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Abstract
The global ocean has absorbed approximately 30% of anthropogenic CO2 since the 
beginning of the industrial revolution. However, the spatiotemporal evolution of this 
important global carbon sink varies substantially on all timescales and has not yet 
been well evaluated. Here, based on a reconstructed observation- based product of 
surface ocean pCO2 and air– sea CO2 flux (the MPI- SOMFFN method), we investigated 
seasonal to decadal spatiotemporal variations of the ocean CO2 sink during the past 
three decades using an adaptive data analysis method. Two predominant variations 
are modulated annual cycles and decadal fluctuations, which account for approxi-
mately 46% and 25% of all extracted components, respectively. Although the whole 
summer to non- summer seasonal difference pattern is determined by the Southern 
Ocean, the non- summer CO2 sink at mid- latitudes in both hemispheres shows an in-
creasing trend (a total increase of approximately 1.0 PgC during the period 1982– 
2019), while it is relatively stable in summer. On decadal timescales for the global 
ocean carbon sink, unlike the weakening decade (1990– 1999) and the reinvigoration 
decade (2000– 2009) in which the Southern Ocean plays the dominant role, the re-
inforcement decade (2010– 2019) is mainly the result from the weakening source ef-
fect in the equatorial Pacific Ocean. Our results suggest that except for the Southern 
Ocean's role in the global ocean carbon sink, the strengthening non- summer's sink at 
mid- latitudes in both hemispheres and the decadal or longer timescales of equatorial 
Pacific Ocean dynamics should be fully considered in understanding the oceanic car-
bon cycle on a global scale.
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1  |  INTRODUC TION

The global ocean has absorbed approximately one- third of the car-
bon emitted by fossil and land- use change since the beginning of 
the industrial revolution, significantly regulating the growth pat-
terns of the atmospheric CO2 and the associated climate change 
(Friedlingstein et al., 2020; Landschützer et al., 2014; Sabine et al., 
2004). The uptake of CO2 by the ocean and the outgassing of CO2 
from the ocean are spatiotemporally uneven. The strength of the 
global ocean carbon sink in each ocean region is determined by 
chemical, biological, and physical processes. There are considerable 
large discrepancies in CO2 uptake among oceans regarding their sea-
sonal to decadal variations, which are linked to the internal variabil-
ity of climate systems (Ilyina, 2016; McKinley et al., 2020).

The Southern Ocean, south of 35°S, accounts for approximately 
40% of global oceanic uptake of anthropogenic CO2 (Landschützer 
et al., 2015). The carbon sink in the Southern Ocean is quite sensitive 
to physical climate variability, varying substantially on all timescales 
but showing more distinct seasonal and decadal variations. Seasonal 
fluctuations are induced mainly by the strong compensating effects 
of ocean biology, mixing, and warming/cooling (Gruber et al., 2019). 
Decadal variabilities show a period of weakening throughout much 
of the 1990s and then a period of rebound after 2000 (Landschützer 
et al., 2015). Although mechanisms are not fully captured, the weak-
ening period during the 1990s should be caused by a southward shift 
of the westerlies that enhanced the upwelling and outgassing of CO2. 
The rebound decade in the 2000s was probably driven by cooling in 
the Pacific sector, enhanced stratification in the Atlantic and Indian 
Ocean sectors, and a weakening of meridional overturning circulation 
(Gruber et al., 2019; Landschützer et al., 2016; Pérez et al., 2013).

