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Abstract.

Direct comparison between paleo oceanic δ13C records and model results facilitates assessing simulated distributions and

properties of water masses in the past. To accomplish this, we include a new representation of the stable carbon isotope
13C into the HAMburg Ocean Carbon Cycle model (HAMOCC), the ocean biogeochemical component of the Max Planck

Institute Earth System Model (MPI-ESM). 13C is explicitly resolved for all existing oceanic carbon pools. We account for5

fractionation during air-sea gas exchange and for biological fractionation εp associated with photosynthetic carbon fixation

during phytoplankton growth. We examine two εp parameterisations of different complexity: εPopp
p varies with surface dissolved

CO2 concentration (Popp et al., 1989), while εLaws
p additionally depends on local phytoplankton growth rates (Laws et al.,

1995). When compared to observations of δ13C in dissolved inorganic carbon (DIC), both parameterisations yield similar

performance. However, with regard to δ13C in particulate organic carbon εPopp
p shows a considerably improved performance10

than εLaws
p , because the latter results in a too strong preference for 12C. The model also well reproduces the oceanic 13C Suess

effect, i.e. the intrusion of the isotopically light anthropogenic CO2 into the ocean, based on comparison to other existing 13C

models and to observation-based oceanic carbon uptake estimates over the industrial period.

We further apply the approach of Eide et al. (2017a), who derived the first global oceanic 13C Suess effect estimate based

on observations, to our model data that has ample spatial and temporal coverage. With this we are able to analyse in detail the15

underestimation of 13C Suess effect by this approach as it has been noted by Eide et al. (2017a). Based on our model we find

underestimations of 13C Suess effect at 200 m by 0.24‰ in the Indian Ocean, 0.21‰ in the North Pacific, 0.26‰ in the South

Pacific, 0.1‰ in the North Atlantic and 0.14‰ in the South Atlantic. We attribute the major sources of the underestimation

to two assumptions in Eide et al. (2017a)’s approach: a spatially-constant preformed component of δ13CDIC in year 1940 and

neglecting 13C Suess effect in CFC-12 free water.20
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1 Introduction

The stable carbon isotopic composition δ13C measured in carbonate shells of fossil foraminifera is one of the most widely used

properties in paleoceanographic research (Schmittner et al., 2017). It is defined as a normalised ratio between the stable carbon

isotopes 13C and 12C:25

δ13C(‰) =
(

13C/12C
Rstd

− 1
)
· 1000, (1)

where Rstd is an arbitrary standard ratio. In observational studies, the ratio 13C/12C in Pee Dee Belemnite (PDB; Craig, 1957)

is conventionally used for Rstd.

δ13C provides information on past changes of water mass distribution and properties (e.g. Curry and Oppo, 2005; Peterson

et al., 2014). Direct comparison between paleo δ13C measurements and simulated δ13C facilitates evaluating the ability of30

Earth System Models (ESMs) to simulate paleo ocean states. For this reason, we present a new implementation of 13C in the

HAMburg Ocean Carbon Cycle model (HAMOCC6), the ocean biogeochemical component of the Max Planck Institute Earth

System Model (MPI-ESM). A comprehensive representation of δ13C is a timely extension of MPI-ESM in support of planned

simulations of a complete last glacial cycle within the German climate modeling initiative PalMod (Latif et al., 2016). Before

applying the new 13C module to paleo simulations, we evaluate it by comparison to observational data in the present day ocean.35

Earlier versions of HAMOCC already featured a 13C module. HAMOCC3 included prognostic 13C variables for dissolved

inorganic carbon (DIC), particulate organic matter and calcium carbonate (Maier-Reimer, 1993). HAMOCC3 also accounted

for temperature-dependent isotopic fractionation during air-sea gas exchange (higher δ13C of surface DIC in colder water)

and biological fractionation during carbon fixation. Due to the simplified representation of marine biological production in

HAMOCC3, biological fractionation was based on fixation of inorganic carbon into non-living particulate organic matter, and40

was parameterised by a spatially and temporally uniform factor. This approach for biological fractionation of 13C, however,

could not reproduce the observed large meridional gradient of δ13C in particulate organic matter (Goericke and Fry, 1994).

Since then, HAMOCC was refined in particular with regard to its representation of plankton dynamics, which currently re-

solves bulk phytoplankton, zooplankton, detritus, dissolved organic carbon (Six and Maier-Reimer, 1996), and nitrogen-fixing

cyanobacteria (Paulsen et al., 2017). We thus develop an updated 13C module that considers the refined ecosystem representa-45

tion and test different non-uniform parameterisations for biological fractionation during phytoplankton growth.

We choose two parameterisations for biological fractionation that suit the complexity of our model and were successfully

applied in previous modelling studies (Hofmann et al., 2000; Schmittner et al., 2013; Tagliabue and Bopp, 2008; Jahn et al.,

2015; Dentith et al., 2020): 1) the parameterisation of Popp et al. (1989), which empirically relates biological fractionation to

the concentration of dissolved CO2 in seawater; 2) the parameterisation of Laws et al. (1995), which considers dissolved CO250

concentration and phytoplankton growth rate. We omit more complex parameterisations that include effects of cell membrane

permeability of molecular CO2 diffusion, cell size, and shape (e.g. Rau et al., 1996; Keller and Morel, 1999), as HAMOCC6

does not resolve these features of plankton cells. To assess the model’s performance, we run pre-industrial and present-day
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simulations and compare results to observations of δ13C signals in particulate organic carbon (δ13CPOC) and in dissolved

inorganic carbon (δ13CDIC).55

δ13CDIC measurements were mostly carried out in late 20th century and have picked up the oceanic 13C Suess effect sig-

nal (Gruber et al., 1999). The oceanic 13C Suess effect refers to the intrusion of anthropogenic CO2 from fossil fuel combustion

which carries a lower 13C/12C signal (Keeling, 1979). Recently, Eide et al. (2017a) derived an observation-based estimate of

the global ocean 13C Suess effect since pre-industrial times. Such an observation-based estimate is valuable for evaluating

models at pre-industrial states (Eide et al., 2017b) and for setting up paleo simulations (O’Neill et al., 2019). Yet, Eide et al.60

(2017a) have noted that their approach might underestimate the oceanic 13C Suess effect. They conjectured an underestimation

of 13C Suess effect between 0.15 - 0.24‰ at 200 m depth in 1994. However, the quantitative spatial distribution of this un-

derestimation is unclear. Moreover, although Eide et al. (2017a) have related the underestimation to several assumptions in the

approach they applied, the quantitative impact of these assumptions is still unclear as the measurements are limited in space

and time to perform in-depth investigation.65

Our model data includes all parameters needed to apply Eide et al. (2017a)’s procedure which relies on regressional re-

lationships between preformed δ13CDIC (related to the transport of surface waters with specific DIC and DI13C) and CFC-

12 (Chlorofluorocarbon-12) partial pressure. Thus, our consistent model framework, with the complete spatio-temporal in-

formation of the hydrological and biogeochemical variables, enables us to investigate the spatial distribution of the above-

mentioned potential underestimation of the oceanic 13C Suess effect. Moreover, our model framework also allows for the70

attribution of the underestimation to the assumptions of the procedure Eide et al. (2017a) applied.

In the following sections, we first provide a brief introduction to the global ocean biogeochemical model HAMOCC6,

followed by a description of the new 13C module including the experimental setup (Section 2). Section 3 presents the model

evaluation and Section 4 addresses our findings on the oceanic 13C Suess effect. Summary and conclusions are given in

Section 5.75

2 Model description

2.1 The global ocean biogeochemical model (HAMOCC6)

HAMOCC6 (Ilyina et al., 2013; Paulsen et al., 2017; Mauritsen et al., 2019) includes biogeochemical processes in the water

column and in the sediment. In the water column, the following biogeochemical tracers are simulated: dissolved inorganic

carbon (DIC), total alkalinity (TA), phosphate (PO4), nitrate (NO3), nitrous oxide (N2O), dissolved nitrogen gas (N2), sili-80

cate (SiO4), dissolved bioavailable iron (Fe), dissolved oxygen (O2), bulk phytoplankton (Phy), cyanobacteria (Cya), zooplank-

ton (Zoo), dissolved organic matter (DOM), particulate organic matter (POM), opal shells, calcium carbonate shells (CaCO3),

terrigenous material (Dust) and hydrogen sulfide (H2S). The sinking speed of POM linearly increases with depth (Martin

et al., 1987), whereas constant sinking speeds are set for opal, CaCO3 and Dust. Except for CaCO3 and opal, whose sinking

speeds (30 and 25 m d−1, respectively) are considerably faster than the horizontal velocities of ocean flow, the water-column85

biogeochemical tracers are transported by the hydrodynamical fields in the same manner as salinity.
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The sediment module is based on Heinze et al. (1999). It simulates remineralisation and dissolution processes as in the water

column concerning dissolved tracers (PO4, NO3, N2, O2, SiO4, Fe, H2S, DIC and TA) in the pore water and the solid sediment

constituents (POM, opal, CaCO3). The tracers in the pore water are exchanged with the overlying water column by diffusion.

Pelagic sedimentation fluxes of POM, CaCO3 and opal are added to the solid components of the sediment. Below the active90

sediment there is one diagenetical burial layer containing only solid sediment components and representing the bedrock. To

balance the loss of nutrients, TA, DIC and SiO4 in the water column, constant input fluxes of DOM, CO2−
3 and SiO4 are added

at the ocean surface, whose rates are derived from a linear regression of the long-term (approximately 100 years) temporal

evolution of the sediment (active and burial) inventory.

A detailed description of HAMOCC6 is provided in Mauritsen et al. (2019) and the references therein. Different to the95

HAMOCC6 version in Mauritsen et al. (2019), we allow DOM degradation in low oxygen conditions until all available O2 is

consumed.

2.2 The stable carbon isotope 13C in HAMOCC6

HAMOCC6 simulates total carbon C, which is the sum of the three natural isotopes 12C, 13C and 14C. Because in nature
12C constitutes about 98.9% of the total carbon and 13C only constitutes about 1.1 % (Lide, 2002), in HAMOCC we assume100
12C = C. We include a 13C counterpart for each 12C prognostic variable, that is, we introduce seven new tracers for the water

column and three for the sediment. 13C only mimics the 12C biogeochemical fluxes, modified by the corresponding isotopic

fractionation. We assume 13C inventory to be as large as the inventory of 12C to reduce numerical errors. Consequently, the

reference standard of the stable carbon isotope ratioRstd is set to 1 in Eq. (1). In this section, we describe the implementation of
13C fractionation during air-sea exchange and carbon uptake by bulk phytoplankton and by cyanobacteria. Because the isotopic105

fractionation during the production of calcium carbonate is small (Turner, 1982), it is not considered in this study.

