Estimating abundance indices of juvenile fish in estuaries using Geostatistics: An example of European sea bass (Dicentrarchus labrax)

Amédée Roy ${ }^{*}$, Christophe Lebigre, Mickaël Drogou, Mathieu Woillez
DECOD (Ecosystem Dynamics and Sustainability), IFREMER, INRAE, Institut Agro, Plouzané, France

ARTICLE INFO

Dataset link: https://forms.ifremer.fr/sih/dema nde-de-donnees-aupres-du-sih/

Keywords:

Pre-recruitment indices
Transitive kriging
Intrinsic kriging
Kriging with external drift
Tidal dynamics
Seabass

Abstract

Estuaries play a fundamental role in the renewal of fisheries resources, as they hold nurseries for many juvenile fish species. Estimating juveniles' abundance in estuaries is therefore key to improve stock assessment models, anticipate future recruitment and prevent crises related to biomass collapse. While geostatistical methods have been widely used in fisheries science to estimate species' abundance during offshore scientific surveys, difficulties arise when using these methods in estuaries. Indeed, these ecosystems are characterized by their irregular and often non-convex morphology, their environmental gradients (salinity, depth), and their tidal dynamics which question the validity of the hypothesis of second-order stationarity, fundamental to the theory of intrinsic geostatistics. Therefore, we tested the performance of different geostatistical methods to account for the complexity of these ecosystems and quantify robust indices of abundance adapted to estuaries. We used density data of juvenile sea bass (Dicentrarchus labrax) sampled with demersal trawls in the Loire River collected over three consecutive years and tested a metric space for which the distance along the estuary is considered. We took into account the non-stationarity of densities with either a transitive approach or an intrinsic approach with spatio-temporal external drifts, which takes into account the effects of tides and environmental gradients. These geostatistical methods allowed us to produce densities distribution maps and had substantially greater predictive capabilities than the stratified random estimator (classical reference estimator). However, geostatistical methods consistently had larger CVs than the stratified random estimator because the latter ignores the spatio-temporal distribution of sampling points leading to uncertainties underestimates and hence overly optimistic confidence intervals. The use of geostatistically computed abundance indices in an assessment model appears to be a conservative approach, whose uncertainties would allow a more robust adjustment trade-off between different indices when estimating recruitment in estuaries.

1. Introduction

Estuaries are important areas for the early life history of many marine organisms: each year larval fishes are recruited into estuarine habitats in which they grow to juveniles' stages over several years before moving to adult habitats offshore (Boehlert and Mundy, 1988; Norcross and Shaw, 1984). Indeed, estuaries usually offer areas of shallow waters with high food availability, and low predation pressure (Blaber and Blaber, 1980). Thus, the role of these productive ecosystems as nurseries is an established ecological concept: a nursery being any habitat that makes a greater than average contribution to the recruitment of adults (Beck et al., 2001; Able, 2005). These areas are therefore particularly interesting for estimating indices of juvenile's abundance. Several studies have been dedicated to the estimation of abundance, growth, and mortality of larvae or juvenile fish in estuaries from scientific surveys providing crucial information for fisheries stock
evaluation and management (Dege and Brown, 2004; Kelley, 2002; Scharf, 2000).

The determination of indices of abundance and associated uncertainties from fish surveys is however a classical challenge in fishery science. Among the existing methods for estimating indices, classical approaches are often based on random sampling theory such as the stratified random estimator (Cochran, 1977). This method generally calculate average catches in predetermined sampling stratum, and define the total abundance as the area-weighted sum of stratum abundances (Hankin and Reeves, 1988). However, the abundance indices estimated using this approach are produced without any assumptions about the spatial distribution of the population. To account for the spatial dependence of samples, geostatistical methods have therefore been used to estimate fish abundance since the early 1990s (Rivoirard

[^0]et al., 2000). The purpose of geostatistics is thus to estimate and model the spatial structure of dependence, to extrapolate the studied variables at unknown locations (Matheron, 1989), which enables the estimation of abundance indices and associated variance (Petitgas, 2001). Hence, numerous studies have shown that taking spatial correlation into account when processing survey data yielded to more precise and accurate indices of abundance (Thorson et al., 2015; Shelton et al., 2014).

However, the estimation of auto-correlation structures is often difficult in practice because of fish movements and variations in their aggregative behaviour (Bez and Rivoirard, 2001). Indeed, the sampling of fish densities through a whole domain requires a certain amount of time, and space-time variations of fish density occurring between two samplings can affect the data in various ways (Petitgas, 2001). Specifically, estuaries are particularly complex ecosystems characterized by substantial environmental gradients (topography, salinity, temperature), and tidal dynamics (current velocity, sea level). Numerous studies have indeed reported fish movements and variations of their habitat distribution in relation to tidal cycles, particularly for pelagic juveniles (Laffaille et al., 2001; Alp and Pichon, 2020; Martinho et al., 2008). Moreover most estuaries are also irregularly-shaped non-convex domains, and the use of euclidean distance may not be appropriate for the analysis of their spatial structures' dependence (Rathbun, 1998; Little et al., 1997). The observation of spatial auto-correlation in estuarine domains yields therefore to several challenges and it is crucial to understand the physical nature of estuaries, and the environmental preferendum of the studied juvenile fishes to produce relevant abundance indices (Walmsley et al., 2018).

European sea bass (Dicentrarchus labrax) is a highly exploited demersal fish from the North East Atlantic with a partially migratory behaviour (de Pontual et al., 2019). Sea bass wild populations have recently declined substantially, with catches from the northern sea bass stock (ICES divisions IV.b-c, VII.a and VII.d-h) dropping from about 4000 tonnes in years 2005-2013 to about 1000 tonnes from 2015 onwards (ICES, 2020; López et al., 2015). From their first summer up to age 2 to 5 depending on habitat characteristics, immature sea bass inhabit coastal nursery areas such as estuaries, with a reported preferendum for shallow waters with relatively high turbidity and low salinity (Martinho et al., 2007; Saillant et al., 2003). A high local site fidelity has been observed, with juveniles staying for longer periods in proximity of the same nursery areas (Green et al., 2012), and migrating daily between subtidal and intertidal habitats (Cabral and Costa, 2001). Such behaviour points out the highly non-stationarity of estuarine domains in terms of space and time, which is likely to bring substantial variance in trawling samples and making it difficult to estimate accurately spatial covariance structures.

Geostatistics offers a very flexible framework and a wide range of geostatistical methods have been used for fisheries stock assessment (Petitgas, 2001; Petitgas et al., 2017). Generally, studies have adopted the so called 'intrinsic approach' which is based on the theory of random fields and relies on stationary hypothesis. Hence this approach includes (i) cokriging, where kriging is extended to the multivariate case (Bez and Braham, 2014; Georgakarakos and Kitsiou, 2008), (ii) external drift kriging, which enables to take into account external variables when they are known in the whole studied domain (Lezama-Ochoa et al., 2011; Mesquita et al., 2020), (iii) conditional simulations, particularly interesting for combining data with different sources of variability (Woillez et al., 2009), and many other variants (Petitgas et al., 2017). Transitive kriging has also been introduced to fisheries as an alternative to the intrinsic theory for global estimation which requires fewer hypotheses, when stationary hypotheses are not relevant (e.g. in highly variable environment drifted by complex oceanographical processes) (Bez and Rivoirard, 2001).

The aim of this study was therefore to identify the most relevant geostatistical method for the estimation of juvenile sea bass abundance in an estuarine domain, and to quantify performance over the random
stratified estimator. The first part of this manuscript is a recall of main geostatistical theories, including intrinsic and transitive geostatistics. Then we compared a total 6 geostatistical methods for estimating sea bass juveniles abundance in the estuary of Loire (France) for three consecutive years. In particular, we focused on assessing the impact of the estuary's morphology, environmental gradients, and tidal dynamics on the estimation of abundance indices. Finally, we provide a few recommendations concerning the estimation of juvenile abundance indices in estuaries to highlight the value of this particularly valuable information in stock assessment models.

2. Geostatistical theory

Geostatistics is a relevant method for the estimation of the total abundance Q of a regionalized variable $z(x)$ (e.g. fish density) within a domain D from a collection of samples $z\left(x_{i}\right)$. It consists in a four step process where (i) we collect fish density samples and any relevant environmental covariates (sampling step), (ii) we evaluate and model the way the spatial data $z(x)$ is coregionalized (variography step), (iii) we estimate the studied variable z at unknown locations as a linear combination of known samples $z\left(x_{i}\right)$ (kriging step), (iv) we estimate the mean and variance of the studied variable over the whole domain D (abundance index estimation step; Fig. 1). The following section recalls the basics of geostatistical theory both for intrinsic and transitive approaches. The reader might want to refer to Matheron (1989) for further details and explanations.

