Index (CI)-isobologram equation) is a commonly used and pow-1062

erful graphical approach (Tagun and Boxall, 2018). By comparing the isoboles1063

based on the CA and IA predictions and experimental mixture data, con-1064

clusions can be drawn on the type(s) of interaction occurring (Cedergreen,1065

2014). Moreover, Dupraz et al. (2019) described the Hewlett and Vølund mod-1066

els that are extensions of the CA model. Other methods relying on the same1067

approaches (CA/IA models) have been proposed such as the Computational1068

Approach to the Toxicity Assessment of Mixtures (Schmidt et al., 2017), the1069

Accelerated Failure Time (AFT) model (Qiu et al., 2017), the CI method (Yang1070

et al., 2017), the calculation of Mixture Toxicity Index (MTI) or Safety Factor1071

Index (SFI) (Toumi et al., 2018). Another commonly used tool is the MIX-1072

TOX model (e.g., Maloney et al. 2017; Mansano et al. 2017; Robinson et al.1073

2017; Raby et al. 2019; Rocha et al. 2018), a regression-based, dose-response1074

mixture analysis modeling framework. This tool fits ecotoxicity data to the1075

conceptual models (CA or IA) and then evaluates if there are any deviations1076

for synergism/antagonism or dose level or ratio dependencies (i.e., depending1077

on low or high doses, or dependent on the ratio of the chemicals in the mixture,1078
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respectively). In the same way, the Model Deviation Ratio (MDR) technique1079

is used to determine the biological significance and reproducibility of observed1080

mixture effects (e.g., Belden et al. 2007; Lopez Aca et al. 2018; De Perre et al.1081

2017; Belden and Brain 2018; Lanteigne et al. 2015) by comparing predicted1082

and observed results of mixture toxicity. If the MDR values are < 5, then the1083

CA model applies since the additive MoA can be assumed. If the MDR val-1084

ues are > 5, there is a potential that synergistic MoA dominates (Chen et al.,1085

2020). When the MDR value is > 2.5, high levels of uncertainty exist, and1086

this decreases the applicability of the model to risk assessments (Belden and1087

Lydy, 2006). In addition, an MDR value > 2 could result from test variabil-1088

ity or could be a result of the analytical quantification techniques (Lanteigne1089

et al., 2015).1090

In risk assessment of mixtures, the mathematical model used should be1091

protective for complex, environmentally relevant mixtures which do not show1092

synergistic interactions (Cedergreen, 2014). Based on its more conservative1093

approach, CA is often suggested as a default model for risk assessment of chem-1094

ical mixtures (Schell et al., 2018). Another advantage of CA is that frequently1095

reported ECx are sufficient for the calculation, whereas IA requires informa-1096

tion about the whole concentration response function, which is rarely reported1097

or available (Verro et al., 2009). Finally, the assumptions on the MoA in the1098

IA model are unlikely to be met in environmental mixtures (Svendsen et al.,1099

2010).1100

Some authors reported the IA model to underestimate the mixture effects,1101

as Hasenbein et al. (2017) who studied the combined effect of diuron and1102

hexazinone on the growth of the green algae Pseudokirchneriella subcapitata1103

and on Daphnia magna. In order to be adequately protective of sensitive1104

aquatic insect species, these authors proposed to consider a prediction win-1105

dow that incorporates both reference models when interpreting cumulative1106

effects, accounting for any potential greater-than-additive effects that may1107

occur resulting from mixture exposure. Ginebreda et al. (2014) reported that1108

CA tended to overestimate toxicity in controlled experiments as compared to1109

IA, and some other authors found that the CA model slightly underestimated1110

mixture effects, indicating potential synergistic interactions (Knezevic et al.,1111

2016; Liess et al., 2016). Belden and Brain (2018) explained that if the empir-1112

ical data deviates from the CA model by a factor of greater than 5, then1113

synergy is considered likely and the ERA is based on the empirical data. Oth-1114

erwise, the ERA may use CA to calculate Risk Quotients (RQ) or be based1115

on the most toxic active ingredient. Another approach proposed by Ginebreda1116

et al. (2014) can be used to describe how a compound ecotoxicity is statis-1117

tically distributed rather than to predict the exact ecotoxicity value of the1118

mixture (where a major part is unknown). They define a procedure whereby1119

the compounds identified in a sample are ranked in descending order accord-1120

ing to their toxic load expressed in terms of toxic units, and then the shape of1121

the distribution is characterized. This compound prioritization, depending on1122

the sampling site, is important from a management point of view.1123
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4.2 What are the model usages?1124

4.2.1 Prediction of PPP ecotoxicological properties based on1125

their chemical characteristics using (Q)SAR models1126

Our literature analysis, specific to the pesticides, identified some (Q)SAR1127

models predicting toxicokinetic parameters (mainly bioconcentration factor,1128

BCF) and numerous articles describing (Q)SAR models predicting acute1129

toxicodynamic parameters. In addition, some (Q)SAR models were developed1130

to deal with substance classification.1131

1132

Toxicokinetic outputs1133

For the toxicokinetic parameters, the most commonly used (Q)SAR models1134

are based on the established correlation between BCF and the hydrophobic-1135

ity (log10(Kow)) of organic chemicals (Pavan et al., 2008). There is general1136

agreement that these linear correlations give a fair approximation of the BCF1137

for non-ionic, non-metabolised substances with log10(Kow) in the range of1138

1 to 6 (Pavan et al., 2008). Numerous (Q)SAR studies have attempted to1139

predict the BCF accurately for more hydrophobic substances as well as for1140

the substances that are metabolised to an appreciable extent in the exposed1141

organism, for example by including additional descriptors in the equation and1142

using more complex non-linear approaches (reviewed in Pavan et al. 2008 and1143

Miller et al. 2019). During the last twenty years, a large number of global1144

(Q)SAR models (diverse substances, Tables 1-5 in Pavan et al. 2008) were1145

developed for predicting the BCF but, to the best of our knowledge, few new1146

(Q)SAR models were developed to predict specifically the BCF of pesticides1147

(Jackson et al., 2009; Miller et al., 2019; Nendza and Herbst, 2011).1148

1149

Toxicodynamic outputs1150

Most of the (Q)SAR models identified in our bibliographic analysis predict1151

the dose that gives the toxic effect in 50% of the organisms, and therefore pre-1152

dict only acute toxicity of the substances. For instance, oral LD50 (the Lethal1153

Dose for 50% of the tested organisms) is used for birds (Basant et al., 2015b;1154

Mazzatorta et al., 2006), contact LD50 is reported in µg/bee for honeybees1155

(Hamadache et al., 2018) and, for aquatic animals, the LC50, the lethal water1156

concentration likely to kill 50% of the organisms is used (Devillers, 2001; Khan1157

et al., 2019). Finally, the EC50 inhibiting the algae biomass growth rate (Vil-1158

lain et al., 2014; Xiao et al., 2019), even if the endpoint is not at an organism1159

level, can be assimilated to the acute toxic endpoints.1160

Another toxicodynamic endpoint well investigated by the (Q)SAR models1161

is the mutagen properties of the substances, frequently based on the result of1162

the bacterial reverse mutation test often referred to the Ames test or OECD1163

test guideline No. 471.12 (Benigni et al., 2020; Herrmann et al., 2020). For the1164

Ames test, all (Q)SAR models generated statistically significant predictions,1165

comparable with the experimental variability of the test. The reliability of1166
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the models for other assays/endpoints appears to be still far from optimality1167

(Benigni et al., 2020).1168

Very few (Q)SAR models were developed for ecologically relevant end-1169

points able to predict potential chronic effects of substances, and at biological1170

level convenient to manage the risk (population, community or ecosystem).1171

Among the reviewed papers, only one really recent study addresses these sorts1172

of endpoints. Finizio et al. (2020) developed successfully two simple (Q)SAR1173

models to predict the effect of narcotic compounds on aquatic communities1174

(HC5, concentration at which 5% of the species exhibit an effect). To fill this1175

gap, Inter-species Correlation Estimation (ICE) - (Q)SAR models could also1176

be used to determine HCp without the need for additional in vivo testing to1177

help prioritise which chemicals with no or few ecotoxicity data require more1178

thorough assessment (Mombelli and Pery, 2011; Douziech et al., 2020).1179

1180

Classification and modes/mechanisms of action1181

Even if, for ecotoxicity assessment, most of the (Q)SAR models are regres-1182

sions referring to the dose that gives the toxic effect in 50% of the organisms,1183

some authors proposed to work with classification (Mazzatorta et al., 2004).1184

Classification is the process of dividing a data set into mutually exclusive1185

groups so that the members of each group are as “close” as possible to one1186

another, and different groups are as “far” as possible from each other, where1187

distance is measured with respect to specific variable(s) involved in the pre-1188

diction (Mazzatorta et al., 2004). For example, Venko et al. (2018) proposed1189

to classified compounds according to the thresholds as defined in PPDB: lowly1190

toxic (LD50 more than 100 µg/bee), moderately toxic (LD50 between 1 and1191

100 µg/bee) and highly toxic (LD50 less than 1 µg/bee). These authors argue1192

that classification offers two main advantages in ecotoxicology: (i) the regu-1193

latory values are indicated as toxicity classes and (ii) classification can allow1194

better management of data which are often noisy (Mazzatorta et al., 2004).1195

Among the models developed to classify the substances, some were devel-1196

oped to determine the MoA of the substances including pesticides (Bauer et al.,1197

2018b,a; Kienzler et al., 2017; Martin et al., 2013). Note that these authors1198

are using the abbreviation MechoA instead of MoA. MechoA differs from MoA1199

because it refers to the molecular interaction that a molecule will undergo,1200

leading to a biological outcome, which can be the key starting point of the1201

Adverse Outcome Pathway (AOP) for this substance, i.e., the Molecular Ini-1202

tiating Event (MIE) Boone and Di Toro (2019). MoA is not so clearly defined,1203

often referring to the pathological effects that can be seen at the whole organ-1204

ism level in terms of behaviour or death i.e., at the other end of the AOP1205

(Russom et al., 1997). The idea behind these works is that a good understand-1206

ing of MoA or MechoA, and appropriate methods to determine them, is crucial1207

for the efficient prediction of toxicity using local (Q)SAR models and AOP1208

framework (Boone and Di Toro, 2019; Carnesecchi et al., 2020). To this goal,1209

various structure-based classification schemes have been developed to catego-1210

rize chemicals based on the MoA or MechoA (Bauer et al., 2018b; Kienzler1211
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et al., 2017). In addition, several predictive methods were developed with nar-1212

row applicability domains, and recently new methods were proposed to predict1213

the MoA/MechoA only from the chemical structure to a wide range of organic1214

chemicals including pesticides (Raimondo and Barron, 2020).1215

4.2.2 Quantification of biological time-dose responses to PPP1216

exposure using DR and TKTD models1217

As recommended since decades in most of the OECD guidance documents1218

to study the ecotoxicity of chemical substances for a range of species under1219

standard protocols, DR analyses are employed to directly link constant expo-1220

sure concentrations to endpoints of interest (such as survival, reproduction,1221

growth. . . ) at the end of the experiment (see for example Felten et al. 2020).1222

DR models are mainly used to calculate standard outputs such as ECx or LCx1223

on which the Tier-1 assessment is based to make decisions regarding approval1224

of active substance (Brock et al., 2018; Charles et al., 2021). Let us mention1225

here the original work of Nian et al. (2015) who tried to take into account1226

the temporal dimension of the effects in a classical DR model by an approach1227

known as time concentration mortality (TCM) modelling. Note that TCM1228

models originate from Complementary log–log (CLL) models describing the1229

relationship between time, dose, and the cumulative probability of mortality1230

(Preisler and Robertson, 1989; Nowierski et al., 1996).1231

In essence, DR models do not allow any consideration of the time dimen-1232

sion of the effects. They also do not include exposure modelling, so that1233

they are purely descriptive and unusable to perform predictions under time-1234

variable exposure scenarios, more environmentally realistic. However, recent1235

work has attempted to include pulsed exposures (Copin et al., 2015; Copin1236

and Chevre, 2015; Copin et al., 2016; Copin and Chevre, 2018). Other work1237

has extended the use of DR models for example to take into account the1238

seasonal and the gender variability on EC50 values (Dalhoff et al., 2018), to1239

account for hormesis (Jager et al., 2013; Tyne et al., 2015), or to make a link1240

with biological traits (Rubach et al., 2012). More interestingly, Monti et al.1241

