
1.  Introduction
The ocean plays a crucial role in mitigating climate change by significantly modulating the growth of at-
mospheric carbon dioxide (CO2). Based on the Global Carbon Budget 2020 (Friedlingstein et al., 2020), the 
ocean took up 2.5 ± 0.6 PgC/yr, or 22% of the total anthropogenic emissions over the last decade (2009–
2018). This sink estimate is based on an ensemble of ocean hindcast models. Though these models provide 
consistent estimates of the globally integrated ocean sink and its long-term increase, they demonstrate sig-
nificant regional, seasonal, and interannual differences (Mongwe et al., 2018; Schuster et al., 2013; Wan-
ninkhof et al., 2013). Models may also underestimate the interannual to decadal variability of the carbon 
sink (Gruber, Landschützer, & Lovenduski, 2019; Landschützer et al., 2015; Le Quéré et al., 2018).

Observation-based products statistically interpolate pCO2 observations to assess the global ocean carbon 
sink and its spatio-temporal variability. These methods build relationships between in-situ observations 
of pCO2 and driver data via machine learning or diagnostic modeling. Since driver data have greater spa-
tio-temporal coverage than in-situ pCO2, the algorithms can be used to estimate pCO2 at all points in space 
for every month beginning in the 1980s. Though in-situ pCO2 observations only cover 1.5% of all 1° × 1° 
degree, monthly locations across the globe (Bakker et al., 2016), the various approaches largely agree as to 
globally integrated long-term mean flux and variability since the 1990s (Gloege, Yan, et al., 2021; Gregor 
et al., 2019; McKinley et al., 2020; Rödenbeck et al., 2015)

Recent work used a testbed of climate models to assess the reconstruction skill of the MPI-SOMFFN prod-
uct (Landschützer et al., 2014). MPI-SOMFFN can reconstruct surface ocean pCO2 with small long-term 
mean bias globally, over large regions, and locally across most of the Northern Hemisphere ( McKinley, 
et al., 2021). Seasonality can also be robustly reconstructed in most locations. Though Gloege, McKinley, 
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Plain Language Summary  The ocean plays a crucial role in mitigating climate change 
by significantly modulating the growth of atmospheric carbon dioxide. Multiple ocean models that are 
regularly used to estimate the ocean's carbon uptake, all provide consistent estimates as to the magnitude 
and timing of the globally integrated ocean carbon uptake. However, these same models indicate a wide 
range of regional air-sea carbon flux patterns. Taking the observational perspective, it has recently been 
demonstrated that regional flux patterns can be constrained using existing data. Directly comparing the 
models to observation-based estimates at the regional scale, we find that only one-third of the models 
are consistent with the observed regional fluxes. Improvements to ocean models are needed to better 
represent ocean carbon uptake processes.
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et al. (2021) only assess skill for MPI-SOMFFN, we show here that the other observation-based products 
cluster tightly around the regional MPI-SOMFFN results for mean and seasonality, indicating that they also 
are skillful. Despite low bias and robust seasonality, interannual to decadal variability can only be recon-
structed with moderate skill by the observation-based products, with sparse sampling considered the key 
limiting factor (Gloege, McKinley, et al., 2021; Rödenbeck et al., 2015; Stammel et al., 2020). Despite great 
interest in the interannual variability simulated by models (McKinley et al., 2017; Gruber, Landschützer, & 
Lovenduski, 2019), it does not appear that the observation-based products are yet able to provide a robust 
constraint.

Strong agreement between globally integrated temporal-mean fluxes from hindcast models and observa-
tion-based products has previously been demonstrated (Friedlingstein et al., 2020; Hauck et al., 2020; McK-
inley et al., 2020). McKinley et al. (2016) showed similarly strong agreement between MPI-SOMFFN and 
globally integrated fluxes in the CMIP5 suite of climate models. Despite this global agreement, CMIP5 indi-
cates a significant spread in mean estimates for large ocean regions. This indicates compensation of regional 
biases in the global integration. Now that there are nearly as many individual observation-based products as 
models, and interpolation methods have been shown skillful (Gloege, McKinley, et al., 2021), we return to 
the question of regional skill in the hindcast models.