2.2.1 Fractionation during air-sea gas exchange

13C isotopic fractionation during air-sea gas exchange is temperature-dependent. We adopt the calculation of 13C air-sea gas

exchange recommended by the OMIP protocol (Orr et al., 2017).

The net air-sea CO2 gas exchange flux F reads110

F =−kCO2 γCO2

(
pCO2

surf− pCO2
atm)

. (2)

Here, pCO2
surf and pCO2

atm are the partial pressures of CO2 in the surface seawater and in the atmosphere, respectively. The

piston velocity kCO2 (ms−1) for CO2 and the solubility γCO2 (mol L−1atm−1) of CO2 are calculated following Wanninkhof

(2014) and Weiss (1974), respectively.

The net air-sea 13CO2 exchange flux 13F is described similar to Eq. (2):115

13F =−13kCO2
13γCO2

(
pCO2

surfRg − pCO2
atmRatm

)
, (3)
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in which, Rg and Ratm are the ratios of 13C/12C in surface pCO2 and in atmospheric CO2, respectively. Following Zhang et al.

(1995), we can re-write Eq. (3) as

13F =−kCO2αk γCO2αaq←g

(
pCO2

surf RDIC

αDIC←g
− pCO2

atmRatm

)
. (4)

Here, αk = 13kCO2/kCO2 is the kinetic fractionation factor, αaq←g = 13γCO2/γCO2 is the equilibrium isotopic fractionation120

factor for gas dissolution (from gaseous to aqueous CO2), αDIC←g =RDIC/Rg is the equilibrium isotopic fractionation fac-

tor from gaseous CO2 to DIC and RDIC =13 CDIC/
12CDIC. Parameters αk, αaq←g and αDIC←g are obtained from laboratory

experiments (Zhang et al., 1995), and are often expressed in terms of a permil fractionation factor ε(‰) = (α− 1)× 103:

εk =−0.81, measured at 21◦C, (5)

εaq←g = 0.0049TC − 1.31, (6)125

εDIC←g = 0.014TC fCO3 − 0.105TC + 10.53. (7)

Here, TC is the seawater temperature in ◦C and fCO3 = CO2−
3 /DIC is the fraction of carbonate ions in DIC. Because in

Eq. (6) the temperature dependency is weak, we use a constant εaq←g =−1.24, obtained at TC = 15◦C in the model, following

Schmittner et al. (2013). In Eq. (7) we neglect the first term 0.014TC fCO3 , because fCO3 is generally smaller than 0.1 and

because the constant factor is one order of magnitude smaller than that of the second term 0.105TC .130

2.2.2 Fractionation during phytoplankton growth

The lighter stable carbon isotope 12C is preferentially utilised than 13C during photosynthesis (O’Leary, 1988). Following

Schmittner et al. (2013), we formulate this isotopic fractionation during net growth of the bulk phytoplankton and cyanobacteria

as

13G=RDICαPhy←DICG, (8)135

with

αPhy←DIC = αaq←DICαPhy←aq =
αaq←g

αDIC←g
αPhy←aq. (9)
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HereG (µmol C L−1 day−1) denotes the growth of bulk phytoplankton or cyanobacteria. αPhy←DIC is the isotopic fractionation

factor for DIC fixation, which is determined by the equilibrium fractionation factor αaq←DIC from DIC to aqueous CO2(aq)

and by the biological fractionation factor εp = (αPhy←aq−1)×103 related to the fixation of CO2(aq). Here the subscript "Phy"140

denotes either the bulk phytoplankton or cyanobacteria.

We test the parameterisations for biological fractionation from Popp et al. (1989) and from Laws et al. (1995), i.e.

εPopp
p =−17log(CO2(aq)) + 3.4, (10)

εLaws
p =

(
µ

CO2(aq)/ρsea
− 0.371

)
/0.015. (11)

Here, CO2(aq) (µmol L−1) is aqueous CO2 in surface water, µ (day−1) is the specific growth rate of bulk phytoplankton or145

of cyanobacteria. Note that Laws et al. (1995) measured εaq←Phy. Because αPhy←aq is close to unity, εp ≈−εaq←Phy (Zeeb

and Wolf-Gladrow, 2001). In Eq. (11), we set the seawater density ρsea a constant value of 1.025 kg L−1. Then Eq. (11) is

simplified to

εLaws
p = 68.3

µ

CO2(aq)
− 24.7. (12)

Both CO2(aq) and µ (depending on local conditions of light, water temperature and nutrient availability) are determined in150

HAMOCC. Figure 1 illustrates the values of εPopp
p and εLaws

p under typical ranges of CO2(aq) and µ in the ocean. When µ≤ 1,

εLaws
p is generally more negative than εPopp

p . For high µ values, e.g. µ= 2, εLaws
p is constantly less negative than εPopp

p . Under

high µ and low CO2(aq), εLaws
p becomes positive, which is unrealistic. However, our simulated ratios of phytoplankton growth

rate to dissolved CO2 concentration do not produce unrealistic positive εLaws
p at any time step in this study.

2.3 Model set-up and experimental design155

2.3.1 Setup

We conduct ocean-only simulations using the MPIOM-1.6.3p1 (Jungclaus et al., 2013; Notz et al., 2013; Mauritsen et al.,

2019) with HAMOCC6. MPIOM is a free-surface ocean general circulation model. It uses a curvilinear grid with the grid

poles located over Greenland and Antarctica. We use a low-resolution configuration with a nominal horizontal resolution of

1.5◦. This configuration has a minimum grid spacing of 15 km around Greenland and a maximum grid spacing of 185 km in160

the tropical Pacific. There are 40 unevenly spaced vertical levels. The layer thickness increases from 10 m in the upper ocean

to 600 m in the deep ocean. The upper 100 m of the water column are represented by nine levels. The time step is 1 hour. In

this set-up, we additionally include the oceanic uptake and transport of CFC-12. CFC-12 is chemically inert and can therefore

be treated as a conservative and passive tracer participating in all hydro-dynamical processes within the ocean identical to e.g.

salinity. The implementation of the air-sea gas exchange of CFC-12 follows the OMIP protocol (Orr et al., 2017).165
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Figure 1. The permil biological fractionation factor εp against aqueous CO2 concentration. The solid line illustrates εPopp
p , in which the

biological fractionation during phytoplankton growth is only a function of CO2(aq). The dash-dotted lines show εLaws
p , which depends on

µ/CO2, the ratio of phytoplankton growth rate to CO2(aq), for µ=0.2 (blue), 0.6 (red), 1.2 (yellow) and 2.0 (purple) day−1.

2.3.2 Experimental design

We carry out pre-industrial spin-up simulations followed by historical (1850-2010) simulations. We force the model with the

sea-surface boundary conditions from ERA20C (Poli et al., 2016), which covers the period 1901-2010. For the pre-industrial

period, we cyclically apply the forcing of 1905-1929 and set the atmospheric CO2 mixing ratio to 280 ppmv. We first conduct a

spin-up run without 13C tracers until the long-term averaged global net air-sea 13CO2 flux is smaller than 0.05 Pg C yr−1 (ade-170

quate to the C4MIP criterion for steady state conditions of <0.1 Pg C yr−1; Jones et al., 2016). This model state is the starting

point for the two spin-up runs including 13C tracers, PI_Popp and PI_Laws, which are based on the biological fractionation

parametrisation εPopp
p (Eq. 10) and εLaws

p (Eq. 12), respectively.

The 13C tracers are initialised as follows. The mean δ13C of the marine organic matter is about−20‰ (Degens et al., 1968).

Therefore, we set the initial concentrations of 13C in the bulk phytoplankton, cyanobacteria, zooplankton, dissolved organic175

carbon, particulate organic carbon in the water column and particulate organic carbon in the sediment to 0.98 (according to

Eq. 1) of their 12C counterparts. The initial 13CDIC in the water column is calculated following the relation between δ13CDIC

and PO4 (Lynch-Stieglitz et al., 1995):

δ13CDIC = 2.7− 1.1PO4. (13)

The initial concentrations of 13CCaCO3 in the water column and in the sediment, and the initial concentration of 13CDIC in pore180

water are set identical to their 12C counterparts.
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Figure 2. (a) The evolution of atmospheric CO2 (blue, Meinshausen et al., 2017) and δ13CO2 (red, Jones et al., 2016) during 1850 - 2010.

(b) The evolution of atmospheric CFC-12 concentrations (Bullister, 2017). Solid blue line indicates the northern hemisphere, dashed red line

indicates southern hemisphere.

The pre-industrial stable carbon isotope ratio δ13CO2 of atmospheric CO2 is fixed at −6.5‰. The input rate of dissolved

organic 13C (DO13C) is calculated as the product of the input rate of DOC and the sea-surface DO13C/DOC ratio; the input rate

of 13CO2−
3 is the product of the input rate of CO2−

3 and the sea-surface 13CO2−
3 /CO2−

3 ratio. This approach to determine 13C

input rates results in a small drift in the water-column 13C inventory but it only has minor impact on the simulation results (see185

Appendix A). PI_Popp and PI_Laws are spun up for 2500 simulation years such that 13C inventory adjusts to be consistent with

the simulated biogeochemical and hydrodynamical processes. Equilibrium states are reached with 98% of the ocean volume

having a drift of less than 0.001‰ year−1 (employing the same criteria as for 14C in OMIP protocol, Orr et al., 2017).

In the transient simulations for the historical period 1850-2010, Hist_Popp and Hist_Laws, we prescribe increasing atmo-

spheric CO2 mixing ratios (Meinshausen et al., 2017) due to anthropogenic activities and decreasing atmospheric δ13CO2190

following OMIP and C4MIP protocols (Jones et al., 2016) (Fig. 2a). For the period 1850 - 1900, when forcing data is ab-

sent, we continue applying the 1905-1929 ERA20C cyclic forcing. From 1901 to 2010, we use the transient ERA20C forcing.

The evolution of the atmospheric CFC-12 concentration (Fig. 2b) follows Bullister (2017). Because the atmospheric CFC-12 is

slightly higher in the northern hemisphere, we prescribe a linear transition between 10◦S and 10◦N. Input rates rates of DO13C,

DOC, 13CO2−
3 , CO2−

3 and SiO4 are kept constant, and are the same as those in the pre-industrial simulations.195

3 Model results and observations in the late 20th century

In this section, we compare simulated 13C between the two simulations Hist_Popp and Hist_Laws and evaluate the two exper-

iments by comparison to observed δ13CPOC and δ13CDIC. The observations used here are the surface δ13CPOC measurements

assembled by Goericke and Fry (1994) and the observed δ13CDIC, for both the surface and the interior ocean, compiled by

Schmittner et al. (2013). For the model-observation comparison, we first grid the observational data sets horizontally onto a200

1x1 degree grid and vertically onto the 40 depth layers of the model. Multiple data points in the same grid cell in the same

month and year are averaged. Then we bilinearly interpolate the simulated monthly-mean δ13CPOC and δ13CDIC over a 1x1 de-
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gree grid. To quantitatively compare the performance between Hist_Popp and Hist_Laws and to other 13C models, we calculate

the spatial correlation coefficient r and the normalised root mean squared error (NRMSE, normalised by the standard deviation

that is calculated using all the available measurements of δ13CPOC or δ13CDIC during the observational periods) between model205

results and observation.

