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Developing Species Distribution Models (SDM) for marine exploited species is a major challenge in fisheries ecology. Classical modelling ap-
proaches typically rely on fish research survey data. They benefit from a standardized sampling design and a controlled catchability, but they
usually occur once or twice a year and they may sample a relatively small number of spatial locations. Spatial monitoring of commercial data
(based on logbooks crossed with Vessel Monitoring Systems) can provide an additional extensive data source to inform fish spatial distribution.
We propose a spatial hierarchical framework integrating both data sources while accounting for preferential sampling (PS) of commercial data.
From simulations, we demonstrate that PS should be accounted for in estimation when PS is actually strong. When commercial data far exceed
scientific data, the later bring little information to spatial predictions in the areas sampled by commercial data, but bring information in areas with
low fishing intensity and provide a validation dataset to assess the integrated model consistency. We applied the framework to three demersal
species (hake, sole, and squids) in the Bay of Biscay that emphasize contrasted PS intensity and we demonstrate that the framework can account
for several fleets with varying catchabilities and PS behaviours.
Keywords: hierarchical model, integrated modelling, species distribution model, survey data, Template Model Builder (TMB), VMS and logbook data.

Introduction

Developing species distribution models (SDM) is critical in
marine and fisheries ecology for assessing the relationship be-
tween species and their habitat (Guisan and Zimmermann,
2000), identifying essential habitats (Paradinas et al., 2015),
and forecasting population and ecosystems response to envi-
ronmental changes (Cheung et al., 2009). The development of
statistical models to predict fishery resources distribution has
received considerable attention (Planque et al., 2011; Thorson
et al., 2015a, b; Martínez-Minaya et al., 2018; Moriarty et al.,
2020). Recent developments have generalized SDM to ana-
lyze biological data representing condition, stomach contents,
size structure, and other demography and population dynam-
ics features (Thorson, 2015; Grüss et al., 2020). Ongoing re-
search also seek to integrate individual movement, growth,
and species interactions into SDM (Kristensen et al., 2014;
Thorson et al., 2017a, 2019), although these approaches are
“data hungry” and, therefore, require integrating different
sources of data within a single model.

Scientific survey and commercial catch data consist in two
potentially complementary data sources to estimate harvested
fish spatial distribution (Pennino et al., 2016). Scientific sur-
veys are key data sources in fisheries ecology. They most of-
ten benefit from a standardized sampling plan and a con-
stant catchability (Hilborn and Walters, 1992; Ocean Studies
Board and National Research Council, 2000; ICES, 2005;
Nielsen, 2015). They are generally designed to cover the full

geographical extent of specific populations including areas of
low or null abundance, and are thus suitable for developing
unbiased abundance indices and spatial predictions of species
distribution (Rivoirard et al., 2008; ICES, 2012). In addition,
they often seek to minimize selectivity in order to sample as
many species, size groups, and life stages as possible. However,
the related expansive charges generally come at the cost of a
relatively low sampling density in space and/or time. For in-
stance, trawl surveys can sample a limited number of spatial
locations, and most often occur once or twice a year. Thus,
they may provide poor information regarding intra-annual
variability (Pennino et al., 2016; Rufener et al., 2021) and im-
precise estimates of species abundance and spatial distribution
(ICES, 2005).

Commercial catch declarations (logbooks) data constitute
a complementary data source that may benefit of a higher
sampling effort than scientific survey. In Europe, catch dec-
larations must be reported in logbooks data for all fishing
vessels; besides, geolocation through Vessel Monitoring Sys-
tem (VMS) is mandatory for all fishing boats above 12 m
long (Hintzen, 2021). Hence, logbook data combined with
VMS data can provide high resolution maps of Catch Per
Unit Effort (CPUE—Gerritsen and Lordan, 2010; Murray et
al., 2013) with a relatively dense spatio-temporal sampling
within the range of the commercial fleets. However, inferring
SDM with commercial data can be challenging as they gen-
erally arise from a preferential sampling (PS) behaviour, i.e. a
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sampling that directly or indirectly depends upon the biomass
of the target species. Indeed, fishermen tend to target areas
with high biomass and may also favour fishing zones based
on other criteria (like bottom substrate or distance to the coast
for instance—Hintzen et al., 2021) that are indirectly related
to the target species abundance. When not properly consid-
ered in statistical models, PS associated with commercial data
may lead to biased estimates of fish distribution and biomass
(Trenkel et al., 2013; Pennino et al., 2019). In particular, when
the biomass is spatially heterogeneous, ignoring PS may over-
estimate the spatial predictions and the overall biomass esti-
mates.

Recent research has tackled this challenge and developed
methods to account for PS in statistical inferences. Model
based PS was first introduced by Diggle et al. (2010) who pro-
posed a base framework for estimating PS and applied it to
led pollution data in Galicia. The authors extended a stan-
dard geostatistical approach where the variable of interest is
jointly modelled with the spatial intensity of the sampling ef-
fort which also contributes to the inference and accounts for
PS towards the variable of interest. This approach was ex-
tended by Pati et al. (2011) who introduced covariates and
random effects in the model. Conn et al. (2017) followed the
same ideas and developed a more generic model for ecological
applications, which they applied to aerial seal count data. Pen-
nino et al. (2019) applied similar ideas to infer the distribution
of shrimps from onboard fishery data.

Provided PS is accounted for, integrated models (IM) ap-
pear as an attractive tool to combine fishery-independent and
fishery-dependent data to infer the spatial distribution of har-
vested fish. IM have received considerable attention in the eco-
logical literature (Schaub and Abadi, 2011; Parent and Rivot,
2012; Gimenez et al., 2014). By sharing the information be-
tween different data types, IM may provide more accurate es-
timates and predictions compared with separate analysis of
different data types. Recently, Rufener et al. (2021) demon-
strated the potential of IM to integrate scientific data and
onboard observer count data to improve SDM of fishery re-
sources. However, although onboard observer data provide
useful complementary information to scientific survey, they
generally only represent a small proportion of all sea trips
(1% in average for the French observer programs—Cornou et
al., 2021). In contrast, the combination of commercial catch
declarations in logbooks with VMS data provides a more ex-
tensive data source to map fish spatial distribution. Further-
more, the potential of embedding PS within a hierarchical
SDM to integrate catch declaration data and scientific survey
is still an open challenge and new methodology are required
to handle PS behaviours of commercial fleets while account-
ing for all the complexity related to fishing locational choice
(Salas and Gaertner, 2004; Haynie et al., 2009; Girardin et al.,
2017).