We focus on using the ensemble of observation-based products to assess model skills based on the 1990–
2018 regional mean fluxes and seasonal amplitude and timing. Regional fluxes are important indicators of 
the underlying physical and biogeochemical processes that combine to create the ocean carbon sink (Gru-
ber, Landschützer, & Lovenduski, 2019; McKinley et al., 2017). Capturing mean fluxes is one indication 
that these processes are correctly simulated by the models, and should enhance confidence in estimates of 
interannual variability and of the future ocean carbon sink under a range of emission scenarios.

2.  Methods
We evaluate ocean carbon fluxes from an ensemble of nine global ocean biogeochemical models and seven 
observation-based pCO2 products for the years 1990–2018. Flux is defined as positive upward, that is, CO2 
release from the ocean into the atmosphere is positive, and uptake by the ocean is negative. Evaluations 
are made for the global integral and regionally, based on biogeochemically coherent regions (Fay & McK-
inley, 2014, Figure 1).

2.1.  Observation-Based pCO2 Products

We utilize an ensemble of seven observation-based pCO2 products (Table S1) and employ the SeaFlux pack-
age (Gregor & Fay, 2021) to calculate fluxes from the products' estimated pCO2. The SeaFlux package al-
lows for consistent flux calculations for the ensemble by applying area-coverage correction and appropriate 
scaling of the gas exchange coefficient (Fay et al., 2021). The observation-based pCO2 product ensemble 
includes three neural networks derived products (MPI-SOMFFN, CMEMS-FFNN, NIES-FNN), a mixed 
layer scheme product (JENA-MLS), a multiple linear regression (JMA-MLR), an eXtreme Gradient Boosting 
(XGB) method (LDEO-HPD), and a machine learning ensemble approach (CSIR-ML6).

2.2.  Global Ocean Biogeochemical Models

Nine hindcast ocean models from the Global Carbon Budget (Friedlingstein et al., 2020) are utilized in this 
analysis (Table S1). They are all general ocean circulation models with coupled ocean biogeochemistry; ad-
ditional details of the models can be found in Table A2, Friedlingstein et al. (2020). Here we utilize gridded 
fields of pCO2 and air-sea CO2 flux as submitted to the Global Carbon Budget. Models have been previously 
regridded to a common 1° × 1° grid by their developers.

As detailed in Hauck et al. (2020), model bias and drift in each model can be addressed by subtracting the 
constant climate simulation (Run B) from the contemporary simulation (Run A) which incorporates chang-
es due to both increasing atmospheric CO2 and climate. For the nine models included in the 2020 Global 
Carbon Budget, model biases range from −0.36 PgC/yr to 0.33 PgC/yr with a mean of −0.07 PgC/yr for years 
1990–2018. To apply this correction regionally, we area-weight the globally integrated 1990–2018 flux bias.
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2.3.  Regional Analysis

For regional analysis, we utilize the biomes of Fay and McKinley (2014) and combine individual biomes 
from each basin into five larger regions: Northern High Latitudes, Northern Subtropics, Equatorial, South-
ern Subtropics, and Southern High Latitudes (Figures S1 and S2). By comparing fluxes for these regions, 
we are further able to investigate the agreement of models and products. Our regional seasonal analysis is 
conducted on 1990–2018 detrended monthly anomalies.

2.4.  Natural Outgassing Due to Carbon Input From Rivers

Fluxes calculated from the observation-based pCO2 products are created from contemporary pCO2 observa-
tions and thus represent the net flux. Hindcast models reflect the anthropogenic flux (Hauck et al. [2020], 
Equations 1 and 2). In order to conduct model-product comparisons for the anthropogenic ocean carbon 
sink, an adjustment for the natural outgassing of carbon delivered to the ocean from land must be applied 
to the observation-based products. Quantitative understanding of this natural carbon outgassing is limited. 

