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Abstract. Gaining a better comprehension of the growth of microorganisms is a major scientific challenge,
which has often been approached from a resource allocation perspective. Simple mathematical
self-replicator models based on resource allocation principles have been surprisingly effective in ac-
counting for experimental observations of the growth of microorganisms. Previous work, using a
three-variable resource allocation model, predicted an optimal resource allocation scheme for the
adaptation of microbial cells to a sudden nutrient change in the environment. We here propose an
extended version of this model considering also proteins responsible for basic housekeeping func-
tions, and we study their impact on predicted optimal strategies for resource allocation following
changes in the environment. A full dynamical analysis of the system shows there is a single globally
attractive equilibrium, which can be related to steady-state growth conditions of bacteria observed
in experiments. We then explore the optimal allocation strategies using optimization and optimal
control theory. We show that the solutions to this dynamical problem have a complicated structure
that includes a second-order singular arc given in feedback form and characterized by (i) Fuller's
phenomenon and (ii) the turnpike effect, producing a very particular asymptotic behavior towards
the solution of the static optimization problem. Our work thus provides a generalized perspective
on the analysis of microbial growth by means of simple self-replicator models.

Key words. systems biology, bacterial growth laws, resource allocation, nutritional shifts, optimal control,
turnpike
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1. Introduction. The growth of microorganisms is a paradigm example of self-replication
in nature. Microbial cells are capable of transforming nutrients from the environment into new
microbial cells astonishingly fast and in a highly reproducible manner [1]. The biochemical
reaction network underlying microbial growth has evolved under the pressure of natural se-
lection, a process that has retained changes in the network structure and dynamics increasing
fitness, i.e., favoring the ability of the cells to proliferate in their environment. Gaining a
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better comprehension of the growth of microorganisms in the context of evolution is a ma-
jor scientific challenge [2], and the ability to externally control growth is critical for a wide
range of applications, such as combating antibiotics resistance, food preservation, and biofuel
production [3, 4, 5].

A fruitful perspective on microbial growth is to view it as a resource allocation problem
[6]. Microorganisms must assign their available resources to different cellular functions, in-
cluding the uptake and conversion of nutrients into molecular building blocks of proteins and
other macromolecules (metabolism), the synthesis of proteins and other macromolecules from
these building blocks (gene expression), and the detection of changes in the environment and
the preparation of adequate responses (signaling and regulation). It is often assumed that
microorganisms have evolved resource allocation strategies so as to maximize their growth
rate, as this would allow them to outgrow competing species.

Simple mathematical models based on resource allocation principles have been surpris-
ingly effective in accounting for experimental observations of the growth and physiology of
microorganisms [6, 7, 8, 9, 10, 11, 12]. Instead of providing a detailed description of the en-
tire biochemical reaction network, these models include a limited number of macroreactions
responsible for the main growth-related functions of the cell. The models usually take the
form of nonlinear ODE systems, typically 3--10 equations with parameters obtained from the
experimental literature or estimated from published data. The models have been instrumental
in explaining a number of steady-state relations between the growth rate and the cellular com-
position, in particular the concentration of ribosomes, protein complexes that are responsible
for the synthesis of new proteins [8, 6, 13, 10, 14]. Moreover, they have brought out a trade-off
between the rate and yield of alternative metabolic pathways that produce energy-carrying
molecules, necessary for driving forward many cellular reactions, such as those involved in the
synthesis of proteins and other macromolecules [8, 15, 16].

In previous work, using a three-variable resource allocation model, it was possible to
predict an optimal resource allocation scheme for the response of microbial cells to a sudden
nutrient change in the environment [10]. The prediction was based on the infinite horizon
maximum principle, a particular case of the well-known PMP (Pontrjagin maximum principle)
[17, 18]. A feedback control strategy inspired by a known regulatory mechanism for growth
control in the bacterial cell was shown to give a quasi-optimal approximation of the optimal
solution. Strategies for optimal control were also explored for an extension of the model,
inspired by recent experimental work [19], which comprises a pathway for the production
of a metabolite of biotechnical interest as well as an external signal allowing growth to be
switched off [20, 21, 22, 23]. We showed by a combination of analytical and computational
means that the optimal solution for the targeted metabolite production problem consists of
a phase of growth maximization followed by a phase of product maximization, in agreement
with strategies proposed in metabolic engineering. Optimal control approaches have also been
used for studying other dynamic optimization problems in biology (see [24] for a review). A
classical example is the determination of optimal activation patterns of metabolic pathways,
such as to minimize the transition time of metabolites or minimize enzyme costs [25, 26].