In this paper, we develop an IM model to infer fish spa-
tial distribution by combining both scientific and commercial
catch declaration data while taking into account the PS in-
duced by fishing targeting behaviour.

To assess the challenges, the benefits and also the limits of
the approach, we evaluate the performance of our IM based
on simulated data. Simulations are primarily designed to as-
sess the respective contribution of each data source to infer-
ence for different model configurations. We first evaluate how
the balance between the commercial and scientific sample sizes
affect the model outputs. Because the commercial data may

often only partially cover the distribution area of a targeted
species, we assess how this issue may affect the quality of es-
timation and how scientific data may contribute to reduce
the effect of this gap in the commercial data. Introducing PS
within an IM framework involves adding new parameters,
complexifying the model structure, and then increasing the
computational cost. We, therefore, assess how perform a more
parsimonious model that would ignore PS. Last, in addition
to the PS, the fishing locations can be controlled by other fac-
tors independent from the species distribution (e.g. logistical
constraints and management regulations—see Girardin et al.,
2017; Ducharme-Barth et al., 2022). We, therefore, assess how
such process blurring strict PS may affect the quality of infer-
ences.

We demonstrate the flexibility of the approach by fitting the
model to three different important European demersal fishery
resources in the Bay of Biscay: common sole (Solea solea, Lin-
naeus, 1758), hake (Merluccius merluccius, Linnaeus, 1758),
and squids (Loliginidae family). With these contrasted exam-
ples, we illustrate the capacity of the framework to handle
multiple commercial fleets with potentially distinct PS inten-
sities and different fishing behaviours.

Material and methods

Spatial IM

Below we provide the core elements of the modelling ap-
proach. Additional details are provided in the Supplementary
material (SM 1). The model is structured in four layers: obser-
vations (here commercial and scientific CPUE in weight per
unit of effort), the sampling process, the latent field (here fish
biomass relative density), and the parameters (Figure 1—all
notations are available in SM 1.1, Supplementary Table S1).
Sampling process is usually ignored in hierarchical models as
it is mostly considered independent of the quantity of inter-
est, and then has no consequence on inference (Diggle et al.,
2010). Here, the spatial distribution of commercial fishing is
explicitly modelled as a inhomogenous Poisson point process
whose intensity may depend on the biomass field and con-
tributes to the likelihood. The observation processes of scien-
tific and commercial data are conditional upon the biomass
latent field and the sampled locations.

All processes are considered to occur in a discrete fine grid
(see for instance SM 2.1, Supplementary Figure S2.1 or SM
3.1, Supplementary Figure S3.1). We assume the density of
the point process is piecewise constant in each cell grid, which
brings simplification in the expression of the likelihood of the
point process (Diggle, 2013—see SM 1.2). The time compo-
nent is omitted and both commercial and scientific data are
assumed to occur at the same time step.

The IM is designed to assimilate the scientific data of several
surveys and/or the commercial data of several fleets. In the
following, the subscript j refers to the different data sources
either scientific or commercial. For instance, in a model with
one scientific survey and two commercial fleets, j will take
the values j = 1, 2, 3, with j = 1 for the scientific data and
j = 2, 3 for the two commercial fleets.

Latent field of relative biomass
The fish biomass relative density S [Equations (1) and (2)]
is modelled through a latent log Gaussian spatial field de-
fined on the same discrete spatial domain as the point process.
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Figure 1. Diagram of the spatial IM including PS for commercial data. Locations of scientific trawls do not contribute directly to the likelihood.

The mean of the Gaussian field depends on environmental co-
variates through a log link where the linear predictor com-
bines an intercept αS, the linear effect of environmental co-
variates �S(x) (effects captured by the corresponding fixed
parameters βS representing the species-habitat relationship).
The remaining spatial variation is accounted for through a
zero-mean Gaussian random field (GRF) denoted δ(x) [Equa-
tions (2)] parameterized with a Matérn correlation function
M(x, x′; κ, φ), characterized by the shape κ and the scale φ

[Cressie, 1993; Gelfand et al., 2010; Lindgren et al., 2011 and
Banerjee et al., (2014)]. The shape can be expressed in term of
range ρ =

√
8
κ

where ρ is the distance for which the correla-
tion between points is near 0.1.

log (S (x)) = αS + �S(x)T · βS + δ (x) . (1)

δ (x) ∼ GRF
(
0, M

(
x, x′; κ, φ

))
. (2)

Sampling process
Recent literature has emphasized the complexity of fishers tar-
geting behaviour (Salas and Gaertner, 2004; Haynie et al.,
2009; Abbott et al., 2015; Girardin et al., 2017; Hintzen,
2021). In this paper, we did not attempt to model explicitly
all those processes (e.g. resource distribution, logistical con-
straints, tradition, and management regulations) and opted for
a simplified representation where the spatial targeting directly
depends on the biomass field S and on an additional spatially
structured random term.

Let us denote Xcom j, the spatial point process, where com-
mercial vessels of fleet j are identified as fishing. In the fol-
lowing, all vessels in the same commercial fleet are assumed to
have homogeneous behaviours. Following Diggle et al. (2010),
the set of fishing locations are modelled conditionally on S, as

a inhomogeneous Poisson point process with piecewise con-
stant intensity λ j(x) [Equations (3) and (4)].

Xcom j ∼ IPP
(
λ j (x)

)
. (3)

log
(
λ j (x)

) = αX j + bj · log (S (x)) + η j (x) . (4)

For any fleet j, intensity λ j(.) of the Poisson point process
[Equations (3)] is modelled as a log-linear combination of the
intercept αX j, the logarithm of the relative biomass S(.) scaled
by a parameter bj, and a residual spatial effect η j(.) with the
same structure as δ(.) but with specific parameters κ and φ.
All parameters αX j, bj, and the spatial random effect η j(x)
are specific to each fleet.

The parameter bj quantifies the strength of PS by scaling
the relationship between the local value of the resource field
and the local fishing intensity.

Fishing locations potentially depend on many other fac-
tors than fish distribution such as distance to harbour, logis-
tical constraints, management regulations—spatial closures,
and quotas—or fishing habits/tradition (Salas and Gaertner,
2004; Haynie et al., 2009; Girardin et al., 2017). The spatial
random effect η j(.) is needed to capture any remaining addi-
tional effect not captured by the dependence to S(.).