3.1 Isotopic signature of particular organic carbon in the surface ocean

For comparison between Hist_Popp and Hist_Laws, the climatological mean state of δ13CPOC is derived by averaging over

1960-1991, the period when most δ13CPOC measurements were collected. In Hist_Popp, the climatological annual-mean sur-

face δ13CPOC has a global mean value of −22.5‰ and it shows a distict horizontal pattern (Fig. 3a). Less negative values up210

to −19.3‰ are found in the subtropical regions, where alkalinity is typically high and CO2(aq) is consequently low. This low

CO2(aq) results in a smaller isotope fractionation during carbon fixation by phytoplankton (Eq. 10, Fig. 1) with a biologi-

cal fractionation factor εp >−13‰ (Fig. 3c). Poleward of the subtropical regions, δ13CPOC gradually decreases. The reason

for this is twofold. First, εp decreases from −13 to about −20‰ following the increase of CO2(aq). Second, the thermal ef-

fect of equilibrium fractionation causes about 3‰ more fractionation in the polar regions than in the tropical and subtropical215

regions (according to Eqs. 7 and 9). The lowest δ13CPOC of about −30‰ occurs close to Antarctica where highest surface

DIC concentrations are typically found because of the upwelling of deep waters and the reduced air-sea gas exchange by ice

cover (Takahashi et al., 2014). The annual range of δ13CPOC (Fig. 3e), i.e. the difference between the minimum and the maxi-

mum of its climatological monthly-mean annual cycle, is low (< 0.5‰) in the subtropical regions and it increases polewards

up to ∼ 9‰ in the Southern Ocean, mirroring meridional changes in the annual range of CO2(aq).220

Compared to Hist_Popp, Hist_Laws shows lower annual-mean surface δ13CPOC (Fig. 3b), with a global-mean value of

−29.9‰ due to more negative εp (Fig. 3d). This is because εLaws
p (Fig. 1) is always more negative than εPopp

p when the simulated

mean growth rates (Figs. B1a and B1b) are lower than 1 day−1. As εLaws
p increases with growth rate (Eq. 12), we find less

negative δ13CPOC (up to−24.1‰) in the central tropical Pacific, where highest growth rates are simulated (Figs. B1a and B1b).

The lowest δ13CPOC of−33‰ occurs in the Arctic Ocean and around Antarctica due to the combination of low growth rate, high225

CO2(aq) and low seawater temperature. The meridional range of the annual-mean δ13CPOC in Hist_Laws (∼ 9‰) is smaller

than that of Hist_Popp (∼ 11‰) because for low growth rates εLaws
p is generally less sensitive to CO2(aq) changes compared to

εPopp
p (Fig. 1). This also results in a smaller annual range of δ13CPOC in high latitudes (Fig. 3f) than Hist_Popp (Fig. 3e). In the

low and mid latitudes, Hist_Laws show larger annual range of δ13CPOC because in these regions CO2(aq) concentrations are

relatively stable but growth rates shows noticeable seasonal variability.230

Hist_Popp captures major features of the observed δ13CPOC (Figs. 4a, 4c and 4e). The meridional gradient, with less negative

values in the low latitudes and minimal values around 60◦S, is well reproduced. In contrast, Hist_Laws shows generally

lower δ13CPOC than the observations (a global mean bias of −8‰) and smaller δ13CPOC difference between low and high

latitudes (Figs. 4b, 4d and 4f). This is also seen in a recent study by Dentith et al. (2020), who tested εPopp
p and εLaws

p with

the FAMOUS model of intermediate complexity. The underestimation in the global mean and in the meridional gradient of235

δ13CPOC in Hist_Laws suggests that the parameters of the linear fit in Eq. (12) (slope and intercept) would need to be increased
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Figure 3. The climatological (1960-1991) annual-mean surface values for Hist_Popp (a, c, e) and Hist_Laws (b, d, f) for δ13CPOC (a, b),

εp (c, d), and for the annual range of δ13CPOC (e, f). All values are given in permil (‰).

to gain a better performance. Around 60◦ S of the Atlantic Ocean (Fig. 4b), Hist_Laws simulates a smaller range of δ13CPOC

than the observations. This is also a result of the small δ13CPOC annual range produced by εLaws
p (Fig. 3f). Between 40◦ S and

40◦ N in the Atlantic Ocean, Hist_Laws simulates δ13CPOC peaks in the region of high growth rates south of the Equator,

whereas the observed high δ13CPOC values locate between the Equator and 20◦ N.240

In the Indian Ocean around 45◦ S, Hist_Popp does not capture the prominent δ13CPOC peak in the field data (Fig. 4e),

although the simulated CO2(aq), the controlling factor in the parameterisation εPopp
p (Eq. 10), well reproduces the meridional

variation of the observations (Fig. 4g). This is because although the empirical correlation between εp and CO2(aq), such as

Eq. (10), holds true to the first order over large areas of the global ocean, other factors, such as growth rate, affect the local

variability in εp (Popp et al., 1998; Hansman and Sessions, 2016; Tuerena et al., 2019). Hist_Laws captures the δ13CPOC245
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Figure 4. Comparison of surface δ13CPOC (‰) observations (blue triangle) from Goericke and Fry (1994) to model data (red circle) in

Hist_Popp (a, c, e) and Hist_Laws (b, d, f) for the Atlantic, Pacific and Indian Ocean, respectively. Inserted maps show cruise tracks of the

measuring campaigns. (g): Comparison of simulated CO2(aq) (red star) to observations (blue diamond) in the South Indian Ocean (Francois

et al., 1993, measurement locations indicated by black triangles in the inset map for the Indian Ocean). (h): as panel g, but for particulate

organic matter, represented by total POC in Francois et al. (1993) and by phytoplankton biomass in the model.

peak around 45◦ S in the observations (Fig. 4f), owing to the dependency of εLaws
p on phytoplankton growth rate and to the

model successfully reproducing the high productivity in this region (illustrated by phytoplankton biomass, Fig. 4h). This is

in alignment with the field study by Francois et al. (1993) and the model study by Hofmann et al. (2000), who ascribed this

observed δ13CPOC peak to a local high phytoplankton production during the measurement period.
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Overall, Hist_Popp (r = 0.84 and NRMSE = 0.57) better reproduces the observed δ13CPOC than Hist_Laws (r = 0.71,250

NRMSE = 2.5). Here a higher NRMSE indicates the model captures a smaller fraction of the variation in observations. The

performance of Hist_Popp regarding δ13CPOC compares well to that of the FAMOUS model (Dentith et al., 2020; Figure 8) and

the UVic Earth System Model of intermediate complexity (with r = 0.74 and NRMSE = 0.92; Schmittner et al., 2013). Note

that Schmittner et al. (2013) compared climatological annual-mean model output to the δ13CPOC measurements from Goericke

and Fry (1994), whereas our study uses model results of the corresponding month and year of the measurements. This differ-255

ence leads to a better comparison of Hist_Popp to the observed δ13CPOC in high latitudes, particularly in the South Atlantic

Ocean around 60◦ S, and therefore it is one reason for the slight better performance of Hist_Popp compared to Schmittner et al.

(2013), aside from the underlying differences between the two models.

3.2 Isotopic signature of dissolved inorganic carbon δ13CDIC

Figures 5a, 5b and 6a - 6f compare the climatological annual mean of δ13CDIC (averaged over 1990 - 2005, when most δ13CDIC260

measurements were collected) between Hist_Popp and Hist_Laws. The two simulations exhibit very similar δ13CDIC patterns

for both surface and interior ocean. The surface seawater DIC is enriched in 13C due to the preferential uptake of the light

isotope 12C by phytoplankton during primary production. As particulate organic matter sinks and is remineralised at depth,

the negative δ13CPOC signal is released. Consequently, in both Hist_Popp and Hist_Laws, δ13CDIC at the surface is generally

higher than in the ocean interior. At the surface of the equatorial central Pacific, the eastern boundary upwelling systems and the265

Southern Ocean south of 60◦S, lower δ13CDIC (< 1.6‰) is seen due to the upward transport of the 13C depleted water (Figs. 5a

and 5b). In the interior ocean, we find higher δ13CDIC (> 1‰) in well ventilated water masses, in particular the North Atlantic

Deep Water (NADW) (Figs. 6a and 6d). The lowest δ13CDIC values (<−0.5‰) occur at depth in tropical and subtropical

regions (Figs. 6a - 6f), where large amount of organic matter is remineralised.

The global-mean surface δ13CDIC of the two experiments only differs marginally (1.64‰ for Hist_Popp and 1.7‰ for270

Hist_Laws), which is expected as they are run using the same prescribed atmospheric δ13CO2 (Schmittner et al., 2013).

Given very similar mean surface DI13C, the larger vertical DI13C gradients in Hist_Laws, established by more negative

δ13CPOC (Figs 3a and 3b), yields lower DI13C concentration at depth. This adjustment of DI13C content in the ocean inte-

rior takes place during the pre-industrial spin-up phase of the simulations via air-sea 13CO2 exchange (Appendix A). At the

end of the 2500-year spin-up, the water-column DI13C inventory in PI_Laws is 1.1× 1012 kmol lower than PI_Popp, yielding275

a global mean δ13CDIC difference of 0.25‰ (Figs. 6g - 6i). Such interior-ocean δ13CDIC difference caused by using different

parameterisation for biological fractionation is also seen in Jahn et al. (2015) and Dentith et al. (2020). The seasonal upward

transport of the lower deep-ocean δ13CDIC in Hist_Laws leads to lower annual-mean surface δ13CDIC and larger δ13CDIC annual

range in regions of upwelling (Figs. 5c and 5d).