The resource allocation model that lies at the basis of the above-mentioned work [10] has
a number of limitations. First, the biomass of the cell was assumed to consist of two classes
of proteins, enzymes catalyzing metabolic reactions and ribosomes responsible for proteinD
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synthesis, whose relative proportions vary with the growth rate. However, experimental data
show that a large fraction of the total protein contents of the cell is growth rate-independent
[27]. This suggests the introduction of a third protein category, dedicated mainly to ba-
sic housekeeping functions of the cell. The proportion of these proteins is independent of
the growth rate and thus constrains the variations in the other two, growth rate-dependent,
categories [6, 13]. Second, the concentration of ribosomes and enzymes, the two protein
categories included in the original model, have both a growth rate-dependent and a growth
rate-independent component [6, 27]. This implies that the protein synthesis rate, and thus the
growth rate, does not depend on the total ribosome concentration, as in the original model,
but only on its growth rate-dependent fraction [13].

In the present manuscript, we revise the above modeling assumptions and study their
impact on predicted optimal strategies for resource allocation following changes in the envi-
ronment of different nature (i.e., changes in the nutrient concentration or stress responses).
This leads to a number of interesting problems in mathematical analysis and control, which
are addressed using tools from dynamical systems analysis and optimal control theory. A full
dynamical analysis of the system shows there is a single globally attractive equilibrium, which
can be related to steady-state growth conditions of bacteria observed in experiments. In spite
of the simplicity of the presented model, the solutions of the associated biomass maximization
problems exhibit quite interesting features. Notably, the second-order singular arc is char-
acterized by (a) the Fuller phenomenon at its junctions, yielding an infinite set of switching
points in a finite-time window, and (b) the turnpike effect, which produces very particular as-
ymptotic behaviors towards the solution of the static optimization problem. We provide a full
description of the singular arc in terms of the state, as well as an explicit proof of the presence
of the turnpike effect. While the predicted (optimal) control dynamics does not change much
qualitatively in comparison with the previous model, the more realistic modeling assumptions
offer a more general perspective of the biological problem. For example, in contrast with
the previous model where the absence of growth rate-independent protein yields a constant
singular arc equal to the solution of the static optimization problem, the singular arc of the
new model is not constant but is governed by a turnpike phenomenon.

In section 2, we describe the model used in this study, followed by a global dynamical
analysis of the model in section 3. In section 4, we calibrate the model from literature
data using the equilibrium of interest for an optimal steady-state allocation parameter, and
in section 5 we formulate an optimal control problem and prove properties of the optimal
solutions. In section 6, we show that the general analysis can be applied to two different cases
of environmental changes related to nutrient shifts and stress responses.

2. Model definition. We define a self-replicator system composed of the mass of pre-
cursor metabolites P, the gene expression machinery R (ribosomes, RNA polymerase, . . .)
and the metabolic machinery M (enzymes, transporters, . . .), as shown in Figure 1. Essen-
tially, the ribosomal proteins R are responsible for the fabrication of new proteins, and the
metabolic proteins M are in charge of the uptake of nutrients for building precursor metab-
olites P. Following Scott et al. [6], we also introduce a class Q of proteins whose functions
fall outside the range of tasks performed by M and R. This sector comprises mainly growth
rate-independent proteins such as housekeeping proteins responsible for the maintenance ofD
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Figure 1. Coarse-grained self-replicator model. The external substrate S is consumed by bacteria and
transformed into precursor metabolites P by the metabolic machinery M. The precursors are used to produce
macromolecules of classes R, M, and Q, with proportions \gamma \alpha , \gamma (1  - \alpha ), and 1  - \gamma , respectively. Solid lines
indicate the macroreactions with their respective synthesis rates, and dashed lines denote a catalytic effect.