Figure 1.  Global and regionally integrated air-sea CO2 flux (PgC/yr) for the ensemble mean of seven observation-based products (blue) and nine ocean 
hindcast models (green, solid, and outlined) for 1990–2018 (Table S1); flux is defined positive upward, that is, CO2 release from the ocean into the atmosphere 
is positive, and uptake by the ocean is negative. Green outlined bar represents models; green solid bar for select models. White line on blue bar represents the 
global and regionally integrated mean without natural outgassing due to rivers. The central map demonstrates regional boundaries. Individual products/models 
are represented by dots on the bar. Green error bars represent 2σ (95% confidence interval) on the mean for the respective ensemble. Cyan error bars on blue 
bars represent the 2σ (95% confidence interval) on the product ensemble without natural outgassing. Dark blue error bars represent 2σ for the product ensemble 
with natural outgassing adjustment; opaque blue error bars show 3σ bounds used in model criteria assessment.
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The river flux adjustment used is an average of three estimates representing the spread of the available 
approaches: a geochemical budgeting perspective (0.45 ± 0.36 PgC/yr [2σ]; Jacobson et al. [2007]), a merid-
ional heat constraint approach (0.78 ± 0.82 PgC/yr [2σ]; Resplandy et al. [2018]), and a process-based ocean 
model (0.23 PgC/yr; Lacroix et al. [2020]). While there is no stated uncertainty on the Lacroix et al. (2020) 
estimate, we assume 100% uncertainty (2σ), comparable to relative magnitude in the other studies. The 
combined river flux adjustment estimate, using the standard error of the mean to combine the uncertain-
ties, is 0.49 ± 0.53 PgC/yr (2σ).

To apply the global riverine adjustment to our regional analysis, we utilize a gridded estimate from the mod-
el of Lacroix et al. (2020) and distribute the globally integrated magnitude (0.49 ± 0.53 PgC/yr) proportion-
ally (Table S2). Previous works (Friedlingstein et al., 2020; Hauck et al., 2020) use the distribution reported 
by Aumont et al. (2001) in comparison to regional fluxes. The updated distribution of Lacroix et al. (2020) 
has a lesser percentage of efflux in the high latitude the Southern Ocean and more in the subtropics (Ta-
bles S2 and S3). The uncertainty associated with the riverine efflux adjustment is summed in quadrature 
with that from the production estimates for each region, and shown separately (white bar, Figure 1). In all 
regions, the riverine flux adds significant uncertainty.

2.5.  Statistical Analysis

Statistical metrics presented within are based on the 1990–2018 mean of each model and product along with 
ensemble means for each group (Figure 1). We focus on a conservative uncertainty estimate of 2σ bounds, 
which indicates 95% confidence that the mean of the ensemble falls within these bounds given the range 
present in the models/products. For the uncertainty presented on the product fluxes, we have summed in 
quadrature the uncertainty from the river estimate (globally, ± 0.53 PgC/yr) to that from the spread of the 
products: √ (∑[σriver

2, σproduct
2]). We also note the mean and spread from the products themselves, without 

the addition from the river flux.

In addition, to mean and 2σ bounds, we report the coefficient of variability (CoV) as a standardized meas-
ure of dispersion. It is expressed as a percentage and is defined as the ratio between the standard deviation 
and the mean: CoV = σ/|μ| * 100. This allows comparison between regions with large fluxes (and typically 
large standard deviations) such as the high latitude regions, with regions with smaller fluxes (such as the 
subtropics and equatorial regions). Although the reported standard deviations may be small in regions with 
smaller flux, if the uncertainty is on the same order of magnitude as the mean flux itself, then CoV reflects 
this with a large percentage. With this statistic, relative uncertainties in regions with different mean fluxes 
can be more readily compared.