The equatorial ocean plays an important role in the global carbon 
cycle, as it is the ocean's largest natural source of CO2 to the atmo-
sphere, with estimations of its annual contribution ranging between 
0.6 and 1.5 Pg (Feely et al., 2006). Equatorial waters are comparatively 
active in exchanging CO2 with the atmosphere in the context of long- 
term changes and exhibit a large amount of spatial and temporal vari-
ability due to interannual and decadal variabilities, especially in the 
central and eastern Pacific Ocean (Feely et al., 2006; Sutton et al., 
2014). The large interannual variability in air– sea CO2 flux within the 
tropical Pacific is thought to play a dominant role in the interannual 
variability in the global oceanic CO2 uptake (Takahashi et al., 2009; 
Wanninkhof et al., 2013). This variability has been proven to be associ-
ated with El Niño- Southern Oscillation (ENSO) (Yasunaka et al., 2019). 
During El Niño events, equatorial CO2 outgassing in the tropics weak-
ens due to the weakening upwelling and retreat of the cold tongue 
(Ishii et al., 2014; Strutton et al., 2008). On decadal timescales, decadal 
changes in the fugacity of CO2 have been proven to be correlated with 
the sea surface temperature, wind speed, and regime shifts of the 
Pacific Decadal Oscillation (PDO) (Feely et al., 2006).

Even though these main mechanisms are known, there are con-
siderable uncertainties regarding seasonal to decadal variations of 
the global ocean carbon sink (Ilyina, 2016) due to limited observa-
tional data. In addition, ocean models fail to simulate low- frequency 

variabilities, such as decadal variations (Ishii et al., 2014; Lenton 
et al., 2013; Wanninkhof et al., 2013). Although atmospheric CO2 in-
versions show lagerer variability than ocean inversions, the general 
patterns of the timing and magnitude are rather incongruent with 
those of ocean models (Peylin et al., 2013).

To quantify long- term variations of the global ocean carbon sink, 
the surface ocean CO2 measurement community created the Surface 
Ocean CO2 Atlas (SOCAT), with the latest version of SOCAT (version 
2021) including 30.6 million observations of global oceans and coastal 
seas ranging from 1957 to 2020 (Bakker et al., 2016). Although data 
coverage has increased substantially in recent years, there are only 
a few regions (about 1.4%) in the global ocean for which sea surface 
pCO2 has been monitored for decades at the same location (Bakker 
et al., 2016; Bates et al., 2015; Landschützer et al., 2016). Thus, a se-
ries of data interpolation and extrapolation- based methods, together 
with advances in remote sensing and machine learning techniques 
(Land et al., 2019), have been proposed to fill data gaps in the ma-
jority of the global ocean (Jones et al.,2015; Landschützer et al., 
2014; Rödenbeck et al., 2014; Sasse et al., 2013; Zeng et al., 2014). 
To date, the most established approaches are the SOM- FFN method 
of Landschützer et al. (2013), the CSIR- ML6 method of Gregor et al. 
(2019), the CMEMS- FFNNv2 method of Denvil- Sommer et al. (2019), 
the Jena- MLS method of Rödenbeck et al. (2014), and the NIES- FNN 
method of Zeng et al. (2014). Although each of these methods has 
its own strength and weakness, the majority of methods fall into an 
appropriate root mean squared error of approximately 10 μatm when 
compared with SOCAT (Gregor et al., 2019). A series of previous 
works using the so- called SOM- FFN method have pointed out sea-
sonal, interannual, and decadal variations in the global ocean carbon 
sink; however, substantial uncertainties remain (Landschützer et al., 
2016). Particularly, one needs attention is that the level of variabilities 
at different timescales in the global ocean carbon sink, and mecha-
nisms that drive these variations in the global ocean carbon sink.

Here, we further investigate the spatiotemporal evolutions 
from seasonal to decadal timescales using an adaptive data anal-
ysis method based on the reconstructed product of the surface 
ocean pCO2 via the SOM- FFN method (Landschützer et al., 2013). 
We extracted the seasonal to decadal variability from these air– sea 
flux maps and then examined the contributions from high-  to low- 
frequency components. Emphasis is placed on the spatiotemporal 
variability of seasonal and decadal fluctuations, as well as the main 
drivers of these fluctuations.