2.1. Intrinsic approach

Variography

The fundamental premise of intrinsic geostatistics is that collected spatial data $z(x)$ are a realization of a random field Z. By assuming that there is no systematic variation underlying such random field, the expectation of $Z(x)$ is supposed to be independent of the position (i.e. $\mathbb{E}[Z(x)]=m$); this is the first order stationarity hypothesis where m represents the expectation of the random variable $Z(x)$, which does not necessarily equal the mean of one random field realization. Then, by assuming that the variance is also independent of the position (i.e. $\mathbb{E}\left[Z(x)^{2}\right]=\sigma^{2}$), we can express the covariance of the regionalized variable through the variogram $\gamma(h)$, where h is the distance between two locations of the domain (Eq. (1)) ; this is the second order stationarity hypothesis.

$$
\begin{align*}
\operatorname{cov}[Z(x+h), Z(x)]= & \mathbb{E}[(Z(x+h)-m)(Z(x)-m)] \quad \text { with } \\
& \mathbb{E}[Z(x)]=m \\
= & \sigma^{2}-\frac{1}{2} \mathbb{E}\left[(Z(x+h)-Z(x))^{2}\right] \quad \text { with } \tag{1}\\
& \mathbb{E}\left[Z(x)^{2}\right]=\sigma^{2} \\
= & \sigma^{2}-\gamma(h)
\end{align*}
$$

In short, based on stationarity assumptions, the intrinsic formalism describes the structural auto-correlation of the field $Z(x)$ within D as a function of the distance : the variogram. A variogram therefore represents the way a regionalized variable is spatially structured, and captures its intrinsic behaviour. In practice, experimental variograms are estimated from sampling values using usually the following formula:
$\gamma^{*}(h)=\frac{1}{2 N(h)} \sum_{i=1}^{N(h)}\left(z\left(x_{i}+h\right)-z\left(x_{i}\right)\right)^{2}$
where $N(h)$ is the number of experimental pairs of data $\left(z\left(x_{i}\right), z\left(x_{i}+h\right)\right)$. They are then fitted with a variogram model γ to which we will refer in following sections (Chiles and Delfiner, 2009).

Ordinary Kriging (OK)

Ordinary Kriging (OK) allows to estimate the fish density at a unknown location $Z\left(x_{0}\right)$ from observed densities $Z\left(x_{i}\right)$. It is defined as the best linear unbiased estimator of $Z\left(x_{0}\right)$ (i.e. it is a linear combination of known data values) which weights are defined such that the estimator minimizes the error in the variance estimation. The estimator is thus written $Z^{*}\left(x_{0}\right)=\sum_{i} w_{i} Z\left(x_{i}\right)$, with kriging weights satisfying $\sum_{i} w_{i}=1$, as the first-order stationarity assumption implies a constant mean. The variance of the estimator can finally be expressed through the intrinsic covariance function (Eq. (3)).

$$
\begin{align*}
\operatorname{var}\left(Z^{*}\left(x_{0}\right)-Z\left(x_{0}\right)\right) & =\mathbb{E}\left[\left(Z^{*}\left(x_{0}\right)-Z\left(x_{0}\right)\right)^{2}\right] \\
& =\mathbb{E}\left[\left(\sum_{i} w_{i} Z\left(x_{i}\right)-Z\left(x_{0}\right)\right)^{2}\right] \tag{3}\\
& =\sum_{i} \sum_{j} w_{i} w_{j} \gamma\left(x_{i}-x_{j}\right)-\sum_{i} w_{i} \gamma\left(x_{i}-x_{0}\right)
\end{align*}
$$

Minimizing the error variance under the constraint on the weights and using the method of Lagrange multipliers leads to a linear system to be solved for the kriging weights (Eq. (4)). This system is composed of $n+1$ equations where n is the number of samples, and μ is the Lagrange parameter.

$$
\left\{\begin{array}{l}
\sum_{i} w_{i} \gamma\left(x_{i}-x_{j}\right)+\mu=\gamma\left(x_{i}-x_{0}\right) \text { for } j=1, \ldots, n \tag{4}\\
\sum_{i} w_{i}=1
\end{array}\right.
$$

Kriging with External Drift (KED)

In order to account for underlying systematic drift of the field, kriging with an External Drift (KED) assumes that the mean of the process is linearly related to any external variable(s) known in the whole studied domain (Eq. (5)). In the situation where the mean of the process depends on a function of time t and space x we have:
$\mathbb{E}[Z(x, t)]=m(x, t)=a+b f(x, t)$
The framework is similar to that of OK, and Eq. (3) holds. Yet in this situation, the conditions on linear estimators becomes:
$\sum_{i} w_{i}=1$ and $\sum_{i} w_{i} f\left(x_{i}, t_{i}\right)=f\left(x_{0}, t_{0}\right)$
The kriging weights are once again obtained by minimizing the variance of the estimation error, leading to the following linear system, where μ_{0} and μ_{1} are the Lagrange parameters:

$$
\left\{\begin{array}{l}
\sum_{i} w_{i} \gamma\left(x_{i}-x_{j}, t_{i}-t_{j}\right)+\mu_{0}+\mu_{1} f\left(x_{i}, t_{i}\right) \tag{7}\\
\quad=\gamma\left(x_{i}-x_{0}, t_{i}-t_{0}\right) \text { for } j=1, \ldots, n \\
\sum_{i} w_{i}=1 \\
\sum_{i} w_{i} f\left(x_{i}, t_{i}\right)=f\left(x_{0}, t_{0}\right)
\end{array}\right.
$$

In this approach, the estimation of a fish density at an unknown location and time depends therefore on the auto-correlation structure defined by the model γ, but also modulates according to the value of the external variable f. The difference between OK and KED are schematically illustrated in Fig. 1.

Abundance index estimation

For both OK and KED, the estimation of the total abundance $Z(D)$ over the whole studied domain D consists in averaging kriged densities at every locations of the domain: $Q^{*}=Z(D)=\sum_{x_{k} \in D} Z\left(x_{k}\right)$. However, for KED the use of a temporal drift allows the mean of the process Z to vary in time (Eq. (5)). The estimation of the total abundance for KED is therefore performed at a fixed time, and hence the weights are modulated according to timing of samples' collection (Rivoirard, 2001). The associated estimation's variance is not however the average of kriging variances but can be computed from the covariance model γ, the domain D, and the computed weights w_{i} as follow:

$$
\begin{aligned}
\sigma_{E}^{2} & =\mathbb{E}\left[Z(D)-Z^{*}(D)\right]^{2} \\
& =\mathbb{E}\left[Z(D)-\sum_{i} w_{i} Z\left(x_{i}\right)\right]^{2} \\
& =-\bar{\gamma}(D, D)+2 \sum_{i} w_{i} \bar{\gamma}\left(x_{i}, D\right)-\sum_{i} \sum_{j} w_{i} w_{j} \gamma\left(x_{i}-x_{j}\right)
\end{aligned}
$$

where $\bar{\gamma}\left(D, x_{i}\right)$ represents the mean value of the variogram γ with point x describing the whole domain D. This equation holds for both OK and KED at fixed time.

2.2. Transitive approach

The estimation of variograms is often difficult in practice because of the characteristics of fish survey data (i.e., numerous low or zero densities, clear location of a few high density values in the field) and because of the stationary hypotheses associated (Matheron, 1989; Petitgas, 2001; Bez and Rivoirard, 2001). The Transitive Approach has been introduced to fisheries as an alternative to the intrinsic theory for global estimation when dealing with regular sampling. It is known to be more robust than the intrinsic approach, though it has not been widely used in fisheries science. This method is indeed less flexible as it cannot take into account spatial nor any temporal covariables (Petitgas, 2001).

Transitive covariogram

In this approach, the regionalized variable is described by the transitive covariogram. This has some similarity with an intrinsic variogram, however it is not an expectation but a sum, making transitive covariograms particularly robust to outliers (Petitgas et al., 2017).
$g(h)=\int z(x) z(x+h) d x$
The covariogram decreases from its maximum value and stabilizes at 0 at a distance corresponding to size of the area in which the focal population is present (i.e. its range).