(2015) addressed the thorny issue of systematically considering a normal dis-1242

tribution of toxicity data, while it is well-known that such an assumption may1243

be wrong for binary or count data for example (Forfait-Dubuc et al., 2012;1244

Delignette-Muller et al., 2014; OECD, 2016). Monti et al. (2015) proposed an1245

alternative approach to deal with proportion data while the initial number1246

of individuals remains unknown; their innovation lies in the use of the Beta1247

probability distribution, without classical optimization techniques but the use1248

of the log-ratio. Finally, cite work from Baillard et al. (2020) who proposed1249

including ecological interactions in ERA, by studying how inter-specific com-1250

petition affects plant species response to herbicides and more specifically how1251

it may modify DR curves and the resulting toxicity indices.1252

1253

Regarding TK models, our literature review reveals two clusters of papers.1254

The first cluster encompasses classical TK models. TK models are mainly1255
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used for calculating bioaccumulation metrics such as bioconcentration, biota-1256

sediment accumulation or biomagnification factors. The type of factor depends1257

on whether the exposure is via water, sediment or food, respectively, providing1258

the so-called BCF , BSAF and BMF values, respectively, as required by reg-1259

ulators for ERA. The most used is clearly the BCF , originally developed to1260

analyse bioaccumulation in fish according to the OECD guideline 305 (OECD,1261

2012). Regarding PPP, we have unearthed two old publications in which the1262

bioaccumulation model is not formalised as it is today by ordinary differen-1263

tial equations describing the dynamics of the different compartments that are1264

considered (Elliott et al., 2005; Satyanarayan and Ramakant, 2004). The other1265

papers on TK models applied to PPP divide in work providing BCF (Brox1266

et al., 2016; El-Amrani et al., 2012; Loureiro et al., 2002) or BMF values1267

(Carafa et al., 2009; Lazartigues et al., 2013; Fraser et al., 2002).1268

In the second cluster, with more elaborated TK models, three studies1269

emphasize the importance of considering biotransformation, that is the possi-1270

ble degradation of the parent compound into metabolites, that may be even1271

more toxic (Firdaus et al., 2018; Gao et al., 2013; Wu and Zhu, 2019), the work1272

by Wu and Zhu (2019) having the particularity to concern plants. One study1273

has accounted for time-variable exposure (Rubach et al., 2010) going so far as1274

to propose the 95% depuration time (t95) as a complement to the BCF . The1275

depuration time is important as it defines the minimum length of the inter-1276

val between repeated exposure events required for the organisms to recover.1277

Consequently, it could be particularly useful in ERA when evaluating effects1278

due to pulsed exposure. Last but not least, Roesch et al. (2017) propose a TK1279

model to deal with binary mixtures, focusing on the synergistic potential of1280

azole fungicides from the CA hypothesis (see Section 4.1.6).1281

In essence, TKTD models are of course best able to quantify the dynamics1282

of chemical effects on life-history traits of exposed organisms, whatever the1283

type of effects they account for (lethal or sub-lethal). See section 4.1.2 were1284

they are presented.1285

4.2.3 Extrapolation of effects of a tested exposure pattern to1286

others, untested, exposure patterns1287

At the individual level, only TKTD models really enable to extrapolate effects1288

under a tested exposure pattern to other untested ones (Ockleford et al.,1289

2018). As already stated above, TKTD models finely describe the internal1290

dynamic of the damages due to a (time-variable) chemical exposure, leading1291

to effective or lethal changes on living organisms. TKTD models actually1292

bring together several types of models depending on the biological traits that1293

are observed (see Table 4 and Figure 1 in Ockleford et al. 2018).1294

1295

Regarding our literature review on PPP, GUTS models appear as the most1296

used. As described in the founding article (Jager et al., 2011), and later in1297

more details (Jager and Ashauer, 2018), GUTS models specifically describe1298

the survival probability as a function of time and exposure concentration, this1299
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latter may vary over time. Note that the GUTS name dates from 2011 (Jager1300

et al., 2011); before that, a large number of very different TKTD approaches1301

for survival existed in the literature with just as many different names. For1302

clarity reasons, the GUTS name is used hereafter, whatever the TKTD model1303

for survival is mentioned.1304

Mostly used for research purposes, initially at constant exposure concen-1305

trations (Jager and Kooijman, 2005; Hesketh et al., 2016; Kretschmann et al.,1306

2012), GUTS is today more and more employed to account for time-variable1307

exposure (Ducrot et al., 2010; Focks et al., 2018; Nyman et al., 2012; Gabsi1308

et al., 2018). GUTS models are also used for ERA, for example at Tier-2C1309

assessment in combination with Tier-2B assessment based on SSD approaches1310

(see Brock et al. 2021, and Figure 6 in Ockleford et al. 2018). Extensions of1311

GUTS models have recently been published to deal with chemical mixtures1312

(Arlos et al., 2020; Bart et al., 2021), in combination with a shortage of food1313

resources (Nyman et al., 2013), while Dalhoff et al. (2020) have proposed to1314

relate GUTS models with morphological and physiological traits.1315

1316

For explaining effects on sub-lethal individual life-history traits (such as1317

growth and reproduction endpoints), DEBtox models are today the leading1318

TKTD models (Jager, 2020). EFSA even recognizes the great potential of1319

DEBtox models for future use in prospective ERA for pesticides, although1320

the DEBtox modelling approach is currently limited to research applications1321

(Ockleford et al., 2018). Regarding the use of DEBtox models for PPP, we1322

only found few relevant papers. Pieters et al. (2006) exposed daphnids to1323

pesticide pulses with either low or high food availability, leading them to1324

conclude that effect of pesticide application on field populations of daphnids1325

will depend not only on the trophic state of the receiving water body, but also1326

on the reproductive state and size of the animals. Jager et al. (2007) exposed1327

Folsomia to chlorpyriphos via food, simultaneously modelling survival (this1328

part being similar to a GUTS model in the Stochastic Death (SD) version),1329

growth and reproduction, then making the link to the population dynamics1330

via the Euler-Lotka equation. Zimmer et al. (2018) proposed a model for the1331

effects of time-variable exposure to the β-cyfluthrin pyrethroid on rainbow1332

trout early life stages. And very recently, Vignardi et al. (2020) proposed a1333

DEBtox-like modelling approach to study how aquatic species respond to1334

incidental exposure to Cu-based nano-engineered pesticides, pointing out that1335

future efforts should focus on toxicity studies and TKTD model development1336

for nano-pesticides to make advance in ERA. Jager (2020) also proposed some1337

directions that could improve ERA, like including a starvation module in1338

DEBtox models to account for time-variable exposure profiles in particular,1339

and performing more experiments under time-variable exposure in order to1340

support the validation of DEBtox models for ERA.1341

1342

In terms of innovation with TKTD models, the combined TK-IBM frame-1343

work proposed by Liu et al. (2014) revealed particularly interesting to better1344
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asses the pesticide risk when the temporal pattern of feeding and time spent1345

in exposed area by individuals is accounted for. Also, works of Chaumet et al.1346

(2019) and Chaumet et al. (2019) on biofilms is worth mentioning, as well1347

as work of Roeben et al. (2020) including both time and space explicitly as1348

explanatory variables in addition to the exposure concentration. Those stud-1349

ies then employed an explicitly spatialized TKTD model combined with a1350

trait-based approach and a population dynamic model in a modular approach1351

that revealed particular efficient. Last but not least, Mit et al. (2021) are the1352

first to illustrate how PBTKTD models (that is considering several compart-1353

ments for the TK part) may be used to better characterize and understand1354

the interactions of chemical compounds within a binary mixture.1355

1356

Coupled with TKTD models, population models - whether they are1357

unstructured, structured or ABMs - allow understanding the ecological con-1358

sequences of complex exposure scenarios, especially time-varying patterns1359

particularly relevant in the case of PPP, e.g., Galic et al. (2014); Thursby1360

et al. (2018); Weber et al. (2019); Ashauer et al. (2020); Schmolke et al.1361

(2021). These integrated mechanistic models are most often used to theoret-1362

ically extrapolate the consequences of PPP use scenarios to other exposure1363

patterns, other ecosystems, or new climate conditions, e.g., Dohmen et al.1364

(2016); Hommen et al. (2016). When coupled with fate models in the frame of1365

landscape models, these models can act as a toolbox in which a range of PPP1366

exposure scenarios can be simulated. This allows to better inform the possible1367

effects of these substances in realistic landscapes and realistic agricultural1368

application patterns (Dalkvist et al., 2009; Focks et al., 2014; Ockleford et al.,1369

2018). Various studies in both terrestrial and aquatic environments illustrate1370

how this approach makes it possible to identify the influence of agricultural1371

practices on the ecological risk for non-target species (Topping et al., 2016),1372

the effect of land use change, for example in an owl (Engelman et al., 2012) or1373

the woodpigeon (Kułakowska et al., 2014), or the benefit of mitigation actions1374

such as the establishment of buffer zones, e.g., in rodents (Dalkvist et al.,1375

2013), carabid beetles (Topping et al., 2015), aquatic invertebrates (Dohmen1376

et al., 2016), or fish (Schmolke et al., 2021).1377

1378

Natural and chemical stressors occur simultaneously in the different com-1379

partments of the environment (De Coninck et al., 2013). Mathematical models1380

used for joint effects caused by mixtures of chemicals can be used to assess1381

the effects of combined stressors, e.g., soil moisture in Morgado et al. (2016);1382

ultraviolet-B radiation in Yu et al. (2015); food limitation in Shahid et al.1383

(2019); bacterial parasite in De Coninck et al. (2013); predation in Pes-1384

tana et al. (2010); predation threat, parasitism and carbaryl in Coors and1385

De Meester (2008). Thus, current efforts aim at including the additional risk1386

of pesticide mixtures and environmental stressors into the environmental risk1387

assessment of pesticides. Generally, the IA model, used to study combined1388
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effects of dissimilarly acting stressors, is chosen to assess the effects of com-1389

bined stressors (De Coninck et al., 2013). Liess et al. (2016) developed the1390

Stress Addition Model (SAM) that assumes that each individual has a general1391

stress capacity towards all types of specific stress that should not be exhausted.1392

This model relies on three principal assumptions that provide a mechanistic1393

understanding of the combined impact of independent stressors, in this case a1394

chemical in combination with one environmental stressor: (i) each individual1395

has a certain tolerance towards all types of stress, its general stress capacity;1396

(ii) every specific unit of a given stressor (e.g., µg/L for chemicals, oC for1397

temperature) can be transferred into a general stress level ranging from 0 to1398

1 as a “common currency” for all stressors (the main challenge); (iii) general1399

stress levels of independent stressors are additive, with the sum determining1400

the total stress exerted on a population. This model was used by Shahid et al.1401

(2019) who compared it to CA and Effect Addition (EA) in order to assess1402

the combined effects of food limitation and of a pyrethroid insecticide or an1403

azole fungicide. The combined effects of pesticides and food stress was best1404

predicted with the SAM that showed the lowest mean deviation between effect1405

observation and prediction.1406

4.2.4 Assessment of the relevance of PPP effects observed on1407

individuals for the population level1408

Some works emphasize that linking TKTD models to population dynamic1409

models would be a further step toward a more effective risk assessment (Horig1410

et al., 2015; Kretschmann et al., 2012). More concretely, Vignardi et al. (2020)1411

enlightened potential population-level effects of exposure to very low-levels of1412

nano-pesticides from their TKTD modelling outputs. Based on an integrated1413

multi-faceted modelling approach, Roeben et al. (2020) were able to make the1414

link between pesticide exposure, ecology and toxicological effects on earth-1415

worms.1416

1417

The most basic aim of using population models for the ERA of PPP is to1418

establish the demographic outcome of the repetition of organism-level toxic1419

events during the development of successive generations, through either sim-1420

ulation or projection exercises (Forbes et al., 2016). In connection with the1421

cyclic repetition of agricultural treatments, they thus consider the cumulative1422

outcome of mortality events (Topping et al., 2015), reductions of reproductive1423

capacities (e.g., insecticides in pollinators Cresswell 2017 and seabirds Goutte1424

et al. 2018) or disturbances of all the phases of the life cycle (Chandler1425

et al., 2004). But the first great value recognized in these models is that1426

they simultaneously integrate all the toxic effects of PPP exposure (survival,1427

reproduction, growth, behavior, etc.), taking into account the characteristics1428

of the life cycle of the species of concern when predicting the PPP conse-1429

quences on population persistence (Stark and Banks, 2003; Topping et al.,1430

2005; Forbes et al., 2016). Some authors establish dose-response relationships1431

at the population level using as output different indicators of population size,1432
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population growth capacity or extinction risk calculated by these models1433

(Stark et al., 2004; Lopes et al., 2005; Preuss et al., 2010; Hanson and Stark,1434

2012; Stark, 2012; Goutte et al., 2018). Although highly conditioned by the1435

choice of processes and conditions considered in each model, these studies1436

propose to define protective concentration thresholds for the population by1437

confronting these outputs with theoretical thresholds of maintenance or good1438

demographic state of the populations.1439

1440

In a cognitive mode of use, population models and sensitivity-elasticity1441

analyses (Caswell, 2001) - frequently used in species conservation manage-1442

ment - allowed to understand the crucial role that life history traits plays in1443

the demographic impacts of PPP. Numerous modeling studies have empha-1444

sized the importance of species life cycle characteristics in the demographic1445

impact of PPP on animals or plants (Stark and Banks, 2003; Stark et al.,1446

2004; Raimondo and McKenney Jr, 2005; Lindsay et al., 2010; Stark et al.,1447

2015; Schmolke et al., 2017, 2018; Thursby et al., 2018; Banks et al., 2019).1448