2.6.  Model Metric Criteria

Given the tight regional estimates from the observation-based products and evidence that one of these 
products, MPI-SOMFFN, has low bias both globally and over large regions (Gloege, McKinley, et al., 2021), 
we propose that the products can be used as a basis for selection of the best-performing models. Yet, we rec-
ognize that the products are not entirely independent because they are all based on the same sparse SOCAT 
pCO2 data (Bakker et al., 2016). Thus, a liberal selection criterion is justified. Our criteria are to be within 
the 3σ bounds (99.7% certainty) of the observation-based product ensemble mean in all five regions (Fig-
ures 1 and 2, Table S1). These 3σ bounds include the regionally variable uncertainty in natural outgassing 
due to rivers (Section 2.4).

3.  Results
3.1.  Globally Integrated Flux, 1990-2018

Globally integrated, model 1990–2018 mean fluxes are consistent with the observation-based prod-
ucts (Figure  1, bottom). Models estimate a mean anthropogenic flux of −2.15  ±  0.64 PgC/yr (2σ) and 
the products −2.43 ± 0.62 PgC/yr, after accounting for natural outgassing due to rivers. For the models,  
CoVglobal models = 15%, while CoVglobal products = 13% (8% before inclusion of natural outgassing uncertainty).
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This finding is consistent with previous comparisons of models and products (DeVries et al., 2019; Friedling-
stein et al., 2020; Hauck et al., 2020; McKinley et al., 2020) in that the observation-based products report a 
slightly greater ocean uptake flux than the models, but are consistently given uncertainties (Figure 1). With 
the incorporation of a larger product ensemble (seven products included here) and the use of an updated 
river flux adjustment (0.49 PgC/yr), the major conclusions drawn for the globally integrated flux remain 
unchanged from these previous studies. Both product and model ensemble globally integrated fluxes are 
consistent with the independent interior observation-based estimate from Gruber, Clement, et al.  (2019) 
who report an anthropogenic CO2 flux of 2.6 ± 0.3 PgC/yr for 1994–2007. For this time frame, the ensemble 
of models here has a globally integrated anthropogenic flux of −2.00 ± 0.61 PgC/yr (2σ) while for the en-
semble of observation-based products, it is −2.13 ± 0.90 PgC/yr (2σ).

3.2.  Regional Fluxes

Despite the modeled agreement for the global integral, models exhibit far less agreement with each other or 
with the observation-based products for regionally integrated 1990–2018 mean fluxes. For each region, the 
spread of the model ensemble is larger than that of the product ensemble, ranging from 1 to nearly 5 times 
the magnitude. The 2σ bound is always greater for the models than for the products (Table S4). Regionally, 

Figure 2.  Regionally integrated air-sea CO2 flux (PgC/yr) for an ensemble of nine ocean hindcast models (stars) and seven observation-based products (dots) 
for the southern high latitude region (x-axis) and northern subtropical region (y-axis). Shading gradients represent 2σ bounds (light gray) and 3σ (darker gray). 
Inlaid map indicates areas represented by the regions. Three models (stars) fall within the 3σ bounds for these two regions. The uncertainty in the river flux 
adjustment is large in the subtropics (2σ = 0.14PgC/yr), but small in the southern high latitudes (2σ = 0.04 PgC/yr; Figure 1, cyan error bar vs. blue error bar). 
This causes the 2σ and 3σ bounds to appear larger than based on the spread of the products (dots) in the y-axis scale.
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the CoV for the products is never greater than 21%, but it is always larger than this in the models (Table S5). 
The highest CoV regionally is in the northern subtropics (CoVNHST models = 88%).

