FN Archimer Export Format PT J TI Catastrophic overwash and rapid retreat of a gravel barrier spit during storm events (Sillon de Talbert, North Brittany, France) BT AF Suanez, Serge Stéphan, Pierre Autret, Ronan Houron, Julien Floc’h, France David, Laurence Ammann, Jérôme Accensi, Mickael André, Gael Le Guyader, Damien Cancouët, Romain AS 1:1;2:1;3:1,2;4:3;5:4;6:1;7:4;8:5;9:6;10:7;11:8; FF 1:;2:;3:;4:;5:;6:;7:;8:PDG-ODE-LOPS-SIAM;9:;10:;11:; C1 LETG UMR 6554 CNRS Université de Bretagne Occidentale, Institut Universitaire Européen de la Mer, rue Dumont d’Urville Plouzané, France Laboratoire de Dynamique et de Gestion Intégrée des Zones Côtières, Chaire de Recherche en Géoscience Côtière Université du Québec à Rimouski Rimouski, QC , Canada Réserve naturelle régionale du Sillon de Talbert, 48 Rue du Sillon de Talbert Pleubian, France Laboratoire Géosciences Océan, LGO UMR 6538 CNRS Université de Bretagne Occidentale, Institut Universitaire Européen de la Mer, rue Dumont d’Urville Plouzané, France Laboratoire d'Océanographie Physique et Spatiale, LOPS UMR 6523, Ifremer/CNRS/UBO/IRD, Z.I. Pointe du Diable, CS 10070 Plouzané, France Service Hydrographique et Océanographique de la Marine, 13 rue du Chatellier, CS 92803 Brest, France Geo4Seas Society, 3 Venelle de la Tour d’Auvergne Le Relecq‐Kerhuon , France EURO‐ARGO ERIC, Campus Ifremer, Technopole Brest Iroise, 1625 Route de Sainte‐Anne Plouzané ,France C2 UBO, FRANCE UNIV QUEBEC (UQAR), CANADA RESERV NATUR REG SILLON TALBERT, FRANCE UBO, FRANCE IFREMER, FRANCE SHOM, FRANCE GEO4SEAS SOC, FRANCE EURO‐ARGO ERIC, FRANCE SI BREST SE PDG-ODE-LOPS-SIAM UM LOPS GEO-OCEAN IN WOS Ifremer UMR WOS Cotutelle UMR copubli-france copubli-univ-france copubli-int-hors-europe IF 3.3 TC 3 UR https://archimer.ifremer.fr/doc/00755/86687/92134.pdf LA English DT Article DE ;gravel barrier spit;model;overwash;spit retreat;storm AB The morphodynamic functioning of the Sillon de Talbert gravel barrier spit is analyzed using a high-frequency survey carried out between September 2012 and December 2019. It is based on beach profile measurements along two transects, modeling offshore wave data (WW3), tide gauge records, and shallow waves and water levels recorded in the intertidal zone. A barrier retreat of –23 to –30 m over the 7-year survey (i.e., –3.3 to –4.3 m.y-1) is measured. This retreat is not related to long-term SLR (macroscale of 102 to 103 yr), but to mesoscale (100 to 102 yr) morphogenic events combining storm wave and high spring tide. Over 87% to 90% of the barrier retreat is due to three significant events (February 1-2, 2014, February 9, 2016, and January 3, 2018). The storm impact scale model of Orford and Carter (1982) is tested. The estimation of the wave runup for the calculation of extreme water levels (i.e., peak overflow elevation (Oe) component), is based on the calibration of an equation performed from in situ measurements of the swash elevation. The flow depth (Od,q) overtopping the crest of the barrier (Bh) is thresholded by taking into account the morphological response of the barrier in order to define regimes corresponding to overtopping, discrete overwash, and sluicing overwash. While the Orford and Carter model is generally successful in reproducing the morphodynamic evolution of the Sillon de Talbert, the wave energy flux (F) must be considered as an additional parameter in order to improve the fit of the model, so far as it contributes in some cases to change the morphodynamic regime. Thus, the wave energy flux constitutes a key component in the quantification of the water flow across the barrier (Od,q) corresponding to the hydrodynamic forcing of the model, which becomes (Od,F). PY 2022 PD JUL SO Earth Surface Processes And Landforms SN 0197-9337 PU Wiley VL 47 IS 8 UT 000774621300001 BP 2024 EP 2043 DI 10.1002/esp.5361 ID 86687 ER EF