2  |  DATA AND METHODOLOGY

The data used in this study are an updated observation- based 
mapped estimate of the air– sea CO2 flux taken from SOCAT (Bakker 
et al., 2016; Landschützer et al., 2014). Landschützer et al. (2013, 
2014) developed a two- step neural network mapping approach to 
reconstruct basin- wide monthly maps of the sea surface partial 
pressure of CO2 (pCO2) flux at a resolution of 1° × 1°. The SOM- FFN 
approach successfully overcame the low spatiotemporal density of 
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surface carbon measurements. Unlike other data interpolation al-
gorithms (e.g. Nakaoka et al., 2013; Rödenbeck et al., 2014; Sasse 
et al., 2013; Takahashi et al., 2009), the SOM- FFN method can 
produce nearly bias- free estimates on a global scale while retain-
ing a reasonable amount of fine- scale structure in the observations 
(Landschützer et al., 2014). The version used here is the latest ver-
sion (2020v) ranging from 1982 to 2019, which is publicly available 
at https://www.ncei.noaa.gov/data/ocean s/ncei/ocads/ data/01605 
58/MPI_SOM- FFN_v2020/. For a more detailed description of this 
reconstruction product, please refer to Landschützer et al. (2013).

The multi- dimensional ensemble mode decomposition (MEEMD) 
method is an adaptive analysis method that was developed to extract 
spatiotemporal signals from high-  to low- frequency timescales (Wu 
et al., 2009). MEEMD was developed based on empirical mode de-
composition (EMD) (Huang et al., 1998) and ensemble empirical mode 
decomposition (EEMD) (Wu & Huang, 2009). Unlike almost all previ-
ous signal analysis methods, EMD/EEMD/MEEMD methods are adap-
tive and appropriate for both linear and nonlinear time series analysis.

The spatiotemporal data x(s, t) are sliced into temporal data se-
ries xs(t) at any spatial grid point s by EEMD. All sliced data in our 
study can be interpreted as a series of amplitude- frequency mod-
ulated oscillatory components (intrinsic mode function, IMF) taken 
from high- frequency to low- frequency timescales and having a resi-
due trend Rs as follows:

where SemiA(t) is the high- frequency component with a time scale 
of several months to half a year, MACs(t) is the modulated annual 
cycle with a quasi- annual period, in which amplitude and frequency 
change with time, InterAs(t) is the interannual timescale component 
with a period of several years, Decs(t) is the decadal component 
with a period of approximately 10 years, and Rs(t) is the residual 
trend. Unlike a linear fitted trend, the time- varying trend obtained 
by EEMD is an intrinsically fitted monotonic function or a function 
in which there can be at most one extremum within the whole data 
span (Wu et al., 2007, 2011). For MEEMD, we then piece together 
identical timescale components of data series from all grids to form 
a temporal evolution of the spatially coherent structure of that 
timescale. It should be noted that the decomposed IMFs and Rs(t) by 
EEMD and MEEMD require no a priori function form (basis). All the 
time- varying components and residue trends have low sensitivity to 
the addition of new data and would be included in the cycles with 
the extension of the data length (Wu et al., 2009, 2011).

3  |  RESULTS AND DISCUSSION

3.1  |  Global air– sea CO2 flux in different timescales

From the integrated global air– sea CO2 flux time series 
(Figure 1), we can see substantial seasonal and decadal variabili-
ties (Figure 1a). The global ocean carbon sink remained stable 

before 1990 and weakened through much of the 1990s; then, the 
ocean sink started to strengthen substantially during the 2000s, 
followed by a slightly increased level of carbon uptake during 
the 2010s. These decadal fluctuations can be well captured by 
the time- varying trend with decadal fluctuations (Figure 1a, red). 
Here, we further decomposed the original global integrated ocean 
carbon sink into several IMFs ranging from high- frequency to low- 
frequency: semi- annual (SemiA), modulated annual cycle (MAC), 
interannual (interA), and decadal (dec) functions, all of which are 

(1)xs(t) = SemiAs(t) +MACs(t) + InterAs(t) + Decs(t) + Rs(t)