Structured population models are widely used in this framework of ERA1449

(Forbes et al., 2016; Accolla et al., 2021), which is also found for PPP in our1450

corpus of case studies: 50% of structured models versus only 15% for ABMs1451

address the issue of differential demographic sensitivities between life cycle1452

stages. Another major point relating to life cycle characteristics in PPP eco-1453

logical models is the phenology and timing of exposure in relation to cultural1454

practices that influence the risk of population exposure, the capacities of1455

demographic compensation, or the recovery after short-term exposure. These1456

temporal aspects, which have been extensively studied in pest management1457

and biocontrol (Stark et al., 2004; Tonnang et al., 2017; Tang et al., 2019),1458

are now being emphasized as determining factors in the vulnerability of1459

non-target species, and in the relative severity of impacts of PPP treatment1460

practices: reproductive phenology in bird species (Etterson and Bennett,1461

2013; Etterson et al., 2017; Moore et al., 2018; Crocker and Lawrence, 2018),1462

annual development cycle in pollinators (Thompson et al., 2005), in aquatic1463

invertebrates (Galic et al., 2012; Sørensen et al., 2020) or in plants exposed to1464

herbicides (Schmitt et al., 2013). The other overarching element considered is1465

the spatial dimension in the processes of exposure or in population dynam-1466

ics response (Topping and Odderskær, 2004; Dalkvist et al., 2009; Forbes1467

et al., 2016; Schmolke et al., 2017; Accolla et al., 2021). PPP population and1468

landscape models thus make it possible to retrace (i) the complex ecology of1469

certain species (amphibians in Ockleford et al. 2018; endangered mammals in1470

Nogeire et al. 2015; or fish in Schmolke et al. 2021), (ii) the spatial heterogene-1471

ity of resources (soil invertebrates in Johnston et al. 2014; birds in Topping1472

and Odderskær 2004; bees in Becher et al. 2014; Thorbek et al. 2017; Gegear1473

et al. 2021; More et al. 2021), (iii) the migratory links between habitats or1474

throughout the population distribution area (Galic et al., 2012; Focks et al.,1475

2014), which can compensate for local PPP effects or on the contrary export1476

the demographic impacts to non-contaminated areas (Chaumot et al., 2003;1477
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Schäfer et al., 2017). Various studies have thus highlighted the influence of1478

landscape structure on the impacts of various agricultural PPP practices on1479

non-target populations (e.g., in vole, Wang and Grimm 2010; Dalkvist et al.1480

2013; hare, Topping et al. 2016) and identified specific areas of the landscape1481

that are particularly at risk for species of conservation concern (Engelman1482

et al., 2012) or important for ecosystem functioning (Kattwinkel et al., 2011).1483

1484

The demographic framework also led some studies to emphasize the possi-1485

bility of compensation between PPP-induced mortality or reduced fecundity1486

and the release of natural density-dependent controls (e.g., competition) that1487

buffer PPP population impacts (Stark and Banks, 2003; Stark, 2012). These1488

processes have been investigated in wild rodents (Wang et al., 2001; Wang1489

and Grimm, 2010), in relation to territorial behavior in fish (Mintram et al.,1490

2018) or hare (Kleinmann and Wang, 2017), in soil invertebrates (Reed et al.,1491

2016), in pollinators (Bryden et al., 2013), and in plants (Schmolke et al.,1492

2018). This effect of density level led some authors to point out the specificity1493

of the demographic response of rare or endangered species to PPP exposure1494

(Topping et al., 2005). Taking into account density-dependence phenomena1495

can complicate the mathematical analysis of structured models, as well as the1496

degree of knowledge required for the parameterization of simulation models.1497

Similarly to the habits in generic ERA (Accolla et al., 2021), our PPP case1498

studies show that 80% of ABMs include density-dependence against only 40%1499

of structured models. One of the great advantages of ABMs is to make these1500

density-dependence phenomena emerge from individual behaviors and thus1501

mechanistically include the effects of PPP at the heart of these processes, as1502

illustrated by the interplay of the demographic effect of neonicotinoids and1503

the size of bumblebee colonies (Crall et al., 2019).1504

1505

One current perspective for increasing the ecological relevance of popula-1506

tion models is the consideration of PPP multigenerational effects in ERA. As1507

illustrated by pioneer studies on the transgenerational effects of fungicides act-1508

ing as endocrine disruptors in wild rodent populations (Dalkvist et al., 2009,1509

2013), ABMs are particularly well suited to take into account the exposure his-1510

tory according to the pedigree of individuals and the transfer of effects between1511

generations. Moreover, while population genetic models have been integrated1512

in the study of PPP resistance for several years (Onstad and Meinke, 2010),1513

the micro-evolutionary aspects possibly leading to adaptation and associated1514

fitness costs are up to now totally absent from PPP population modeling for1515

non-target species. But here again, ABMs seem particularly promising for inte-1516

grating this type of long-term effects once they are better documented in the1517

ecotoxicological literature, following the example of quantitative genetics mod-1518

eling practices used in pest resistance management (Ives et al., 2017; Slater1519

et al., 2017).1520
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4.2.5 Integration of recovery processes, from individual to1521

population level recovery1522

Population models place the assessment of PPP effects at larger spatial and1523

temporal scales than the evaluation solely focused on toxicological individual1524

responses (Forbes et al., 2009). Agricultural treatments cause toxic stresses1525

that may be episodic and punctual (pulse exposure) or localized in the habitat1526

space of non-target populations. Various population studies have thus focused1527

on the capacity for population recovery after exposure to PPP (Wang et al.,1528

2001; Hanson and Stark, 2012; Wang, 2013; Mintram et al., 2018), implying1529

the capacity for recolonization from uncontaminated refuge areas on small1530

spatial scales (Van den Brink et al., 2007; Galic et al., 2012, 2014) or at1531

larger distances, e.g., river network (Focks et al., 2014). This issue is very1532

predominant in the literature on the use of ecological models for PPP ERA:1533

60% of the case studies of population models in our corpus fit into such a1534

framework of pulse exposure, as well as 40% of the landscape studies. These1535

developments are partly driven by the proposal to use population models to1536

apply an ecological recovery option in PPP ERA, where legislation explicitly1537

allows limited adverse effects of PPP if recovery of exposed populations can1538

be achieved within a given time period (Hanson and Stark, 2012; Focks et al.,1539

2014; Galic et al., 2014). The literature offers different definitions and a mul-1540

titude of recovery indicators, which refer to a return to a pre-exposure state,1541

or a state simulated in a control scenario. This population state can be of dif-1542

ferent natures, based on the abundance or on the level of occupancy of the1543

different patches of the population distribution area (Topping et al., 2015).1544

PPP impacts and their acceptability are defined in terms of recovery capac-1545

ity, recovery time, response amplitude, probability of extinction, or duration1546

of low-level density period, e.g., Wang et al. (2001); Hanson and Stark (2012);1547

Hayashi et al. (2016); Thursby et al. (2018). Population models can be used1548

to identify the determinants of recovery capacity, in particular to distinguish1549

between autogenic (local demographic recovery) and allogenic (recolonization)1550

capacity, e.g., Van den Brink et al. (2007); Ockleford et al. (2018); Schäfer et al.1551

(2017). From an applied point of view, highlighting the importance of migra-1552

tory processes in population recovery within agricultural landscapes justifies1553

the preservation of spatial connectivity and the importance of refuge zones1554

(Galic et al., 2012, 2014; Focks et al., 2014). Modeling can also allow the evalu-1555

ation of sustainable levels of treatment frequency for populations (Focks et al.,1556

2014) following similar methodologies developed in biocontrol and for the pest1557

management (Stark et al., 2004; Tonnang et al., 2017; Tang et al., 2019).1558

4.2.6 Assessment of PPP impacts at the community level1559

Statistical extrapolation using SSD approaches1560

There are two main types of standard outputs when performing SSD anal-1561

yses. When SSD is used in a prospective risk assessment, the final aim is to1562

derive Predicted No-effect Concentrations (PNEC), Toxicity Exposure Ratios1563
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(TER), and EQS for individual chemicals such as pesticides. In these cases,1564

the main standard output is the HCp statistically corresponding to the pth1565

percentile of the probability distribution that is fitted to toxicity input values.1566

As stated by Posthuma et al. (2002), the HCp is the exposure concentration1567

assumed to be protective for (1 − p)% of the species within the considered1568

ecosystem. Most of the time, the HC5 is calculated, at least for pesticides1569

(Brock et al., 2004; Van Den Brink et al., 2006; Daam et al., 2010; Mensah1570

et al., 2013; Ramo et al., 2018; Iwasaki et al., 2015; Van Den Brink et al., 2019;1571

Baillard et al., 2020). Almost all tools associate uncertainty limits around the1572

mean or the median of the delivered HCp estimates. The PNEC can be calcu-1573

lated from the HC5 (Tier-2 PNEC), accounting for uncertainty by dividing the1574

HC5 by a certain coefficient. According to authors, the relationship between1575

the HC5 and the PNEC may differ: it can be assumed equal to the median1576

HC5 (Brock et al., 2006), to its lower-limit (Daam et al., 2010), to the ratio1577

of the HC5 by an uncertainty factor (Mentzel et al., 2021); in the regulatory1578

context, either to the ratio of the HC5 by an appropriate Assessment Factor1579

(AF, European Commission 2003) or also equal to the median HC5 estimate1580

(e.g., EFSA PPR Panel (2015b)). Note that ratios based on SSD outputs are1581

now preferred: for example the Tier-1 Regulatory Acceptable Concentration1582

(RAC) is an EC50/AF , while the Tier-2B RAC is an HC5/AF (EFSA PPR1583

Panel, 2013); this leads to a TER defined as the Predicted Environmental Con-1584

centration (PEC) over the RAC. A value of TER > 1 (that is PEC < RAC)1585

indicates an acceptable risk. Other calculations from single or very few toxi-1586

city indices for isolated species are more related to the REACH terminology,1587

such as for example the Risk Quotient (RQ) equal to the PNEC over the PEC1588

(Iwasaki et al., 2015; Sorgog and Kamo, 2019).1589

The application of SSD in a retrospective risk assessment of chemicals1590

consists in predicting a fraction of the community which is likely to be impacted1591

by a specific concentration of a given substance. Then, the standard output is1592

the Potentially Affected Fraction (PAF ) (De Zwart, 2005).1593

Regarding mixtures studied via SSD, most analyses aim at calculating1594

multiple-substance PAF or msPAF . Such outputs come from a combination1595

of SSD for each individual compound with CA or RA models (Jesenska et al.,1596

2013). In particular, Jesenska et al. (2013) evaluated the impact of different1597

data validation approaches (such as removal of duplicate values and outliers,1598

testing of different exposure durations and purity levels of studied herbicides,1599

using different sets of input data, namely NOEC vs. EC50, and considering1600

different taxonomic groups) in a retrospective model case study. Interestingly,1601

they conclude that the use of rough non-validated data seems to provide1602

robust results, especially when few ecotoxicity values are available for certain1603

compound(s).1604

1605

Analysis and prediction of possible indirect PPP effects within communities1606

Even if the SSD method does not account for any species interaction,1607

comparing the SSD method used at Tier-2 to ecosystem models at Tier-3 of1608
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ERA, Brock et al. (2004) stated that a protection level based on direct effects1609

