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Supplemental Material: Model Selection Procedure 
 
 
This Supplemental section gives a detailed description of the procedure used to select 
CMIP5 models or model groupings suitable for Southern Ocean Temperature and Salinity 
change detection analysis. The criteria for selection were:  
 

1) a sufficiently long control simulation to represent internal variability; for these study, 
we chose a minimum of 400 years, being 10 realizations (i.e. independent 40-year 
periods). 

2) a minimum of 3 members of the ‘historical’ simulation. Ideally more than 3 members 
are required to average out noise from the estimated response to forcings, but more 
than 3 would be very restrictive model selection in the context of available output in 
the CMIP5 archive. 

3) a reasonable representation of Southern Ocean watermasses in the mean state 
 
23 models satisfied the first 2 criteria, which were then analyzed with respect to their 
representation of the 4 major Southern Ocean watermasses: Sub-Antarctic Mode Water 
(SAMW). Antarctic Intermediate Water (AAIW), Circumpolar Deep Water (CDW) and 
Antarctic Bottom Water (AABW). Many CMIP5 models have a poor representation of these 
masses (Sallee et al, 2013), and since their formation is critical for Southern Ocean heat 
uptake, we argue that some model selection is justified for confidence in our Detection and 
Attribution.  

We used the method of (Roy et al, submitted) to estimate the potential density 
boundaries, applied to the 1965-2005 mean state of one ‘historical’ ensemble member from 
each of the 23 models. This method uses climatological profiles of salinity (S) and Potential 
Vorticity (PV) at 30oS, mapped onto density coordinates, to identify the density ranges of 
AAIW (defined by a pronounced salinity minimum at 30OS) and SAMW (defined by a local, 
shallow minimum of PV). AABW is defined by a strong, deep PV minimum in the zonal-mean 
PV from the Antarctic coast to 30oS; CDW is the residual watermass between AAIW and 
AABW. These boundaries are presented in CSV format in Table S1. 

Having defined the density boundaries, the 1966-2005 time-mean temperature and 
salinity was calculated for each model’s watermasses (i.e. the means for volume south of 
30oS bounded by the density boundaries). We compared these mean properties – which are 
given in Table S2 and plotted in Figure S1 - with watermass T and S estimated for the CARS 
climatology (Ridgway et al, 2002) using the same objective method. Models were excluded 
from the study if they demonstrated noticeable deviation in any of the watermasses 
compared to the CARS climatology and the multi-model distribution. This selection was 
done by visual inspection of the T-S diagrams rather than using a quantitative metric of skill; 
this does mean that the selection is subjective, but we argue that the definition of a 
quantitative threshold for selection or rejection is itself somewhat arbitrary. We note that 
the distribution of the accepted models states in Figure S1 is clearly in closer agreement to 
the CARS climatology than the distribution of the rejected models, with the exception of 
CanESM2; this model was retained, despite its relatively poor representation of SAMW, 
AAIW and CDW, for direct comparison with Swart et al, (2018). 



We found that the ACCESS models (ACCESS1.3 and ACCESS1.0), which have similar ocean 
and atmosphere dynamic cores, have very similar watermass properties, therefore there 
were merged to create a single model ensemble (ACCESS1) with more ensemble members 
and piControl realisations (hence greater statistical robustness). We also found models that 
did not satisfy the piControl length and ensemble member criteria, but which were similar in 
their model code and watermass states to selected models; this was the case for MIROC-
ESM-CHEM (related to MIROC-ESM) and MPI-ESM-P (related to MPI-ESM-LR); as with the 
ACCESS model, these were merged with their related model to increase piControl 
realisations and the size of the forced ensemble. 

In general, intermodal spread is largest in the shallower watermasses (SAMW and AAIW). 
There is a fresh SAMW bias in almost all the models and a wide spread of salinities, even 
amongst the selected models. However, the isopycnals in Figure S1 suggest that 
temperature is at least as important as salinity in setting the density bias of SAMW. The 
selected models have a reasonable volume of SAMW compared to the CRAS climatology, 
but the rejected models have quite large volume biases, both positive and negative. 

For AAIW there is no clear multimodel salinity bias in the selected models, although they 
tend to be warmer and lighter than the climatology. With the exception of a few outliers, 
the models have similar density in the denser watermasses (CDW and AABW) as the 
climatology, with a range of temperatures, but with salinity apparently a stronger constraint 
on watermass density. None of the models have noticeably larger volumes of CDW or AABW 
than the climatology, although several have very small volumes of AABW. 