Transitive Kriging (TR)

Kriging can also be performed in the transitive approach, to predict a density at unknown location as a weighted average of sampled locations.
$z^{*}(x)=\sum_{i} w_{i} z\left(x+h_{i}\right)=\sum_{i} w_{i} z\left(x_{i}\right)$
Weights w_{i} are then estimated by minimizing the sum of squared errors between real and estimated densities when translating positions x and $x+h_{i}$ over space with the same relative geometrical configuration (Eq. (11)).

$$
\begin{align*}
\int\left(z(x)-z^{*}(x)\right)^{2} d x & =\int\left(z(x)-\sum_{i} w_{i} z\left(x+h_{i}\right)\right)^{2} d x \tag{11}\\
& =g(0)-2 \sum_{i} w_{i} g\left(h_{i}\right)+\sum_{i} \sum_{j} g\left(h_{i}-h_{j}\right)
\end{align*}
$$

where g is the covariogram defined in Eq. (9). The estimation of kriging weights thus consists in solving a linear system, similarly to intrinsic kriging, but using the transitive covariogram instead of the covariance variogram.

Abundance index estimation

From regular sampling grid with regular mesh surface the unbiased estimator of the total abundance is defined as the sum of the sample values multiplied by the surface of the grid mesh (Eqs in 1D):
$Q\left(X_{0}\right)^{*}=s \sum_{k} z\left(X_{0}+k s\right)$
where X_{0} is the origin of the grid mesh seen as a random variable uniformly distributed all over the studied area. The estimation variance

 to colour in this figure legend, the reader is referred to the web version of this article.)
can therefore be computed as:

$$
\begin{align*}
\sigma_{e s t}^{2} & =\mathbb{E}\left[\left(Q^{*}\left(X_{0}\right)-Q\right)^{2}\right] \\
& =\int_{s}\left(s \sum_{k} z(x+k s)-Q\right)^{2} \frac{d x}{s} \\
& =\int_{s} s \sum_{k, l} z(x+k s) z(x+l s)-2 Q \sum_{k} z(x+k s)+Q^{2} d x \tag{13}\\
& =\sum_{k} \sum_{l} s \int_{s} z(x+k s) z(x+l s) d x-Q^{2} \\
& =s \sum_{k} g(k s)-\int g(h) d h
\end{align*}
$$

Hence, the major assumption of the transitive approach is the randomness of the origin of the sampling grid. This approach therefore differs fundamentally from the intrinsic geostatistical approach in which the stochastic part of the model concerns the density seen as the realization of a random field. In this sense, the transitive approach relies on fewer hypotheses and enables the estimation of the total abundance and variance from regular sampling data, based on a model of $g(h)$ and on the grid mesh interval s. The framework can be extended when the sample grid is not strictly regular, the experimental computation of the covariogram has to be weighted by the area of influence of each datapoint.

3. Material and methods

3.1. NOURDEM survey data

The NOURDEM survey is conducted by the laboratory of fisheries biology of Ifremer (Plouzané, France) and aims at establishing index of demersal fish juveniles' abundance in nurseries. Three surveys have been carried out in three consecutive years in the Loire estuary (Fig. 2):
from 2016-06-09 to 2016-06-16, from 2017-06-29 to 2017-07-06 and from 2018-07-03 to 2018-07-10 (Drogou et al., 2019). This survey follows strictly pre-defined sampling procedures (Le Goff et al., 2017). Sampling locations have been designed homogeneously in the estuary covering all brackish waters with water salinity from 0 to 35 . The 46 trawling stations are represented in Fig. 2. For each survey, all stations have been sampled at least once, and ca. 60% of the trawling stations have been sampled twice, particularly in waters with low salinity were the highest fish densities were expected. All samples were collected using a fishing vessel with a small large vertical opening trawl specifically designed to catch demersal fish juveniles. For each trawl, the boat went against the current at ca. 1450 engine rpm, during 15 min . At the end of each trawl, the entire catch was systematically weighed, all species were identified and sorted. Then all or some of the individuals of each fish species were measured. For very heavy trawl loads, weighing and measurement were only carried out on a random subset of the trawls' total weight. Trawl depth, salinity, and temperature were measured directly for every sampling. For sea bass, age were estimated based on annual increment fish scale readings. A minimum of 3 age readings were performed per length classes, i.e. cm. For this study we focused on the spatial distribution of G2-aged sea bass, as this age group is well sampled by the survey. Ages have been determined by fixing arbitrary thresholds with respect to the modes appearing in the age-length keys distribution of captured fishes (see Fig. 8 in Annex). Such distribution and associated threshold are illustrated in Fig. 3.

3.2. Estimating abundance indices in Loire's estuary

The usual ordinary kriging approach relies on the stationarity hypothesis, yet the strong environmental gradient and dynamics characterizing estuaries are likely to call this hypothesis into question. We therefore investigated two alternatives to ordinary kriging either (i)

 legend, the reader is referred to the web version of this article.)
staying within the intrinsic approach but to take into account the nonstationarity through the use of a drift (e.g. kriging with external drift), or (ii) by doing no assumptions on stationarity through a transitive approach. In addition to these direct approaches we also investigated kriging in a projected metric space for which the distance along the estuary is considered to take into account the convex nature of the Loire estuary. Therefore, we overall tested the 6 following methods on each yearly dataset: Ordinary kriging (OK), projected Ordinary Kriging (OKp), Kriging with External Drift (KED), projected Kriging with an External Drift (KEDp), Transitive kriging (TR), and Projected Transitive kriging (TRp). This section aims at detailing the framework followed for each of these approaches.

3.2.1. Projection

The Loire's estuarine domain is non-convex (i.e. the line segment connecting two points within the estuary may intercept land) which could possibly lead to misinterpretation of spatial covariance structures based upon simple Euclidean distance metric. We therefore performed a channel-centred coordinate transformation along the channel's centreline 2 and a transverse axis orthogonal to the centreline.

3.2.2. Intrinsic approach

Variography. The estimation of intrinsic variography is difficult, particularly when some trawling station are doubled as it adds substantial short range variability (i.e. the nugget effect). The observation of anisotropy of fish school structures in a narrow estuary is also notably challenging. Thus, assuming that the important catch differences at identical or nearby locations may be due to tidal dynamics, we computed isotropic variograms with pairs of samples that occurred at similar sea surface height anomalies. More precisely, we computed the observed sea surface height anomalies (SSHa) as the difference in space
and time between the theoretical bathymetry at the sampling location and the observed depth of the trawl. Pairs of sample were used for estimating the variogram only if their differences in SSHa were lower than 5 m . In other words, we performed an horizontal 3D variogram with a bench of 5 m (Gringarten and Deutsch, 2001; Sahlin et al., 2014), where the third dimension is the observed SSHa. The lag parameter was fixed to 0.5 nautical miles (nm), and the maximum number of lags was fixed to 11. The covariance structure used to fit empirical variograms was a combination of a nugget and a spherical effect. This consists in a parametrized model defined by three parameters (two sills and one range). Ranges were fixed by visual inspection and sills determined with the automatic procedure provided by the RGeostat R package (MINES ParisTech, 2020) using the algorithm presented in Desassis and Renard (2013).

External drifts. According to juveniles' sea bass habitat preferendum three external covariables were taken into consideration as external drifts : SSHa, salinity, and temperature (Martinho et al., 2007; Saillant et al., 2003; Cabral and Costa, 2001). We measured these covariables in situ and used them to linearly model fish densities at the sampling locations. We tested different linear models with various variable combinations and polynomial degrees and selected the most relevant parametric relations using the BIC criterion (see Table 2). We obtained maps of salinity, temperature and bathymetry from the MARS3D-AGRIF hydrodynamic database which is built with the MARS3D model along the French coast at high spatial (500 m) and temporal (1 h) resolution (Caillaud et al., 2016). An example of used drift is shown in Fig. 3. We adjusted these model-based maps to the observed values

Fig. 3. Data overview: Left-column figures (a), (d) and (g) illustrate the number of captured sea bass according to their length and the thresholds used for defining G2-aged class for year 2016, 2017, and 2018 respectively. Centre-column figures (b), (e) and (h) show the relationship between G2-aged sea bass densities depending on position in the estuary along the projection axis (see Fig. 2) and on salinity in 2016, 2017 and 2018. Red circles are proportional to fish density values. Maps (c), (f) and (i) represent how these fish densities are organized in space, and over a salinity map derived from MARS3D-AGRIF data for datetime 2016-06-14 10:00:00 GMT, 2017-07-02 13:00:00 GMT, and 2018-07-03 17:00:00 GMT respectively.

Table 1
Datasets overview.