When compared to the observed δ13CDIC, Hist_Popp (r = 0.81, NRMSE = 0.7) has a slightly better performance than280

Hist_Laws (r = 0.80, NRMSE = 1.1). Hist_Laws generally shows too strong vertical gradients of δ13CDIC and too low δ13CDIC

values in the ocean interior, as is seen in the depth profiles of horizontally-averaged δ13CDIC (Fig. 7). This points to too strong

preference for the isotopically light carbon simulated by εLaws
p as is already discussed in Section 3.1. Given the slightly better
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Figure 5. Climatological (averaged over 1990-2005) annual-mean surface δ13CDIC for Hist_Popp (a) and Hist_Laws (b), respectively. c and

d: the difference of climatological annual-mean δ13CDIC between Hist_Laws and Hist_Popp, and the difference of climatological annual

range of δ13CDIC between the two simulations, respectively.

performance of Hist_Popp than Hist_Laws regarding δ13CDIC, we focus in the following on the comparison between Hist_Popp

and observed δ13CDIC.285

Figures 8 and 9 contain model-observation comparison for the surface and interior-ocean δ13CDIC, respectively. Overall,

the magnitude and spatial distribution of the observed δ13CDIC is well-captured by Hist_Popp. In the surface ocean, the mean

δ13CDIC is slightly overestimated by Hist_Popp (1.7‰ compared to 1.5‰ in observation). Positive biases are widely seen in

the Indian and Pacific Ocean and the negative biases are mostly found in the Atlantic Ocean (Fig. 8c). To better understand

the source of differences between model and observations, we follow the method of Broecker and Maier-Reimer (1992) to290

decompose δ13CDIC into a biological component δ13Cbio
DIC and a residual component δ13Cresi

DIC, driven by air-sea exchange and

ocean circulation:

δ13Cbio
DIC = δ13CDIC|M.O. +

∆photo

DICM.O.
RC:P (PO4−PO4|M.O.). (14)

Here the subscript M.O. refers to mean ocean values, ∆photo is the carbon isotope fractionation during marine photosynthesis,

and RC:P is the C:P ratio of marine organic matter. We use ∆photo =−19‰ (Eide et al., 2017b) and RC:P = 122 (Takahashi295

et al., 1985). To calculate δ13Cbio
DIC from observations, we employ δ13CDIC|M.O. = 0.5‰, DICM.O. = 2200µmol kg−1 (Eide

et al., 2017b), and PO4 from the World Ocean Atlas (WOA13; Garcia et al., 2013a). Considering the strong seasonality in PO4
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Figure 6. Zonal-mean δ13CDIC of the Atlantic Ocean (left column), the Pacific Ocean (middle column) and the Indian Ocean (right column)

for Hist_Popp (a-c), Hist_Laws (d-f) and for the difference between Hist_Laws and Hist_Laws (g-i).

1990s
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Figure 7. Depth profiles of horizontally-averaged δ13CDIC of Hist_Popp (solid blue line), Hist_Laws (dashed red line) and the observational

data from Schmittner et al. (2013) (solid black line) for the global ocean (a), the Atlantic Ocean (b), the Pacific Ocean (c) and for the

Indian Ocean (d). The grey shading indicates observation uncertainty of ±0.15‰, which relates to the estimated accuracy due to unresolved

intercalibration issues between laboratories (0.1− 0.2‰; Schmittner et al., 2013).

14

https://doi.org/10.5194/bg-2021-32
Preprint. Discussion started: 12 February 2021
c© Author(s) 2021. CC BY 4.0 License.



in the surface ocean, we select the phosphate concentration from the climatological monthly WOA data (available only for

the upper 500 m of the water column) and the climatological monthly-mean model data for the same month as the δ13CDIC

observations. The observed mean ocean phosphate concentration PO4|M.O. = 1.7µmol kg−1 is obtained by first merging the300

time-mean of the PO4 monthly WOA data in the upper 500 m and the PO4 annual-mean WOA data below 500 m, and then

mapping the combined data to the vertical grid of our model. For simulated δ13Cbio
DIC, the model data of δ13CDIC|M.O., DICM.O.,

PO4|M.O. and PO4 are used. The model-observation δ13Cresi
DIC difference is calculated by subtracting the model-observation

δ13Cbio
DIC difference from the model-observation δ13CDIC difference.

a

c d

b

e f

Figure 8. Observed surface δ13CDIC (Schmittner et al., 2013) (a) and simulated δ13CDIC in Hist_Popp sampled at the location, month and

year of the observation (b). c, d, e: The difference of δ13CDIC, its biological component δ13Cbio
DIC and the residual component δ13Cresi

DIC between

Hist_Popp and observations. f: The net air-sea 13CO2 flux (positive into the air, averaged over 1990-2005) difference between model and

observation-based data product from Landschützer et al. (2015).

Between 30◦N and 30 ◦S in the surface ocean, the simulated δ13Cbio
DIC is generally lower than the observation-based δ13Cbio

DIC305

with a mean negative bias of about −0.1‰ (Fig. 8d). This is caused by the underestimation of primary production in the
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Figure 9. Zonal-mean distribution in the Atlantic Ocean (left column), the Pacific Ocean (middle column) and the Indian Ocean (right

column) for the δ13CDIC observations from Schmittner et al. (2013)) (a-c), for the difference between Hist_Popp (sampled at the same

location, year and month of the observations) and δ13CDIC measurement (d-f), for the (PO4−PO4|M.O.) difference between model and WOA

data (WOA13; Garcia et al., 2013a) (g-i) and for the apparent oxygen utilisation (AOU) difference between model and WOA data (WOA13;

Garcia et al., 2013b) (j-l). Here the climatological annual mean values of PO4 and AOU are used for both model and WOA data because

seasonal variation is negligible in the interior ocean and WOA only provides monthly data above 500 m.

subtropical gyres (due to the underestimation of phytoplankton growth rates, see Appendix B) and the consequently reduced

enrichment of 13C in surface DIC. A strong positive δ13Cbio
DIC bias of 0.6 to 1‰ is seen in the North Pacific, where in the model

iron is not a limiting nutrient, in contrast to observations (Moore et al., 2013). In the equatorial central Pacific, a weak positive

δ13Cbio
DIC bias < 0.2‰ is caused by a too high primary production. Specifically, the simulated phytoplankton growth rates in310
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this region compare well to observations, whereas the simulated phytoplankton biomass is too high (Appendix B). The latter is

mainly induced by a too strong upwelling. The observed mean upward vertical velocity at 0◦, 140◦W, 60 m depth during May

1990 - June 1991 is 2.3× 10−5m s−1 (Weisberg and Qiao, 2000), whereas the model simulates 3.2× 10−5m s−1 for the same

location and period.

In the Southern Ocean, a strong positive δ13Cbio
DIC bias of 0.6 to 1‰ (Fig. 8d) results from a too large nutrient supply from315

the interior ocean to the surface. The cause for this too large nutrient supply is two fold. First, organic matter is remineralised

at too shallow depths in HAMOCC, as is shown by the positive apparent oxygen utilisation (AOU) biases above 500 m south

of 45◦S (Figs. 9j - 9l). Second, MPIOM simulates a too large upward transport due to too strong upwelling. In particular,

below 1000 m, the simulated upward velocity shows noticeably larger magnitude (> 5× 10−6 m s−1, Fig. D1) than that of a

dynamically consistent and data-constrained ocean state estimate (see Figure 1 in Liang et al., 2017). Our model also features320

larger downward velocities than the estimate from Liang et al. (2017), which correspond to too deep mixed layer depths in the

Southern Ocean (up to 3000 m, Fig. D2) than observations (<700 m; de Boyer Montégut et al., 2004; Holte et al., 2017).

We find strong δ13Cresi
DIC negative biases of −0.5 to −1‰ (Fig. 8e) in the North Pacific and the Southern Ocean, which

partially compensate the positive biases of δ13Cbio
DIC (Fig. 8d) in these regions. One major cause for the negative δ13Cresi

DIC bias

in these two regions is our model overestimating the uptake of anthropogenic carbon, as is illustrated by the net air-sea CO2325

difference between the model and the observation (Fig. 8f). Consequently, the decreased atmospheric 13C/12C ratio over the

industrial period further lowers δ13CDIC in the two ocean regions in the model. In the Southern Ocean, a too large upward

transport of 13C-depleted water at depth to the surface also contributes to a negative δ13Cresi
DIC bias.

In the interior ocean, δ13CDIC is controlled by remineralisation of 13C-depleted organic matter and by ocean circula-

tion (Broecker and Peng, 1993; Lynch-Stieglitz et al., 1995; Schmittner et al., 2013). Low δ13CDIC is often found in waters of330

high nutrient concentration and vice versa. Thus, we find positive (negative) δ13CDIC biases coincide with negative (positive)

phosphate biases (Figs. 9d - 9i). In the Atlantic Ocean between 1000 and 3000m, the North Pacific above 1500 m and the Indian

Ocean below 1000 m, positive δ13CDIC biases and negative phosphate biases are mainly caused by a too low remineralisation,

as is shown by the negative AOU biases (Figs 9j - 9l). North of 30◦S in the Atlantic Ocean, the negative δ13CDIC biases below

3000 m, together with the negative δ13CDIC biases between 1000 and 3000 m, suggest too strong δ13CDIC vertical gradients335

in the model (Fig. 9d). This results from a too shallow lower boundary of the NADW cell, constantly located above 2800 m,

compared to an estimated NADW lower boundary of about 4300 m deep at 26◦N (Msadek et al., 2013; Smeed et al., 2017).

A possible reason for the shallow NADW in the model is that the Lower North Atlantic Deep Water (LNADW), forming from

the Denmark Strait Overflow Water and the Iceland-Scotland Overflow Water, is not dense enough to flow further southward.

This is can be seen from the CFC-12 distribution along the zonal Section A5 at 24◦N (Fig. D3). The observed deeper CFC-12340

maximum (3000-4500 m west of 60◦W) indicates the presence of LNADW (Dutay et al., 2002), which is not represented in

our model.

We find the strongest negative δ13CDIC bias in the deep eastern equatorial Pacific (Fig. 9e). The cause is the ‘nutrient trapping’

problem in the model, characterised by too high nutrient concentrations in the deep eastern equatorial Pacific (Fig. 9h), which

is a persistent problem in many ESMs (Aumont et al., 1999; Dietze and Loeptien, 2013). Based on sensitivity experiments with345
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the Geophysical Fluid Dynamics Laboratory model and UVic model, Dietze and Loeptien (2013) concluded the primary cause

of the ‘nutrient trapping’ problem is likely model biases in physical ocean state, in particular, the poor representation of the

Equatorial Intermediate Current System and Equatorial Deep Jets. The latter two current systems are indeed poorly represented

in our model as well. Specifically, the zonal current at 1000 m depth (typical depth for the the Equatorial Intermediate Current

System) shows too little spatial variability and too low speeds of∼ 0.2 cm s−1 (Fig. D4), compared to the observed alternating350

jets with a meridional scale of 1.5◦ and speeds of ∼ 5 cm s−1 (see Figure 2 from Cravatte et al., 2012).