In that sense, a zero value for bj indicates that the choice
of the sampling locations does not depend on the fish biomass
density but only on the spatial random effect.

In addition to bj, a dimensionless spatial metric was devel-
oped to quantify the strength of PS (SM 1.3).

Observation process
Both scientific and commercial observations are considered
proportional to the underlying biomass through a zero-
inflated observation process. In our applications, observations
are expressed as CPUE (in weights unit effort−1), with high
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proportion of zeros (zeros represent on average 30% of the
commercial data and 10–50% of scientific data).

Observations are modelled through a zero-inflated lognor-
mal model conditionally on biomass S(x) in cell x [Equations
(5) and (6)]. The model is derived from Thorson et al. (2016)
or Thorson (2018). We assume that the expected catch μ j(x)
for any fleet/data source j in the cell x depends on the latent
field value S(x) and a catchability coefficient qj [Equation (5)].
A zero catch (y = 0) is modelled as a Bernoulli random vari-
able with parameter exp(−eξ j · μ j(x)), where ξ j is the parame-
ter controlling the intensity of zeros relatively to the expected
catch [Equation (6)]. Then, μ j(x) being fixed, the higher (resp.,
the lower) ξ j, the lower (resp. the higher) the probability of
obtaining a zero-catch.

The distribution of a positive catch y > 0 at a given x is de-
fined as the combination of the probability of obtaining a non-
zero catch (1 − exp(−eξ j · μ j(x))) times a positive continuous
distribution L (here a lognormal distribution) with expected
value μ j (x)

(1−exp(−eξ j ·μ j (x)))
and standard deviation σ j. This formu-

lation allows to represent the zero catch while assuring that
the expected catch still equals μ j(x).

μ j (x) = qj · S (x) . (5)

P (Y = y|x, S (x))

=

⎧⎪⎨
⎪⎩

exp
(−eξ j · μ j (x)

)
if y = 0

(
1 − exp

(−eξ j · μ j (x)
)) · L

(
y, μ j (x)(

1−exp
(
−eξ j ·μ j (x)

)) , σ 2
j

)
if y > 0

(6)

Per se, catchability qj are not identifiable as there is no in-
formation in the model to estimate the absolute scale of S.
Commercial catches and/or scientific surveys will be only in-
formative about fish biomass relative density and additional
information must be provided to ensure statistical identifia-
bility. If only one data type feeds the model (only scientific or
commercial data), relative catchability is fixed to 1 and the
spatial random field values is in the same scale as the data.
If two data types (or more) are used to feed the model, one
of the relative catchability (denoted qre f ) has to be fixed, the
other ones being estimated relatively to the first one through
a scaling factor kj [Equation (7)].

qj = kj ∗ qre f . (7)

As it is illustrated further in the simulation-estimation study
(see the first section of the results), the choice of the reference
level can have important consequences on the precision of es-
timation.

Maximum likelihood estimation
The estimation of the model is performed with TMB [Tem-
plate Model Builder—Kristensen et al. (2016)] and the spa-
tial random effects are estimated through the SPDE approach
(Lindgren et al., 2011) within the R software (R Core Team,
2020). More details on estimation are available in the Supple-
mentary material (SM 1.4).

IM validation
A key issue with IM is whether the different data sources
provide consistent or conflicting information (Saunders et al.,
2019; Zipkin et al., 2019; Peterson et al., 2021). In our frame-
work, the key question is whether integrating commercial data

in addition to scientific data will complement or will disrupt
the inferences obtained from the scientific data, considered
as a reference source of information. To address this issue,
we propose a validation procedure based on the consistency
check initially developed by Rufener et al. (2021) and designed
to check whether estimates obtained from the IM are consis-
tent with those obtained from the model fitted to scientific
data only. The procedure would reject consistency if the pa-
rameters estimates from the IM fall outside the 95% confi-
dence region of parameters estimates from scientific data only
(see SM 1.5 for more details on the procedure). This validation
step is applied to both simulations and case studies.

Simulation–estimation experiments

We conducted simulation–estimation experiments to assess
the performance of the method for different data/model con-
figurations (Table 1, see also SM 2 for extended details on
simulations). For all scenarios, simulations of data, covari-
ates, and GRF were parameterized to tailor the case studies
described hereafter. All scenarios and configurations are re-
peated 100 times so as to capture the variability between repli-
cates.

Simulation–estimation experiments were specifically de-
signed to address four questions detailed below. In all cases,
commercial data were simulated with various levels of PS (b =
0 for uniform sampling, b = 1 for moderate PS, and b = 3 for
strong PS) to assess the effect of PS on model’s performance
(Figure 2).

(Q1) How does each data source contribute to inferences?

In real case study, commercial data sample size may be far
superior to scientific data (specifically when using landings
data), which might result in commercial data that dominate
inferences. To assess how the balance between the scientific
and commercial sample sizes drives the relative contribution
of each data source, simulations were conducted with few sci-
entific samples (50 each) with increasing commercial samples
(50 = small, 400 = medium, and 3000 = large), and with
a large commercial sample size (3000) with increasing scien-
tific sample size (50 = small, 400 = medium, and 3000 =
large). No scenario with more scientific samples than com-
mercial samples is presented here as it is a very unlikely con-
figuration when using logbook catch data.

For each combination of commercial and scientific sample
size, we fitted four different models: a model fitted to scientific
data only, a model fitted to commercial data only, and two
IM fitted to both commercial and scientific data, one with the
scientific data used as reference level and another one using
the commercial data as reference level (Cf. Equation (7)).

For questions Q2, Q3, and Q4, all simulations were con-
ducted using nscienti f ic = 50 and ncommercial = 3000 to tailor
the case studies. Commercial data are used as the reference
for catchability in the IM.

(Q2) How does a partial coverage of the study area by the
commercial data affect the quality of the estimation?

While scientific surveys are supposed to cover the full pop-
ulation distribution area, partial coverage of the area by com-
mercial fishing boats may arise from different sources like spa-
tial management closures (e.g. box closure) or too expensive
travels from the coast. To assess how a partial coverage by
commercial data can affect estimates, we simulated data with
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1138 B. Alglave et al.