F I G U R E  1  Time series of the integrated global air– sea CO2 flux 
and the components extracted by EEMD. (a) The lines show the 
integrated global air– sea CO2 flux derived from the SOM- FFN 
estimate (black, updated from Landschützer et al., 2016), the 
12- month running mean (blue), and the extracted time- varying 
trend with decadal fluctuations (red); (b– f) the extracted IMFs 
from high- frequency to low- frequency: semi- annual (b), MAC (c), 
interannual (d), decadal (e), and residual trend (f). EEMD, ensemble 
empirical mode decomposition; IMF, intrinsic mode function; MAC, 
modulated annual cycle 

https://www.ncei.noaa.gov/data/oceans/ncei/ocads/data/0160558/MPI_SOM-FFN_v2020/
https://www.ncei.noaa.gov/data/oceans/ncei/ocads/data/0160558/MPI_SOM-FFN_v2020/
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followed by a residual trend. These components account for ap-
proximately 22% (SemiA), 46% (MAC), 7% (InterA) and 25% (Dec) 
of the total extracted components, respectively. As expected, the 
MAC and decadal fluctuations are the two main variabilities for 
the whole variations, which is also consistent with the previous 
studies (Landschützer et al., 2014, 2016).

As the global patterns of ocean carbon sinks are spatiotempo-
rally different, we further calculated the proportion of all the ex-
tracted components to the total variance for each grid during the 
time period 1982 to 2019 (Figure 2). Compared with other com-
ponents, semiannual variability is more homogeneously in terms 
of spatial distribution, with the proportion of most regions ranging 
between 20% and 25% (Figure 2a). Large proportions of semiannual 
values are sporadically distributed among the West Indian Ocean, 
part of the North Atlantic Ocean, and along the Antarctic Front. 
MAC exhibits the largest variance, varying from 20% to 80%, and 
the regions having the largest proportions are mainly found at tem-
perate latitudes (10°– 40° for both hemispheres) (Figure 2b). The spa-
tial distribution of the proportion of interannual changes is relatively 
simple and is mainly concentrated in the equatorial Pacific Ocean 
(Figure 2c), which is believed to be driven by ENSO (Landschützer 
et al., 2014). The decadal variability of the air– sea flux is not driven 
by a single region alone (e.g., the Southern Ocean); instead, this vari-
ability is largely distributed in the equatorial Pacific Ocean and high- 
latitude regions (Figure 2d).

EMD/EEMD/MEEMD provides a novel time- frequency- energy 
representation of any given time series. Contrary to the previous 
traditional methods, they can adaptively extract components from 
high-  to low- frequency at different timescales without any “shape 
function” assumptions. The MEEMD can well preserve both the 
temporal and spatial localities of the data and thus have advantages 
when examining both the static climate mode and the changing 

spatial structure of climate variability (Ji et al., 2014). Figure 2 clearly 
shows that the information extracted from the data does reflect the 
physical process during the given time period from 1982 to 2019. 
Due to the combination of the spatial and temporal localities of 
MEEMD, the subsequent evolution of the system cannot alter the 
reality that has already happened. Therefore, MEEMD is an effec-
tive method for facilitating comparisons of the global ocean carbon 
sink at different timescales and providing a visual impression of the 
percentages of changes.

3.2  |  Seasonality

Previous studies have pointed that the winter- to- summer difference 
has increased substantially in recent decades with the rate increasing 
at an average of 2.2 ± 0.4 μatm per decade from 1982 to 2015 pole-
ward of 10° latitude, inducing stress in ocean ecosystems and fisheries 
(Doney et al., 2009; Hauck & Völker, 2015; Landschützer et al., 2018; 
McNeil & Sasse, 2016). However, from Figure 1c, in contrast with the 
mean seasonal cycle, we can see that the amplitude and frequency of 
the modulated annual cycle change with time. In particular, the ampli-
tude of the MAC shows large seasonal differences during the 1990s, a 
weakening trend during the 2000s, and then a substantial increasing 
trend during the 2010s. It means that the seasonal difference in the 
air– sea CO2 flux does not increase at all times or everywhere.