(such as reflected by the HC5 estimate) could also protect against indirect1610

effects. Nevertheless, while unavoidable within community experiments, indi-1611

rect effects are not very often directly studied and accounted for in models1612

at the community level, in general. Only Clemow et al. (2018) used an SSD-1613

based approach to highlight both direct and indirect effects for fish and aquatic1614

invertebrates exposed to malathion. Compared to the SSD concept, the PER-1615

PEST model is able to provide more information on ecological risks when a1616

common toxicological MoA is evaluated (Van Den Brink et al., 2002, 2006);1617

indeed the PERPEST model considers both recovery and indirect effects. The1618

PERPEST model was specifically used to address direct and indirect effects1619

in Van Den Brink et al. (2006) and successfully applied to pesticides (Daam1620

et al., 2010; Ramo et al., 2018). Reeg et al. (2017) studied direct and indirect1621

effects of herbicides on non-target grassland communities.1622

In fact, food-web models are more appropriate to deal with indirect effects.1623

For example, Traas et al. (2004) studied indirect effects of PPP on biomass1624

and recovery within a microcosm. With very simple models, De Hoop et al.1625

(2013) concluded to the existence of food chain–mediated indirect effects of1626

atrazine on zoobenthos populations, while Joncour and Nelson (2021) demon-1627

strated the direct and indirect impact of spinosad on insect life-histories.1628

1629

PPP bioaccumulation and biomagnification within food chains food webs1630

Only Scholz-Starke et al. (2018) address the issue of biomagnification1631

using the AQUATOX software to simulate aquatic trophic guild dynamic1632

accounting for hydrodynamics and nutrients together with the dynamics of1633

the exposure substance and its metabolites: they showed a significant biomag-1634

nification of metabolites. The issue of bioaccumulation is mentioned several1635

times within food-web studies (Nfon et al., 2011; Ren et al., 2017), while it1636

has been far more basically addressed by Sanchez-Bayo et al. (2002) via the1637

use of the Ecological Risk Ratio (EcoRR) approach.1638

1639

Development of tools that integrate both exposure and effects1640

From a particular case study on bees, Crenna et al. (2020) underlined how1641

important it is to consider both exposure and effects across all applied pesti-1642

cides, instead of focusing only on pesticides with high ecotoxicity potentials or1643

modes of action specifically targeting insects. Nevertheless, combined studies1644

that looked at both exposure and effects are rather rare within our corpus. At1645

the community level, a first attempt was made by Sanchez-Bayo et al. (2002)1646

with its EcoRR approach, while a deeper integration of both aspects came later1647

with Nfon et al. (2011) who combined fate and food-web models to estimate1648

the food-web transfer of chemicals in small aquatic ecosystems. Then, thanks1649

to the AQUATOX models, improvements in integrating both exposure and1650

effect modelling was undertaken either for trophic guilds of aquatic organisms1651

(Scholz-Starke et al., 2018) or lake ecosystems (Galic et al., 2019).1652
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The SYNOPS-WEB model (Strassemeyer et al., 2017) allows quantitative1653

assessment of the potential risk of pesticides for the environment (leaching to1654

groundwater) and for various Reference Species (RS) in soil (namely earth-1655

worms), surface water (RS: algae, Lemna sp., Daphnia sp., Chironomus sp.1656

and fish) and field margins (RS: bees). The acute and chronic risk indices are1657

calculated as TER where the PEC is related to a toxicity value of a certain1658

RS. For multiple application events and multiple active ingredients, the acute1659

risk of a full application strategy is considered as the maximum risk posed by1660

all application events and all active ingredients applied within one vegetative1661

period. The chronic risk values are aggregated additively for each RS according1662

to the concept of CA. The chronic risk aggregation of an application pattern1663

is carried out in two steps: first, the chronic risk values are calculated for each1664

applied active ingredient and added on a daily basis to derive curves of TER1665

sums; second, the maximum of these TER-sum-curves is derived thus consti-1666

tuting the chronic risk of the full application strategy. It was demonstrated1667

that SYNOPS-WEB reliably modelled the pesticide exposure of aquatic organ-1668

isms. The model could be improved with the integration of more mitigation1669

measures such as strip till techniques, mulch seeding, creation of buffer strips1670

or multi-functional field margins (Strassemeyer et al., 2017).1671

Cite also work by Baudrot et al. (2020) who developed a heuristic non-1672

spatialized model including montane water voles, specialist vole predators and1673

the red fox as a generalist predator consuming voles, mustelids and other preys.1674

Thanks to a broad-range sensitivity analysis on poorly informed toxicological1675

parameters, they investigated the impact of five farmer functional responses1676

on predator–prey relationships, anticoagulant rodenticide transfer across the1677

trophic chain and population effects.1678

At last, Baudrot et al. (2021) made a step further developing a spatially-1679

explicit exposure-hazard model considering both the dynamics of pollen1680

dispersal obtained by convolving genetically modified plants emission with a1681

dispersal kernel and a TKTD model accounting for the impact of toxin inges-1682

tion on individual survival. This exposure-effect combined modelling approach1683

allowed authors to better assess the ecological risk of Bt-maize at the landscape1684

scale.1685

5 Strengths and limitations of the employment1686

of the different model categories in PPP ERA1687

5.1 Genericity and transversality1688

5.1.1 Applicability of population models: from general to1689

local case-study specific ERA1690

There is a consensus in the literature on the complementarity between simple1691

generic population models addressing large scale questions for ERA of PPP1692

(e.g., identification of species at risk at a national level with respect to a cer-1693

tain type of PPP use) and more precise and specific modeling at local scales1694
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(e.g., influence of landscape elements, or specific agricultural practices on a1695

species locally at risk) (Topping et al., 2005; Forbes et al., 2015). Decision1696

guides for the choice of population models now make it possible to identify1697

the trade-offs to be made between genericity, realism and precision of an ERA1698

according to its objectives (Raimondo et al., 2021). One of the strong aspects1699

of population model frameworks is their portability between species, as already1700

illustrated for birds (Etterson et al., 2017), pollinators (Becher et al., 2018),1701

earthworms (Forbes et al., 2021), and plants (Schmolke et al., 2018). This rapid1702

cross-species transposition of population models (especially structured models)1703

benefits from the recent constitution of large ecological databases of demo-1704

graphic traits in conservation science (e.g., in birds, fish, mammals, plants). It1705

allows the rapid parameterization of population models on a large number of1706

species and it could help in the relative ranking of species vulnerabilities to the1707

different uses of PPP (Forbes et al., 2015; Etterson et al., 2017; Rueda-Cediel1708

et al., 2019). On the other hand, mechanistic population models can also be1709

adapted to local or population-specific conditions by incorporating the influ-1710

ence of environmental parameters on individual biological input variables and1711

species phenology (50% of the case studies in our corpus integrate such influ-1712

ence). The assessment of PPP population impacts is then refined, for example,1713

according to temperature conditions in chironomids (Diepens et al., 2016) or1714

in aquatic plants (Schmitt et al., 2013), according to trophic and dietary con-1715

ditions, such as in daphnids (Preuss et al., 2010), bee (Abi-Akar et al., 2020),1716

partridge (Millot et al., 2015), or in function of different landscape structures1717

(Focks et al., 2014; Topping et al., 2016). This also enables the projection of1718

scenarios of climate change or land use evolution (Nogeire-McRae et al., 2019)1719

as can be done in the field of pest control (Donatelli et al., 2017). These envi-1720

ronmental factors may constitute stressors additional to PPP, and population1721

models are mobilized to compare PPP relative impacts in multi-stress con-1722

texts (hypoxia and insecticides in salmon, Landis et al. 2020, insecticides and1723

parasitism in pollinators in Becher et al. 2014; Schmolke et al. 2019, flooding1724

regime and herbicides in a threatened plant in Schmolke et al. 2017).1725

5.1.2 Limitation and applicability of mixture models to1726

environmental case studies1727

Regarding environmental monitoring and risks, mixture models have been used1728

for many years to assess the risks related to in natura monitoring data (George1729

et al., 2003; Schuler and Rand, 2008; Vaj et al., 2011; Chen et al., 2020).1730

Cruzeiro et al. (2016) measured 56 priority pesticides belonging to distinct cat-1731

egories (insecticides, herbicides and fungicides) in 42 surface water samples.1732

Based on the CA and IA models, they used a two-tiered approach to assess1733

the hazard of the pesticide mixture, at the maximum concentration found,1734

reflecting a potential risk. In the same way, Kuzmanovic et al. (2016) assessed1735

ecotoxicological risks of chemical pollution in four Iberian river basins and its1736

relationship with the aquatic macro-invertebrate community status using a1737

data set including more than 200 emerging and priority compounds measured1738
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at 77 sampling sites along four river basins. The Toxic Units (TU) approach1739

was used to assess the risk of individual compounds and the CA model to1740

assess the site-specific risk. A difficulty highlighted by Perez et al. (2011) is1741

that shifts for synergism and/or antagonism might occur depending on the1742

dominant chemical present. However, Verro et al. (2009) exposed several con-1743

siderations that support the suitability of the CA model for assessing risk for1744

ecologically relevant pesticide mixtures. These authors said that a few chem-1745

icals are responsible for > 80% of the toxicity, rendering differences between1746

CA and IA predictions very small. Moreover, the most toxic components of the1747

mixtures often have the same MoA. A geo-referenced representation of results1748

allows analyzing the spatial pattern of toxic mixture assemblage in order to1749

prioritize the locations at risk and to detect the group of compounds causing1750

the greatest risk at different scales (Faggiano et al., 2010). However, predicting1751

the effect from mixture assumes that the compounds will co-occur spatially1752

and temporally which is not always the case (Faggiano et al., 2010).1753

Moreover, evaluation of effects on organisms at stimulatory doses of chemi-1754

cals, known as hormesis, lacks a common statistical approach (Belz and Duke,1755

2018). Prediction of effective hormetic doses can be facilitated by using joint1756

action models but to date there is no mechanistic models to predict the1757

hormetic magnitude in mixtures. The IA model assumes a dissimilar MoA1758

and multiplicity of effects up to a maximum response of 100% (Streibig et al.,1759

2000), which is inappropriate to model hormetic doses leading to a response1760

of > 100. Nevertheless, some promising attempts were made to predict the1761

hormetic magnitude. The selection of a reference model like CA can be used1762

to describe mixtures of dissimilarly and similarly acting compounds (Belz and1763

Duke, 2018). If the observed mixture data deviates synergistically or antagonis-1764

tically from a reference model, the predefined curved isobole models of Hewlett1765

or Vølund are available to model observed deviation patterns (Sorensen et al.,1766

2007).1767

5.2 Uncertainty and modelling practices1768

In the guidance on how to characterize, document and explain uncertainties1769

in risk assessment recently published by EFSA (EFSA Scientific Committee,1770

2018), uncertainty analyses are the process of identifying limitations in sci-1771

entific knowledge and evaluating their implications for scientific conclusions.1772

ERA relies on a very general definition of the uncertainty, that is referring to1773

all types of limitations in available knowledge that affect the range and proba-1774

bility of possible answers to an assessment question. Focusing on the modelling1775

cycle, it is strongly recommended, if not mandatory, to quantify the parame-1776

ter uncertainty (for example with 95% confidence or credibility intervals), but1777

also to include a sensitivity analysis, an uncertainty analysis and the compari-1778

son of predictions with observed data when setting up the model (EFSA PPR1779

Panel, 2014). In particular, if the model is eventually to be used to extrapolate1780

from one situation to another, the resulting effect on the level of uncertainty1781

should be clearly stated.1782
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In support of the above general statement, note that within the guidance1783

document on tiered risk assessment of PPP for aquatic organisms in edge-1784

of-field surface waters (EFSA PPR Panel, 2013), it is clearly recommended1785

that:1786

• A qualitative evaluation of the uncertainties affecting refined RA should be1787

provided based on a tabular approach. In case of multiple lines of evidence,1788

uncertainties affecting each line should be evaluated separately.1789

• If the qualitative evaluation of uncertainty reveals not sufficient to determine1790

whether an unacceptable level of impact may occur, it is required to either1791

(i) make an effort to get additional data to reduce the uncertainty, or (ii) use1792

deterministic or probabilistic methods to refine uncertainty quantification.1793

5.2.1 (Q)SAR models1794

In general, the uncertainty of the (Q)SAR models is well characterized due to1795

the conformation of the models to the OECD (Q)SAR validation principles (see1796

Section 4.1.1). First, the recent (Q)SAR models were always developed using1797

a training and a validation data set (80% - 20% of the data set generally) and1798

could also be evaluated on another external data set (Figure 7). In addition,1799

several traditional validation metrics are applied to assess the accuracy, the1800

stability/robustness and the reliability of the (Q)SAR models (reviewed in1801

Gramatica and Sangion 2016):1802

• Goodness-of-fit: Root Mean Square Error (RMSE), determination coeffi-1803

cient (R2), determination coefficient adjusted (R2
adj), and Lack Of Fit (LOF )1804

which was defined as being proportional to the least-squares error corrected1805

by the number of descriptors and the number of training data (Furuhama1806

et al., 2019).1807

• Robustness: cross-validation correlation coefficient, i.e., Q2 LOO (Leave-1808

One-Out) which shows the predictive ability for internal validation of the1809

model (based on the training set compounds), and leave-one out cross-1810

validated RMSE, and R2
adj (i.e., RMSEcv and Q2

adj). The absence of1811

correlation could be checked by low values of R2 calculated on scrambled1812

response (Galimberti et al., 2020).1813

• Reliability: Q2 metrics (predictive performance or R2 Prediction) measures1814

the reliability of a model, which will not be enough to define the model1815

performance when new molecules are engaged (see application domain). Q2
1816

can be calculated using different formulae (referred as F1, F2 or F3). Q2 and1817

the Concordance Correlation Coefficient (CCC) are the typical statistical1818

metrics used for the external validation of the developed model Pandey et al.1819