Figure 2. Maps of simulated commercial sampling points obtained for
three values of PS (b = 0, b = 1, and b = 3). Blue scale: values of the
simulated biomass field. Dots: fishing points. For b = 0, the targeting
metric Tj(x) = 1. For b = 1, arg max(Tj(x)) = 12, q50%(Tj(x)) = 0.4. For
b = 3, arg max(Tj(x)) = 80, q50%(Tj(x)) = 0.002 (SM 1.3).

the commercial sampling intensity arbitrarily fixed to 0 in a
fixed 9 × 9 box (15% of the domain) while some biomass
and some scientific samples are still simulated in this area. We
compared the outputs obtained form the models fitted to com-
mercial data that partially cover the entire area with those ob-
tained with commercial data available on the whole domain.

(Q3) What is the cost of ignoring PS in estimation when
sampling is preferential?

Modelling PS involves conditioning results upon a speci-
fied structural assumption about sampling as well as increased
computational cost. Here, we assess how ignoring PS would
affect the quality of inferences when sampling is actually pref-
erential. We voluntary introduce misspecification between the
model used for simulating the data (with various levels of PS
intensity) and the one used in the estimation procedure (b is
alternatively estimated or arbitrarily fixed at 0).

(Q4) How does the estimation perform when additional
processes other than PS drive the fishing locations?

Fishing locations potentially depend on many other factors
independent from the species distribution (Salas and Gaert-
ner, 2004; Haynie et al., 2009; Girardin et al., 2017). To assess
how such process blurring strict PS may affect the quality of
inferences, we simulate data with a sampling intensity that de-
pends on both the biomass distribution (PS) and an additional
spatial random terms η f (.) independent from the biomass dis-
tribution (Equation (4); see Table 1 for more details on η f (.)
parameterization), and compare the inferences obtained from
a data set simulated with strict PS (η f (.) = 0 on the full do-
main).

Note that for questions Q1, Q2, and Q3, the random effect
η was fixed to 0 in simulations (but it is still estimated in the
estimation model), so that the sampling process only depends
on the distribution of biomass.

Performance metrics
The performance of the estimation method was assessed us-
ing different metrics on key model outputs such as the total
biomass, the PS parameter b and the spatial biomass predic-
tions.

The quality of the total biomass estimation (the sum over
all grid cells, B = ∑

x S (x)) was explored through the relative

bias (B−B̂)
B , that quantifies how much the total biomass is over

or under-estimated.
The quality of the estimation of the parameter b is assessed

through the relative bias defined as b−b̂
b (except for b = 0,

where only the absolute bias is considered). We also assessed
the relative bias of the species–habitat relationship estimate β̂S

and range parameter ρ as these parameters are meaningful for
understanding species distribution.

The precision of the spatial predictions was studied with
the mean squared prediction error (MSPE) between the simu-
lated and the estimated latent field values 1

n

∑
x (S(x) − Ŝ(x))2

(MSPE—n stands for the number of grid cells).

Case studies

We applied the approach on three case studies of demersal
fisheries in the Bay of Biscay: the common sole (S. solea, Lin-
naeus, 1758), the hake (M. merluccius, Linnaeus, 1758), and
the squids (Loliginidae family). These case studies were se-

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/79/4/1133/6543974 by IFR
EM

ER
 user on 23 M

ay 2022



Combining scientific survey and commercial catch data 1139

Figure 3. Map of scientific samples (black dot) and commercial sampling distribution (red colour scale—unit: fishing hours). Note that all scientific hauls
last around 30 min. Black lines—limits of the spatial domains covered by the scientific survey (Orhago and EVHOE) that delineate the study area.
Left—hake, November 2014 (EVHOE; commercial data from otter bottom trawls targeting demersal species OTB_DEF). Middle—sole, November 2017
(Orhago; commercial data from otter bottom trawls targeting demersal species OTB_DEF). Right—squids, year 2015 (EVHOE; commercial data from
otter bottom trawls targeting cephalopods OTB_CEP).

lected because they emphasize different intensities of PS. Fur-
ther details on case studies and data are provided in SM 3.

To compare models on the same spatial domain for the
three species, we limited the analysis to scientific and commer-
cial data available on the Bay of Biscay only (SM 3.1, Supple-
mentary Figure S3.1 for the spatial grids). Besides, to get some
replicates of the analysis, we applied the approach on 2 years
for each case study (2017 and 2018 for common sole—2014
and 2015 for hake and squid). To keep it synthetic, only the
data and the results of the models for hake in 2014, sole in
2017 and squids in 2015 are presented in this manuscript as
the related IM pass the consistency check and they emphasize
contrasted level of PS.

Survey data
Scientific data (CPUE, in kg h−1 - Figure 3) were derived from
the Orhago survey for common sole and EVHOE survey for
hake and squids (ICES, 2020a; ICES, 2020b). The sampling
density (number of data points km−2) of those two surveys
revealed representative of the sampling density of the main
European trawl surveys from the DATRAS database (see SM
3.2). In comparison, commercial data used in the case stud-
ies are denser by 2 orders of magnitude. Scientific data was
aligned on commercial data by filtering only individuals above
the minimum landing size when available (24 cm for sole and
27 cm for hake—ICES, 2020). The Orhago survey provides 49
samples for 2017 and 2018 and the EVHOE survey provides
86 samples for 2014 and 2015.

Commercial data
For each species, we filtered commercial data for ‘bottom
trawlers’ as they cover a wide part of the study area (Figure 3)
and provide easy to compute and reliable CPUE. Commer-
cial data were standardized by the fishing effort in (kg h−1).
For hake and sole, we filtered the métier targeting demersal
fish (called OTB_DEF) and for squids, the métier targeting
cephalopods (called OTB_CEP).

In comparison with scientific data, the orders of magni-
tude of commercial sample size is much larger. For hake (i.e.
OTB_DEF), there are 6852 commercial samples in 2014 and
5000 in 2015. For squids (i.e. OTB_CEP), there are 7486

commercial samples in 2014 and 9611 in 2015. For sole (i.e.
OTB_DEF), there are 2401 samples in 2017 and 3325 in 2018.

Habitat covariates
A total of two covariates classically used to describe benthic
species distribution were selected: depth and sediment type
(Le Pape et al., 2003; Witman and Roy, 2009; Rochette et al.,
2010). Depth was separated into several categories and was
considered (as sediment) as a categorical variable (SM 3.7,
3.8).