Date	Strata	Surface $\left(\mathrm{nm}^{2}\right)$	Nb of station	Nb of trawls	Mean \pm Std G2 density $\left(\times 10^{3} \mathrm{~nm}^{-2}\right)$	Max G2 density $\left(\times 10^{3} \mathrm{~nm}^{-2}\right)$	Zeros	Mean salinity	Mean temperature $\left({ }^{\circ} \mathrm{C}\right)$	Mean depth (m)
2016	Upstream	2.1	8	14	6.0 ± 8.0	26.2	43\%	3.1	19.1	5.2
	Middle up	5.5	12	23	8.7 ± 9.6	32.7	0\%	11.9	17.9	5.4
	Middle down	26.7	21	31	0.8 ± 1.8	0.7	52\%	15.2	17.4	6.7
	Downstream	9.9	5	5	0.0 ± 0.0	0.0	100\%	33.78	13.5	15.7
	Total	44.2	46	73	4.2 ± 7.4	32.7	37\%	12.8	17.4	7.5
2017	Upstream	2.1	8	14	1.5 ± 2.2	7.3	36\%	15.1	21.3	5.2
	Middle up	5.5	12	22	1.2 ± 1.4	5.4	5\%	24.8	19.6	5.1
	Middle down	26.7	21	31	0.2 ± 0.4	1.8	71\%	32.0	17.6	7.2
	Downstream	9.9	5	5	0.1 ± 1.5	0.3	80\%	34.8	15.3	16.1
	Total	44.2	46	72	0.7 ± 1.3	7.3	44\%	26.7	18.8	6.8
2018	Upstream	2.1	8	17	0.5 ± 0.8	2.7	59\%	18.7	22.0	4.4
	Middle up	5.5	12	22	2.4 ± 2.6	8.9	14\%	22.6	21.0	4.1
	Middle down	26.7	21	32	1.0 ± 1.4	7.0	28\%	31.5	19.0	5.8
	Downstream	9.9	5	5	0.1 ± 0.3	0.7	80\%	34.4	17.6	14.9
	Total	44.2	46	76	1.3 ± 1.9	8.9	34\%	26.2	20.1	5.6

of temperature and salinity by fitting a simple polynomial regression of degree 3 , so that the mean squared error between predicted and observed values would be minimal. These adjusted maps were directly used as spatio-temporal drifts $f(x, t)$. Finally, we estimated indices following the framework given in Fig. 1. Spatial correlation structures were described from the residual of the selected models of fish densities. Indices were computed using fixed covariable maps given for mid-tide.

3.2.3. Transitive approach

Transitive Kriging has been performed as detailed in Petitgas et al. (2017). The covariograms were estimated and weighted by the area of influence of each data point. Anisotropy was estimated (i.e. covariogram estimation for specific directions; here $0^{\circ} / 90^{\circ}$) both for TR with projection (along channel/orthogonal to channel) and without projection. The lag parameter was fixed to 1.5 nm which is approximately the size of the mean distance between the closest sampling locations,
and the maximal lag has been set to 20 nm so that the entire area of presence is covered. Similarly to intrinsic approach, we adjusted the empirical covariograms with a combination of nugget effect and spherical. Ranges were defined by visual inspection, and sills were fitted automatically.

3.2.4. Random sampling approach

For comparison, we evaluate abundance indices with a random sampling technique; the random stratified estimator (RS). To this end, we defined empirically 4 stratum within the Loire's estuary assuming that habitat were relatively homogeneous in each of these stratum (Fig. 2). Abundance indices (AI) and coefficients of variation (CVs) are thus computed as weighted sums of each stratum abundance and variance. Equations are detailed in Ifremer survey reports (Le Goff et al., 2017; Drogou et al., 2019).

3.3. Method comparison

To compare geostatistical methods, we aimed at describing the robustness of spatial structure estimations by computing their goodness of fit. We used Root Mean square error (RMSE) between the normalized empirical variograms and the fitted structural models. Concerning kriging, we evaluated all methods over the same domain and with the same regular grid (mesh of 0.27 nm). This grid consisted in the grid used for the MARS3D-AGRIF hydrodynamic database delimited by the polygon presented in Fig. 2. AI and CVs have been computed following equations given above. We evaluated each method's performance using cross-validations, consisting in estimating successively each data point from other data points. We then extracted the RMSE to assess the performance of each method; the best method is the one with the smallest RMSE score.

4. Results

The three surveys carried out in 2016, 2017, and 2018 led to important differences with maximal fish densities ranging from up to 32.7 e 3 ind nm^{-2} in 2016 to less than 8.9 e 3 ind nm^{-2} both in 2017 and 2018 (Table 1). In particular, in 2017 the overall mean fish density was the lowest with $7 \mathrm{e} 2 \mathrm{ind} \mathrm{nm}^{-2}$ and 44% of the stations contained no G2-aged sea bass. The 'middle-up' part of the estuary (purple area in Fig. 2) was however the area where the probability to observe G2-aged sea bass was the greatest with the lowest rate of zeros for three consecutive years (respectively $100 \%, 95 \%$ and 86% of nonempty trawls in 2016, 2017 and 2018). Mean length of G2-aged sea bass revealed also important inter-annual variability with $20,22.5$, and 25 cm in 2016, 2017 and 2018, respectively.

Environmental conditions were substantially different from one year to another with a particular high river flow in $2016\left(1970 \mathrm{~m}^{3} / \mathrm{s}\right.$ in june 2016) associated to very low salinity with 12.8 in 2016 in opposition to 26.7 and 26.2 in 2017 and 2018 (see Table 1). The relationship between G2-aged juvenile sea bass densities and environmental variables depended also of the year and was better described by salinity in 2016 and 2017 (preferendum for relatively low salinity (5 to 15) in 2016; preferendum for higher salinity in 2017 (10 to 25)), whereas in 2018 the best model contained only the depth variable (greater densities were found at lower depths; Table 2 and Fig. 4). Salinity over the estuaries depends however on the tide, and in 2016 and 2017 upstream fish densities were lower when the tide was also low (i.e. at lower salinity for a fixed position), while in the middle of the estuary fish densities were a bit higher at high tide (i.e. at higher salinity for a fixed position) (see Fig. 3).

Regarding the variography, adjusted structures were relatively similar over the years, all of them consisting in a combination of a nugget effect and a spherical model (see Table 3 in Annex and Fig. 5). On average, transitive covariograms were easier to fit with an average goodness of fit (GOF) of ca. 0.65 , which was slightly improved by the

Table 2
Overview of the linear models explored for drift selection. These linear models aimed at predicting juvenile sea bass density from different variable sets.

Year	Variables	R-squared	BIC
2016	sal	0.18	1503
	temp	0.16	1505
	depth	0.08	1511
	sal + temp + depth	0.17	1510
	$\mathrm{sal}+\mathrm{sal}^{2}+\mathrm{sal}^{3 \mathrm{a}}$	0.29	1499
2017	sal	0.14	1245
	temp	0.16	1244
	depth	0.06	1251
	sal + temp + depth	0.14	1251
	$\mathrm{sal}+\mathrm{sal}^{2}+\mathrm{sal}^{3 \mathrm{a}}$	0.32	1234
2018	sal	0.00	1375
	temp	0.00	1374
	depth ${ }^{\text {a }}$	0.02	1373
	sal + temp + depth	0.00	1381
	$\mathrm{sal}+\mathrm{sal}^{2}+\mathrm{sal}^{3}$	0.02	1379

${ }^{\text {a }}$ Models finally selected for KED consisted in models with lowest BIC criterion and are described.
projections (GOF of 0.28). In opposition, intrinsic variograms had an averaged GOF of 2.03 caused by high variability in the first steps. For intrinsic approaches (i.e. ordinary kriging and kriging with external drift), the computation of classical variograms did not capture any spatial structures, while the use of sea surface height anomaly as a third dimension in the so-called '3D Horizontal' variogram enabled the estimation of 2 nm ranging structures (see Fig. 5). These structures were however 5 to 10 times smaller than those captured by transitive covariograms. Transitive covariograms capture indeed the structure of fish preferendum habitat and decrease from their maximum value and stabilize at 0 at a range distance corresponding to the size of the presence area (around 15 nm). Conversely, intrinsic variograms capture the fish schooling clusters structure at a range smaller than half the length of studied area (around 6 nm).