  



 

 
Figure S1 – 1965-2005 watermass mean T and S, for each model and watermass; black 
circled dot shows the estimate from the CARS climatology. Contour lines show 2000m 

potential density contours. The 13 models selected for use in this study are shown in the left 
hand column; ‘rejected’ models are shown in the right hand column. The size of each marker 

is scaled by the volume of that watermass in each model  
  



 
 
model,expt,SAMW_upper,SAMW_IW, IW_CDW,CDW_BW 
ACCESS1-0,historical,34.753,35.334,36.476,37.236 
ACCESS1-3,historical,34.693,35.254,36.436,37.324 
CCSM4,historical,33.851,35.244,36.546,37.351 
CNRM-CM5,historical,33.711,34.943,36.095,37.051 
CSIRO-Mk3-6,historical,34.723,35.314,36.546,37.317 
CanESM2,historical,34.142,35.334,36.396,37.384 
EC-EARTH,historical,34.102,35.404,36.506,37.224 
FGOALS-g2,historical,33.881,34.993,36.295,37.364 
FGOALS-s2,historical,34.172,35.604,36.836,37.429 
FIO-ESM,historical,34.322,35.694,36.856,37.279 
GFDL-CM3,historical,34.142,35.404,36.466,37.076 
GISS-E2-H,historical,34.282,35.955,36.997,37.224 
GISS-E2-R,historical,34.172,35.905,37.277,37.212 
HadGEM2-ES,historical,34.032,34.843,35.905,37.223 
IPSL-CM5B-LR,historical,34.543,36.125,37.007,37.137 
MIROC-ESM,historical,34.312,35.464,36.596,37.298 
MIROC-ESM-CHEM,historical,34.282,35.434,36.586,37.320 
MIROC5,historical,34.242,35.584,37.147,37.117 
MPI-ESM-LR,historical,34.372,35.444,36.406,37.121 
MPI-ESM-P,historical,34.362,35.474,36.416,37.133 
MPI-ESM-MR,historical,34.372,35.534,36.526,37.149 
MRI-CGCM3,historical,34.022,35.494,36.616,37.080 
NorESM1-M,historical,35.093,35.214,36.646,37.223 
bcc-csm1-1,historical,34.472,35.284,36.336,36.995 
bcc-csm1-1-m,historical,34.412,35.254,36.376,37.003 

 
Table S1 – 2000m potential density boundaries for each model’s historical simulation 

Southern Ocean watermasses south of 30oS, in CSV format. The boundaries are the upper 
SAMW (SAMW_upper), SAMW-AAIW interface (SAMW_IW), AAIW-CDW interface 

(IW_CDW) and CDW-AABW interface (CDW_BW). 
  



Model SAMW AAIW CDW AABW 

 J (oC) S (g/kg) V (1017 
m3) 

J (oC) S (g/kg) V (1017 
m3) 

J (oC) S (g/kg) V (1017 
m3) 

J (oC) S (g/kg) V (1017 
m3) 

CARS climatology 11.74 34.87 0.23 4.21 34.38 0.89 1.56 34.72 2.15 0.07 34.69 1.20 