The performances of both Hist_Popp and Hist_Laws regarding δ13CDIC are comparable with the Norwegian Earth System

Model (Tjiputra et al., 2020; comparing their Fig. 21), the UVic Earth System Model (Schmittner et al., 2013) and the Com-

munity Earth System Model (Jahn et al., 2015; comparing their Figs. 5 and 6 to our Figs. 7 and 6, respectively). The latter two

studies used the same δ13CDIC dataset for model evaluation. Schmittner et al. (2013) reported a better performance (r = 0.88355

and NRMSE = 0.5) than ours (r = 0.81 and NRMSE = 0.7 in Hist_Popp). One main reason is that the ‘nutrient trapping’

problem in HAMOCC does not occur in the simulations of Schmittner et al. (2013). Our model shows noticeable better per-

formance than that of Dentith et al. (2020). The latter study simulates too high δ13CDIC over all depth levels, which the authors

ascribe to underlying biases in the biological carbon cycle.

4 Oceanic 13C Suess effect360

4.1 Evaluation of the simulated oceanic 13C Suess effect

The oceanic δ13C measurements taken during the late 20th century already include a signal that originates from burning of iso-

topically light fossil fuel over the industrial period. The associated decrease in atmospheric δ13C (Fig. 2) affects oceanic δ13C

via air-sea gas exchange, leading to a generally decrease of δ13CDIC. The distribution of this δ13CDIC change, i.e. the oceanic
13C Suess effect, could serve as benchmark for ocean models to evaluate the uptake and re-distribution of the anthropogenic365

CO2 emissions in the ocean.

The model is able to reproduce the size of the global oceanic anthropogenic CO2 sink. The simulated sink by year 1994 is

99 Pg C, which compares well to the observation-based estimate of 118±19 Pg C from Sabine et al. (2004) and to other model

estimates (e.g. 94 Pg C in Tagliabue and Bopp, 2008). For a direct comparison to published studies, we calculate the oceanic

δ13C Suess effect, δ13CSE, as the difference between the 1990s-averaged δ13CDIC from Hist_Popp and the pre-industrial cli-370

matological (50-year mean) δ13CDIC from PI_Popp. δ13CSE calculated using the results of Hist_Laws and PI_Laws only shows

marginal difference (global-mean< 0.04‰), and is therefore not presented. The surface mean δ13CSE in this study is−0.66‰,

similar to the model study of Schmittner et al. (2013) (−0.67‰) and to the estimate by Sonnerup et al. (2007) (−0.76±0.12‰)

who used an observation-based approach. The spatial distributions of δ13CSE show expected patterns along the vertical sec-

tions A16, P19 and I8S9N (Figs. 10a - 10c) and are similar to those in Eide et al. (2017a)’s estimate (Figs. 10d - 10f). The375

strongest oceanic 13C Suess effect is found in the subtropical gyres, where water masses have long residence times at the ocean

surface and therefore receive a strong anthropogenic imprint (Quay et al., 2003). At the surface of the subtropical gyres, our

simulated δ13CSE generally varies between −0.8 and −1.1‰, which compares well to the the surface ocean δ13C decrease of
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−0.9±0.1‰ recorded by coral and sclerosponges (Wörheide, 1998; Böhm et al., 1996, 2000; Swart et al., 2002, 2010) and to

the estimates of −1.0± 0.09‰ extracted from GLODAPv2 (Olsen et al., 2016; Eide et al., 2017a). In the subtropical gyres of380

the South Atlantic, the Pacific and the Indian Ocean, δ13CSE is mainly confined to upper 1000 m depth. In the North Atlantic,

δ13CSE penetrates deeper than the other ocean regions, due to the intensive ventilation related to the formation of NADW. One

noticeable discrepancy between the simulated δ13CSE and the estimates of Eide et al. (2017a) is some local positive δ13CSE

values occur in our model. This difference will be discussed in Section 4.2.
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Figure 10. The simulated oceanic Suess effect δ13CSE since pre-industrial times for vertical sections A16 in the Atlantic Ocean (a), P16 in

the Pacific Ocean (b) and I8S9N in the Indian Ocean (c). (d-f): as (a-c), but for the observation-based estimate of oceanic Suess effect from

Eide et al. (2017a). Inserted maps show the location of the vertical sections. The horizontal dashed black lines in panels a-c indicate 200 m

depth, below which Eide et al. (2017a)’s estimate is available. Note the bathymetry is different between the model and Eide et al. (2017a).

4.2 Investigation of potential uncertainties in the observation-based global oceanic 13C Suess effect estimate385

To derive the global oceanic 13C Suess effect, Eide et al. (2017a) (hereafter E17) first applied the two-stage back-calculation

method developed by Olsen and Ninnemann (2010) to calculate 13C Suess effect using data from the World Ocean Circulation

Experiment sections. Next they mapped these 13C Suess effect estimates over a 1x1 degree grid with 24 vertical layers and

obtained the three-dimension distribution of 13C Suess effect in the global ocean. For simplicity, hereafter the above procedure

is collectively referred to as E17’s approach. E17 have noted their outcome is likely to underestimate the oceanic 13C Suess390
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effect by 0.15 to 0.24‰ 200 m, globally. However, they can not provide a quantitative explanation for the sources of the

underestimation.

As our model reasonably reproduces the anthropogenic CO2 uptake and δ13CSE distribution in the ocean and it includes all

necessary variables (such as DI13C, CFC-12) required in E17’s approach, we are able to investigate such potential underesti-

mation by applying E17’s approach to our model data. Specifically, we aim to extract information on the spatial distribution395

of the potential underestimation and to quantitatively explain the causes for the underestimation. Below we briefly present the

key assumptions and equations of E17’s approach. A detailed description for E17’s approach is given in Appendix C.

E17 assumed the oceanic 13C Suess effect at any time t after 1940 is proportional to CFC-12 partial pressure (pCFC-12):

δ13CSE(t−1940) ∼ a · pCFC-12t. (15)

Here the proportionality factor a is time-invariant. By decomposing δ13CDIC into a preformed component δ13Cpref arising from400

the transport of the surface water with specific DIC and DI13C and a regenerated component δ13Creg due to organic matter

remineralization and calcium carbonate dissolution, the following equation is derived:

δ13Cpref
t = δ13CSE(t−1940)− (δ13Creg

t − δ13Creg
1940) + δ13Cpref

1940. (16)

The calculation of δ13Cpref
t and δ13Creg

t are detailed in Appendix C. Then E17 assumed the regenerated component is constant

in time, i.e. δ13Creg
t = δ13Creg

1940, which gives:405

δ13Cpref
t = δ13CSE(t−1940) + δ13Cpref

1940. (17)

Combining Eq. (15) and Eq. (17), together with regarding the preformed component for year 1940, δ13Cpref
1940, as a term inde-

pendent of pCFC-12, yields a linear relationship between the preformed component δ13Cpref
t and pCFC-12t:

δ13Cpref
t ∼ a · pCFC-12t + b. (18)

The regression coefficients a and b are determined with δ13Cpref
t and pCFC-12t from measurement deeper than 200 m depth (be-410

low which the approach applies). With a and observed pCFC-12t, δ
13CSE(t−1940) on the ocean observation sections is obtained

using Eq. (15). To scale δ13CSE(t−1940) to δ13CSE(t−PI) for the full industrial period, the assumption is used that the oceanic

δ13CDIC change scales with the atmospheric δ13CO2 change, i.e.:

δ13CSE(t−PI) = fatm · δ13CSE(t−1940) = fatm · a · pCFC-12t, (19)
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with415

fatm =
δ13CO2,t− δ13CO2,PI

δ13CO2,t− δ13CO2,1940
. (20)

To achieve a result comparable to E17, we select the model data at the locations for which both CFC-12 and δ13CDIC

measurements are available. Here we use the observations compiled by Schmittner et al. (2013) because δ13CDIC in this data

set has been quality controlled and is publicly available. The only difference with respect to the observational data used in E17

is that Schmittner et al. (2013) do not include the data at one South Atlantic section (A13.5) measured in 2010. However, this420

difference does not affect our analysis. Vertically, we use data at the model layers above the simulated pCFC-12 penetration

depth (set at 20 patm, following E17). We take t= 1994 and perform the linear regression of Eq. (18) for five ventilation

regions (the North Atlantic, South Atlantic, North Pacific, South Pacific and Indian Ocean), respectively.

The regressional relationships between δ13Cpref
1994 and pCFC-121994 (Eq. 18) and the regression coefficients, hereafter re-

ferred to as apref and bpref, are shown in Fig. D5 (the water masses in this figure are defined in Table D1). The coefficient of425

determination r2, the percentage of the variance in the data explained by the regressional relationship, ranges between 0.33 and

0.66. The strength of these linear relationships is acceptable considering the lowest r2 = 0.22 in E17. Applying Eq. (19) to the

three-dimension model data of pCFC-121994 for t= 1994, apref and fatm = 1.5, we obtain the estimate of the global oceanic
13C Suess effect in year 1994, which we refer to as SEpref.

To quantify if SEpref under- or overestimate the oceanic 13C Suess effect, we compare SEpref to the simulated oceanic 13C430

Suess effect in 1994 (SEMod). Figures 11a and 12a - 12c present (SEpref−SEMod) for 200 m depth and for the selected ocean

vertical sections. Positive values of (SEpref−SEMod) indicate underestimation of the oceanic 13C Suess effect.

At 200 m SEpref mostly underestimates SEMod (Fig. 11a). The ventilation region-mean underestimation is 0.24‰ for the

Indian Ocean, 0.21‰ for the North Pacific, 0.26‰ for the South Pacific, 0.1‰ for the North Atlantic and 0.14‰ for the South

Atlantic (Table 1). These findings confirm the underestimation range discussed by E17. Note that E17 deduced the range of435

0.15 to 0.24‰ by comparing their global-mean estimate (−0.4‰ at 200 m depth) to previous model studies. Specifically, based

on Broecker and Peng (1993) and Bacastow et al. (1996) E17 assumed an ocean-to-atmosphere ratio of the 13C Suess effect of

0.65 and the 200 m-to-surface ratio of the 13C Suess effect of 0.6-0.7. Multiplying the above two ratios with the atmospheric

δ13CO2 decrease of −1.4‰ by year 1994 yields global-mean 13C Suess effect -0.55 to −0.64‰ at 200 m. In our model, the

global-mean ocean-to-atmosphere ratio of the 13C Suess effect is 0.46, significantly lower than the five-box model of Broecker440

and Peng (1993). On the other hand, our model shows a slightly higher 200 m-to-surface ratio of the 13C Suess effect (0.75)

than Bacastow et al. (1996) who employed an ocean general circulation model with coarse vertical resolution (4 layers for the

upper 200 m).