(2020).1820

Elsewhere, numerous quantitative and graphical quality indicators for clas-1821

sification models can be applied (Venko et al., 2018). In binary classifications,1822

such as toxic (positive) or non-toxic (negative), several metrics were computed1823
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to assess the model qualities: accuracy (proportion of any substances cor-1824

rectly classified), sensitivity (proportion of true positives correctly classified),1825

specificity (proportion of true negatives correctly classified), and efficacy (pro-1826

portion of de-prioritization candidates) (Benigni et al., 2020; Herrmann et al.,1827

2020).1828

The reliability of the (Q)SAR model predictions is also due to their domain1829

of applicability. Leverage is one of the standard methods for the analysis of1830

the domain of applicability of the model. The leverage value hi for the ith pes-1831

ticide is calculated from the descriptor matrix and compared to their critical1832

leverage value (h∗) depending on the number of variables used in the model1833

and on the number of training compounds (Basant et al., 2015b). The value1834

of hi > h∗ indicates that the structure of the compound substantially dif-1835

fers from those used for the calibration. Therefore, the compound is located1836

outside the optimum prediction space. Frequently, the Williams plot is con-1837

sidered for representing the domain of applicability of the (Q)SAR models.1838

This graph represents the standardized residual value according to the lever-1839

age value (Figure 7) (Basant et al., 2015b). Some software, such as the open1840

source platform VEGA-HUB, assess the reliability of the prediction using the1841

Applicability Domain Index (ADI) . This index is an aggregated result taking1842

into account several aspects: (i) similar molecules with known experimental1843

value and their accuracy (or average error) in their prediction, (ii) concordance1844

among the target and similar molecules for the experimental data, (iii) Atom1845

Centered Fragments (ACF) similarity check, (iv) descriptors noise sensitivity1846

analysis, and (v) model descriptors range check (Carnesecchi et al., 2020).1847

Finally, accuracy, stability/robustness and reliability of most of the1848

(Q)SAR models were generally checked during the last fifty years on pesticide1849

toxicity (Basant et al., 2015a, 2016; Carnesecchi et al., 2020; Hamadache et al.,1850

2018; Venko et al., 2018). In addition, some of the papers published before1851

have been re-assessed for their consistency with these principles (Pavan et al.,1852

2008). Moreover, according to the OECD guidance document (OECD, 2014),1853

the consensus approach can be applied when several complementary models1854

are available. Thus, the newly developed models would contribute to more1855

reliable predictions of toxicity of pesticides (Venko et al., 2018). Concordance1856

with all these principles guarantees rigorous and independent validation of1857

(Q)SAR models which is an essential step toward their regulatory acceptance1858

(Eriksson et al., 2003).1859

1860

5.2.2 DR and TKTD models1861

Most probably due to old habits in ERA, but maybe also due to a lack of1862

computer resources some decades ago, uncertainties associated with the use1863

of DR models are rarely reported, meaning not systematically, even today.1864

On the contrary, among works based on TKTD models, there is an increasing1865

number of contributions providing information on uncertainties, in various1866

forms depending on the inference method used. Baudrot and Charles (2019)1867
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even proposed some useful recommendations to address uncertainties in ERA1868

using TKTD models. Fraser et al. (2002) discussed of uncertainty in biomag-1869

nification factors and half-lives of metabolites, while Weijs et al. (2013) used1870

a Morris sensitivity analysis followed by the eFAST test to quantitatively1871

test the influence of the most sensitive parameters on their model output.1872

We also noticed an increasing use of probabilistic methods, such as Bayesian1873

inference (Weijs et al., 2013) or Bayesian Networks (BN) (Kaikkonen et al.,1874

2020; Mentzel et al., 2021), which have proven their efficiency in quantifying1875

uncertainties. And to go in the same direction, Rubach et al. (2010) have even1876

illustrated that a complementary use of least-squares fitting with the Leven-1877

berg–Marquardt (LM) algorithm and Monte Carlo Markov Chain (MCMC)1878

methods is much more useful than the use of LM alone.1879

1880

5.2.3 Population and landscape models1881

The uncertainty associated with the outputs of population or landscape models1882

is very often addressed by these up-scaling tools, which methodologically rely1883

on different sensitivity or elasticity analyses (50% of the models in the corpus)1884

or which integrate environmental stochasticity into the scenarios tested (60%1885

of the studies). The outputs of these models are thus most often expressed1886

in the form of distributions of values or probabilities of demographic effects.1887

However, the fact that an uncertainty is almost systematically expressed in1888

the outputs of these models should not make us forget the reductionist aspect1889

of these modelling approaches which, by definition, can only focus on a lim-1890

ited number of processes. Also, this issue is of high relevance considering that1891

the use of population and landscape models is proposed in the literature to1892

contribute to higher Tier assessment of PPP (refinement for population-level1893

endpoints) (Forbes et al., 2009; Ockleford et al., 2018). These models are1894

indeed sometimes seen as surrogate cost-effective methods of achieving higher1895

levels of ecological relevance when higher Tier data (mesocosms, field studies)1896

are lacking (Hanson and Stark, 2012). However, like any bottom-up approach,1897

it only accounts for the toxic effects and environmental variables that are con-1898

sidered in the modelling processes. It is therefore important for risk assessors1899

to bear in mind this reductionist aspect of the up-scaling approach, which is1900

often falsely erased in view of the integrative and population-level dimension1901

of the outputs of these models. Hence, the efforts to propose sound decision1902

guides, e.g., Schmolke et al. (2017); Raimondo et al. (2021), which explicitly1903

state the hypotheses taken into account in the modelling process and the1904

scope of the questions addressed for the ERA, become very important for this1905

issue. As a warning illustration, we were able to document in our corpus some1906

adverse effects of PPP that are mostly ignored despite their importance for1907

population effects, and the suitability of ecological models to integrate these1908

effects. Models, particularly ABMs, are for instance very adapted to take1909

into account individual behaviors in the emergence of population dynamics1910

(Accolla et al., 2021), especially spatial behaviors. However, it appears from1911
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our case studies data set that direct behavioral disruption by PPP is actu-1912

ally considered in only 15% of population models for animal species while1913

more than half of these models deliver an impact assessment in a spatial1914

frame, and less than 10% in landscape-scale studies. Another finding from1915

our analysis of population case studies is that less than 50% of them consider1916

sub-lethal effects (75% for structured models but 40% for ABMs). This also1917

illustrates the gap that may exist between the integrative possibilities offered1918

by the population-modelling framework and the reductionism of the proposed1919

assessment. This gap is mainly explained by a problem of experimental data1920

availability on PPP sublethal effects in environmental species (effects on1921

reproduction, growth, development, behaviour) but also in some cases to1922

deliberate choices in modeling assumptions. Indeed, studies that integrate1923

only mortality for animals or growth inhibition phenomena in algal and plants1924

represent 50% of the studies between 2000 and 2010, 70% between 2011 and1925

2015 and again 50% from 2016 to 2020. This is partly related to the strong1926

development of population recovery studies that only consider the acute lethal1927

toxic effects of PPP during short peaks of exposure and ignore the delayed or1928

long-term effects of environmental impregnation by PPP.1929

1930

5.2.4 Multi-species models1931

SSD approachesOn a general point of view, SSD analyses are expected to pro-1932

vide smaller uncertainties on apical risk assessment indices in comparison with1933

the approach using AF that are applied for a limited number of toxicity values1934

(Borges et al., 2017; Jesenska et al., 2013). Such indices are for example the1935

RAC as defined in the guidance document on tiered risk assessment for PPP for1936

aquatic organisms in edge-of-field surface waters (EFSA PPR Panel, 2013). In1937

addition to the EU pesticide regulation, pesticide entries in surface water bod-1938

ies are also regulated by the Water Framework Directive (WFD) TGD (2011);1939

Commission (2002a) which defines environment quality standards (EQS) for1940

surface water bodies. Short-term (Maximal Acceptable Concentrations, MAC-1941

EQS) and long-term (Annual Average, AA-EQS) EQS are based on EC50 and1942

EC10 values, respectively, or SSD calculations.1943

Even, if not systematically provided when delivering HCp estimates, the1944

uncertainty is nevertheless sometimes taken into consideration (Daam et al.,1945

2010; Van Den Brink et al., 2006). Van Dam et al. (2004) tried to iden-1946

tify possible uncertainty sources in using SSD. First, they noted that small1947

sample sizes when characterizing SSD added substantial uncertainty to the1948

assessment. Another factor contributing to uncertainty is the unknown ability1949

of the considered species to recover following exposure to the compounds1950

under study. They also established that uncertainty may surround the expo-1951

sure characterization. Van Dam et al. (2004) concluded that, although the1952

uncertainty can be quantified using the confidence limits around the fitted1953

probability distributions, which in some cases spanned an order of magnitude1954

of the reported HPp values, the data variability is usually high, a part never1955
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explained by the models. Very interestingly, Kon Kam King et al. (2015)1956

innovated with a hierarchical approach of the SSD exploiting its founding1957

basis that all tested species represent a random sample from a theoretical1958

community so that their responses follow a distribution; this means that1959

parameters describing the DR of each species within the sample follow a1960

probability distribution themselves. In this approach, species for which the1961

response is characterized with large uncertainty on the parameters of the DR,1962

or where data are missing, contribute less to final fitted SSD. Kon Kam King1963

et al. (2015) were finally able to provide HC5 estimates accounting for the1964

uncertainty of the original raw data. At last, as stated by He et al. (2014),1965

although great progress and improvements have been made for the SSD1966

method, important gaps, such as those related to uncertainty, still need to be1967

filled (Aldenberg and Jaworska, 2000; Forbes et al., 2001; Forbes and Calow,1968

2002). To overcome some theoretical criticisms of the SSD, Bayesian inference1969

may be used to fit SSD. For example, Grist et al. (2006) demonstrated that it1970

could reduce the uncertainty. Aldenberg and Jaworska (2000) and Verdonck1971

et al. (2000) illustrated the process of uncertainty for an analysis based on1972

Bayesian inference in detail. More generally, Bayesian inference and MCMC1973

methods gradually become popular in the field of environmental science like1974

with water quality models and hydrological models (Jeremiah et al., 2012)1975

as it allows considering multiple issues and system components as well as1976

handling missing data and uncertainty easily. Bayesian inference is now also1977

successfully used in the field to environmental risk assessment (see for exam-1978

ple Chen and Pollino 2012; Baudrot and Charles 2019; Charles et al. 2021).1979

1980

Community models1981

Usually involving a large number of parameters, community models1982

inevitably exhibit a higher parameter uncertainty (Strauss et al., 2017), com-1983

pared to simplest model. This is indeed a matter of fact that having more1984

parameters to estimate (what in essence characterize community models), if1985

the size of input data sets is limited, then parameter estimates will be less pre-1986

cise. This can be due to difficulties in making converge optimizing algorithm1987

in particular. The use of Bayesian inference to estimate the parameters of the1988

mechanistic food-web model Streambugs (Kattwinkel et al., 2016) perfectly1989

illustrate how to adequately handle uncertainties, and how it is particularly1990

helpful to identify potential improvements in the model structure and in the1991

experimental design.1992

5.2.5 Mixture models1993

In mixture models, uncertainties will be generally larger than in assessments1994

of single chemical substances as there are more sources of uncertainties. As for1995

other models, it is important to consider the uncertainties when interpreting1996

the results. Thus, uncertainties have to be identified in each stage of the mix-1997

ture model framework and an overall uncertainty analysis has to be integrated1998

in the risk characterisation. The EFSA guidance on risk assessment of multiple1999
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chemicals (More et al., 2019) lists the most important aspects of uncertainty2000

analysis for each step of the risk assessment of combined exposure to multiple2001

chemical substances.2002

5.3 Reproducibility of model outputs2003

The issue of reproducibility is more generally related to scientific integrity,2004

an issue reviewed by Mebane et al. (2019) for applied environmental sciences,2005

with a particular emphasis on ecotoxicology. Reproducibility is only one of the2006

prerequisites for a credible research (Wilkinson et al., 2016) and differently2007

concerns materials, especially data (e.g., Rubach et al. (2010); Reeg et al.2008

(2018); Ockleford et al. (2017)), methods and results (e.g., Tyne et al. 2015) as2009

described in papers. Focusing on model outputs, only few authors gave enough2010

information for full reproducibility, given that some results cannot of course2011

be exactly reproduced due to stochastic processes in the modelling approach2012

(Carr and Belanger, 2019; Schneckener et al., 2020; Charles et al., 2021; Charles2013

et al., 2021).2014

6 Modelling approaches in the European PPP2015

regulation2016

6.1 Regulatory context2017

In the European Union, the approval of an active substance and the placing2018

of a PPP on the market require, among others, to assess their ecotoxicological2019

effects and the corresponding risks. The soil, water (including sediments) and2020

air compartments are considered. The overall objective is to approve only2021

the compounds which do not have any harmful effect on human or animal2022

health or any unacceptable effects on the environment (European Commission,2023

2009) (see Section 2). Therefore, the regulation holds on strict approval and2024

exclusion criteria for active substances (European Commission, 2020). In this2025

context, prospective risk assessment based on modelling approaches is of great2026

interest.The ecotoxicological risk assessment phase is detailed in the regulation2027

and in the guidance documents notified at the European level (i.e., approved2028

by the different member states), leading to a harmonized procedure between2029

member states. In the light of the diversity of organisms potentially exposed2030

in situ to the different PPP and their active substances, the assessment has2031

to be done for several biological groups which are related to a wide range of2032

environmental media: birds, aquatic organisms, arthropods, earthworms, soil2033

non-target microorganisms, and other non-target organisms (flora and fauna)2034

believed to be at risk. Each biological group is associated to specific protection2035

goals, which will drive the choice of the methods to use (e.g., kind of tests and2036

models) for risk assessment.2037
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6.2 Risk assessment in PPP regulation2038

Whatever the investigated biological group, the risk assessment follows a2039

tiered-approach which is since decades widely used within the scientific com-2040

munity. The tiered-approach consists of structuring the risk assessment process2041

along a gradient of environmental representativeness, and complexity of experi-2042

mental system, leading to a refinement of the risk (Figure 9). The risk is usually2043

assessed by comparing effect (hazard identification and characterization) and2044

exposure.2045

Fig. 9 Tiered approach illustrated across the six categories of models (in rows) and the
different biological groups (in columns) considered for registration dossiers, according to
EFSA documents related to PPP regulation (Guidance Documents, Scientific Opinions and
Technical Reports). In Tiers, n.c. means not classified.