Regarding Abundance indices, data characteristics (Table 1) reflected obviously on abundance indices estimations, with averaged AIs of $115.1 \times 10^{3}, 18.7 \times 10^{3}$ and 42.3×10^{3} individuals for years 2016 to 2018 respectively (Fig. 6). Abundance indices derived from random sampling were systematically smaller than other AIs, with AI twice higher with Transitive Kriging than with Random Sampling in 2018. Coefficient of variations were also way larger with kriging and particularly with Transitive Kriging. Indeed, Random Sampling methods led to CV of only $17 \%, 18.5 \%$ and 17.8% for the three surveys respectively, while the best geostatistical approach estimated CVs of $33.5 \%, 40.5 \%$ and 46.1%. However, for each survey, geostatistics methods had substantially better accuracy than random sampling techniques in the light of the cross-validation index; the RMSE (Fig. 6). Indeed, for each survey the lowest RMSE was obtained by either Transitive Kriging or Kriging with External Drift (Fig. 6). In particular, Kriging with External Drift had the best results for two surveys (2016 and 2017), corresponding to surveys where we found a significant relationship between fish density and salinity Table 2. On the 2018 dataset, Kriging with External Drift did not improve much the Ordinary Kriging (Fig. 6). The associated drift model found indeed a relationship between fish density and depth, with a R-squared of 0.02 only 2 . The Ordinary Kriging obtained lower scores than the Random Sampling in 2016 and 2017, and in both cases the use of external drift substantially improved the prediction accuracy of this approach.

Maps produced by kriging methods also illustrated the inter-annual variability of fish juvenile densities (Fig. 7). The highest fish densities were notably observed in the upstream part of the estuary in 2016 and 2017 whereas in 2018 they were relatively downstream (Table 1). Transitive approaches rendered relatively smooth maps with wide areas of medium densities, while Intrinsic kriging produced more constrated

Fig. 4. Prediction of the linear models selected for KED. Associated BIC and R-squared values are given in Table 2.

 referred to the web version of this article.)
maps, revealing hotspots whose locations differed from one year to another. The use of external drift also induced important differences in the density distribution maps, in particular by adding external information such as the location of the navigation channel (e.g. in 2018) and by accentuating the gradient of densities along the river bed with highest density upstream (e.g. in 2016 and 2017).

5. Discussion

Several studies have previously used geostatistics to estimate abundance indices of juvenile fishes in estuaries through Ordinary Kriging (da Silva et al., 2016; Rueda, 2001; Tableau et al., 2016). However, this sole focus on Ordinary Kriging might be misleading whenever the studied domains are non-convex and hold major environmental
dynamics (i.e. the vast majority of estuaries) leading to clear violations of the underlying stationary hypothesis. In this study, we showed how the tidal movements of juveniles’ sea bass increased the difficulty to estimate the spatial covariance structure of fish aggregations (Fig. 5), and that OK led to worse density predictions than the classic Random Sampling techniques in two of the three sampling years (Fig. 6). Therefore, the performance of OK will depend on both the shape and dynamics of the studied estuaries, but also on the behaviour of the studied fish in relation to water masses (size and swimming ability). For example, we might expect that groundfish would be less sensitive to tidal currents than demersal and pelagic fish (such as the sea bass), which would explain the quality of the variograms observed by Tableau et al. (2016). It is therefore important to carefully evaluate the characteristics of the focal estuary and species before using OK

Fig. 6. Index abundance estimation. Abundance estimations for each surveys and associated CVs are given for every models. Associated accuracy score is illustrated with dashed red lines representing the root mean squared error (RMSE) obtained through cross-validation.
and alternative approaches should be carefully considered. Indeed, our study demonstrates how geostatistics can deal with these difficulties and yield to better abundance estimates than usual Random Sampling and Ordinary Kriging approaches (lower RMSE), notably with Transitive Kriging when no external data is available or by using Kriging with External Drift with spatio-temporal drifts that accounts for tidal dynamics and habitat preferendum.

Different metrics have been explored in the literature to describe spatial auto-correlations in estuaries such as the shortest distance over water (Little et al., 1997; Rathbun, 1998), the shortest temporal distance (Zhang et al., 2016) or channel-centred coordinate transformation (Legleiter and Kyriakidis, 2008; Goff and Nordfjord, 2004). Differences between kriging approaches with or without projection have been very subtle, yet it has facilitated considerably the interpretation of the variogram (Legleiter and Kyriakidis, 2008; Rathbun, 1998). In our case, we found that projection yielded most of the time to a better goodness of fit (Table 3 and Fig. 5). In particular, the estimation of anisotropy in a variogram is more natural within the channelcentred. The need of projection is however very specific to each estuary
morphology and it might be difficult to assess general conclusions. As an alternative to the methods presented in this study, it is possible to deal with very irregularly-shaped estuarine and coastal environments with stochastic partial differential equations accounting for physical barriers (Bakka et al., 2019) and implemented in R-INLA (Lindgren and Rue, 2015). In this geostatistical framework, the fish densities are seen as the realization of a Gaussian random field which covariance structure is defined by some stochastic differential equation. The main idea is then to use a finite element approach to discretize the field and solve the equation with respect to sample observations.

The most striking result of our study is the substantial improvements of the models when time variability is taken into account (i.e. Kriging with External Drift in 2016 and 2017). Indeed, fish densities can vary substantially over short periods of time, and the sampling survey requires a certain amount of time. Such space-time interactions during a survey are known to be a difficulty for estimating a variogram from fish data (Petitgas, 2001). Moreover, for practical reasons, surveys cannot always provide enough data for adding a third dimension and for estimating time variography such as proposed in Petitgas (1997). A solution to deal with a time-series of surveys is to compute a mean variogram which can provide a more robust description of the spatial structure (Morfin and Fromentin, 2012; Saraux et al., 2014). In our case, the analysis of variography was particularly difficult since we had trawling stations at identical locations, but at different times. The estimation of a 3D variogram with sea surface height as third dimension enabled us to estimate a horizontal variogram selecting only pairs of positions with similar SSHa. Thus, we managed to capture a spatial auto-correlation structure (assumed constant through time), while no structure was observable using classical 2D variograms (Fig. 5). Then the idea consisted in kriging fish densities using a temporal drift to add a temporal effect without the need to estimate a temporal variogram, in the same way as performed previously for correcting daylight effects in abundance estimation of juvenile haddock (Rivoirard, 2001). By using salinity as external drift (i.e. a spatio-temporal variable that depend on the tides), our Kriging with External Drift accounted for tidal dynamics and outperforms other approaches on datasets from 2016 and 2017. Interestingly, we did not find any relevant drift in the 2018 dataset, and the best model had R-squared of only 0.02 (see Table 2). In this situation, using a drift was therefore useless and results were very similar to Ordinary Kriging. Other methods have used external data through GAMs (Hashimoto et al., 2019; Polansky et al., 2018; Sobocinski et al., 2018), hierarchical Bayesian framework (Rezende et al., 2019) or regression trees (Froeschke and Froeschke, 2011) but without investigating spatial covariance structures. It would be interesting in a next step to compare geostatistics and these approaches but this is beyond the scope of this study.

This study focused on the inter-annual variability of distribution and abundance of 2-age juvenile seabass from Loire Estuary. The low number of 1-age juveniles captured in 2016 suggested indeed that G0and G1-aged seabass could be difficult to capture, which would bias abundance estimation indices (see Fig. 3). This study confirms that the distributions of seabass juvenile are strongly related to tidal dynamics (Cabral and Costa, 2001) and that the distribution and abundance within Loire's estuary were highly variable from one year to another (Fig. 7). This could be explained by major inter-annual variability in settlement timing and success of juvenile sea bass. Recent studies have indeed shown evidence of the impact of oceanographic features on the early life history phenology of seabass, with warmer waters delaying the hatching timing (Pinto et al., 2021), with hydrological conditions (e.g. oceanographic currents, wind) influencing larvae drift and settlement success (Beraud et al., 2018), and with food levels and starvation timing impacting larvae and juvenile survival (Dambrine et al., 2020). The variability in the timing of juveniles recruitment in the nursery could explain that G2-aged sea bass sampled in the Loire estuary had different mean length and body condition between years. These morphological and potentially physiological differences

Fig. 7. Kriged Maps of fish densities obtained for the same domain using different geostatistical methods over three distinct surveys. TR stands for transitive kriging, OK for ordinary kriging and KED for kriging with an external drift.
could in turn lead to differences in their salinity preferendum, with a distribution of larger fish more downstream. The variability in settlement success could explain the particularly high estimated abundance in 2016 compared with 2017 and 2018. Further studies are clearly needed to tease apart settlement success and environmental conditions (e.g. flood in 2016) as the later may also have an impact on the estimates of abundance indices (e.g. fish availability). Indeed, juvenile sea bass are supposed to eventually disappear from shallow summer habitats during major flood as it might create local disruptions of habitat availability (Kelley, 2002; Alp and Pichon, 2020).