Model configurations
As for the simulation–estimation experiments, the models of
the case studies were fitted under different configurations. To
assess the information brought by each dataset, we compared
the model fitted to scientific data only, to commercial data only
and to both scientific and commercial data. To assess the effect
of PS on model outputs, we compared the IM accounting for
PS (b is estimated) with the IM where PS is ignored (b is fixed
to 0).

For the sole case study, we compared results obtained from
the IM by considering one homogeneous or two distinct fleets
with specific catchability and targeting parameters. Note that
splitting one fleet in two distinct fleets is performed through
a PCA coupled with a HCPC analysis on vessels characteris-
tics data derived from both logbooks and VMS data. All the
clustering analysis is described in SM 3.9.

Model evaluation
Uncertainty of the predictions are quantified through the co-
efficient of variation and all estimates (e.g. fixed parameters
and total biomass) are represented with related 95% CIs. We
assess the consistency of the IM through the statistical tests
described in the section ’IM validation’ and in SM 1.5. Fi-
nally, the different IM are compared through a fivefold cross-
validation, and model performance was quantified based on
two metrics: the MSPE fit that measures goodness of fit and
the PCV that measures predictive capacity (see SM 3.10 for
more details on the metrics and guidelines for interpretation).
For both metrics, the lower the values, the better the model
fits/predicts the data.
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1140 B. Alglave et al.

Results

Simulations

We summarize the main results of the simulation–estimation
experiments below. Additional results are provided in SM 4.

Contribution of each data source in the IM
Models fitted on scientific data only provide systematically un-
biased estimates of total biomass (the mean bias is close to 0
for all sample size—Figure 4, 1st row), and the variance of es-
timations decreases with scientific sample size. Note that the
species-habitat relationship estimates β̂S are also unbiased (see
SM 4.1).

Overall, inferences from the IM revealed consistent with
those obtained from scientific data only (SM 4.2.1). Even
when the commercial sample size is large and the scientific
sample size is small, only 3% of the p-values fall below the
0.05 threshold for the fixed effect test (the test wrongly re-
jects consistency). For the random effect test, the results are
more contrasted as 10% of the p-values fall below the 0.05
threshold when data size are very unbalanced (low scientific
sample—high commercial sample).

In almost all configurations, the IM provide unbiased and
more precise estimates for total biomass and spatial biomass
predictions compared to the model fitted to scientific data only
(Figure 4). As expected, the larger the commercial and the sci-
entific sample size, the more accurate the spatial predictions,
the PS parameter b, and total biomass estimates. Estimates of
b are unbiased in most cases except when commercial sample
size is small and PS is strong (Figure 4, 2nd row).

As expected, the contribution of each data sources in the
IM directly depends on the balance in the sample size. When
sample size is balanced between the data sources, then inte-
grating the two data sources in the model systematically im-
proves the inferences with regards to situations where only
one data source is analyzed. For instance, for large commercial
and scientific sample size (com.L_sci.L) and no PS, the preci-
sion is 1.5 higher (i.e. the MSPE is 1.5 lower) for the IM com-
pared to single-data models (either scientific or commercial—
Figure 4, 3rd row, 1st column). However, when the sample
sizes are unbalanced, the data source with the larger sam-
ple size (here commercial data) dominates inference and in-
tegrating another data source with a smaller sample size (here
scientific data) contributes to a much lesser extent to infer-
ence. See, for instance, the situation where commercial sample
size is large and scientific sample size is small (com.L_sci.S—
Figure 4, 3rd row, 1st column). In this case, the performances
of the model fitted to commercial data alone—with reference
level fixed to commercial data—are very close to those of the
IM whatever the intensity of PS.

Interestingly, the higher the intensity of PS, the higher the
benefits of fitting commercial data in the model (Figure 4,
3rd row); for instance, when both datasets have large sam-
ple sizes (com.L_sci.L), increasing PS reduces error predic-
tions (i.e. increases accuracy) by 2 each time (i.e. for b = 0,
E (MSPE) = 20; for b = 1, E (MSPE) = 10; and for b =
3, E (MSPE) = 5).

Still, the simulations also reveal some limits in the infer-
ences. First, the range parameter might be poorly estimated
and slightly biased when the sample size is small while being
better estimated when increasing the sample size or integrat-
ing additional data in the analysis (see SM 4.3).

Also, in unbalanced cases the accuracy of total biomass es-
timates from the IM revealed highly sensitive to the choice
of the reference level (Figure 4, 1st row). When the commer-
cial sample size far exceeds the scientific sample size, setting
the reference level to the commercial data produces more pre-
cise estimates than setting the reference level to scientific data.
When defining scientific data as reference level, the intercept
of the latent field of relative biomass is estimated from the few
scientific samples and resulting estimates are less precise than
when defining the reference level with a more numerous data
source (here commercial data). This is also true—to a lesser
extent—for spatial predictions (Figure 4, 3rd row).

In the following, only the case where commercial samples
exceed scientific samples and the reference level is fixed with
commercial data is explored further as it is the closest to the
case studies configuration (Table 1).

Impact of a partial coverage of the study area by the commer-
cial data
When commercial data only partially cover the distribution
area, commercial data still provide valuable information to
predict biomass spatial distribution whatever the PS intensity
is (Figure 5, 2nd column). When sampling is not preferen-
tial (data simulated with b = 0), a partial coverage of the
distribution area produces on average 1.5 less precise spatial
predictions but estimates remain unbiased (Figure 5, 3rd row,
comparing 1st and 2nd column). When sampling is preferen-
tial (either moderate or high), biomass estimates are slightly
underestimated. Integrating scientific data in the analysis does
not correct this bias.

Finally, all model configurations allow for unbiased and
precise estimation of the species–habitat parameters β̂S,
whether or not there is a partial coverage of the domain
(see SM 4.1) and overall almost all IM are consistent with
scientific-based model (SM 4.2.2).