To clarify the spatiotemporal distribution of seasonal differ-
ence, we first checked the whole pattern of the seasonal difference 
from the global integrated air– sea CO2 flux time series (Figure 3). 
The air– sea fluxes in July, August, and September are generally sim-
ilar, which represent the boreal- summer variations. Flux changes in 
other months are relatively consistent, which can be represented as 
the boreal non- summer seasonal variations. The variations in these 

F I G U R E  2  Proportions of semiannual (a), MAC (b), interannual (c), and decadal (d) components to total variance (Note that the range of 
color bars is different). MAC, modulated annual cycle 
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two periods show decadal fluctuations, with the difference between 
summer and non- summer being large during the 1990s and decreas-
ing and stabilizing during the 2000s. After 2010, unlike changes 
during the 1990s and 2000s, the changes between summer and 
non- summer are inconsistent; the sink in boreal- summer remained 
unchanged, whereas the sink in boreal non- summer strengthened 
over time. It should be noted that the monthly changes correspond-
ing to boreal summer and non- summer are also relatively concen-
trated and consistent.

We further examine the spatial distribution of the boreal sum-
mer minus boreal non- summer (SMNS for short) of air– sea CO2 flux. 
It shows a zonally distributed structure (Figure 4e). At the moderate 
and low latitudes (Figure 4a,c) because the ocean sink of CO2 is a 
negative value, the SMNS at northern mid- latitudes is positive and 
the southern hemisphere is negative. The seasonal flux has a nega-
tive maximum in non- summer seasons, which is due to an increase 
in the dissolution rate of CO2 as a result of a decrease in sea surface 
temperature (Keppler et al., 2020). It is worth noting that the ocean 
sink remains stable in summer and that in non- summer seasons is 
continuously strengthening at mid- latitudes in both hemispheres. 
However, the strengthening non- summer trend and seasonal dif-
ference at mid- latitudes in both hemispheres also show distinct 
patterns. The non- summer sink at latitudes 10°– 45°N strengthens 
more linearly, and the corresponding months are concentrated. At 
latitudes 10°– 45°S, the strengthening mainly occurs after 2000 
for boreal- summer seasons, with the contributing months being 
scattered. This strengthening of the seasonal SMNS CO2 flux is 
consistent with previous studies (Landschützer et al., 2018), which 
is probably due to increasing atmospheric CO2. One spontaneous 
question is that why only the sink in non- summer seasons for both 
hemispheres strengthened, which needs further investigation.

In contrast, the air– sea CO2 flux at high latitudes (Figure 4b,d) 
shows a negative maximum in boreal summer, leading to a negative 
SMNS in north high latitudes and a positive value in the Southern 
Ocean. Gregor et al. (2018) argued that biological activity drives 
Southern Ocean carbon sink variability in austral summer, and wind 
stress in austral winter. In austral winter, intensified westerly winds 
enhanced outgassing in upwelling regions, causing the carbon sink 
to weaken during this season (Keppler, 2020). It is intriguing that the 
seasonal difference in the Southern Ocean is the main characteristic 
of that in global integrated air– sea CO2 flux. The seasonal difference 
in the Southern Ocean is not always strengthened with increasing 
atmospheric CO2, but shows decadal fluctuations.

With the help of the EEMD method, we can extract the modu-
lated annual cycle with the amplitude and frequency varying with 
time. We compare the MACs in these three decades: 1990s, 2000s, 
and 2010s (Figure 5). There is no obvious shift in the peak value, 
whereas the magnitude of the maximum in the 2010s increased by 
0.15 PgC/year compared with the 2000s and 1990s, and the du-
ration of trough time increased during the 2010s. It indicates that 
the processes controlling the air– sea CO2 flux during the 2010s are 
probably different from those during the other two decades. A de-
tailed discussion of decadal variations can be found in Section 3.4.

3.3  |  Interannual variability

The equatorial ocean, as the ocean's largest natural source of CO2 to 
the atmosphere, plays an important role in the global carbon cycle 
(Feely et al., 2006). The annual contribution of CO2 to the atmos-
phere from the oceanic equatorial belt is estimated to be between 
0.6 and 1.5 PgC (Takahashi et al., 2002). In particular, the central and 
eastern Pacific is a major source of CO2 to the atmosphere during 
non- El Niño periods.