Despite the variability of fish abundance for the three successive surveys, our study also revealed consistent influence of geostatistical method on AI estimates (Fig. 6). More specifically, all geostatistical methods had broadly similar AIs while RS was systematically smaller, which is related to the stratum design (Fig. 2). Indeed, the computation of AI through TR is similar to RS method in the particular case were there is one strata per sample position, consisting in the area of influence of every position. Moreover, the fact that the two best approaches TR, KED lead to similar AI supports the idea that using RS with an empirical stratum design can add a substantial bias in abundance estimations. Similarly, the OK obtained higher AIs than TR and KED in particular for years 2016-2017 where we observed evidence of relation between tidal dynamics and fish distributions (Fig. 3b). This suggests that the failure to comply with the stationarity hypothesis related to intrinsic geostatistics impact the estimation of AIs, and that methods such as KED or TR are needed to account for non-stationarity. In addition to the impact of geostatistical methods on AIs, the coefficients of variations (CVs) associated with these indices differed substantially between the RS and geostatistical approaches. More specifically, the geostatistical approaches had the best performances (lower RMSE) but were also associated to relatively high CVs compared with Random Sampling. This does not mean that RS is more accurate than geostatistical tools,
but rather that ignoring spatial structure of dependence of samples and tidal effect leads to an overly optimistic precision. Indeed, the RS method fails at capturing accurately the high variance in observed densities at two nearby locations (in space and time). Moreover, the structure of the studied estuary with large stratas downstream with few fishes and little variance (downstream) while small stratas contain all the variance (upstream) may lead therefore RS method to geometrically provide small CVs. Such underestimation of CVs associated to biases in AIs raises the relevance for the RS concerning the evaluation of juvenile abundance indices, and its consequences on the associated management actions. On the contrary, the Transitive approach managed to capture some spatial auto-correlation through its co-variogram with both low (hence better) goodness of fit and RMSE. CVs derived from TR were therefore the highest, as the variability of samples doubled at the same locations led to high nugget effects. This makes TR approaches particularly robust to non-stationarity and conservative for systematic abundance index estimations. Transitive and Intrinsic approaches also did not capture the same auto-correlation structure, the range of the modelled structures being higher using Transitive covariograms than using intrinsic variograms (see Table 3 and Fig. 5). By selecting only pairs of samples with similar SSHa, the intrinsic variogram observed indeed the averaged structure of fish densities at fixed time, while the transitive covariogram observed the structure of the averaged fish density through time. In other words, the covariogram captures the spatial structure of juvenile fish preferendum habitat, whereas the intrinsic variogram captures the fish schooling clusters structure. It is indeed observable in the kriged maps produced in Fig. 2 were TR-derived fish densities are way more smoothed than KED and OK maps. Estimated indices derived from TR and KED approaches were yet relatively similar as shown in Fig. 6 which once again supports the idea that TR is robust to tidal variability. KED would therefore be more relevant to investigate and explain the dynamics of fish densities along a tidal period, while

TR provides a more pragmatic tool for stock management, as it captures well the averaged habitat structure of juvenile fishes, and allows the estimation of robust, unbiased and conservative abundance indices and maps, that could help designing protection areas.

In summary, our study shows how it is possible to use a wide variety of geostatistical methods to estimate juvenile fish abundance in nurseries. The versatility of these methods have thus far not really been considered in this context and such abundance indices (accurate, robust to environmental variability, having realistic CVs) should definitely be included in stock assessment models. This has already been done to some extent in the northern stock of the sea bass with the use of a simple densities average over ages $2-4$ (Tidbury et al., 2021) but this can clearly be extended to other nurseries and to other approaches. Indeed, the use of geostatistically-computed abundance indices is a significant step towards a better estimation of fish abundances and an accurate estimation of their uncertainties. Compared to the classical random stratified estimators, geostatistics approaches are more conservative, but their higher uncertainties would allow a more robust adjustment trade-off between potentially different indices (i.e. estuaries) when estimating recruitment within a stock assessment model. Application of this general framework to any other fish stocks, whose juvenile life stage occurs in coastal nursery, might help the fisheries managers anticipating recruitment strength and better evaluating the consequences of alternative management actions.

CRediT authorship contribution statement

Amédée Roy: Conceptualization, Formal analysis, Writing - original draft. Christophe Lebigre: Writing - review \& editing, Conceptualization. Mickaël Drogou: Data curation, Conceptualization. Mathieu Woillez: Conceptualization, Validation, Writing - review \& editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

All data have been registered in the Harmonie database, which is available to those who request it on SIH website https://forms.ifremer. fr/sih/demande-de-donnees-aupres-du-sih/.

Acknowledgements

The authors would like to thank all people involved in the surveys; Ronan Le Goff, Loïc Le Rû, Stéphane Martin, Didier Le Roy, Ludovic Bouché, Olivier Berthelé, François Garren, colleagues from the fishery biology laboratory of Ifremer, Plouzané and Denis Bertho fisherman and owner of the Virgo Salutaris II. We are grateful to the team of the Sclerochronology Centre (Ifremer, Boulogne-sur-Mer, France), who estimate sea bass age from increment scale readings.

Funding statement

This study was part of the Nourdem project funded by the European Maritime and Fisheries Fund (EMFF-OSIRIS N° : PFEA 400018DM0310001), France Filière Pêche (FFP), the French Ministry of the Sea and Ifremer. Surveys have been conducted with the financial support of Bargip Nourriceries (2016): DPMA/FFP/Ifremer/ CNPMEM, NourDem Loire (2017): FFP/CNPMEM/Ifremer, and NourDem Loire et Seine (2018): DPMA/CNPMEM/Ifremer.

Annex

See Table 3 and Fig. 8.

May-July 2017 - Area: 8A

July 2018 - Area: 23E7

Fig. 8. Age-length keys distribution based on increment scale readings sampled from The Nourdem surveys. Red dotted lines consist in the empirical delimitation used in the study.

Table 3
Models Overview. An example of fitted model and associated empirical variograms is given in Fig. 5. Spherical range is detailed with two values when accounting for anisotropy.

Year	Kriging approach	External drift	Projection	Name	Nugget	Spherical sill	Spherical range	Goodness of fit
2016	Transitive	-	No	TR	0.078	0.06	15:5	0.61
		-	Yes	TRp	0.101	0.049	15:5	0.3
	Ordinary	No	No	OK	0.35	0.51	1.5	1.65
			Yes	OKp	0.33	0.5	1.5	1.2
		Yes	No	KED	0.95	0.15	1.5	1.27
			Yes	KEDp	0.9	0.2	1.5	1.2
2017	Transitive	-	No	TR	0.11	0.042	20:10	0.84
		-	Yes	TRp	0.099	0.032	15:5	0.25
	Ordinary	No	No	OK	0.37	0.42	2	2.54
			Yes	OKp	0.39	0.41	2	2.66
		Yes	No	KED	0.54	0.45	2	3.19
			Yes	KEDp	0.56	0.45	2	3.08
2018	Transitive	-	No	TR	0.069	0.027	15:10	0.49
		-	Yes	TRp	0.067	0.022	15:5	0.3
	Ordinary	No	No	OK	0.31	0.38	3	2.0
			Yes	OKp	0.32	0.37	3	1.96
		Yes	No	KED	0.34	0.33	3	1.74
			Yes	KEDp	0.34	0.32	3	1.82

References

Able, K.W., 2005. A re-examination of fish estuarine dependence: Evidence for connectivity between estuarine and ocean habitats. Estuar. Coast. Shelf Sci. 64 (1), 5-17. http://dx.doi.org/10.1016/j.ecss.2005.02.002.
Alp, M., Pichon, C.L., 2020. Getting from sea to nurseries: Considering Tidal Dynamics of juvenile habitat distribution and connectivity in a highly modified estuarine riverscape. Ecosystems http://dx.doi.org/10.1007/s10021-020-00536-1.
Bakka, H., Vanhatalo, J., Illian, J., Simpson, D., Rue, H., 2019. Non-stationary Gaussian models with physical barriers. Spatial Statistics 29, 268-288. http://dx.doi.org/10. 1016/j.spasta.2019.01.002.
Beck, M.W., Heck, K.L., Able, K.W., Childers, D.L., Eggleston, D.B., Gillanders, B.M., Halpern, B., Hays, C.G., Hoshino, K., Minello, T.J., Orth, R.J., Sheridan, P.F., Weinstein, M.P., 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. BioScience 51 (8), 633. http://dx.doi.org/10.1641/0006-3568(2001)051[0633:TICAMO]2.0.CO;2.
Beraud, C., van der Molen, J., Armstrong, M., Hunter, E., Fonseca, L., Hyder, K., 2018. The influence of oceanographic conditions and larval behaviour on settlement success-the European sea bass Dicentrarchus Labrax (L.). ICES J. Mar. Sc. 75, 455-470. http://dx.doi.org/10.1093/icesjms/fsx195.
Bez, N., Braham, C.-B., 2014. Indicator variables for a robust estimation of an acoustic index of abundance. In: Jech, J.M. (Ed.), Canadian Journal of Fisheries and Aquatic Sciences, Vol. 71. pp. 709-718. http://dx.doi.org/10.1139/cjfas-2013-0437.
Bez, N., Rivoirard, J., 2001. Transitive geostatistics to characterise spatial aggregations with diffuse limits: An application on mackerel ichtyoplankton. Fish. Res. 50 (1-2), 41-58. http://dx.doi.org/10.1016/S0165-7836(00)00241-1.
Blaber, S.J.M., Blaber, T.G., 1980. Factors affecting the distribution of juvenile estuarine and inshore fish. J. Fish Biol. 17 (2), 143-162. http://dx.doi.org/10.1111/j.10958649.1980.tb02749.x.