How does ignoring PS impact inferences?
As expected, the impact of ignoring PS in the estimation model
is negligible when data is simulated with no PS, and becomes
more and more detrimental when the intensity of PS increases
in the truth (Figure 5, 3rd column). With no surprise, when
data are generated with no PS (b = 0), ignoring PS in the
estimation procedure has no effect on the estimation perfor-
mance. When PS is moderate, total biomass estimates are 5%
overestimated (b = 1). In the case of strong PS (b = 3), ig-
noring PS in the estimation strongly deteriorates the qual-
ity of inferences regarding total biomass estimates (Figure 5,
1st row, 3rd column). Total biomass estimates are overesti-
mated by 50% on average. However, the main spatial pat-
terns are well identified with or without consideration of PS,
even though more precise when accounting for PS (Figure 5,
3rd row, 1st column). SM 4.4 (Supplementary Figure S4.4.1)
presents maps comparing a simulated biomass field and model
predictions obtained by considering or ignoring PS when b =
3. The areas with high biomass values (i.e. where commercial
sampling is dense) are well-predicted by the models account-
ing for PS or not. The main differences are localized in poorly
sampled areas where biomass is low. Accounting for PS in es-
timation allows to interpret the low sampling intensity areas
as low-density areas, and therefore, to reduce the bias in those
areas (SM 4.4, Supplementary Figure S4.4.2).
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Combining scientific survey and commercial catch data 1141

Figure 4. Performance metrics obtained for various commercial and scientific data sample size. Column: intensity of the PS in simulated data. x-axis:
five combinations of commercial and scientific sample size. ‘com’ stands for commercial, ‘sci’ stands for scientific, S stands for small sample size (50),
M stands for medium sample size (400), and L stands for large sample size (3000). Colours: model configurations. Integrated_q.com: IM with
catchability fixed to 1 for commercial data; Integrated_q.sci: IM with catchability fixed to 1 for scientific data. Boxplots represent the variability among
the 100 replicates.
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1142 B. Alglave et al.

Figure 5. Performance metrics obtained in different data and model configurations. Red points: mean value. 1st column: no discrepancy between
simulation and estimation. 2nd column: commercial data do not cover a 9 × 9 zone of the grid. 3rd column: b is arbitrarily fixed to 0 in the estimation
models. 4th column: data simulated with a random effect η in the sampling intensity process. In all configurations, simulations are conducted for three
levels of PS (x-axis: b = 0, b = 1, and b = 3). Colours: data sources used in the IM for inferences. Integrated_q.com: IM with catchability fixed with
commercial data. Boxplots represent the variability among the 100 replicates.

Finally, from a computational point of view, accounting for
PS on average multiplies by 4 the computational time (see SM
4.5).

Effect of other spatially structured processes affecting fishing
locations
As expected, precision of estimates are deteriorated when fish-
ing locations actually depend upon a combination of biomass
distribution (PS) and other mechanisms (here captured by a
spatially structured random term—Figure 5, 4th column). In
this case, the IM still provides valuable inferences on fish dis-
tribution, fish total biomass and estimates of b, although es-
timations are less accurate than the base case. For instance,
MSPE are five times lower when nothing else than PS affects
sampling locations compared with a case where sampling lo-
cations depend on both PS and other independent spatial pro-
cesses (Figure 5, 3rd row, 1st and 4th column). But interest-
ingly, the weight of scientific data increases when the sampling
distribution of commercial data is blurred by spatial processes

independent from biomass spatial distribution. MSPE and rel-
ative bias provided by the IM are both 1.4 smaller compared
to those obtained when the model is fitted to commercial data
only.

Case studies

Below we summarize the main results obtained from the appli-
cation of the framework to the three case studies. Additional
results and maps are provided in SM 5.

Contribution of each dataset to the inferences
Almost all the case studies successfully passed the consistency
test between the IM and the model fitted to scientific data only
(see SM 5.1).

Models based on scientific data provide different spatial
predictions compared with the IM. Predictions for sole and
squids from the scientific-based model are mainly shaped by
the covariate effects (Figure 6; for further analysis see SM 5.2,
SM 5.3, and SM 5.4). On the other hand, predictions from the
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Combining scientific survey and commercial catch data 1143

Figure 6. Prediction of the relative biomass for each case study. 1st column: model fitted to scientific data only; 2nd column: IM accounting for PS; and
3rd column: commercial-based model accounting for PS. When the model is fitted to scientific data only, relative biomass is rescaled with the relative
catchability parameter estimated within the IM so that all maps are in the same scale.

IM are mainly shaped by the spatial random effect as commer-
cial data allow to better capture the local spatial correlation
structures.

Consistently with simulations, inferences from the IM are
mainly driven by the commercial data (Figure 6). This logi-
cally arise from the much larger sample size of commercial
data compared with scientific data, combined with the good
coverage of commercial data in high-density areas (Figure 3).

As commercial data is denser than scientific data, they will bet-
ter capture local spatial correlation structures than scientific
data. SM 5.5 provides some additional analysis of the infor-
mation brought by commercial data in the IM.

In this configuration, scientific data bring information to
model predictions in areas poorly covered by the commer-
cial data (SM 5.6—e.g. for squids, the offshore predictions
are downscaled by scientific data).
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1144 B. Alglave et al.

PS and other processes affecting fishing locations
In this section and related SM (SM 5.7 to SM 5.10), we focus
on results from the IM only.

For the three case studies, estimates of b are positive, sug-
gesting the sampling of fishermen is preferential towards high
biomass density areas. The hake case study has the lowest PS
parameter (b̂ = 0.88, sd(b̂) = 0.107), followed by sole (b̂ =
2.4, sd(b̂) = 0.046), and squids (b̂ = 3.5, sd(b̂) = 0.025).
For more intuition concerning the strength of PS and how it
varies in space, refer to SM 5.7. In all case studies, the spatial
random term η in the sampling process turned out to be spa-
tially structured (SM 5.8) and captures 25–97% of the spatial
variability of fishing locations (SM 5.9). This highlights the
importance of other spatial mechanisms in the choice of fish-
ing locations compared to strict PS towards biomass distribu-
tion.

Consistently with simulations, the higher the PS inten-
sity, the higher the differences between inferences obtained
with and without considering PS. When comparing biomass
field values (Figure 7, left column), ignoring PS increases
predictions in poorly sampled areas (all red areas—compare
with Figure 3). This effect is particularly marked for the squid
case study where the relative difference is the strongest in the
offshore areas. However, considering PS or not has relatively
little effect in areas where sampling is spatially denser (all
white areas). Ignoring PS affects total biomass indices esti-
mates and the relative difference between biomass estimates
with or without PS increases with the value of b estimates
(Figure 7, right column).