Our extracted interannual variability is mainly located in the 
equatorial Pacific Ocean (Figure 2c), with a proportion ranging from 
20% to 30%. The interannual air– sea CO2 flux in the equatorial 
Pacific Ocean (especially in the central and eastern Pacific Ocean) is 
negatively modulated by ENSO events (Figure 6) (R = −.79), which is 
consistent with previous studies (Feely et al., 2004; Takahashi et al., 
2002). During El Niño periods, the weakened upwelling results in 
less CO2- rich water near the surface and leads to a near cessation of 
the outgassing of CO2. On the contrary, during La Niña events, the 
unusually strong upwelling of cold, CO2- rich water leads to anom-
alously strong outgassing (Feely et al., 2006). From Figure 6 (black 
dotted line), we can see that the interannual variability in air– sea 
CO2 flux in the equatorial Pacific Ocean mainly occurs in the central 
and eastern Pacific Ocean, such that a one- degree change in Nino3.4 
SST anomaly corresponds to 0.08 PgC/year interannual variation.

3.4  |  Decadal fluctuations

Previous studies have noticed that the global ocean carbon sink 
weakened during the 1990s with a minimum uptake of only approxi-
mately −0.8 PgC/year in 2000 and thereafter strengthened consid-
erably to a level of more than −2.0 PgC/year in 2010 (Landschützer 
et al., 2016). After 2010, changes in the ocean sink remained rela-
tively stable, increasing slightly to approximately −2.3 PgC/year in 
2019 (Figure 1a). CO2 uptake by the Southern Ocean (<35°S) was 
believed to contribute to decadal global ocean carbon sink variations 
for the first two decades (Gruber et al., 2019). The question is what 
the role of the Southern Ocean has been during the last decade.

As the time- varying trend with decadal fluctuations extracted 
from EEMD could perfectly capture low- frequency variations 
throughout the entire time series (Figure 1a), we further examine 
the decadal spatial distribution by extracting the time- varying trend 
with decadal fluctuations at each grid point (Figure 7). Since the inte-
grated global air– sea CO2 flux shows obvious decadal changes from 
the weakening decade during the 1990s, the reinvigoration period 
during the 2000s and the reinforce period during the 2010s, and 
since the changes in each decade as a whole are relatively consis-
tent, we use the difference between the end point and the start-
ing point of each decade to calculate the magnitude change for the 
corresponding decade. Figure 7 shows the magnitude change of the 
air– sea CO2 flux over three decades: the 1990s, 2000s, and 2010s.

Air– sea CO2 flux varied substantially over these three decades. 
During the weakening decade in the 1990s, the weakening ocean 
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sink resulted primarily from the outgassing of respired CO2 in the 
high latitude regions, especially in the Southern Ocean (south of 
40°S) (Figure 7a). In the reinvigoration period during the 2000s 
(Landschützer et al., 2015), even though the CO2 source region in the 

equatorial Pacific Ocean increased, the Southern Ocean, as well as 
the high latitude and sub- polar regions in the Northern Hemisphere, 
contributed to this reinvigoration of the carbon sink (Figure 7b). 
During the recent decade of the 2010s, the whole global carbon sink 

F I G U R E  3  Time series of the global 
integrated air– sea CO2 flux for each 
month. The black line represents the 
average flux for July, August, and 
September. The red line is the average flux 
for the rest of the months 

F I G U R E  4  Time series of air– sea CO2 flux for each month (unit: PgC/year), (a) 10°– 45°N, (b) 45°S−65°N, (c) 10°– 40°S, (d) 40°– 65°S. The 
black and red lines in each panel represent the averaged boreal summer (July, August, and September) and non- summer seasons (the rest of 
the months). (e) The mean boreal SMNS of air– sea CO2 flux for each 1° × 1° pixel. Positive SMNS are marked in red, while negative SMNS are 
marked in blue. SMNS, summer minus boreal non- summer 
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remained stable and showed a slight increase (Figure 7c). This slight 
increase in the carbon sink was due to the weakening of the source 
region in the equatorial Pacific Ocean, as the Southern Ocean (espe-
cially south of 60°S) showed a slight weakening trend.