Boehlert, G., Mundy, B., 1988. Roles of behavioral and physical factors in larval and juvenile fish recruitment to estuarine nursery areas. p. 17.
Cabral, H., Costa, M.J., 2001. Abundance, feeding ecology and growth of 0-group sea bass, Dicentrarchus Labrax, within the nursery areas of the Tagus estuary. J. Mar. Biol. Assoc. UK 81 (4), 679-682. http://dx.doi.org/10.1017/S0025315401004362.
Caillaud, M., Petton, S., Dumas, F., Sebastien, R., Mickael, V., 2016. Rejeu hydrodynamique à 500 m de résolution avec le modèle MARS3D-AGRIF Zone Manche-Gascogne. http://dx.doi.org/10.12770/3EDEE80F-5A3E-42F4-94279684073C87F5.
Chiles, J.-P., Delfiner, P., 2009. Geostatistics: Modeling Spatial Uncertainty, Vol. 497. John Wiley \& Sons.
Cochran, W.G., 1977. Sampling Techniques. John Wiley \& Sons, New York, USA.
da Silva, D.R., Paranhos, R., Vianna, M., 2016. Spatial patterns of distribution and the influence of seasonal and abiotic factors on demersal ichthyofauna in an estuarine tropical bay: Ichthyofauna of estuarine tropical bay. J. Fish Biol. 89 (1), 821-846. http://dx.doi.org/10.1111/jfb. 13033.
Dambrine, C., Huret, M., Woillez, M., Pecquerie, L., Allal, F., Servili, A., de Pontual, H., 2020. Contribution of a bioenergetics model to investigate the growth and survival of European seabass in the bay of biscay - english channel area. Ecol. Model. 423, 109007. http://dx.doi.org/10.1016/j.ecolmodel.2020.109007.
de Pontual, H., Lalire, M., Fablet, R., Laspougeas, C., Garren, F., Martin, S., Drogou, M., Woillez, M., 2019. New insights into behavioural ecology of European seabass off the West Coast of France: Implications at local and population scales. ICES J. Mar. Sc. 76, 501-515. http://dx.doi.org/10.1093/icesjms/fsy08.

Dege, M., Brown, L.R., 2004. Effect of outflow on spring and summertime distribution and abundance of larval and juvenile fishes in the upper san francisco estuary. Am. Fish. Soc. Symp. 39, 49-65.
Desassis, N., Renard, D., 2013. Automatic variogram modeling by iterative least squares: Univariate and multivariate cases. Math. Geosci. 45 (4), 453-470. http://dx.doi. org/10.1007/s11004-012-9434-1.
Drogou, M., Le Goff, R., Le Roy, D., Martin, S., Le Ru, L., Bouche, L., Roy, A., Berthele, O., Lebigre, C., 2019. Nourdem Loire et Nourdem Seine Bilan Des Campagnes 2018. Tech. rep. RST-RBE/STH 2019, Ifremer, p. 104.
Froeschke, J.T., Froeschke, B.F., 2011. Spatio-temporal predictive model based on environmental factors for juvenile spotted seatrout in Texas estuaries using boosted regression trees. Fish. Res. 111 (3), 131-138. http://dx.doi.org/10.1016/j.fishres. 2011.07.008.

Georgakarakos, S., Kitsiou, D., 2008. Mapping abundance distribution of small pelagic species applying hydroacoustics and co-kriging techniques. In: Valavanis, V. (Ed.), Essential Fish Habitat Mapping in the Mediterranean. 203, Springer, Dordrecht, http://dx.doi.org/10.1007/978-1-4020-9141-4_12.
Goff, J.A., Nordfjord, S., 2004. Interpolation of fluvial morphology using channeloriented coordinate transformation: A case study from the New Jersey Shelf. Math. Geol. 36 (6), 643-658. http://dx.doi.org/10.1023/B:MATG.0000039539.84158.cd.
Green, B.C., Smith, D.J., Grey, J., Underwood, G.J.C., 2012. High site fidelity and low site connectivity in temperate salt marsh fish populations: A stable isotope approach. Oecologia 168 (1), 245-255. http://dx.doi.org/10.1007/s00442-011-2077-y.
Gringarten, E., Deutsch, C.V., 2001. Teacher's aide variogram interpretation and modeling. Math. Geol. 28. http://dx.doi.org/10.1023/A:1011093014141.
Hankin, D.G., Reeves, G.H., 1988. Estimating total fish abundance and total habitat area in small streams based on visual estimation methods. Can. J. Fish. Aquat. Sci. 45, 834-844. http://dx.doi.org/10.1139/f88-101.
Hashimoto, M., Nishijima, S., Yukami, R., Watanabe, C., Kamimura, Y., Furuichi, S., Ichinokawa, M., Okamura, H., 2019. Spatiotemporal dynamics of the Pacific chub mackerel revealed by standardized abundance indices. Fish. Res. 219, 105315. http://dx.doi.org/10.1016/j.fishres.2019.105315.
ICES, 2020. Sea bass (Dicentrarchus Labrax) in divisions IVb-c, VIIa, and VII.d-h (central and southern North Sea, Irish Sea, english channel, bristol channel, and Celtic Sea). ICES Adv. Fish. Oppor. Catch Effort http://dx.doi.org/10.17895/ices.advice.5916.
Kelley, D., 2002. Abundance, growth and first-winter survival of young bass in nurseries of south-west England. J. Mar. Biol. Assoc. UK 82 (2), 307-319. http://dx.doi.org/ 10.1017/S0025315402005507.

Laffaille, P., Lefeuvre, J.-C., Schricke, M.-T., Feunteun, E., 2001. Feeding ecology of 0 -group sea bass, Dicentrarchus Labrax, in salt marshes of mont saint michel bay (France). Estuaries 24 (1), 116. http://dx.doi.org/10.2307/1352818.
Le Goff, R., Drogou, M., Le Ru, L., Garren, F., Martin, S., Bouche, L., Le Roy, D., Berthele, O., 2017. Nourdem Seine : Bilan de la Campagne 2017. Tech. rep. RST-RBE/STH/LBH 2017-001, Ifremer, http://dx.doi.org/10.13155/52262.
Legleiter, C.J., Kyriakidis, P.C., 2008. Spatial prediction of river channel topography by kriging. Earth Surf. Process. Landf. 33 (6), 841-867. http://dx.doi.org/10.1002/ esp. 1579.
Lezama-Ochoa, A., Ballón, M., Woillez, M., Grados, D., Irigoien, X., Bertrand, A., 2011. Spatial patterns and scale-dependent relationships between macrozooplankton and fish in the bay of Biscay: An acoustic study. Mar. Ecol. Prog. Ser. 439, 151-168. http://dx.doi.org/10.3354/meps09318.
Lindgren, F., Rue, H., 2015. Bayesian spatial modelling with R - Inla. J. Statist. Softw. 63 (19), http://dx.doi.org/10.18637/jss.v063.i19.