E17 have speculated that the major cause of the underestimation of oceanic 13C Suess effect is that the available observations

are mostly from the intermediate and deep waters. The ocean-atmosphere equilibration timescale for δ13C (10 years, Broecker445

and Peng, 1974) is significantly longer than that of pCFC-12 (1 month, Gammon et al., 1982). Thus, waters that have shorter

surface residence time, such as the deep waters ventilated in the South Hemisphere, would show less negative slope apref
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a

Figure 11. Distribution at 200 m depth for SEpref− SEMod (a), SEtotal− SEMod (b) and SEpref− SEtotal (c). The isoline increment is 0.1‰. In

panels b and c, the South Pacific Ocean is not presented because the relationship between the total oceanic 13C Suess effect δ13CSE(1994−1940)

and pCFC-121994 is too weak (r2 = 0.07) and therefore SEtotal can not be estimated.

Table 1. Region-mean (SEpref− SEMod), (SEtotal− SEMod) and (SEpref− SEtotal) for the Indian, North Pacific, South Pacific, North Atlantic

and South Atlantic Ocean. The unit is permil.

(SEpref− SEMod) (SEtotal− SEMod) (SEpref− SEtotal)

Indian 0.24 0.01 0.23

North Pacific 0.21 0.13 0.09

South Pacific 0.26 \ \

North Atlantic 0.1 0.09 0.02

South Atlantic 0.14 -0.01 0.15

than waters that have longer surface residence time, e.g. subtropical gyres. In other words, apref for water masses such as the

Subtropical Gyre Water should be more negative than that for the corresponding ventilation region. Here we test this hypothesis

for the Indian Ocean and North Pacific Ocean. We can span regressional relationships for the subtropical gyres of these two450

ventilation regions because our model has higher vertical resolution in the upper ocean and therefore has more data points

than field measurements. For the Indian Ocean, we combine the model data from Subtropical Gyre Water and Sub-Antarctic

Mode Water as both water masses have a strong 13C Suess effect (E17). We find in the Indian Ocean apref for the Subtropical

Gyre Water and Sub-Antarctic Mode Water (−0.65× 10−3, r2 = 0.49) is more negative than that for the whole ventilation
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.05

Figure 12. The difference (SEpref−SEMod) for the vertical sections A16 in the Atlantic Ocean (a), P16 in the Pacific Ocean (b) and I8S9N in

the Indian Ocean (c). (d - f) and (g - i): as (a - c), but for (SEtotal−SEMod) and (SEpref−SEtotal), respectively. The isoline increment is 0.05‰.

The thick grey line is pCFC-121994 = 20 patm isoline, below which SEpref is generally very small (< 0.05‰).

region (−0.47× 10−3). However, this difference in apref only corresponds to an underestimation of 0.12‰ at 200 m for this455

subtropical region, which could not explain the total underestimation of ∆δ13CSE(1994−PI) = 0.24‰ in the Indian Ocean. Here

0.12‰ is calculated as fatm ·((−0.47×10−3)−(−0.65×10−3)) ·pCFC-12STGW
1994 (see Eq. 19), with pCFC-12STGW

1994 = 440 patm

being the mean pCFC-12 in the Indian subtropical region at 200 m. In the North Pacific Ocean apref for the Subtropical Gyre

Water (−0.44× 10−3, r2 = 0.26) is less negative than that for the whole ventilation region (−0.71× 10−3) in the model, in

contrast to the conjecture of E17.460

To reveal the source for the underestimation, we divide (SEpref−SEMod) into two components (SEpref−SEtotal) and (SEtotal−
SEMod). Here SEtotal is derived similarly to SEpref and it is based on linear regression relationships between δ13CSE(1994−1940)

and pCFC-121994. Positive values of (SEpref−SEtotal) show the underestimation of oceanic 13C Suess effect induced by using

apref · pCFC-121994 to approximate the relationship between the δ13CSE(1994−1940) and pCFC-12. The difference (SEtotal−
SEMod) shows how well a method based on linear relationships between the δ13CSE(1994−1940) and pCFC-121994 can estimate465

the global ocean 13C Suess effect.
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To calculate SEtotal we perform a linear regression for the total oceanic 13C Suess effect δ13CSE(1994−1940) and pCFC-121994

with the subsampled model data:

δ13CSE(1994−1940) ∼ atotal · pCFC-121994 + btotal. (21)

This is followed by scaling from the period 1940 - 1994 to the full industrial period in analogy to Eq. (19):470

SEtotal = fatm · (atotal · pCFC-121994 + btotal). (22)

The regression relationships in Eq. (21) and regression coefficients are given in Fig. D6. For the Indian, North Pacific, North

Atlantic and South Atlantic Ocean, r2 lies between 0.34 and 0.67, which suggests acceptable strength of the relationships. In

the South Pacific Ocean we find low r2 = 0.07, and therefore we don’t compute SEtotal for the South Pacific Ocean. The causes

for this low r2 will be discussed later in this section.475

With Eqs. (19) and (22) we get

SEpref−SEtotal = fatm · (apref− atotal) · pCFC-121994− fatm · btotal. (23)

(SEtotal−SEMod) at 200 m generally show positive values, i.e. underestimation, in low latitudes (between 40◦ S and 40◦ N)

and it is rather negative poleward of 40◦ (Fig. 11b). This pattern results from lumping together data from different water masses

to generate one regression relationship for a large ventilation region. The waters ventilated in lower latitudes typically have480

stronger 13C Suess effect than those ventilated in high latitudes. This is clearly reflected in the linear regression relationships

between δ13CSE(1994−1940) and pCFC-121994 for the North Atlantic Ocean (Fig. D6d), which shows the regression slope atotal

for the Subtropical Gyre Water is noticeably steeper than that of the deep waters. Accordingly in the interior ocean, the water

masses ventilated in the low latitudes generally show underestimation of 13C Suess effect (positive values of SEtotal−SEMod)

and the water masses ventilated in the high latitudes show overestimation (Figs. 12d - 12f). In the North Atlantic Ocean, the485

region-mean underestimation SEpref−SEMod = 0.1‰ is predominantly contributed by SEtotal−SEMod = 0.09‰. In the North

Pacific Ocean SEtotal−SEMod = 0.13‰ accounts for more than half of the total underestimation 0.21‰. In the Indian and

South Atlantic Ocean, however, (SEtotal−SEMod) has hardly any influence to the region-mean underestimation.

In the South Atlantic, North Pacific and Indian Ocean, (SEpref−SEtotal) is always positive and it decreases with increasing

depth (Figs. 11c, 12g - 12i) because pCFC-12 decreases towards the interior ocean (see Eq. 23). In the South Atlantic and490

Indian Ocean, (SEpref−SEtotal) determines the region-mean underestimation (Table 1). In the North Pacific Ocean, it con-

tributes to less than half of the underestimation (Table 1). We find two main causes of the underestimation from the component

(SEpref−SEtotal) in the above three regions. The first arises from the assumption that δ13Cpref
1940 is a constant in the regression

equation Eq. (18). As is shown for the zonal-averaged vertical sections, δ13Cpref
1940 exhibits noticeable spatial variations (Figs. 13a

- 13c). Over a considerable fraction of ocean regions (e.g. north of 40◦ S in the South Atlantic Ocean, south of 35◦ N in the495

North Pacific Ocean, north of 40◦ S in the Indian Ocean) δ13Cpref
1940 generally decreases with increasing depth. This vertical
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distribution is similar to that of pCFC-121994 (Figs. 13d - 13f). Such a seemingly positive correlation between δ13Cpref
1940 and

pCFC-121994 exists because during the pre-industrial times, in our model the preformed component δ13Cpref generally de-

creases with increasing water depth, which has also been reported by Schmittner et al. (2013) (see their Figs. 5 and 6). In the

industrial period prior to 1940, the decrease of the atmospheric 13C/12C ratio is relatively slow (Fig. 2). Thus, by the year 1940500

the oceanic uptake of isopotically light CO2 only partly offsets vertical gradient of the pre-industrial δ13Cpref. Consequently,

the seemingly positive correlation between δ13Cpref
1940 and pCFC-121994 results in less negative apref than atotal. This therefore

generates the underestimation of 13C Suess effect in the South Atlantic, North Pacific and Indian Ocean in the model.

Atlantic Pacific Indian
𝛅13Cpref1940 [permil]

pCFC-12 [patm]

-(𝛅13Cpref1994 - 𝛅13Cpref1940) [permil]

g h i

a b c

d e f

g h i

j k l

ΔAOU(1994-1940) [mmol m-3]

Figure 13. (a - c): The zonal mean of the simulated δ13Cpref
1940 for the locations where both observed CFC-12 and δ13CDIC are available.

The thick grey line is pCFC-121994 = 20 patm isoline, above which model data is used to perform linear regression. The thick black lines

outline the Subtropical Gyre Water in the Atlantic and North Pacific Ocean, the Subtropical Gyre Water and Sub-Antarctic Mode Water in

the Indian Ocean and South Pacific ocean (definition of water masses in Table D1). (d - f), (g - i) and (j - l): as (a - c), but for pCFC-121994,

for −(δ13Creg
1994− δ13Creg

1940) and for AOU changes between year 1940 and 1994, respectively. Note that for the Atlantic Ocean the upper

3 km is shown, whereas for the Pacific and Indian Ocean the upper 1.5 km is presented.

25

https://doi.org/10.5194/bg-2021-32
Preprint. Discussion started: 12 February 2021
c© Author(s) 2021. CC BY 4.0 License.



The second cause for the underestimation in the component (SEpref−SEtotal) is that δ13CSE(1994−1940) is set to zero in the

waters pCFC-121994 = 0 (Eq. 15). However, this assumption does not always hold because of the longer atmospheric time505

history of 13C Suess effect than CFC-12, as is already discussed by E17. This point is supported by non-negligible values

of the regression intercept btotal in our study. In the South Atlantic and Indian Ocean, btotal =−0.07‰ corresponds to an

underestimation of 0.11‰ (=−fatm · btotal, see Eq. 23). Thus, neglecting 13C Suess effect in CFC-12 water contributes to

almost half of the total underestimation at 200 m for the Indian Ocean and it contributes to about 80% for the South Atlantic

Ocean (Table 1).510

Different from the previously discussed three ventilation regions, in the North Atlantic Ocean negative (SEpref−SEtotal) is

found at 200 m (Fig. 11c), which becomes positive below about 250 m (Fig. 12g). The reason is apref =−0.81× 10−3 is more

negative than atotal =−0.62× 10−3 (Figs. D5d and D6d). This is related to the assumption that the regenerated component

of δ13CDIC is constant in time, i.e. −(δ13Creg
1994− δ13Creg

1940) = 0 in Eq. (16). As is shown by Figs. 13g - 13i, −(δ13Creg
1994−

δ13Creg
1940) is non-negligible, with the magnitude up to 0.3‰. Above 1500 m, the spatial variability of −(δ13Creg

1994−δ13Creg
1940)515

can be mainly attributed to the change of organic matter remineralization in the ocean interior, as is illustrated by the tem-

poral change of AOU (Figs. 13j - 13l). Below 1500 m, the δ13Creg changes are generally negative (Figs. D7d - D7f) be-

cause δ13CPOC decreases globally by about 1.3‰ during 1940-1994 (Fig. D8), mainly due to the decline of the biological

fractionation factor εp under increasing surface CO2(aq). In the North Atlantic Ocean, −(δ13Creg
1994− δ13Creg

1940) is mostly

negative above 500 m, where pCFC-121994 is relatively high (Fig. 13g). Below 500 m, where pCFC-121994 is relatively520

low, −(δ13Creg
1994− δ13Creg

1940) is mostly positive. Thus, an apparent negative correlation between the spatial distributions of

−(δ13Creg
1994− δ13Creg

1940) and pCFC-121994 leads to a more negative apref than atotal, according to Eq. (16). The consequential

overestimation of δ13CSE(1994−PI) by 0.09‰ (= fatm · (apref− atotal) · pCFC-121994) is compensated by a underestimation of

0.12‰ (=−fatm · btotal) due to the negative linear regression intercept btotal =−0.08‰. Overall we find a negligible underesti-

mation of mean (SEpref−SEtotal) = 0.02‰ at 200 m depth in the North Atlantic Ocean.525

The temporal change of δ13Creg also causes the positive values of δ13CSE at depth, for instance, below 1000 m on the vertical

section P16 in the South Pacific Ocean (Fig. 10b). Here the positive change of δ13Creg is due to a decrease of remineralisation,

as is shown by the change of AOU in this region (Fig. D8h). Hence, less negative δ13CPOC signal is released in this region and

δ13CDIC slightly increases.