Although the potential drivers of carbon uptake variability in the 
Southern Ocean are still debated (Bronselaer et al., 2020; DeVries 
et al., 2017; Landschützer et al., 2015; Le Quéré et al., 2007), the 
interannual and decadal variability of the Southern Ocean carbon 
sink was believed to be closely correlated with changes in surface 
winds (Kepper & Landschützer, 2019). We further compare the 
decadal ocean sink fluctuations with the westerly wind anomaly and 
SST variations during these three decades (Figure 7d– i). The changes 
in westerly winds are consistent with the decadal fluctuations of 
the carbon sink in the Southern Ocean. Strengthened westerly 
winds lead to enhanced outgassing in the Southern Ocean (espe-
cially south of 60°S) which is probably attributed to stagnation in 
the 1990s (Figure 7d). In addition, weakened westerly winds during 
the 2000s have also been linked to enhanced CO2 uptake during 
that period (Figure 7b,e). Unlike the 1990s and 2000s, strengthened 
westerly wind anomalies were mainly concentrated in the western 
equatorial Pacific Ocean, leading to the warming in the central and 

eastern Pacific Ocean (Figure 7f,i). Therefore, this process weakened 
CO2 emissions in the equatorial Pacific Ocean (Figure 7c).

Based on the above analysis, decadal fluctuations are unevenly 
spatially distributed, with the following four regions predominat-
ing: the northern Pacific Ocean (NP, 40°– 70°N, 120°W– 120°E), 
the northern Atlantic Ocean (NA, 40°– 80°N, 70°W– 30°E), the 
equatorial Pacific Ocean (EP, 10°S– 10°N, 180°W– 80°W), and the 
Southern Ocean (SO, 35°– 90°S, 180°W– 180°E). The sum of these 
four regions could capture the decadal fluctuations of the entire 
dataset well (Figure 8), although there remains a discrepancy of 
0.6– 0.8 PgC/year. Analyzing the relative contributions of these 
four regions to global air– sea CO2 flux can provide initial insights 
into the processes driving these decadal variations (Figure 9). 
During the 1990s, the magnitude of change in decadal global air– 
sea CO2 flux reached approximately 0.5 PgC/decade with the 
Southern Ocean accounting for approximately 70%. During the 
first decade of the 2000s, the magnitude of change reversed to 
less than −1.0 PgC/decade with the Southern Ocean account-
ing for approximately 45%. A striking difference is the relative 
importance of the Pacific Ocean to total flux during the 2010s. 
The equatorial Pacific Ocean has replaced the Southern Ocean as 

F I G U R E  5  The average MACs for three 
decades, the 1990s (blue), 2000s (red), 
and 2010s (yellow). MAC, modulated 
annual cycle 

F I G U R E  6  The interannual variability 
of air– sea CO2 flux in the equatorial 
Pacific Ocean (120°E– 90°W, 10°S– 
10°N) (blue line) and the Niño 3.4 SST 
anomaly (orange). The black dotted line 
and the grey dashed line represents the 
contributions of the central/eastern 
equatorial Pacific Ocean and the western 
equatorial Pacific Ocean, respectively 
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the main contributor, accounting for approximately 35% of total 
decadal change (−0.35 PgC/decade).

For the decades 1990s and the 2000s, with the Southern 
Ocean dominating the decadal changes, DeVries et al. (2017) sug-
gested that the ocean carbon cycle in the Southern Ocean was 
primarily driven by meridional overturning circulation. During the 
2010s, accompanied by the regime shift in PDO during the early 
2010s, the central and eastern Pacific Ocean showed warm signals 
during the decade 2010– 2019 (Figure 7g,i); thus, carbon emissions 
in the central Pacific Ocean decreased. The tropics can also in-
fluence climate variations at high latitudes through atmospheric 
teleconnections and thus change regional air– sea CO2 flux (Gruber 

et al., 2019; Karoly, 1989). The interannual to decadal timescale 
signals present in the tropics can rectify the high- frequency vari-
ations in the high latitudes to generate low- frequency (decadal) 
variations. However, such teleconnections between the tropics 
and high latitudes through atmospheric bridges are not well es-
tablished and need further investigation.