The first Tier (Tier-1) is intended to be simple and protective. It mostly2046

relies on the use of normalized or standardized tests (e.g., DR exposure design)2047

performed in laboratory and including one taxa (e.g., one micro-algal species)2048

exposed to one compound under controlled conditions. As such tests are rel-2049

atively easy to reproduce and to perform, they neglect the effects of various2050

other factors such as the biotic interactions into stress organism responses.2051

The following tiers rely on approaches characterized by a higher degree of2052

environmental representativeness. This kind of approach aims at refining the2053

risk assessment and at producing more realistic thresholds. In the different2054

guidance documents, going from Tier-1 to higher tiers means, for example, to2055

integrate more realistic exposure concentrations into the risk assessment, to2056

consider organisms susceptible to be particularly exposed (e.g., according to2057

their habitat, feeding habits, life-cycle), to integrate additional sensitivity data2058

or to use more sophisticated models or experimental devices such as mesocosms2059

(EFSA PPR Panel, 2013).2060
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6.3 Current use of modeling in PPP regulation2061

Currently, most of the notified guidance document recommendations are linked2062

to the type of tests to perform (e.g., organism, exposure duration) and to the2063

methods to assess and to refine the risk assessment. Nevertheless, the use of2064

various kinds of model is already recommended in several cases (EFSA PPR2065

Panel, 2013; EFSA, 2009).2066

First, the DR model is widely used for dossier constitution as it supports the2067

derivation of a sensitivity value (e.g., NOEC, ECx) which can be later used to2068

derive for example an HCp as well as to assess the risk (e.g., TER). This type of2069

model can be applied at every Tier but is especially of great importance in Tier-2070

1 studies to model the required organism responses (e.g., mortality, growth,2071

reproduction) to an increasing gradient of stress (here, chemical concentra-2072

tion). For example, the normalized tests performed on aquatic organisms, as2073

well as on birds or mammals, rely on such models. However, DR model can2074

also be recommended in the context of higher Tier experiments, as it can2075

potentially support the development of more sophisticated models.2076

Second, notified guidance documents also recommend for Tier-2 approaches2077

the use of SSD models. In the regulatory context, the SSD models present2078

the advantage to induce less uncertainty compared to Tier-1 approaches, as2079

they are based on the sensitivity values of various taxa (five to eight are at2080

least requested depending on the biological group). For example, the use of2081

SSD models is recommended for aquatic organisms, non-target plants and soil2082

organisms but, in this last case, a methodological guidance for this kind of2083

organisms is still required. However, SSD are not suitable models for all of the2084

biological groups involved in the PPP regulation. For example, it is admitted2085

that the lack of single-species sensitivity data of arthropods prevents the use2086

of SSD for this biological group (EFSA PPR Panel, 2015a).2087

Within the multi-species category, community models are also of great2088

interest for regulatory purposes, especially for higher tier studies dedicated2089

to refine risk assessment. However, working at such an ecological level could2090

constrain their use by regulators because these community models are all case-2091

study dependent.2092

Finally, notified guidance documents also recommend the use of (Q)SAR2093

models to estimate sensitivity values, to reduce the number of tests on the2094

biota, and to explore pesticide metabolites (e.g., potential to bioaccumulate).2095

Over the above-cited modeling approaches, the notified guidance docu-2096

ments also deal with other models to develop or to validate (if those models2097

already exist but are not enough tested for a use in the regulatory context).2098

For example, in 2013, the notified guidance document for the aquatic organ-2099

isms (EFSA PPR Panel, 2013) highlighted that mechanistic models such as2100

TKTD, population or food-web models have a great potential for effect and2101

risk assessment. But the insufficient insights regarding those models have so far2102

prevent their use in the regulatory context. It has to be underlined that, since2103

2013, EFSA have published several documents to promote the development of2104
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models for PPP regulatory purpose, and to give to the assessors enough ele-2105

ments to understand and assess these models. These documents are detailed2106

in the following section.2107

6.4 Towards the implementation of more models in the2108

regulatory context2109

The findings drawn from the guidance documents currently notified is that only2110

few models are approved in the context of PPP regulation, and can be used2111

routinely for ecotoxicological risk assessment. If the documents make authority2112

and are the references for the decision-makers to state if a dossier is admissible2113

or not, the other publications of the EFSA journal (e.g., Scientific Opinion,2114

Technical report) draw the perspectives and provide new lines of thinking for2115

the next guidance documents. Figure 10 shows, in a chronological, order the2116

publications of the guidance documents (dark blue) for the different biological2117

groups, and the other publications such as “ Scientific Opinion” and “Technical2118

reports” (grey) which are directly or indirectly related to the use of modeling2119

in PPP regulation. As indicated above, several documents have been published2120

in the EFSA journal since 2013 highlighting the increasing interest of EFSA2121

for the use of modeling in this context. Those publications can be specific to2122

one biological group or addressed to several groups.2123

Fig. 10 Publication timeline of the Guidance documents (blue), the Scientific Opinions,
and the Technical Reports (grey) dealing with modelling and directly or indirectly related
to PPP regulation. ∗ApisRAM is a model under development to be released in 2025 (More
et al., 2021).

In 2014, the Scientific Opinion dealing with the good modeling practice in2124

the context of mechanistic effect models for risk assessment of PPP (EFSA2125
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PPR Panel, 2014) showed EFSA encourages the use of mechanistic models in2126

regulation, and the need of an harmonized procedure at the EU level for the2127

development and the validation of new models. The crucial role of modeling2128

and its application at the different levels of the tiered-approach is illustrated2129

in Figure 9. The EFSA Scientific Opinion highlights the relevance of effect2130

models but deplore the rejection of several models used in dossiers because2131

of: (i) the lack of harmonization in their development, (ii) the lack of quality2132

control, and (iii) disagreement between the member states. Moreover, this2133

Scientific Opinion highlights various points to consider during the develop-2134

ment of a model that will be used under the regulatory context and notes2135

that there is still a room for improvement regarding modeling development2136

or validation. Currently, the models of interest for PPP regulation are mech-2137

anistic models such as individual effect (TKTD) models, population models2138

(e.g., Individual-Based Modelling), community models (e.g., food web model)2139

or those combining several of them.2140

2141

The lack of data constitutes one of the major limiting factors to develop new2142

models and/or to validate the existing ones. Except the DR models and the2143

(Q)SAR models which are already used and accepted in the dossiers, it appears2144

from the EFSA documents that there is a real need to use the SSD models2145

on more biological groups (limits explained in the above section), as well as2146

the TKTD, population and food web models (Figure 9). However, models like2147

SSD and QSARs which require testings are of course not compatible with the2148

animal welfare consideration. Thus, the choice of the models depends on the2149

biological group and on the bio-ecological characteristics (e.g., ability to move2150

and at what scale, stages of life, physiology) of the organisms targeted by each2151

document.2152

TKTD models are of high interest for the dossiers (Ockleford et al., 2018;2153

EFSA, 2009). For example, DEBtox models based on energetic budgets deal2154

with sublethal effects and thus present a great potential for various organisms.2155

However, to date, EFSA documents mostly highlight its ready-to-use state2156

for aquatic macro-invertebrates. Also, the GUTS model, based on survival2157

data, is of high potential for fishes, benthic macro-invertebrates and aquatic2158

stages of amphibians. Regarding primary producers, for which the sensitivity2159

to a pesticide is mostly characterized using growth as endpoint, a TD model2160

developed for micro-algae (Weber et al., 2012) and a TKTD model developed2161

for the macrophyte Lemna (Schmitt et al., 2013) have been reported. TKTD2162

models can also be used for the reptiles and amphibians but the lack of data2163

for those groups have prevented any progress (Ockleford et al., 2018).2164

2165

Population models also present a high potential for most of biological2166

groups involved in PPP regulation. Based on their bio-ecological characteris-2167

tics, the population models at the landscape scale would be the most suitable2168

ones to characterize the risk induced by the PPP for non-target arthropods,2169
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and for reptiles and amphibians. For example, the reptiles and the amphib-2170

ians can be associated to different media depending on their stages of life,2171

and they are able to move at the landscape scale. For this group, it is recom-2172

mended to use population models such as ALMaSS (Animal, Landscape and2173

Man Simulation System, Topping et al. 2003) which takes into consideration2174

these different variables. Finally, the birds and mammals group may benefit2175

from population models but the notified guidance document of 2013 deplore2176

the lack of methodology and guidance for their use.2177

2178

The Figure 10 also demonstrates that the bee compartment received a2179

specific attention during the last years with the setting in 2013 of a dedi-2180

cated guidance document (EFSA, 2013). However, as this document was not2181

accepted at the European scale, the SANCO document from 2002 is still the2182

official guidance document (Commission, 2002b). In 2015, the BEEHAVE2183

model was also in the heart of a Scientific Opinion for its use in the regula-2184

tory context (EFSA PPR Panel, 2015d). This model aims at estimating the2185

decrease of a colony after pesticide exposure. Its assessment by EFSA experts2186

revealed its reliability for bees but not for wild bees because of the lack of2187

experimental data. More recently, an editorial document has announced the2188

development of the ApisRAM model (More et al., 2021) dealing with data2189

directly obtained from hives, and deriving the risk assessment of chemical2190

factors alone or combined at large spatial and temporal scales, among others.2191

In both cases, BEEHAVE and ApisRAM are based on population models.2192

2193

Finally, food-web models (i.e., community models) are of high interest for2194

sediment organisms (EFSA PPR Panel, 2015c). The sediment compartment2195

can play the role of sink for persistent substances and/or hydrophobic ones2196

(log10 Kow > 3), and can change the exposure of the organisms leaving in the2197

sediments. In this case, the use of such model could support the consideration2198

of biomagnification into pesticide ERA. Guidances are expected (EFSA PPR2199

Panel, 2015c).2200

2201

Beyond all of the above-cited models, those dealing with pesticide mixture2202

toxicity prediction should also be considered in the regulatory framework2203

(European Commission, 2020; EFSA, 2013; EFSA PPR Panel, 2013). Two2204

models are frequently used in the scientific community : the CA and the IA2205

models. The first one is mainly recommended by the guidance documents as2206

it tends to be more conservative (EFSA PPR Panel, 2013).2207

2208

At the end, the use of modelling approaches in registration dossiers will2209

mostly rely on the targeted biological group, on the required level of risk2210

refinement (e.g., Tier-2 or more), and on the available data to parameterize2211

the models. However, among the different models which are recommended in2212

EFSA documents, one can suspect a temporal evolution in the category of2213

used models. For example, “simple” ones like SSD have a long history in PPP2214
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regulation as they were already recommended in 2002 for non-target plants2215