Modeled seasonal cycles agree to vary degrees with the observation-based products (Figure 3). In the sub-
tropics, models are very consistent in timing and amplitude of seasonality when compared to the products. 
In the high northern latitudes, wintertime uptake is too large and summertime outgassing is overestimated; 
and only one individual model captures the observed neutrality of the CO2 flux in late winter. In the south-
ern high latitudes, the observation-based products strongly agree as to the timing and magnitude of sum-
mer uptake and winter outgassing (Figure 3, bottom left). However, the models are widely spread in their 
estimates of both phase and amplitude. All but one model indicates a cycle magnitude that is consistent 
with the products, but several indicate the opposite phasing. Because these errors in the individual models 
cancel, the ensemble mean of all models (gray bold) is, to first-order, consistent with the products.

Interannual variability is not the focus of this analysis, but a plot is included for completeness in the Sup-
porting Information S1 (Figure S3).

3.3.  Model Selection

Despite the model-product agreement for mean globally integrated fluxes, we find models differ substan-
tially from the products at the regional scale. The observation-based products are much more consistent 

Figure 3.  Regional air-sea CO2 flux (PgC/yr) seasonal cycle for observation-based product ensemble (blue), ocean hindcast model ensemble (gray), and select 
models in green; mean of each ensemble shown in a thick line of the corresponding color. Flux is defined as positive upward, that is, CO2 release from the ocean 
into the atmosphere is positive, and uptake by the ocean is negative. X-axis is the month and y-axis is detrended monthly anomalies for each region. Shading 
represents 2σ (95% confidence interval) on the seasonal mean of the model/product ensemble. All plots are on the same y-axis scale except for the equatorial.
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across their ensemble. Further, a recent assessment of one of these products demonstrates low bias (Gloege, 
McKinley, et al., 2021). We propose that the regional mean fluxes of the products can be used as a basis 
for selection, thus identifying the models that are closest to observation-based products in all regions. Our 
criteria is that the model should estimate a mean flux that is within the 3σ bounds (99.7% certainty) of the 
observation-based products in all five regions (Figures 1 and 2).

Most models fall within this 3σ criteria in the northern high latitude and equatorial regions. However, many 
models diverge from the observation-based products in the northern and southern subtropics, and in the 
southern high latitudes (Figure 1). The northern subtropics and southern high latitudes best demonstrate 
the application of the selection criteria (Figure 2). Only three models fall within the 3σ criteria from the 
products in both of these regions (Table S1). Two models are outside 3σ in both regions (darkest gray in Fig-
ure 2), and 4 are outside 3σ in either one of the other regions (medium gray in Figure 2). Were a 2σ criteria 
used (white in Figure 2), all but one model would be excluded.

Comparing all models and the selected models, the globally integrated flux is minimally changed  
(CoVglobal models = 15%; CoVglobal select models = 10%); however, regional mean and seasonal differences are con-
siderable (Figures 1 and 3). In all but one region (the northern high latitudes), the regional means from 
the selected models have a smaller spread (Table S5). In the equatorial and southern subtropics, selection 
reduces the CoV by roughly a third, while in the northern subtropics it is reduced from 88% to 23% and in 
the southern high latitudes from 28% to 5%.

Comparison of the root mean squared error (RMSE) between the ensemble-mean seasonal cycles of the ob-
servation-based products and the select models indicates strong improvement in seasonal coherence (Fig-
ure 3, Table S6). The greatest improvement is seen in both the high latitude regions (RMSE reduced by 0.10 
PgC/yr in the north and 0.28 PgC/yr in the south). The model with the most extreme seasonal amplitude in 
the southern high latitude seasonality did not meet the selection criteria.

4.  Discussion
In the ocean hindcast models, globally integrated 1990–2018 mean fluxes are consistent with the ensemble 
of observation-based products (Figure 1, bottom). However, regional mean fluxes are far less consistent 
(Hauck et al., 2020; McKinley et al., 2006, 2016; Schuster et al., 2013). Regional mean fluxes are first-order 
indicators of the physical and biogeochemical mechanisms of the ocean carbon sink (Gruber, Clement, 
et al., 2019; McKinley et al., 2017). Recent developments in statistical analysis of sparse pCO2 data have led 
to observation-based products robustly represent global and regional air-sea CO2 fluxes on long-term and 
seasonal timescales (Gloege, McKinley, et al., 2021). We propose that an ensemble of these products can be 
used to assess the regional skill of ocean hindcast models.