We don’t compute SEtotal for the South Pacific Ocean because of a low r2 = 0.07 obtained for the linear regression between530

δ13CSE(1994−1940) and pCFC-121994, suggesting no linear relation between the two variables (Fig. D6c). The model data for the

Subtropical Gyre Water and the Antarctic Intermediate Water in the South Pacific Ocean are particularly scattered (Fig. D5f)

because −(δ13Creg
1994− δ13Creg

1940) shows significant spatial variability within each of these two water masses (Fig. D7e). These

changes of δ13Creg are mainly caused by the changes of ocean carbon cycle in our model, as is illustrated by the AOU

changes (Fig. D7h).535

Although we can not directly evaluate (SEpref−SEtotal) for the South Pacific Ocean, we can try to understand the total

underestimation (0.26‰ at 200 m, being the largest among the five ventilation regions, see Table 1) by analysing the spatial

distribution of the terms in Eq. (16). A seemingly positive correlation clearly exists between δ13Cpref
1940 and pCFC-121994, which
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both decreases with increasing depth (Fig. 13b). This contributes to the underestimation of 13C Suess effect (according to

Eq. 23), similar to the case for the Indian, South Atlantic and North Pacific Ocean. Above the pCFC-12=20 patm isoline,540

−(δ13Creg
1994− δ13Creg

1940) mostly decrease with increasing depth (Fig. 13h), similar to the Atlantic Ocean, which contributes to

an overestimation.

Note that due to inevitable model biases, our model does not perfectly reproduce the distribution and properties of the ob-

served water masses (see more discussion in Appendix C). Thus our regression relationships between δ13Cpref and pCFC-12 (Fig. D5)

show some quantitative differences to those of E17 (see their Fig. 3). Nevertheless, our analysis provides a possible spatial545

distribution of the underestimation of 13C in E17’s product. More importantly, we uncover two major causes for the underesti-

mation: the assumption of a spatially constant δ13Cpref
1940 and the neglect of 13C Suess effect in CFC-12 free water.

5 Summary and conclusions

We present results of the new 13C module in the ocean biogeochemical model HAMOCC6 for the historical period forced

by reanalyses data (ERA20C). We test two parameterisations of different complexity for the biological fractionation factor:550

εPopp
p depends on dissolved CO2 (Popp et al., 1989); εLaws

p is a function of dissolved CO2 and phytoplankton growth rate (Laws

et al., 1995). Futhermore, we used our consistent model framework to assess the approach by Eide et al. (2017a), who used

a correlation between preformed δ13CDIC and CFC-12 partial pressure to obtain an estimate of the global oceanic 13C Suess

effect.

The comparison between simulated and observed isotopic ratio of organic matter δ13CPOC reveals that εPopp
p (r = 0.84 and555

NRMSE = 0.57) has a better performance than εLaws
p (r = 0.71 and NRMSE = 2.5). Using εLaws

p results in noticeably lower

δ13CPOC values and smaller δ13CPOC gradients between low and high latitudes compared to observations. The parameterisation

of Laws et al. (1995), obtained based on cultures of marine diatom Phaeodactylum tricornutum, results in a too strong pref-

erence of the isotopically light carbon. Therefore it is not a good representative for 13C biological fractionation in our global

ocean biogeochemical model.560

Regarding δ13CDIC, εPopp
p yields slightly better agreement with observations than εlaws

p (r = 0.81 and NRMSE = 0.7 ver-

sus r = 0.80 and NRMSE = 1.1), because εLaws
p produces larger vertical gradients of δ13CDIC and a lower DI13C inventory

than those found in observations. Nevertheless, both εPopp
p and εlaws

p perform well considering the uncertainties in observed

δ13CDIC (0.1− 0.2‰; Schmittner et al., 2013) and the model biases in the physical state (e.g. a too shallow boundary between

NADW cell and the Antarctic Bottom Water cell in MPIOM).565

Our model well represents the temporal evolution of the oceanic δ13CDIC since pre-industrial times, i.e. the oceanic 13C

Suess effect due to the intrusion of isotopically light carbon into the ocean. With the complete information on the spatial and

temporal 13C evolution in the ocean, together with the simulated evolution of CFC-12, we constrain the potential uncertainties

in the framework of Eide et al. (2017a) for deriving an observation-based oceanic 13C Suess effect. Based on our model, we

find underestimations of 13C Suess effect at 200 m by 0.24‰ in the Indian Ocean, 0.21‰ in the North Pacific Ocean, 0.26‰570

in the South Pacific Ocean, 0.1‰ in the North Atlantic Ocean and 0.14‰ in the South Atlantic Ocean. These numbers confirm
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the underestimation range 0.15 to 0.24‰ conjectured by Eide et al. (2017a). They speculated this underestimation is due to the

under-representation of the water masses with stronger 13C Suess effect, such as the Subtropical Gyre Water and Sub-Antarctic

Model Water, in the observational data. Our analysis shows that their hypothesis only explain half of the underestimation in

the Indian Ocean. For the North Atlantic Ocean this hypothesis is not supported by the model data . We identify two major575

causes for the underestimation of 13C Suess effect by the applied method. The first relates to the assumption that the preformed

component of δ13CDIC in year 1940 is spatially constant, whereas it shows considerable spatial variability in our model. This

preformed component also shows a seemingly positive correlation with pCFC-12, which contribute to the underestimation of

δ13C Suess effect. The second cause relates to the neglect of the 13C Suess effect in the CFC-12 free water. This assumption

corresponds to an underestimation of 0.11‰ at 200 m depth in the Indian Ocean and the South Atlantic Ocean.580

We conclude that the new 13C module with biological fractionation factor εPopp
p from Popp et al. (1989) has a satisfactory

performance. Thus, our new 13C module will serve as a useful tool to evaluate the performance of MPI-ESM in paleo-climate

and to investigate the past changes in the ocean, for instance within the ongoing research project PalMod (Latif et al., 2016).

Appendix A: Governing factors for the water-column DI13C inventory changes

The water-column DI13C inventory difference is primarily a result of the difference of the net air-sea 13CO2 flux between585

PI_Popp and PI_Laws. This is demonstrated by the comparison of the contributions of the governing factors for the water-

column DI13C inventory changes (Table A1), including air-sea gas exchange, loss of POC and CaCO3 to marine sediment,

diffusion of the remineralised DIC from sediment into the water column, input of DOC and CO2−
3 , and the exchange with

other marine carbon pools (phytoplankton, CaCO3, etc.). Table A1 also reveals that the current method to determine the 13C

input (see Section 2.3.2) only has a small contribution to the change of the water-column DI13C inventory.590

Table A1. Contributions to the rate of the water-column DI13C inventory change (in Gmol yr−1), averaged in the last 50 years in the

corresponding pre-industrial spin-up simulations. Positive values denote contributions to the increase of the water-column DI13C inventory.

Last column gives relative contribution to the total rate difference with relative contribution = (PI_Laws-PI_Popp) / total rate difference.

13C fluxes into

the water column (Gmol yr −1)
PI_Popp PI_Laws PI_Laws - PI_Popp

relative

contribution

air-sea gas exchange 1824.4 1552.3 -272.1 1.1

POC loss to sediment -34902.9

sum:

626.6

-34626.4

sum:

596.1

276.5

sum:

30.5
-0.1

CaCO3 loss to sediment -16672.1 -16674.3 -2.2

DOC input 13612.7 13506.8 -105.9

CO2−
3 input 16505.2 16506.9 1.7

sediment DIC reflux 22053.2 21913.6 -139.6

from other water-column carbon pools 63.8 64.2 -0.4 0.001

total rate 2484.7 2242.7 -242.0 1
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Appendix B: Model-observation comparison of net primary production, phytoplankton growth rate and biomass

The simulated net primary production, 48.7 Gt yr−1 for bulk phytoplankton and 3 Gt yr−1 for cyanobacteria, compares well

with the satellite-based estimate of ∼ 52 Gt yr−1 (Westberry et al., 2008; Silsbe et al., 2016). The simulated growth rate

µ (Figs. B1a and B1b, only shown for bulk phytoplankton because cyanobacteria has a much lower primary production) is

broadly consistent with the large-scale patterns of the satellite-based µ estimates from Westberry et al. (2008) (Figs. B1c and595

B1d) and with field observations. In the central equatorial Pacific the simulated µ well reproduces the observed range (0.55-

0.7 day−1, Chavez et al., 1996; note the satellite-based estimates overestimate µ due to excluding iron limitation). In the

subtropical gyres, the simulated µ (annual-mean 0.1-0.25 day−1) is at the lower side of both the observations (annual mean

0.3-0.53 day−1 in the North Pacific subtropical gyre, Letelier et al., 1996; annual mean 0.13-0.62 day−1 in the North Atlantic

subtropical gyre, Marañón, 2005) and the satellite-based µ estimates. In the Pacific sector of the Southern Ocean, the simulated600

µ (0.3-0.4 day−1) in the austral summer is higher than the observations (about 0.1-0.2 day−1; Boyd et al., 2000) and the

satellite-based estimates. The simulated phytoplankton biomass is too high in the equatorial Pacific (> 100 mg C m−3) and

the Southern Ocean (> 50 mg C m−3); Fig. B2) compared to the satellite-based estimates (< 30 mg C m−3 for both regions;

Westberry et al., 2008).