(Commission, 2002b), while more developed ones still required guidance for2216

users and assessors. This calls for a comprehensive analysis of the dossiers to2217

characterize the real usage of modelling approaches in PPP regulation.2218

7 Potential contributions and prospects of2219

current and future modelling tools2220

7.1 (Q)SAR models2221

(Q)SAR models have the potential to provide rapid, in silico estimates of2222

ecotoxicological endpoints. In addition, they can be an important tool for2223

environmental risk assessment of the degradation products, metabolites and2224

impurities, when it cannot be performed experimentally.2225

The potential for application in pesticide regulation seems there as (Q)SAR2226

approaches properly used can be a valuable tool for providing predictions on2227

chemical toxicity (Villaverde et al., 2020; Mombelli and Pandard, 2021). In2228

addition, several available tools already exist and, for a given substance, may2229

fall into the applicability domain of a multitude of in silico models, raising the2230

question of which model(s) and/or tool(s) to apply (Herrmann et al., 2020).2231

Nevertheless, there are several areas for improvement to facilitate the work of2232

decision-makers. It is necessary to allow them to establish with a maximum2233

of certainty if: (i) the (Q)SAR model is scientifically valid, (ii) the predicted2234

effect is of regulatory utility, and (iii) the model is applicable to the substance2235

of interest.2236

As far as scientific validity is concerned, (Q)SAR models can provide pre-2237

dictions in case of unknown MoA, but a prerequisite is the availability of2238

appropriate training data for model development (Herrmann et al., 2020) and2239

appropriate supporting information such as (Q)SAR Model Reporting For-2240

mats (QMRF) (e.g., JRC QSAR model Database). Overall, it appears that,2241

if properly used and evaluated, (Q)SAR approaches can be a valuable tool2242

for providing fit-for-purpose predictions in the framework of regulations on2243

chemical toxicity (Mombelli and Pandard, 2021). For example, Mombelli and2244

Pandard (2021) highlighted the regulatory relevance and robustness of (Q)SAR2245

predictions for acute fish toxicity and demonstrated a level of reliability of2246

the prediction comparable to the experimental data. This kind of validation2247

exercises conducted by third parties can also contribute to enhance knowledge2248

about models and their intrinsic limitations so that informed decision-making2249

can take places (Mombelli and Pandard, 2021).2250

For a ready regulatory applicability usefulness, focusing the development2251

of (Q)SAR models as a function of endpoints of regulatory interest formal-2252

ized by OECD guidelines would render their application straightforwardly2253

relevant. Always from a regulatory point of view, it would be very useful to2254

extensively cover the different trophic levels and biological organization lev-2255

els since, for instance, only a minority of work on (Q)SAR provided models2256
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for algae or for long term risk at the population or community level. (Q)SAR2257

approaches are constrained by the experimental data availability and quality,2258

so the data sets are one of the most important (Q)SAR elements. Consequently,2259

to improve their ecological relevance, the scientific community has to work on2260

the lack of ecotoxicological data for pesticides covering the whole biodiversity2261

and investigating sub-lethal and chronic effects.2262

To overcome this limitation, the current development of the quantitative2263

form of AOP (qAOP) and their association with (Q)SAR models seems very2264

promising. Indeed, MechoA approach in (Q)SAR aiming at predicting the2265

Molecular Initiating Event (MIE) sounds convenient to provide input to qAOP,2266

which are able to translate subtle functional deficits within individuals into2267

population-level effects.2268

For the applicability to a given substance, the framework proposed by2269

VEGA hub seems very promising (ADI), and uncertainty associated to the2270

model prediction should be more systematically communicated. However, an2271

identified limitation of the (Q)SAR model comes from the difficulty to explain2272

data from complex MoA using relatively simple models, and therefore the2273

causal toxicological mechanisms generally stay unknown even if the physico-2274

chemical determinants can be accurately described (Villaverde et al., 2020).2275

Lastly, even if tools are available, an expert judgment should as often as pos-2276

sible be consulted. For example, a (Q)SAR prediction can be compared with2277

a read-across prediction based on the closest structural analogues to have an2278

idea of the relevance of the prediction. To improve applicability, different stud-2279

ies have explored strategies for combining predictions from multiple (Q)SAR2280

tools to improve the prediction of several endpoints. These consensus mod-2281

els show better overall predictive capacity than individual (Q)SAR tools and2282

sound promising (Villaverde et al., 2020).2283

The integration of TKTD and (Q)SAR modelling represents an interesting2284

and promising field of research. In this integrated scheme, (Q)SAR models pro-2285

vide interpolation for toxicological responses and pharmacokinetic parameters.2286

Indeed, this synergy between the two modelling approaches can greatly reduce2287

the need for animal testing while optimizing in cost-efficient ways toxicological2288

resources (Mombelli and Pandard, 2021). Finally, the promotion of capacity2289

building in governmental agencies aiming at increasing awareness about in sil-2290

ico tools would rapidly result into an enhanced and informed use of in silico2291

approaches during decision-making.2292

7.2 DR and TKTD models2293

Below are some possible directions that can be learned from the analysis of the2294

literature on TKTD models in terms of prospects for the future, both from a2295

purely research point of view, and to improve ERA:2296

• For regulatory purposes and for use by non-experts, TKTD models need2297

to be as simple (i.e., simple enough to be used on - somewhat extended -2298

standard toxicity test data) and transparent as possible (Jager, 2020).2299
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• TKTD models should be as representative as possible of the widest diversity2300

of PPP, both in their bioavailability and MoA (Crenna et al., 2020).2301

• TKTD models should be both calibrated and validated on data collected2302

under time-variable exposure, agreeing that this type of scenario is more2303

realistic from an environmental point of view (Van Den Brink et al., 2019);2304

in other words they should include the exposure history of organisms (Jager2305

and Kooijman, 2005).2306

• Tested species should be relevantly chosen regarding their representative-2307

ness of field conditions, rather than being selected for their accessibility in2308

laboratories (Arlos et al., 2020; Roeben et al., 2020; Bart et al., 2021).2309

• TKTD models could be improved by considering ecologically relevant bio-2310

logical traits, such as the movement behaviour (Roeben et al., 2020), the2311

actual size (Dalhoff et al., 2018) or the membrane permeability (Crenna2312

et al., 2020), to name but a few examples.2313

• TK models should consider several routes of exposure as well as the possi-2314

ble presence of metabolites in order to also measure their bioaccumulation.2315

There is no longer any reason to be satisfied with simplistic TK models since2316

ready-to-use tools exist to perform relevant TK modelling analyses (Ratier2317

et al., 2021).2318

• Field studies are still too rare, while they would be really useful to test the2319

predictive power of model outputs.2320

7.3 Population and landscape models2321

Various authors suggest, in the reviewed papers, that ecological models are2322

very little applied in regulatory PPP ERA (Hommen et al., 2016; Accolla et al.,2323

2021; Raimondo et al., 2021). A specific analysis of PPP registration dossiers2324

actually submitted to regulation agencies should be conducted to confirm this2325

statement. This probable underuse of population models in regulatory ERA2326

is surprising when compared to the wide use of similar population models in2327

species conservation or fisheries resource management. Nevertheless, there is a2328

strong consensus among stakeholders on the potential contribution of ecologi-2329

cal models to PPP ERA. One possible explanation emerging from our literature2330

review in using population and landscape models in ERA is an obvious lack of2331

easy running tools for people not advertised in modelling in general, in these2332

type of models in particular. Filling this gap could be a new challenge in a2333

near future.2334

Firstly, models could inform the ecological criteria to be taken into account2335

at all tiers of prospective ERA (Forbes et al., 2015), e.g., choice of test species2336

and life stages fixed by regulators for lower Tier assessments, definition of2337

ecological scenarios to be tested in higher Tier assessments with a worst-case2338

scenario approach (Rico et al., 2016). Secondly, they allow the uncertainty2339

sources attached to the evaluation criteria to be tested in silico. They should2340

make it possible to reexamine the arbitrary safety factors applied in ERA to2341

guaranty ecosystem protection when extrapolating to the multitude of contexts2342

of PPP use (Focks et al., 2014). But while ignoring the fact that most of2343
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these mechanistic models are rather cognitive tools to inform on the ecological2344

complexities in PPP impacts (Forbes et al., 2009), the debate for their use in2345

ERA is most often unfortunately confined to the sole question of validating2346

their predictive capacity as stated by Wang (2013), the models then being only2347

considered as mere forecasting tools in the same way as meteorological models2348

for weather prediction. Yet, as pointed 30 years ago by Barnthouse (1992),2349

the real issue in determining whether models can contribute to regulatory risk2350

assessment should be credibility rather than validity.2351

In addition to prospective ERA, population and landscape models can con-2352

tribute to understand field ecological impacts of PPP by providing information2353

on their relative contribution to degradation of biodiversity, particularly for2354

non-target species of patrimonial value or keystone species for ecosystem func-2355

tioning (e.g., Topping and Odderskær 2004; Abi-Akar et al. 2020; Landis et al.2356

2020). Similarly, they can be used to evaluate future population trajectories2357

under different scenarios of climatic, agricultural or landscape evolution (as in2358

Nogeire-McRae et al. 2019).2359

The informative value of model outputs regarding population and ecosys-2360

tem threat in agricultural landscapes is crucial for their acceptance in2361

environmental risk management. Some works already illustrates how ecologi-2362

cal models can be used to establish the relevance of traditional risk assessment2363

endpoints with respect to the recovery capacities of populations (Hayashi et al.,2364

2016). They may also inform the choices of evaluation endpoints regarding2365

their relationship with key ecosystem services (Croft et al., 2018). However, the2366

endpoints derived from population projection models or the indicators quan-2367

tifying population extinction risk in simulation approaches currently lack any2368

reference grid for their interpretation in terms of impact severity and possi-2369

ble population collapse. Conservation science (e.g., for the definition of species2370

conservation status by the International Union for Conservation of Nature),2371

but also the widely-accepted use of models in fisheries management or in epi-2372

demic forecasting, may well inspire the evolution of future PPP ERA practices2373

(Thursby et al., 2018). The harmonization and the common definition of ref-2374

erence thresholds of population vulnerability to be applied to these endpoints2375

could indeed operationalize the use of ecological models in the management2376

of PPP risk for non-target species and better inform decision-making in PPP2377

environmental management. This could present a high value for ERA since2378

Specific Protection Goals (SPG) are in most cases defined on the population2379

level. Thus, the use of ecological models offers a promising avenue to link2380

typical test results on the organism level and the SPG of PPP ERA.2381

7.4 Multi-species models2382

SSD models2383

Ecological interactions are rarely taken into account in ERA, while it is2384

important to consider both direct and indirect effects of chemical exposure2385

(e.g., Brock et al. 2004). Nevertheless, SSD approaches currently have large2386

implications in legislation and risk management, so that they are discussed2387
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a lot (Posthuma et al., 2002). Critical issues are both fundamental (e.g., its2388

statistical rather than its ecological basis) and technical (e.g., the necessary2389

number of input data). Also, it is not confirmed to what extent classical out-2390

puts, such as PAF (for substance alone) and msPAF (for mixtures) could be2391

considered predictors in a retrospective perspective of mixture impacts on field2392

communities (Posthuma and De Zwart, 2006); this motivated a lot of model2393

confirmation studies that were mainly focused on the 5th percentile of the2394

fitted SSD namely the HC5 (see Posthuma et al. 2002). Recently, the SSD2395

method was scrutinized in detail for its potentiality to support ERA within the2396

framework of the European WFD which suggests using models to assess the2397

likelihood that chemicals affect water quality for management prioritization.2398

Deriving SSD analyses for more than 12000 chemicals, Posthuma et al. (2019)2399

concluded that SSD is a versatile and comprehensive approach to prevent,2400

assess, and manage chemical pollution problems.2401

Recently, Fox et al. (2020) published a summary of the current status of2402

SSD approaches, and elaborated on several recent developments for SSD meth-2403

ods, specifically, model averaging, multi-modality and software development.2404

Identifying several technical issues to urgently deal with for SSD improve-2405

ments, Fox et al. (2020) also proposed some future directions with respect2406

to the use of SSD, ultimately aiming at facilitating wider international col-2407

laboration and, further, a possible harmonization of SSD methods. Regarding2408

technical issues, to name but a few, Fox et al. (2020) mention the choice of a2409

parametric or a non-parametric (i.e., distribution-free) modelling, the choice2410

of frequentist versus Bayesian inference, the tricky question of the sample size2411

(also stated by Carr and Belanger 2019), the expected shape of the distribu-2412

tion, the representativeness of species sample possibly leading to bi-modality2413

when there are clearly two groups of species sensitivities or because of a very2414

specific MoA of chemical compound.2415

SSD methods have also been combined to complementary approaches in2416

order to account for additional influencing phenomena on species sensitivi-2417

ties. Nagai and Taya (2015) showed that considering the MoA of compounds2418

improved the accuracy of estimating SSD markedly. In the same way, the PER-2419

PEST approach seems promising (Van Den Brink et al., 2002, 2006). Based2420

on the fact that SSD is a probabilistic risk assessment model, Giddings et al.2421

(2000) evaluated potential toxic effects of diazinon in the Sacramento–San2422

Joaquin system, based on data sets collected from laboratory toxicity tests for2423

63 species. Qu et al. (2011) illustrated the improvement in the RQ method2424

expressing the ecological risk as the degree of overlap between the distribu-2425

tion of environmental exposure concentrations and the distribution of toxicity2426

values. A step further was made in the study of mixtures effects using SSD2427

(Cedergreen et al., 2004; Jesenska et al., 2013; Li and You, 2015; Silva et al.,2428