4  |  CONCLUSION AND DISCUSSION

In this study, we revisit the seasonal to decadal variations of the global 
ocean carbon sink based on a reconstructed observation- based 

F I G U R E  7  Decadal magnitude change of air– sea CO2 flux (a– c), westerly wind anomaly (d– f), and sea surface temperature (g– i) over three 
decades: the 1990s (left), 2000s (middle), and 2010s (right), respectively 

F I G U R E  8  Decadal fluctuations of 
the regional mean air– sea CO2 flux in the 
northern Pacific Ocean (NP), the northern 
Atlantic Ocean (NA), the equatorial Pacific 
Ocean (EP), the Southern Ocean (SO), and 
global oceans 
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product of the surface ocean pCO2 and air– sea CO2 flux (the MPI- 
SOMFFN method) using an adaptive data analysis method. The 
global ocean carbon sink for atmospheric CO2 varies on all spatial 
and temporal scales. Two predominant variations are modulated an-
nual cycles and time- varying decadal variations, which account for 
approximately 46% and 25% of all extracted components, respec-
tively. The dominant mode of variability is the MAC at mid- latitudes 
and decadal in tropical and high- latitude regions.

The global average SMNS can reach 0.5– 1.0 PgC/year, with the 
whole SMNS pattern being dominated by the Southern Ocean. Even 
though air– sea CO2 flux at mid- latitudes remains relatively stable in 
boreal summer, it shows an approximately linear increasing trend (a 
total increase of 1.0 PgC during the period 1982– 2019) for the boreal 
non- summer CO2 sink. Compared with mid- latitudes in the Southern 
Hemisphere, the corresponding periods of the non- summer sink at 
northern mid- latitudes are more concentrated. This strengthening 
SMNS of CO2 flux is believed to be correlated with increasing at-
mospheric CO2, with non- summer seasons for both hemispheres 
dominating.

On decadal timescales for the global ocean carbon sink, unlike 
the weakening decade (1990– 1999) and the reinvigoration decade 
(2000– 2009), during which the Southern Ocean played the domi-
nant role, the reinforcement decade (2010– 2019) mainly results 
from the weakening source effect in the equatorial Pacific Ocean. 
The equatorial Pacific Ocean, which replaced the Southern Ocean 
as the major contributor, coincides with the phase transition of the 
PDO. However, the mechanisms driving different periods need fur-
ther investigation. It remains a fascinating and largely unresolved 
puzzle how the interaction of all processes can generate such domi-
nant decadal variabilities in the global ocean carbon sink. Our results 
suggest that except for the Southern Ocean's role in the global ocean 
carbon sink, the strengthening non- summer's sink at mid- latitudes 
and the decadal or longer timescales of the equatorial Pacific Ocean 
dynamics should also be fully considered in understanding the oce-
anic carbon cycle on a global scale.

It should be noted that our results are only based on one dataset 
using the SOM- FFN method (Landschützer et al., 2019). Different 

methods have their own strengths and weaknesses (Denvil- Sommer 
et al., 2019; Gregor & Gruber, 2021; Gregor et al., 2019; Rödenbeck 
et al., 2014; Takahashi et al., 2014 etc). Surface Ocean CO2 Mapping 
(SOCOM) collated 14 methods in an intercomparison of “gap- filling” 
methods (Rödenbeck et al., 2015). They found that the MPI- SOMFFN 
(Landschützer et al., 2016) and the Jena- MLS methods (Rödenbeck 
et al., 2014) present better interannual variability compared to other 
methods in the comparison (Gregor et al., 2019). In data- poor re-
gions (e.g., the Southern Ocean) and the mesoscale intensive ocean 
regions, they found little agreement between these methods on sea-
sonal and decadal timescales (Ritter et al., 2017), with the amplitude 
of decadal variability being overestimated by 31% in the Southern 
Ocean (Gloege et al., 2021). Gregor et al. (2019) developed an en-
semble average of six machine- learning models (CSIR- ML6) to an-
alyze this problem. The intercomparison among these products is 
needed for further investigation. Additionally, to improve observa-
tional reconstructions of the global ocean carbon sink in the future, 
additional observations will be critical.
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