certain basic cellular functions. Needless to say, the synthesis of Q proteins draws resources
away from the pathways to M and R and consequently imposes an upper bound on the frac-
tion of resources dedicated to self-replication and nutrient uptake. This constraint appears in
the model through a constant \gamma \in [0, 1], and it indicates the maximum fraction of the protein
synthesis rate available for making ribosomes and metabolic enzymes. The overall allocation
process can be represented by the biochemical macroreactions

S
VM - \rightarrow P,(2.1)

P
VR - \rightarrow \gamma \alpha R+ \gamma (1 - \alpha )M + (1 - \gamma )Q.(2.2)

The first reaction describes the transformation of external substrate S into precursor me-
tabolites P at a rate VM . The second reaction represents the conversion of precursors into
macromolecules R, M, and Q at a rate VR. The roles of the enzymes M in the uptake and
metabolization of nutrients and the ribosomal proteins R in the production of proteins are rep-
resented through catalytic effects, indicated with dotted arrows in Figure 1. In this context,
protein A catalyzes reaction B means that the rate of reaction B is proportional to the cellular
concentration of A, but the reaction itself does not consume A. The natural resource alloca-
tion strategy is modeled through the time-varying function \alpha (t) \in [0, 1]. Thus, the proportion
of the total synthesis rate of proteins dedicated to the gene expression machinery R is \gamma \alpha ,
while that of the metabolic machinery M is \gamma (1 - \alpha ). In particular, the allocation parameter
does not influence the synthesis rate of Q, with constant proportion 1 - \gamma , as the synthesis of
proteins in this class is autoregulated through mechanisms not relevant in this study. From a
biological perspective, the function \alpha (t) represents the naturally evolved allocation strategy
of the cell which is, a priori, unknown. In the context of control theory, and throughout this
paper, \alpha is treated as the control input of the system.

2.1. Self-replicator system. Generalizing upon Giordano et al. [10], a mass balance
analysis yields the dynamical systemD
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\left\{                   

\.P = VM  - VR,

\.R = \gamma \alpha VR,

\.M = \gamma (1 - \alpha )VR,

\.Q = (1 - \gamma )VR,

(2.3)

where mass quantities P, M, R, and Q are described in grams (g), the synthesis rates VM and
VR in grams per hour, and \alpha is the dimensionless allocation parameter. In what follows, we
will assume that the proteins of classes R, M, and Q are responsible for most of the bacterial
mass [1], and so we define the bacterial volume \scrV measured in liter units (L) as

\scrV = \beta (R +M+Q),(2.4)

where \beta corresponds to a density constant relating mass and bacterial volume [28] such that
the total biomass in grams is given by \scrV /\beta . The above assumption implies that the mass
of precursor metabolites represents a negligible fraction of the total biomass (in other words,
P \ll \scrV /\beta ). We define the intracellular concentrations in grams per liter as

p\scrV 
.
=

P

\scrV 
, r\scrV 

.
=

R

\scrV 
, m\scrV 

.
=

M

\scrV 
, q\scrV 

.
=

Q

\scrV 
.(2.5)

Using (2.4) and (2.5), we obtain the relation

r\scrV +m\scrV + q\scrV =
1

\beta 
.(2.6)

We also define the rates of mass flow per unit volume, which we assume to be functions of the
available concentrations, as

vM (s,m\scrV )
.
=

VM

\scrV 
, vR(p\scrV , r\scrV )

.
=

VR

\scrV 
,(2.7)

where s corresponds to the extracellular concentration of substrate measured in grams per
liter. The growth rate of the bacterial population is defined as the relative change of the
bacterial volume:

\mu 
.
=

\.\scrV 
\scrV 

=
\beta VR

\scrV 
= \beta vR(p\scrV , r\scrV ).(2.8)

We write the system in terms of the concentrations as\left\{                           

\.p\scrV = vM (s,m\scrV ) - (1 + \beta p\scrV )vR(p\scrV , r\scrV ),

\.r\scrV = (\gamma \alpha  - \beta r\scrV )vR(p\scrV , r\scrV ),

\.m\scrV = (\gamma (1 - \alpha ) - \beta m\scrV )vR(p\scrV , r\scrV ),

\.q\scrV = ((1 - \gamma ) - \beta q\scrV )vR(p\scrV , r\scrV ),

\.\scrV = \beta vR(p\scrV , r\scrV )\scrV .