2015), some authors also accounting for the effects of environmental factors2429

(Rico et al., 2011, 2018). Clemow et al. (2018) proposed a refinement of the2430

SSD including exposure simulation aiming at identifying direct and indirect2431

effects of malathion on amphibians. Nevertheless, Clemow et al. (2018) agree2432
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that their approach does not allow for representing the daily fluctuations2433

of malathion over the course of multiple applications. However, taking into2434

account a time-variable exposure was early identified as a crucial issue (Ced-2435

ergreen et al., 2004; Van Dam et al., 2004); so the combination of SSD with2436

TKTD models could be the next step further in improving Tier-2 ERA based2437

on SSD, especially for pesticides (Van Den Brink et al., 2019).2438

Last but not least, field study data have been highlighted for their added-2439

value in SSD analyses to better characterize the exposure, as for example2440

De Zwart (2005) who used a Geographic Information System (GIS) map to2441

predict aquatic exposure to pesticides in field ditches; Van Dam et al. (2004)2442

who fitted a break-point regression model to field monitoring data, providing2443

a time-dependent estimate of exposure to tebuthiuron; or Li and You (2015)2444

who combined effect data with the probability distributions of environmental2445

exposures of contaminants. But field study data have also been highlighted to2446

benefit from field ecotoxicity information issued from microcosm or mesocosm2447

studies. For example, Brock et al. (2004) concluded that the SSD approach2448

cannot be seen as a complete alternative to semi-field experiments, even if a2449

protection level based on direct effects (e.g., the HC5) will also protect against2450

indirect effects. Van Den Brink et al. (2006) then proposed the concept of2451

NOECecosystem (defined as the highest test concentration causing no observed2452

effects in microcosm or mesocosm experiments) to be used to extrapolate from2453

laboratory to field data. Today, NOECecosystem is not used anymore, replaced2454

by the concept of effect classes and the derivation of Ecological Threshold2455

Option (ETO)- and Ecological Recovery Option (ERO)-RAC from mesocosm2456

studies (EFSA PPR Panel, 2013). Schipper et al. (2014) presented a different2457

approach based on the Stacked Species Distribution Modeling (S-SDM). Estab-2458

lishing an S-SDM for several species to describe their probability of occurrence2459

in relation to multiple environmental factors, they were able to study the vari-2460

ation of this probability of occurrence along the gradient of each environmental2461

factor with the remaining ones fixed. Hence, Schipper et al. (2014) investi-2462

gated how field-based SSD (f-SSD) for a given environmental factor changed2463

under confounding influences, such as low, medium or high environmental2464

disturbance.2465

Community and food web models2466

What is particularly striking about the community models in terms of gaps2467

is different according to the type of models. ABM/IBM-type models, together2468

with BN models, account for a lot of refined biological processes combined with2469

stochastic links, thus making it difficult to keep a critical eye on the relevancy2470

of model outputs: do they really emerge from the modelling itself? Are they2471

only artifactual, due to specific initial condition in simulations, for example?2472

These models also rarely quantify uncertainties on outputs while they include2473

both uncertainty and variability as input by essence.2474

Food-web models, also rarely accounting for uncertainties, reveal a notice-2475

able gradient from the simplest ones (Damgaard et al., 2008) to the most2476
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complex ones (Nfon et al., 2011) giving rise to the question of the best compro-2477

mise to find. There is a real challenge to be realistic enough from a biological2478

point of view (enough species and ecological processes to account for) but sim-2479

ple enough from a modeling point of view (based on the parsimony principle)2480

so that the model appears finally sound. However, to find the best compro-2481

mise may strongly be related to the available experimental data, obviously2482

not manipulable afterwards. Hence, simple food-web models will usually be2483

employed with microcosm data (Traas et al., 2004), while more complex ones2484

will be suitable for mesocosm data (Bartell et al., 2018; David et al., 2019).2485

Some food-web models also seldom proved helpful because strictly dependent2486

on a particular species (e.g., bees with BEEHAVE Becher et al. 2014, bum-2487

ble bees with bumble-BEEHAVE Becher et al., 2018 or ApisRAM More et al.2488

2021).2489

A probabilistic RQ is a more informative alternative to the traditional2490

single-value RQ, which is often interpreted as a binary outcome. The Bayesian2491

Network approach provides more opportunities for interpretation, such as the2492

probability that the RQ exceeds not only one but also other specified threshold2493

values (Mentzel et al., 2021).2494

7.5 Mixture models2495

Mixture models should include the assessment of dose-level dependent devi-2496

ation as it was suggested that concentrations of chemicals can influence2497

interactions between pesticides (Lopez Aca et al., 2018; Sanches et al., 2018;2498

Kristofco et al., 2015). For instance, in Chen et al. (2014), it is reported2499

that CA had severe limitations when the dose–response curves of the individ-2500

ual chemicals were not identical at low effect concentrations. Similarly, Ritz2501

et al. (2021) found that fixed-ratio designs (pesticides and their mixture are2502

used at increasing doses) should be preferred as they allow validation of the2503

assumed dose–response relationship and, consequently, provide much stronger2504

claims about antagonistic and synergistic effects than factorial designs (lots of2505

pesticides are only available at a single dose level and a mixture simply com-2506

bines these doses). For this reason, Marques et al. (2012) or Pestana et al.2507

(2010) underlined the need for higher number of testing combinations and2508

concentrations of each stressor to improve model calibration.2509

Moreover, mixture models should include the status of test species at2510

different time points (time-to-event), as suggested by Qiu et al. (2017) who2511

used the AFT model, that assesses the relationships between the time-to-2512

event and treatments. The AFT model, which predictive power and accuracy2513

can be improved by setting more observation time points in experimental2514

design, provides a simple and valuable method to quantify the interactions2515

and to evaluate the outcomes of exposure to a mixture of chemicals. This2516

is in accordance with Broerse and Van Gestel (2010) who explained that2517

analyzing mixture toxicity at successive time points may be a good way2518

to explain observed mixture effects. Indeed, this allows the application of2519

process-based models (time–toxicity relationships, DEBtox) that estimate2520
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time-independent parameters (uptake and elimination rate constants) besides2521

only time-dependent toxicity estimates (LCx or ECx), which may enable2522

extrapolations beyond the standard exposure time. The MITAS (MIxture2523

Toxicity of Application Spray series) model, proposed by Sybertz et al. (2020),2524

has been developed to calculate the soil concentration of pesticides (based2525

on the generally accepted assumptions of German pesticide registration) and2526

the resulting time-dependent mixture risk for earthworms. It creates tables2527

and graphs representing the mixture risk for an applied spray series time-2528

dependently. MITAS includes the most important parameters to predict the2529

time-dependent pesticide mixture risk with a manageable amount of uncer-2530

tainties. However, the model results are not yet validated with measured2531

concentrations in soil.2532

2533

Finally, Carnesecchi et al. (2019), working on bees, proposed the following2534

perspectives for mixture and other models:2535

• Development of in silico tools such as (Q)SAR models to predict combined2536

toxicity of mixtures.2537

• Characterization of the synergistic potential of chemicals including TK inter-2538

actions either through inhibition or induction of metabolism or through2539

direct TD interactions. The CA and IA models provide a validated initial risk2540

assessment approach to predict mixture toxicity, but they are mechanisti-2541

cally uninformative (Lister et al., 2011). Accounting for chemical uptake and2542

elimination in mixtures is an essential requirement for mechanistic under-2543

standing of chemical interactions. Svendsen et al. (2010) explained that2544

where interactions occurred between the five tested pesticides, these could2545

be explained by information on the potential mechanisms of compound tox-2546

icokinetics. These authors concluded that detailed analysis of toxicokinetics2547

and toxicodynamics can aid in further understanding of interactions in mix-2548

tures. A need exists for a better understanding of the dynamics of the effects2549

of mixtures, underlining the need for measurements with intermediate time2550

points (Baas et al., 2007). To select CA or IA as the most appropriate model2551

for any given mixture, knowledge about the MoA of chemicals included is2552

required. This mechanistic classification is achieved using knowledge of the2553

toxicodynamics rather than, for example, the toxicokinetics of the chemical.2554

• At the population and species level, SSD can also be applied to estimate2555

HCp for multiple chemicals of concern according to the protection goal and2556

compared to exposure estimates in populations (More et al., 2019).2557

In brief, to better understand mixture effects of pesticides, efforts must be2558

done on:2559

• Understanding the mechanisms (uptake and elimination, effects)2560

• Time series2561

• Increasing doses of the pesticides in mixture.2562
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Mixture effect studies are also a good topic to couple mixture models to2563

other modelling approaches. Schaefer et al. (2012) proposed the EU Uniform2564

Principles (UP) threshold to account for both mixtures and repeated exposure2565

over time, while Bart et al. (2021) combined both CA and IA models to GUTS2566

models for the same purpose.2567

8 Conclusion and perspectives2568

The basic expectation from the use of computational prediction models in PPP2569

ERA is to avoid testing all the pesticides and metabolites. Hence, they can2570

be used to link chemical structure or concentrations of PPP with activity and2571

toxicity on organisms. Models also have the potential to assess PPP effects on2572

sets of several species under various environment types, to extrapolate adverse2573

effects across levels of biological organization, to decipher their underlying2574

mechanisms, and to support the prediction of joint effects caused by mixtures2575

of chemicals. This review led thus to the conclusion that (Q)SAR, DR, TKTD,2576

population, landscape, and community models are increasingly recognized for2577

the risk assessment of PPP, notably under the impetus of regulatory author-2578

ities having encouraged the development of good modeling practice guides,2579

harmonization and reference modeling procedures. In the framework of the2580

prospective ERA, (Q)SAR models are already widely used to supply in silico2581

ecotoxicological endpoints filling in the toxicity data gaps for the multitude2582

of PPP and species diversity, and reducing the breadth of the experimental2583

task. While the value of ecological models addressing population, landscape2584

and community scales is undisputed for PPP ERA, their possible place is still2585

ambiguous in assessment schemes, oscillating between strict simulating tools2586

of ecological outcomes used as endpoints for risk assessment, versus cognitive2587

tools informing on species vulnerabilities and critical environmental factors2588

in PPP-exposed ecosystems to be considered in assessment procedures. These2589

tools still suffer from unfriendliness to be routinely used in ERA.2590

The vision of models as surrogate cost-effective methods for ecotoxicological2591

assessment offering cross species/substances extrapolation facilities, between2592

climatic or geographical conditions extrapolation, and up-scaling integration2593

of multiple PPP effects should not hide the still major weakness of available2594

experimental data informing on chronic and non-lethal effects of PPP among2595

ecological communities. This point is still a major limitation for a sound appli-2596

cation of models as predictive tools of PPP ecological impacts. At the same2597

time, although more information is needed to better depict and predict the2598

effects of PPP on living organisms at different scales, models should be parsi-2599

monious, meaning that they must accomplish the desired level of explanation or2600

prediction with as few predictor variables and parameters as possible. Decision2601

guides are increasingly proposed to help modelers to select relevant modelling2602

options adapted to each specific risk assessment questioning. With a too large2603

number of input parameters, models exhibit a higher uncertainty which has2604

to be characterized. Thus, to be relevant, prediction models should include a2605
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sensitivity analysis, an uncertainty analysis and the comparison of predictions2606

with observed data. In that, Bayesian inference is a relevant and promising2607

approach to estimate the parameters, to handle uncertainties, and to identify2608

potential improvements in the model structure and experimental designs.2609

Some future developments of models also emerged from this review such2610

as the consideration of PPP multigenerational effects or the study of “multiple2611

stressors”. These terms generally refer to the combination of natural stressors2612

(abiotic and biotic) and chemical exposure, thus including “cocktail effects” due2613

to chemicals mixture. Effect modelling can help to gain knowledge on interac-2614

tions between multiple stressors and their joint effects. Moreover, in order to2615

address the “things that matter” in protecting the environment, i.e., keystone2616

species and ecosystem services, ecotoxicological models describing effects on2617

organisms could be coupled with ecological models informing on interactions2618

between organisms and the functions they fulfill. Thus, modelling the effects of2619

pesticides and other stressors on living organisms, from their application in the2620

field (exposure) to their functional consequences on the ecosystems at different2621

scales of time and space would help going towards a more sustainable man-2622

agement of natural resources. However, a lot of data and knowledge remain to2623

be acquired, whether on ecological or ecotoxicological part. For instance, food2624

web and community models at scales relevant for ecological processes are still2625

not enough developed. Also, modelling approaches based on emerging methods2626

such as the so-called “omics” are still lacking despite their great potential for2627

ERA (e.g., detect early effects, improve mechanistic understanding). In addi-2628

tion, the consideration of the different reviewed modeling facets is still poorly2629

developed in the framework of retrospective ERA of PPP, while their use for2630

the interpretation of ecological monitoring data in view of PPP use practices,2631

and a dialog with the domains of species conservation and wildlife exploitation2632

management which routinely use models, could constitute wealthy avenues to2633

facilitate the use of models in ecotoxicology, and improve the knowledge and2634

the prediction of PPP effects on biodiversity.2635
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