Figure B1. The 1999-2004 climatological-mean surface phytoplankton growth rates (day−1) of the model (a, b, for bulk phytoplankton) and

of the satellite-based estimates from Westberry et al. (2008) (c, d) for the boreal summer (left column) and winter (right column).
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Figure B2. The 1999-2004 averaged annual-mean surface phytoplankton biomass (mg C m−3) of the model.

Appendix C: Applying Eide et al. (2017a)’s approach to the model data605

E17’s procedure first assumes that any oceanic CFC-12 signal before 1940 is negligible and the oceanic 13C Suess effect at

any time t after 1940 is proportional to CFC-12 partial pressure at time t:

δ13CSE(t-1940) ∼ a · pCFC-12t. (C1)

Here the proportionality factor a is time-invariant. δ13CDIC at any time t after year 1940 is decomposed as:

δ13Ct = δ13Cpref
1940 + δ13Creg

1940 + δ13CSE(t-1940) + ∆δ13Creg + ∆δ13Cpref. (C2)610

The superscript "pref" represents the preformed component, which arises from the transport of the surface water with specific

DIC and DI13C. Superscript "reg" denotes the regenerated component δ13Creg
SE due to organic matter remineralisation and

calcium carbonate dissolution. The two last terms contain any changes not related to the 13C Suess effect, e.g. changes in

ocean carbon cycle. Decomposing the left-hand side of Eq. (C2) gives

δ13Cpref
t = δ13CSE(t-1940) + δ13Cpref

1940− (δ13Creg
t − δ13Creg

1940) + ∆δ13Creg + ∆δ13Cpref. (C3)615

Note here−(δ13Creg
t −δ13Creg

1940)+∆δ13Creg represents any change of the regenerated component and is equivalent to−(δ13Creg
t −

δ13Creg
1940) in Eq. (16) in Section 4.2. In E17, the terms (δ13Creg

t − δ13Creg
1940), ∆δ13Creg and ∆δ13Cpref are assumed zero. Com-

bining Eq. (C1) and Eq. (C3) yields

δ13Cpref
t ∼ a · pCFC-12t + b, (C4)

where b contains terms δ13Cpref
1940. Thus, the proportionality factor a can be determined with δ13Cpref

t and ·pCFC-12t at time t,620

and δ13CSE(t-1940) is obtained with Eq. (C1).
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The preformed component is calculated following Sonnerup et al. (1999) and Eide et al. (2017a):

δ13Cpref =
δ13CDIC ·DIC−AOU ·

(
C

-O2

)
org
· δ13Corg

DIC−AOU ·
(

C
-O2

)
org

. (C5)

This equation is only valid below the 200 m, which is roughly the euphotic zone depth (E17). The
(

C
-O2

)
org

ratio is 122:172 in

HAMOCC6, and we use the simulated δ13CPOC for δ13Corg. The dissolution of CaCO3 is neglected following Sonnerup et al.625

(1999), who argued this simplification only results in a small offset (< 2%).

To scale δ13CSE(t−1940) to δ13CSE(t−PI) for the full industrial period, the assumption is used that the oceanic δ13CDIC change

scales with the atmospheric δ13CO2 change, i.e.:

δ13CSE(t−PI) = fatm · δ13CSE(t−1940) = fatm · a · pCFC-12t, (C6)

with630

fatm =
δ13CO2,t− δ13CO2,PI

δ13CO2,t− δ13CO2,1940
. (C7)

For mapping E17 performed another linear regression for δ13CSE(t−PI) and pCFC-12t. This step is not need here as we take

t= 1994 rather than various years from observations. To obtain three-dimention distribution of 13C Suess effect for the global

ocean, we apply Eq. (C6) to the simulated pCFC-121994.

The regression relationships between δ13Cpref and pCFC-12 in our model (Fig. D5) show some quantitative differences to635

those of E17 (see their Fig. 3). The reason is our model does not perfectly reproduce the distribution and properties of the

observed water masses and this can be seen in the following aspects. First, the definitions of several water masses in the model

are slightly different from those of E17 (comparing our Table D1 with their Table 2). Second, our simulated δ13Cpref
t in the

deep and bottom waters (Antarctic Bottom Water, Circumpolar Deep Water, Pacific Deep Water and Indian Deep Water) in the

Southern Hemisphere (Figs. D5c, D5e and D6c) is higher than that in E17 (see their Figs. 3a. 3c and 3e). The possible causes640

for this difference are two fold. First, in the Southern Ocean deep convection, which primarily occurs in the open ocean rather

than the along continental shelf, is too strong in the model. This can be seen by the large mixed layer depth (Fig. D2), and by the

zonal-mean CFC-12 bias distribution (Fig. D9), which features persistent positive biases off the Antarctic continental shelf in

the Atlantic, Pacific and Indian sectors of the Southern Ocean. The second cause is the Southern Ocean has a too high primary

production (about a factor of 1.5 of the satellite-based net primary production estimates from Westberry et al., 2008). The high645

primary production causes higher surface δ13CDIC than observations (see the South Pacific Ocean in Fig. 8c). Consequently, the

simulated preformed component δ13Cpref
t in the bottom and deep water masses of the Southern Ocean is higher than observed

values in E17. Third, the lowest values of δ13Cpref
t (< 1.4‰) are often found in the upwelling regions in the model. This is due

to the upward transport of water from the ocean interior that has lower δ13CDIC than observations (Figs. 9e and 9f).
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Appendix D: Additional figures and tables650

Figure D1. 1990-2009 mean vertical velocity (m s−1) in the model at 1020 m (a) and 2920 m depth (b).

Figure D2. Maximum climatological (1970-1999) monthly mean mixed layer depth (m) in the model. The mixed layer depth is defined as

the depth at which a 0.03 kg m−3 change of potential density with respect to the surface has occurred. Contour intervals are 50 for 0-500,

500 for 500-3000.
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Figure D3. CFC-12 concentration (pmol kg −1) in Feburary 1998 along the A5 section in the Atlantic Ocean (see right panel) of the model (a)

and of observations from GLODAPv1 database (panel b; Key et al., 2004). Contour intervals are 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8,

1.2 and 2 pmol kg −1.

Figure D4. January 2003 - August 2009 mean zonal current (cm s−1) at 960 m depth in the equatorial Pacific in the model. Positive values

indicate eastward flow.
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Table D1. Water masses and their definitions in the model

water mass definition in the model

Indian Ocean ventilated waters

upwelling regions north of 10◦N in the Arabian Sea; north of 8◦N in the Bay of Bengal

STGW (Subtropical Gyre Water),

SAMW (Sub-Antarctic Mode Water) ∗
σθ ≤ 27.0

AAIW (Antarctic Intermediate Water) 27.0< σθ ≤ 27.45∗∗

IDW (Indian Deep Water),

CDW (Circumpolar Deep Water)
σθ > 27.45∗∗

North Pacific ventilated waters

upwelling regions east of 160◦W, south of 25◦N, σθ > 26.4

STGW σθ ≤ 26.7

NPIW (North Pacific Intermediate Water) σθ > 26.7

South Pacific ventilated waters

upwelling regions
east of 160◦W, north of 15◦S, σθ > 26.5;

east of 90◦W, north of 40◦N, σθ > 26.5

STGW, SAMW ∗ σθ ≤ 27.15

AAIW 26.7< σθ ≤ 27.7, salnity< 35.0 psu

PDW (Pacific Deep Water), CDW σθ > 27.7

North Atlantic ventilated waters

STGW σθ ≤ 27.2, south of 45◦N

SPMW (Subpolar Mode Water) 26.95< σθ ≤ 27.5∗∗

NSOW (Nordic Seas Overflow Water),

NADW (North Atlantic Deep Water),

LSW (Labrador Sea Water)

σθ > 27.5∗∗

South Atlantic ventilated waters

STGW σθ ≤ 26.9

SAMW, AAIW ∗ 26.9< σθ < 27.4

AABW (Antarctic Bottom Water), CDW σθ > 27.4

* Water masses are combined together rather than separately defined as in Eide et al. (2017a).

** A different σθ threshold is used here compared to Eide et al. (2017a).
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Figure D5. Regressional relationships between pCFC-121994 and δ13Cpref
1994 for the Indian Ocean (a), the North Pacific (b), the South Pacific (c),

the North Atlantic (d) and the South Atlantic (e). Different colours and symbols indicates different water masses. The full names, as well as

the definitions, of the water masses are listed in Table D1.

0 100 200 300 400 500
pCFC-12 (patm)

-1.2

-0.8

-0.4

0

0.4

0.8

13
C

SE
(1

99
4-

19
40

) (p
er

m
il) y   = -0.7 10-3 x -0.07

r2 = 0.63

0 100 200 300 400 500
pCFC-12 (patm)

-1.2

-0.8

-0.4

0

0.4

0.8

13
C

SE
(1

99
4-

19
40

) (p
er

m
il) y   = -0.62 10-3 x -0.08

r2 = 0.67

0 100 200 300 400 500
pCFC-12 (patm)

-1.2

-0.8

-0.4

0

0.4

0.8

13
C

SE
(1

99
4-

19
40

) (p
er

m
il) y   = -0.35 10-3 x -0.13

r2 = 0.07

0 100 200 300 400 500
pCFC-12 (patm)

-1.2

-0.8

-0.4

0

0.4

0.8

13
C

SE
(1

99
4-

19
40

) (p
er

m
il) y   = -0.83 10-3 x -0.02

r2 = 0.34

0 100 200 300 400 500
pCFC-12 (patm)

-1.2

-0.8

-0.4

0

0.4

0.8

13
C

SE
(1

99
4-

19
40

) (p
er

m
il) y   = -0.00074x -0.07

R2 = 0.42

Indian South Pacific South Atlantic

North Pacific North Atlantic

b) d)

c) e)a)

Figure D6. As Fig. D5, but for the relationships between pCFC-121994 and δ13CSE(1994-1940).
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Figure D7. The change of the preformed component of δ13CDIC (‰) between 1994 and 1940 at sections A16 (a), P16 (b) and I8S9N (c). The

thick grey line is pCFC-121994 = 20 isoline. (d - f) and (g - i): as (a - c), but for the change in the regenerated component of δ13CDIC (‰)

and the change of AOU (mmol m−3), respectively.

Figure D8. The change of surface δ13CPOC (‰) between 1994 and 1940.
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Figure D9. The difference of zonal-mean CFC-12 concentration (pmol kg−1) between model and observations from GLODAPv1

database (Key et al., 2004) for the Atlantic (a) the Pacific (b) and the Indian Ocean (c). Modal data is averaged for the period 1990s.

Negative values indicate lower CFC-12 concentration in the model than observation. The isolines are 0, ±0.05, ±0.1, ±0.2, ±0.4, ±0.6,

±0.8 pmol/kg.
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