Little, L.S., Edwards, D., Porter, D.E., 1997. Kriging in estuaries: As the crow flies, or as the fish swims? J. Exp. Mar. Biol. Ecol. 213 (1), 1-11. http://dx.doi.org/10.1016/ S0022-0981(97)00006-3.
López, R., de Pontual, H., Bertignac, M., Mahévas, S., 2015. What can exploratory modelling tell us about the ecobiology of European sea bass (Dicentrarchus Labrax): A comprehensive overview. Aquat. Living Resour. 28 (2-4), 61-79. http://dx.doi. org/10.1051/alr/2015007.
Martinho, F., Leitão, R., Neto, J.M., Cabral, H., Lagardère, F., Pardal, M.A., 2008. Estuarine colonization, population structure and nursery functioning for 0-group sea bass (Dicentrarchus Labrax), flounder (Platichthys Flesus) and sole (Solea Solea) in a mesotidal temperate estuary. J. Appl. Ichthyol. 24 (3), 229-237. http://dx.doi.org/10.1111/j.1439-0426.2007.01049.x.
Martinho, F., Leitão, R., Neto, J.M., Cabral, H.N., Marques, J.C., Pardal, M.A., 2007. The use of nursery areas by juvenile fish in a temperate estuary, Portugal. Hydrobiologia 587 (1), 281-290. http://dx.doi.org/10.1007/s10750-007-0689-3.
Matheron, G., 1989. Estimating and Choosing: An Essay on Probability on Practice. Springer-Verlag, Berlin.
Mesquita, C., Dobby, H., Pierce, G.J., Jones, C.S., Fernandes, P.G., 2020. Abundance and spatial distribution of brown crab (cancer pagurus) from fishery-independent dredge and trawl surveys in the North Sea. ICES J. Mar. Sc. 78, 597-610. http: //dx.doi.org/10.1093/icesjms/fsaa105.
MINES ParisTech, MINES ParisTech / ARMINES, 2020. Rgeostats: the geostatistical r package. fontainebleau, france.
Morfin, M., Fromentin, J.-M., 2012. Spatio-temporal patterns of key exploited marine species in the Northwestern Mediterranean Sea. PLoS One 7 (5), 14. http://dx.doi. org/10.1371/journal.pone.0037907.
Norcross, B.L., Shaw, R.F., 1984. Oceanic and estuarine transport of fish eggs and larvae a review. Trans. Amer. Fish. Soc. 113, 153-165. http://dx.doi.org/10.1577/15488659(1984)113<153:OAETOF>2.0.CO;2.
Petitgas, P., 1997. Sole egg distributions in space and time characterised by a geostatistical model and its estimation variance. ICES J. Mar. Sci. 54 (2), 213-225. http://dx.doi.org/10.1006/jmsc.1996.0184.
Petitgas, P., 2001. Geostatistics in fisheries survey design and stock assessment: Models, variances and applications: Geostatistics for fisheries survey design and assessment. Fish Fish. 2 (3), 231-249. http://dx.doi.org/10.1046/j.1467-2960.2001.00047.x.
Petitgas, P., Woillez, M., Rivoirard, J., Renard, D., Bez, N., 2017. In: Anderson, E.D. (Ed.), Handbook of Geostatistics in R for Fisheries and Marine Ecology. ICES Cooperative Research Report 338, ICES, Copenhagen, Danmark, p. 177.
Pinto, M., Monteiro, J., Crespo, D., Costa, F., Rosa, J., Primo, A., Pardal, M., Martinho, F., 2021. Influence of oceanic and climate conditions on the early life history of European seabass Dicentrarchus Labrax. Mar. Environ. Res. 169, 105362. http://dx.doi.org/10.1016/j.marenvres.2021.105362.
Polansky, L., Newman, K.B., Nobriga, M.L., Mitchell, L., 2018. Spatiotemporal models of an estuarine fish species to identify patterns and factors impacting their distribution and abundance. Estuar. Coasts 41 (2), 572-581. http://dx.doi.org/10.1007/s12237-017-0277-3.
Rathbun, S.L., 1998. Spatial modelling in irregularly shaped regions: Kriging estuaries. Environmetrics 9 (2), 109-129. http://dx.doi.org/10.1002/(SICI)1099-095X(199803/04)9:2<109::AID-ENV279>3.0.CO;2-L.
Rezende, G.A., Rufener, M.-C., Ortega, I., Ruas, V.M., Dumont, L.F.C., 2019. Modelling the spatio-temporal bycatch dynamics in an estuarine small-scale shrimp trawl fishery. Fish. Res. 219, 105336. http://dx.doi.org/10.1016/j.fishres.2019.105336.

Rivoirard, J., 2001. Correcting for the effect of daylight in abundance estimation of juvenile haddock (Melanogrammus Aeglefinus) in the North Sea: An application of kriging with external drift. ICES J. Mar. Sci. 58 (6), 1272-1285. http://dx.doi.org/ 10.1006/jmsc.2001.1112.

Rivoirard, J., Simmonds, J., Foote, K.G., Fernandes, P., Bez, N., 2000. Geostatistics for Estimating Fish Abundance. Blackwell Science Ltd, Oxford.
Rueda, M., 2001. Spatial distribution of fish species in a tropical estuarine lagoon: A geostatistical appraisal. Mar. Ecol. Prog. Ser. 222, 217-226. http://dx.doi.org/10. 3354/meps222217.
Sahlin, J., Mostafavi, M.A., Forest, A., Babin, M., 2014. Assessment of 3D spatial interpolation methods for study of the marine pelagic environment. Mar. Geodesy 37 (2), 238-266. http://dx.doi.org/10.1080/01490419.2014.902883.
Saillant, E., Fostier, A., Haffray, P., Menu, B., Chatain, B., 2003. Saline preferendum for the European sea bass, Dicentrarchus Labrax, larvae and juveniles: Effect of salinity on early development and sex determination. J. Exp. Mar. Biol. Ecol. 287 (1), 103-117. http://dx.doi.org/10.1016/S0022-0981(02)00502-6.

Saraux, C., Fromentin, J.-M., Bigot, J.-L., Bourdeix, J.-H., Morfin, M., Roos, D., Beveren, E.V., Bez, N., 2014. Spatial structure and distribution of small pelagic fish in the Northwestern Mediterranean Sea. PLoS One 9 (11), 12. http://dx.doi. org/10.1371/journal.pone.0111211.
Scharf, F.S., 2000. Patterns in abundance, growth, and mortality of juvenile red drum across estuaries on the texas coast with implications for recruitment and stock enhancement. p. 16. http://dx.doi.org/10.1577/1548-8659(2000)129<1207: PIAGAM>2.0.CO;2.
Shelton, A.O., Thorson, J.T., Ward, E.J., Feist, B.E., 2014. Spatial semiparametric models improve estimates of species abundance and distribution. In: Cooper, A. (Ed.), Canadian Journal of Fisheries and Aquatic Sciences, Vol. 71. pp. 1655-1666. http://dx.doi.org/10.1139/cjfas-2013-0508.
Sobocinski, K.L., Ciannelli, L., Wakefield, W.W., Yergey, M.E., Johnson-Colegrove, A., 2018. Distribution and abundance of juvenile demersal fishes in relation to summer hypoxia and other environmental variables in coastal oregon, USA. Estuar. Coast. Shelf Sci. 205, 75-90. http://dx.doi.org/10.1016/j.ecss.2018.03.002.
Tableau, A., Brind'Amour, A., Woillez, M., Le Bris, H., 2016. Influence of food availability on the spatial distribution of juvenile fish within soft sediment nursery habitats. J. Sea Res. 111, 76-87. http://dx.doi.org/10.1016/j.seares.2015.12.004.
Thorson, J.T., Shelton, A.O., Ward, E.J., Skaug, H.J., 2015. Geostatistical deltageneralized linear mixed models improve precision for estimated abundance indices for west coast groundfishes. ICES J. Mar. Sci. 72 (5), 1297-1310. http://dx.doi.org/ 10.1093/icesjms/fsu243.

Tidbury, H.J., Muench, A., Lamb, P.D., Hyder, K., 2021. Balancing biological and economic goals in commercial and recreational fisheries: Systems modelling of sea bass fisheries. ICES J. Mar. Sci. 78, 1793-1803. http://dx.doi.org/10.1093/icesjms/ fsab087.
Walmsley, S., Bremner, J., Walker, A., Barry, J., Maxwell, D., 2018. Challenges to quantifying glass eel abundance from large and dynamic estuaries. ICES J. Mar. Sc. 75, 727-737. http://dx.doi.org/10.1093/icesjms/fsx182.
Woillez, M., Rivoirard, J., Fernandes, P.G., 2009. Evaluating the uncertainty of abundance estimates from acoustic surveys using geostatistical simulations. ICES J. Mar. Sci. 66 (6), 1377-1383. http://dx.doi.org/10.1093/icesjms/fsp137.

Zhang, Y., Xian, C., Chen, H., Grieneisen, M.L., Liu, J., Zhang, M., 2016. Spatial interpolation of river channel topography using the shortest temporal distance. J. Hydrol. 542, 450-462. http://dx.doi.org/10.1016/j.jhydrol.2016.09.022.

[^0]: * Corresponding author.

 E-mail addresses: amedee.roy@ifremer.fr (A. Roy), christophe.lebigre@ifremer.fr (C. Lebigre), mickael.drogou@ifremer.fr (M. Drogou), mathieu.woillez@ifremer.fr (M. Woillez).