When the estimated PS intensity is high (i.e. in the case of
squids) accounting for PS can improve model goodness-of-fit
and predictive capacity (SM 5.10).

Benefits of considering different fleets in the estimation
model
Based on the sole case study, we demonstrate the capacity of
the model to integrate multiple commercial fishing fleets, each
with specific parameters (catchability and PS behaviour). In
the sole case studies, considering two different fleets in the
IM (instead of one homogeneous) improves goodness-of-fit
towards scientific data (SM 5.11, y-axis) and modifies spatial
predictions (SM 5.12).

Discussion

Main findings

Combining multiple sources of data to build more informative
spatio-temporal models for fish distribution is a major chal-
lenge in fishery ecology. Commercial CPUE data have long
been recognized as a valuable source of information eventu-
ally highly complementary to scientific survey data. But the
complexity of the mechanisms driving the way fishermen sam-
ple in space and time make the combination of scientific and
commercial data challenging.

In this paper, we provide a hierarchical framework to inte-
grate scientific surveys and commercial catch declaration data
to infer species distribution while considering the effect of PS
on fishing points distribution. The new model allows for ex-
ploring and questioning the challenges raised by such integra-
tion. The benefit but also the limits of the new approach were
evaluated using simulations and through the application of the

model to three contrasted demersal case studies (sole, hake,
and squids) of the Bay of Biscay fishery.

Both simulations and case studies demonstrate that ignor-
ing PS in the inference may be highly detrimental when the
intensity of PS is strong. The present framework can serve as a
tool to assess the benefit of including PS in analysis, depending
on the intensity of PS but also on the modelling objectives. As
already shown in previous studies (Conn et al., 2017; Pennino
et al., 2019), when PS actually occurs in commercial catches,
ignoring this process may bias inferences on total biomass es-
timates. Even if ignoring PS may not hamper the capacity to
detect areas of high biomass, the biomass in low-density areas
may be overestimated. Therefore, if the objective is to compute
biomass indices integrated over a large area, then it might be
worth accounting for PS to avoid biased results. In contrast, if
the objective is to identify hotspots, the benefits of considering
PS may be small with regard to the additional computational
time it requires.

The three case studies illustrated the potential of the model
to handle the variability of PS behaviour among species and
fleets. Low PS was revealed for hake, while a moderate and
strong PS was revealed for sole and squids, respectively, which
is consistent with the expert knowledge on the behaviour of
those bottom trawls fleets (YV, pers. comm.).

Results also demonstrate the capacity of the framework
to integrate commercial catch data from multiple fleets, and
the benefits for the quality of inferences when those fleets
have different features such as distinct catchabilities or target-
ing behaviours. For the sole case study, this approach proves
useful to distinguish two segments in the bottom trawl fleet,
which improved model outputs. This framework could be ex-
tended to more than two fleets and combined with other stud-
ies analyzing fleets structure (Pelletier and Ferraris, 2000; Fer-
raris, 2002; Stephens and MacCall, 2004; Deporte et al., 2012;
Winker et al., 2013; Okamura et al., 2018).

Challenges in modelling PS

Still, modelling the spatial distribution of commercial fishing
locations remains highly challenging (Hintzen, 2021; Hintzen
et al., 2021). Our framework is shaped to integrate data from
homogeneous fishing fleets supposed to share the same fishing
behaviour, which simplifies the modelling of the non-uniform
spatial intensity of fishing for each fleet. We propose a par-
simonious model where the dependence of the sampling in-
tensity to the biomass is supposed to be linear in the log
scale. This is a strong hypothesis and departure from this hy-
pothesis may obviously exist in the truth. For instance, the
intensity of PS could vary in space such as in Conn et al.
(2017) who considered that the degree of PS could change
across the landscape. On the other hand, however, the log–
log linear assumption is easy to implement in other soft-
ware including the VAST R package used for operational
assessments in some management regions (Thorson et al.,
2019).

Of course, many other factors may drive the spatial inten-
sity of fishing, and those were simply captured in our model
through an additional spatial random term. For instance, fish-
ers’ behaviour may depend on prior knowledge of fish spatial
distribution, on information sharing within fishing coopera-
tives, on expected distribution of bycatch species, or logisti-
cal constraints (e.g. transit costs) (Salas and Gaertner, 2004;
Haynie et al., 2009; Girardin et al., 2017). Targeting behaviour
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Combining scientific survey and commercial catch data 1145

Figure 7. Relative difference in biomass spatial predictions between IM accounting or not for PS for the three case studies (left). Comparison of the total
biomass estimates obtained from the IM when accounting or not for PS (right). b_est: PS is estimated. b_fix: PS is not accounted for. The relative bias is
calculated as (Sb_fix(x) – Sb_est(x))/Sb_est(x)). The total biomass is computed as the sum of the latent field values on the spatial domain.

may also be directed toward an assemblage of species rather
than toward a single species (Bourdaud et al., 2019).

The random effect should be able to capture additional
variations whenever the departure from a continuous Gaus-

sian random field is not too high. If not, for instance in the
case of fishery closures where fishing activity suddenly drops
to very low levels (as explored in simulation–estimation),
the model may produce biased estimates due to model
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misspecification. We did not detect such misspecification in
our case study, but we recommend that future analyses based
on fishery-dependent data present a log–log plot between
sampling intensity and predicted biomass density to diagnose
strong departure from model hypothesis.

Still, some non-spatial targeting has been reported from
multi-species catch records (Stephens and MacCall, 2004;
Okamura et al., 2018). Efforts to integrate these methods into
spatio-temporal models are underway (Thorson et al., 2016),
although these methods have not previously been extended to
jointly analyze multi-species fishery and survey data.

Relative contribution of scientific and commercial
data

Our analysis exemplifies that a key issue in such integrated
modelling exercise is to get a sensible evaluation of the relative
contribution of the different sources of data in estimation. In
particular, critical issues with the IM are whether the different
data sources provide eventually highly unbalanced quantity of
information (then the inferences are fully dominated by one
of the data sources; Fletcher et al., 2019), and whether they
provide complementary or conflicting information to the final
inferences (Saunders et al., 2019; Zipkin et al., 2019; Peterson
et al., 2021).