(2.9)

D
ow

nl
oa

de
d 

01
/1

1/
22

 to
 1

28
.9

3.
17

6.
36

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

142 YABO, CAILLAU, GOUZ\'E, DE JONG, AND MAIRET

2.2. Kinetic definition. We define the kinetics of the reaction system by taking into
account that a minimal concentration of ribosomal proteins r\scrV ,\mathrm{m}\mathrm{i}\mathrm{n} \in (0, \gamma /\beta ) is required for
protein synthesis to take place. In other words, a part of the bacterial volume is occupied
by ribosomal proteins which do not directly contribute to growth [13]. Such behavior can be
modeled as

vR(p\scrV , r\scrV )
.
= wR(p\scrV ) (r\scrV  - r\scrV ,\mathrm{m}\mathrm{i}\mathrm{n})

+ with (r\scrV  - r\mathrm{m}\mathrm{i}\mathrm{n})
+ =

\biggl\{ 
r\scrV  - r\scrV ,\mathrm{m}\mathrm{i}\mathrm{n} if r\scrV \geq r\scrV ,\mathrm{m}\mathrm{i}\mathrm{n},
0 if r\scrV < r\scrV ,\mathrm{m}\mathrm{i}\mathrm{n}.

(2.10)

Later on, we will see that there is no need to define vR(p\scrV , r\scrV ) for r\scrV < r\scrV ,\mathrm{m}\mathrm{i}\mathrm{n} if the initial
conditions lie in a particular region of the state space. The rate of nutrient uptake is defined
as

vM (s,m\scrV )
.
= wM (s)m\scrV .(2.11)

We will make the following assumption for functions wR(p\scrV ) and wM (s).

Hypothesis 2.1. Function wi(x) : \BbbR + \rightarrow \BbbR + is
\bullet continuously differentiable w.r.t. x;
\bullet null at the origin: wi(0) = 0;
\bullet strictly increasing: w\prime 

i(x) > 0 for all x \geq 0;
\bullet strictly concave: w\prime \prime 

i (x) < 0 for all x \geq 0;
\bullet upper bounded: limx\rightarrow \infty wi(x) = ki > 0.

The classical Michaelis--Menten kinetics satisfies Hypothesis 2.1. While most of the math-
ematical results are based on this general definition, for the calibration of the model and
numerical simulations, we will resort to the particular case where the functions are defined as

wR(p\scrV )
.
= kR

p\scrV 
KR + p\scrV 

, wM (s)
.
= kM

s

KS + s
,(2.12)

where kR and kM are the maximal reaction rates in h - 1, and KM and KR are the half-
saturation constants of the synthesis rates in g L - 1. For the general case introduced in
Hypothesis 2.1 we will define

kR
.
= lim

p\scrV \rightarrow \infty 
wR(p\scrV ).(2.13)

2.3. Constant environmental conditions. We assume that the availability of the sub-
strate in the medium is constant over the time-window analyzed. The latter can be modeled
by setting s constant and thus removing the dynamics of s from the system.

Hypothesis 2.2. The flow of substrate can be expressed as wM (s) = eM with eM > 0
constant.

Using this assumption, the dynamical equation of p\scrV becomes

\.p\scrV = eMm\scrV  - (1 + \beta p\scrV )wR(p\scrV )(r\scrV  - r\scrV ,\mathrm{m}\mathrm{i}\mathrm{n})
+.(2.14)

The constant eM models the substrate availability of the medium, but it is also related to
the quality of the nutrient and the efficiency of the macroreaction that produces precursor
metabolites.D
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2.4. Mass fraction formulation and nondimensionalization. We define mass fractions of
the total bacterial mass as

p
.
= \beta p\scrV , r

.
= \beta r\scrV , r\mathrm{m}\mathrm{i}\mathrm{n}

.
= \beta r\scrV ,\mathrm{m}\mathrm{i}\mathrm{n}, m

.
= \beta m\scrV , q

.
= \beta q\scrV ,(2.15)

which, replacing in (2.6), yields the relation

r +m+ q = 1.(2.16)