Compared to the models, the spread across the ensemble of observation-based products is much smaller 
in all regions, especially before the natural outgassing due to rivers is included (Figure 1, light blue ticks, 
Table S4). Models have a five-times larger 2σ bounds in the northern subtropical region before uncertainty 
due to the river flux adjustment is included. Yet, the northern subtropics is an area of strong agreement in 
seasonal cycle phasing and amplitude (Figure 3). Past seasonal comparisons to subtropical time series data, 
such as Bermuda Atlantic Time Series station, also show good model performance (Schuster et al., 2013; 
Ullman et al., 2009). Even though the models tightly capture the seasonality here, they all underestimate 
uptake. In the subtropics, seasonality is driven primarily by temperature variations (Takahashi et al., 2002), 
and the models are clearly able to replicate this effect (Figure 3). However, this class of models also tends to 
have low net primary production (Bennington et al., 2009; Galbraith et al., 2010; Long et al., 2013), and this 
may be the cause of the underestimation of carbon uptake.

The Southern Ocean is a region of particular interest for the ocean carbon sink (Bushinsky et al., 2019; 
Fay et al., 2018; Gloege, McKinley, et al., 2021; Gruber, Landschützer, & Lovenduski, 2019; Landschützer 
et al., 2015; Lovenduski et al., 2008; Keppler & Landschützer, 2019; Mongwe et al., 2018). The region is 
variable spatially and temporally, but only sparsely observed. Adding autonomous float observations from 
2015 to present to two observation-based products, Bushinsky et al. (2019) find the Southern Ocean sink 
reduced by 0.1–0.35 PgC/yr for 2015–2017. If this reduction were to hold over the full period of this study, 
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flux estimates from all products would be reduced in magnitude. Were this the case, then, at most, one addi-
tional model would be selected using our criteria (Figure 2); the other 5 models all indicate uptake into the 
Southern Ocean that is larger than the current ensemble of products.

4.1.  Uncertainty in Natural Outgassing of River Carbon

The spatial pattern of the natural carbon outgassing due to rivers that have been applied to the observa-
tion-based product flux estimates has an impact on comparisons to models (Figure 1). Uncertainty in the 
global flux and two out of five regional mean fluxes is dominated not by the spread of estimates of indi-
vidual products, but instead by uncertainty in the natural outgassing (Table S4). The globally integrated 
magnitude of the natural outgassing is one component of this uncertainty. Several recent analyses have 
used 0.6–0.78 PgC/yr (DeVries et al., 2019; Gruber, Clement, et al., 2019; Friedlingstein et al., 2020; Hauck 
et al., 2020), based on one of, or the average of two estimates (Jacobson et al., 2007; Resplandy et al., 2018). 
However, these studies have not accounted for the uncertainty in this closure term. Our estimate includes 
the model-based estimate of LaCroix et al. (2020) and accounts for the uncertainty, +0.49 ± 0.53 PgC/yr 
(Section 2.4). Though this mean estimate is smaller, the inclusion of uncertainty in this study means that 
the result is inclusive of the previous ones. Also worth noting, were a larger mean outgassing applied, the 
estimated anthropogenic flux would increase in all regions, leading to fewer models meeting the selection 
criteria in the northern subtropics (Figure 2).

In the southern high latitudes, we find a closer mean flux agreement between the ensemble of observa-
tion-based products and both the full suite of models and the selected models (Figure 1) as compared to 
a recent regional analysis (Hauck et al., 2020). This difference is attributable to the larger ensemble of ob-
servation-based products used here (7 instead of 3) and to a slightly different set of models. It is also due to 
our use of a spatial pattern of natural outgassing that is based on state-of-the-art ocean model simulations 
(LaCroix et al., 2020), in which a smaller percentage of the total natural outgassing occurs in the Southern 
Ocean than occurred in the earlier ocean model of Aumont et al. (2001) (Table S3). Efforts to reduce the 
large uncertainty in both the magnitude and spatial pattern of the natural outgassing are urgently needed 
to improve future comparisons of model and observation-based products.