We implemented a likelihood ratio-test (Rufener et al.,
2021) to check for model consistency between the IM and
the scientific-based model. In most cases, models passed the
consistency check successfully, although it was rejected in
some cases. Some further analysis should investigate in de-
tail the reasons of these inconsistencies as they could probably
shed light on some new research avenues for model improve-
ment. For instance, some neglected vessel effect (e.g. difference
in catchability among vessels—Thorson and Ward, 2014) or
some too simplistic representation of the sampling and/or the
observation process of commercial data might partly explain
these inconsistencies.

Simulations revealed that when scientific data and commer-
cial data have balanced sample size, they both contribute to
inference and the IM provide better biomass predictions than
models based on single-data set. As expected, when the sam-
ple size of commercial data far exceeds scientific data, infer-
ence about spatial patterns is mainly driven by the commer-
cial data. In the three case studies, we used commercial data
with sample sizes that far exceed the scientific one. In that
case, scientific data have relatively limited weight in the fi-
nal inference. Still, they bring valuable information in areas
that are not sampled by the commercial fishery. Also, scien-
tific data remain a critical component in the analysis as they
provide some reference data through a standardized sampling
plan and a controlled protocol allowing then to assess for the
IM consistency. It would be worth applying our framework to
other case study that may consist in more balanced data sets,
such as models seeking to combine scientific with onboard ob-
server data (Rufener et al., 2021), or in pelagic fisheries where
acoustic surveys can provide continuous observations over the
full domain.

Our results also point out the importance of setting the
reference level for the catchability coefficient with either the
scientific or the commercial data. In particular, when the
sample size of the commercial data far exceeds the scientific
survey, fixing the reference level with scientific surveys gener-
ally results in higher imprecision, due to the smaller sample

size. But still, in certain cases, the scientific data may provide
absolute information on biomass and fixing the catchability
factor associated with the survey data can result in an inter-
pretable measure of index scale (Thorson et al., 2021). Hence,
the choice of the reference level could be a matter of trade-
offs between precision of inferences and interpretation of the
results in terms of scale.

The limits of reallocated catch data

Probably one of the major limits of our approach is that the
actual framework ignores the uncertainty that arises from the
procedure used to reallocate the catch declarations in space.
Obtaining the spatialized CPUE inputs used in the model re-
quires pre-treatment of the commercial catch declaration data
to allocate declaration data to VMS positions (Hintzen et al.,
2012). Raw data corresponds to fishing operations that are
daily aggregated and reported at coarse administrative spatial
units (0.5◦ latitude by 1◦ longitude rectangles). These declara-
tions are then reallocated uniformly on all GPS locations pre-
viously identified as fishing in the vessel path. This procedure
has been demonstrated to be robust while being a fast and a
pragmatic approach for reallocating landings to VMS pings
(Gerritsen and Lordan, 2010; Murray et al., 2013). However,
it implies strong hypotheses that may artificially increase or
transform the information provided by the data. Typically,
the uniform reallocation of catch declarations on all GPS po-
sitions identified as fishing may smooth the spatial signal,
which could potentially explain the lack of species–habitat re-
lationship obtained from the IM. The effect of such realloca-
tion should be explored in further study to better understand
its consequences on model predictions/estimates and further
model development should investigate how to mitigate its con-
sequences.

Perspectives

Our work raises some major challenges, which all constitutes
exciting tracks for future research.

Data-weighting approaches could be explored further to
better control the contribution of the two sources of data and
eventually assess if increasing scientific data weight could im-
prove model predictive capacity. Data-weighting methods in-
tend to modify the relative influence of the data sources by
assigning or estimating a weight for each data source (Fran-
cis, 2017; Punt, 2017; Wang and Maunder, 2017; Punt et al.,
2020). Only very few studies have already explored the po-
tential for data weighting in the SDM context (Fletcher et al.,
2019). Still, several questions regarding the weight specifica-
tion remain open or largely debated. For instance, how to rig-
orously fix/estimate/interpret the weight? Also, when can we
consider that a data-weighting approach is relevant or is it
only a matter of model misspecification? Some theoretical and
modelling development could be highly valuable to provide
a generic and rigorous formalization for either data weight-
ing or model correction in the context of SDM (but see for
instance the approach provided by Thorson et al. (2017b)
for composition data in the context of stock assessment
models).

Another option would consist in developing an alternative
observation model for the commercial CPUE in order to better
capture the uncertainty associated with the reallocation pro-
cedure. As a general idea, an observation model could be de-
veloped to explicitly represent that CPUE are available at the
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scale of the daily fishing activity (the scale that corresponds
to the catch declaration), rather than artificially reallocating
uniformly catch declarations on related VMS pings. Doing
so, the quantity of information provided by commercial data
would be more representative of the information they really
contain.

Future work should also seek to better integrate the
discrete-choice and econometric analyses emphasizing the
complexity of the processes related to the choice of fishing
locations. For instance, the sampling process could account
for the pluri-specific nature of fisheries (Bourdaud et al., 2019)
and additional factors other than fish distribution could be in-
cluded to explain the variability of sampling intensity in space
and time (Salas and Gaertner, 2004; Haynie et al., 2009; Gi-
rardin et al., 2017).

Finally, including a temporal dimension in the model and
fitting a longer time series looks a fruitful research avenue.
Moving to spatio-temporal modelling that would consider
temporal autocorrelation in the spatial distribution may be
methodologically challenging (Cameletti et al., 2013), but
represents an exciting step towards a better understanding
of the seasonal spatial distribution of fish resources. Indeed,
commercial data are often available all along the year, when
scientific surveys most often occur once or twice a year.
Combining scientific and catch declarations data within an in-
tegrated spatio-temporal framework built at an infra-annual
time step (e.g. season or month) would allow to complement
the gap of information to investigate fish spatio-temporal dis-
tribution at a finer temporal scale than what is possible us-
ing scientific data only (Bourdaud et al., 2017; Pinto et al.,
2019; Rufener et al., 2021). It would offer new opportuni-
ties to interpret seasonal patterns of distribution (Kai et al.,
2017), identify fish functional habitats such as spawning ar-
eas (Paradinas et al., 2015; Delage and Le Pape, 2016), and
provide the required knowledge for protecting those habitats
(Schmitten, 1999; Erisman et al., 2020).

Supplementary material

All the Supplementary material documents are available at
the ICESJMS online version of the manuscript. They provide
additional information on the modelling framework (SM1),
material and methods for simulations (SM2) and case stud-
ies (SM3), results for simulations (SM4), and case studies
(SM5).
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