We also define the nondimensional time variable \^t
.
= kRt and the nondimensional growth rate

\^\mu (p, r)
.
=

\mu (p\scrV , r\scrV )

kR
= \^wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})(2.17)

with \^wR(p) : \BbbR + \rightarrow [0, 1) defined as \^wR(p)
.
= wR(p\scrV )/kR, and EM

.
= eM/kR. For the sake of

simplicity, let us drop all hats from the current notation. Then, the model becomes\left\{                           

\.p = EM m - (p+ 1)wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})
+,

\.r = (\gamma \alpha  - r)wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})
+,

\.m = (\gamma (1 - \alpha ) - m)wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})
+,

\.\scrV = wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})
+\scrV ,

m+ r \leq 1,

(S)

where q has been removed since it can be expressed in terms of the other concentrations
through (2.16), and the constraint m + r \leq 1 is required to comply with q \geq 0. The model
differs from that of Giordano et al. by the addition of the category of housekeeping proteins
(q) and a minimum concentration of ribosomes for protein synthesis (r\mathrm{m}\mathrm{i}\mathrm{n}). In what follows,
we will systematically investigate how these differences affect the asymptotic behavior and
optimal resource allocation strategies.

3. Asymptotic behavior. In the present section, we study the asymptotic behavior of the
reduced system representing the intracellular dynamics\left\{                   

\.p = EM m - (p+ 1)wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})
+,

\.r = (\gamma \alpha  - r)wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})
+,

\.m = (\gamma (1 - \alpha ) - m)wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})
+,

m+ r \leq 1,

(3.1)

where \scrV has been removed since none of the remaining states explicitly depends on it and it
only reaches a steady state when there is no bacterial growth (otherwise, \.\scrV > 0). We start
by describing the invariant set of interest.D
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Lemma 3.1. The set

\Gamma =
\bigl\{ 
(p, r,m) \in \BbbR 3 : p \geq 0, \gamma \geq r \geq r\mathrm{m}\mathrm{i}\mathrm{n}, \gamma \geq m \geq 0, m+ r \leq 1\} 

is positively invariant by (3.1).

Proof. This can be easily verified by evaluating the differential equations of system (3.1)
over the boundaries of \Gamma . As for the condition m+ r \leq 1, we can define a variable z

.
= m+ r

that obeys the dynamics

\.z = (\gamma  - z)wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})
+(3.2)

which, when evaluated at z = 1 yields \.z \leq 0, as r\mathrm{m}\mathrm{a}\mathrm{x} < 1, which proves its invariance.

This lemma states that \gamma \geq r \geq r\mathrm{m}\mathrm{i}\mathrm{n} for any trajectory with initial conditions in \Gamma . As a
consequence, there is no need to define the flow vR(p, r) for values of r under r\mathrm{m}\mathrm{i}\mathrm{n}. The same
thing can be said for the constraint m+ r \leq 1, which is valid for every trajectory starting in
\Gamma . Additionally, since \gamma represents the maximal ribosomal mass fraction, we will define the
following parameter.

Definition 3.2. The maximal ribosomal mass fraction is r\mathrm{m}\mathrm{a}\mathrm{x}
.
= \gamma .

Then, we will reduce the study of the system to this set, and so, using Definition 3.2, we
redefine (3.1) as \left\{             

\.p = EM m - (p+ 1)wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n}),

\.r = (r\mathrm{m}\mathrm{a}\mathrm{x}\alpha  - r)wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n}),

\.m = (r\mathrm{m}\mathrm{a}\mathrm{x}(1 - \alpha ) - m)wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n}),

(S')

where (r - r\mathrm{m}\mathrm{i}\mathrm{n})
+ has been replaced by r - r\mathrm{m}\mathrm{i}\mathrm{n} and the constraint m+r \leq 1 has been removed.

Furthermore, we will define the minimum constant allocation parameter \alpha \ast 
\mathrm{m}\mathrm{i}\mathrm{n} necessary to

allow steady-state self-replication, given by

\alpha \ast 
\mathrm{m}\mathrm{i}\mathrm{n}

.
=

r\mathrm{m}\mathrm{i}\mathrm{n}

r\mathrm{m}\mathrm{a}\mathrm{x}
\cdot (3.3)

Its importance is analyzed throughout the current section.