4.2.  Implications

In this study, we compare the ocean carbon sink for anthropogenic carbon estimated by hindcast ocean 
models to a newly available suite of observation-based products. We find that 2/3 of the models are unable 
to replicate the observed regional partitioning of the mean 1990–2018 sink, despite capturing the globally 
integrated flux. External forcing, specifically the growth rate of atmospheric pCO2, is a critical driver for 
variability and the long-term growth of the globally integrated carbon flux (McKinley et al., 2020). However, 
the mechanisms of the ocean circulation and biogeochemistry set regional flux patterns (Gruber, Land-
schützer, & Lovenduski,  2019; Hauck et  al.,  2020; Iudicone et  al.,  2016; Keppler & Landschützer,  2019; 
Landschützer et al., 2015, 2019; Lovenduski et al., 2008; McKinley et al., 2017; Mongwe et al., 2018; Ridge 
& McKinley, 2021; Ullman et al., 2009). Thus, these comparisons may be more telling as to the skill of state-
of-the-art ocean models than skill assessments focused on the global integral (Friedlingstein et al., 2020).

This study focuses on the results from hindcast models; similar codes are used in the coupled climate mod-
els with which the future climate is projected. Under all scenarios of future emissions, the ocean carbon 
sink will play a critical role in modulating climate change (Randerson et al., 2015; Ridge & McKinley, 2021; 
Schwinger & Tjiputra, 2018; Zickfeld et al., 2016). This study indicates the need for model development 
efforts to improve the representation of the ocean circulation and biogeochemical processes that together 
determine the magnitude and spatial patterns of air-sea CO2 fluxes. These efforts should improve our ability 
to predict the future state of the carbon cycle and its role in climate.
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5.  Conclusions
We present an assessment of global and regional air-sea CO2 fluxes for ensembles of hindcast models and 
observation-based pCO2 products. Seven observation-based estimates of air-sea carbon fluxes indicate a 
globally integrated flux of −2.43 ± 0.62 PgC/yr for 1990–2018. Nine ocean hindcast models provide a sim-
ilar estimate, −2.15 ± 0.64 PgC/yr. Regionally, individual observation-based products indicate very similar 
fluxes as the ensemble mean (CoVglobal products = 13%; CoVregional products range 6%–21%). In contrast, the hind-
cast models demonstrate significant regional disagreement (CoVregional models range 15%–88%) despite their 
relatively tight global consistency (CoVglobal models = 15%). Seasonally, models agree with the products most 
closely in the subtropical regions; yet subtropical mean fluxes are inconsistent with the products in many 
models. Skill in the representation of subtropical seasonality does not imply skill in the representation of 
mean fluxes.

Given these comparisons, and prior evidence of skill in the observation-based products (Gloege, McKinley, 
et al., 2021; Rödenbeck et al., 2015), we use the ensemble spread (3σ) of the products in each region as the 
basis to select the models that best represent the ocean carbon sink. Only three of the nine models meet this 
criterion in all five ocean regions. The selected model ensemble more tightly constrains global mean fluxes, 
and regional seasonality is also modestly improved. Since regional CO2 fluxes are more dependent on mod-
eled ocean circulation and biogeochemical mechanisms than globally integrated fluxes, future predictions 
from models that robustly represent regional fluxes are likely to be more reliable.

Data Availability Statement
Model output is made available by the Global Carbon Budget (https://www.globalcarbonproject.org/car-
bonbudget/20/data.htm). Observation-based products gridded pCO2 is available from each reference indi-
vidually and linked through the pySeaFlux python package used to calculate the observation-based product 
fluxes (available at https://github.com/luke-gregor/SeaFlux; doi.org/10.5281/zenodo.5078404).
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