Selected models             

ACCESS1-0 10.81 34.55 0.31 6.03 34.32 0.48 1.29 34.61 2.66 -0.64 34.57 0.52 

ACCESS1-3 11.29 34.57 0.26 6.36 34.3 0.49 1.13 34.62 2.66 -1.37 34.6 0.58 

CSIRO-Mk3-6 12.30 34.46 0.08 6.16 34.18 0.60 1.42 34.74 2.62 0.52 34.84 0.94 

FIO-ESM 11.91 34.76 0.18 4.48 34.45 0.88 0.91 34.64 2.50 -0.51 34.65 0.62 

FGOALS-s2 11.86 34.67 0.22 5.18 34.55 0.43 1.39 34.90 2.66 -0.64 34.85 0.91 

GFDL-CM3 10.75 34.57 0.27 5.99 34.38 0.55 2.57 34.65 3.00 0.52 34.54 0.41 

MIROC-ESM 11.60 34.64 0.24 5.88 34.38 0.45 1.79 34.76 2.50 0.27 34.86 1.01 

MIROC-ESM-CHEM* 11.46 34.65 0.25 5.80 34.40 0.46 1.88 34.76 2.46 0.41 34.85 1.02 

MPI-ESM-LR 10.96 34.73 0.48 6.98 34.55 0.63 3.00 34.72 3.23 0.44 34.61 0.69 

MPI-ESM-P* 10.87 34.76 0.51 6.82 34.57 0.64 2.86 34.71 3.21 0.29 34.60 0.67 

MPI-ESM-MR 11.03 34.76 0.41 6.19 34.52 0.52 2.42 34.69 2.55 0.15 34.60 0.63 

MRI-CGCM3 10.99 34.60 0.30 4.86 34.32 0.42 2.34 34.66 2.71 1.01 34.64 0.71 

CanESM2 10.75 34.22 0.91 4.73 33.75 1.18 0.19 34.28 1.10 -0.53 34.79 0.05 

Rejected models             

BCC-CSM1-1 11.49 34.29 1.06 5.11 33.88 0.90 0.15 34.03 0.97 -1.26 34.25 0.23 

BCC-CSM1-1-M 10.8 34.20 1.06 4.54 33.79 0.83 -0.03 33.95 0.99 -1.13 34.25 0.16 

CCSM4 10.16 34.26 0.05 5.04 34.06 0.54 1.35 34.72 2.63 -0.19 34.79 0.80 

CNRM-CM5 10.72 34.44 0.16 5.84 34.24 0.37 1.83 34.70 3.13 -0.34 34.65 0.42 

EC-EARTH 12.10 34.50 0.20 5.33 34.07 0.44 1.57 34.71 2.87 0.46 34.73 0.74 

FGOALS-g2 13.25 34.34 0.11 7.14 34.07 0.34 1.90 34.84 2.68 -0.05 34.84 0.81 

GISS-E2-H 14.23 34.54 0.15 5.80 34.18 0.87 1.71 34.52 2.12 -0.02 34.64 1.02 

GISS-E2-R 10.60 34.63 0.52 3.22 34.66 3.28 - - 0.00 -1.03 34.52 0.58 

HadGEM2-ES 9.31 34.17 0.00 8.22 34.26 0.15 2.71 34.71 3.09 0.22 34.69 0.72 

IPSL-CM5A-LR 8.76 34.73 3.90 0.79 34.28 0.46 -0.52 34.41 0.93 -1.26 34.52 0.12 

MIROC5 12.77 34.87 0.28 2.84 34.65 4.14 - - 0.00 0.39 34.58 0.96 

NorESM1-M 11.71 34.46 0.00 5.50 34.23 0.82 1.92 34.71 1.95 0.85 34.78 1.37 

Table S2 1965-2005 historical mean watermass potential temperature, salinity and volume 
(i.e. values plotted in Figure S1), along with reference values from CARS climatology. * 

indicates models which did not satisfy the piControl length or ensemble size criteria, but 
were sufficiently similar to a selected model to be merged with that model. CanESM2 has 

watermass properties closer to the rejected set than the accepted set, but was included for 
direct comparison with Swart et al (2018)  

  



 
Further Information on Optimal Fingerprinting Procedure 

 
In this section, we give further information on how the appropriate truncation level, i.e. 
number of retained Empirical Orthogonal Functions (EOFs) was selected. As an example, we 
take the temperature Attribution results from the ACCESS1 ensemble (i.e. the merging of 
ACCESS1-0 and ACCESS1-3). 
 
The results are summarized in Figure S2, where k is the truncation level. In the upper panel, 
the scaling factors for each response - GHG-only (red), Natural-only (green) and residual 
(blue) - is shown by markers, with vertical lines showing the range due to internal variability 
alone. Recall that a response is ‘detectable’ where its range does not include zero. Figure 
S2a shows that as more EOFs are retained the range due to internal variability tends to 
decrease, which is typical but means that there is a dependency on the results (Allen and 
Tett, 1999). As a first pass, we apply a consistency check as described by Allen and Tett 
(1999). Assuming that the observed change is the linear sum of all scaled responses plus 
internal variability (and that the model is reasonable in its representation of internal 
variability), then the residual of the observations minus the scaled responses should be 
approximately equal to the simulated internal variability, i.e. 
 

𝑟2 = $𝑌 −	(𝛽!𝑋!+ 𝑪𝒏#$	~	1 

 
Where r2 is the test statistic, Y is the observed pattern, Xi are the individual response, bI are 
the scaling factors, and Cn

-1  is the inverse noise covariance matrix (from the model 
piControl simulation). This test is summarized in Figure S2b, where the dashed curves show 
the 99% confidence interval that this ratio is 1, based on a chi-squared distribution with k-
Nexpt degrees-of-freedom, where Nexpt is the number of response patterns (i.e. 3).  
 
Truncation levels of 16 ³ k ³ 10 pass this test (i.e. the ratio is within the 99%-confidence 
intervals. However, even within this range there is some dependency; the GHG signal is 
detectable for 13 ³ k, and the residual (i.e. ozone plus anthropogenic aerosols) response is 
detectable only for k = 12 and 13. Recognizing that the aim of the optimal fingerprint 
technique is maximize ‘detectability’, we choose the maximum truncation level that a) 
passes the consistency test, and b) gives the maximum number of detectable signals. In this 
case, k = 12-13 passes these tests (with 2 detectable responses, GHG-only and the ozone-
plus-aerosol response), and so k = 13 is selected as the maximum of these truncation levels. 
 



 
Figure S2 – Results of temperature optimal fingerprint analysis for ACCESS1 model ensemble. 
Upper panel shows best fit scaling factors (markers, y-axis) by truncation level (k, x-axis), for 
GHG-only (red), Natural-only (green) and aerosol-plus-ozone responses (blue). Vertical lines 
show the range due to internal-variability; when this reange does not include 0 the response 

is detectable (shown by solid marker); non-detectable ranges are shown by open markers. 
Bottom panel shows the results of the Allen and Tett (1999) consistency test, where dashed 

lines show the 99% confidence limits estimated using a chi-squared distribution with k-Nexpt 
degrees-of-freedom; results are consistent with the model internal variability when they are 

within the confidence interval. 
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