3.1. Local stability.

Theorem 3.3. System (S') has the equilibria
\bullet E1

.
= (p\ast , r\ast ,m\ast ), locally stable if \alpha \ast > \alpha \ast 

\mathrm{m}\mathrm{i}\mathrm{n};
\bullet E2

.
= (p, r\mathrm{m}\mathrm{i}\mathrm{n}, 0), locally unstable if \alpha \ast > \alpha \ast 

\mathrm{m}\mathrm{i}\mathrm{n};
\bullet E3

.
= (0, r, 0), locally unstable if r \not = r\mathrm{m}\mathrm{i}\mathrm{n}

with

p\ast \in 
\biggl\{ 
p \in \BbbR + : (p+ 1)wR(p) =

EMm\ast 

r\ast  - r\mathrm{m}\mathrm{i}\mathrm{n}

\biggr\} 
,(3.4)

r\ast 
.
= r\mathrm{m}\mathrm{a}\mathrm{x}\alpha 

\ast ,(3.5)

m\ast .
= r\mathrm{m}\mathrm{a}\mathrm{x}(1 - \alpha \ast ).(3.6)D
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Proof. The general Jacobian matrix of the system (S') is

\left[    
 - 
\Bigl( 
wR(p) + (p+ 1)w\prime 

R(p)
\Bigr) 
(r  - r\mathrm{m}\mathrm{i}\mathrm{n})  - (p+ 1)wR(p) EM

(r\mathrm{m}\mathrm{a}\mathrm{x}\alpha  - r)w\prime 
R(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n}) (r\mathrm{m}\mathrm{a}\mathrm{x}\alpha  - 2r + r\mathrm{m}\mathrm{i}\mathrm{n})wR(p) 0\Bigl( 

r\mathrm{m}\mathrm{a}\mathrm{x}(1 - \alpha ) - m
\Bigr) 
w\prime 
R(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})

\Bigl( 
r\mathrm{m}\mathrm{a}\mathrm{x}(1 - \alpha ) - m

\Bigr) 
wR(p)  - wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})

\right]    .

(3.7)

We first see that, if \alpha \ast > \alpha \ast 
\mathrm{m}\mathrm{i}\mathrm{n}, the value p\ast is unique since (p + 1)wR(p) is a monotone

increasing function satisfying wR(0) = 0 and limp\rightarrow \infty (p+1)wR(p) = \infty (as stated in Hypoth-
esis 2.1), and EMm\ast /(r\ast  - r\mathrm{m}\mathrm{i}\mathrm{n}) > 0, so the set (3.4) yields a unique solution. For \alpha \ast < \alpha \ast 

\mathrm{m}\mathrm{i}\mathrm{n},
the equation for p\ast in (3.4) has no valid solution as EMm\ast /(r\ast  - r\mathrm{m}\mathrm{i}\mathrm{n}) becomes negative, and
therefore the equilibrium does not exist. The Jacobian (3.7) for E1 becomes

J1 =

\left[    - 
\Bigl( 
wR(p

\ast ) + (p\ast + 1)w\prime 
R(p

\ast )
\Bigr) 
(r\ast  - r\mathrm{m}\mathrm{i}\mathrm{n})  - (p\ast + 1)wR(p

\ast ) EM

0  - (r\ast  - r\mathrm{m}\mathrm{i}\mathrm{n})wR(p
\ast ) 0

0 0  - wR(p
\ast )(r\ast  - r\mathrm{m}\mathrm{i}\mathrm{n})

\right]   ,

(3.8)

and so the local stability of the equilibrium is given by the signs of the roots of the characteristic
polynomial, which are \lambda =  - (wR(p

\ast ) + (p\ast +1)w\prime 
R(p

\ast ))(r\ast  - r\mathrm{m}\mathrm{i}\mathrm{n}), \lambda =  - (p\ast +1)wR(p
\ast ), and

\lambda =  - wR(p
\ast )(r\ast  - r\mathrm{m}\mathrm{i}\mathrm{n}). As the three roots are negative, we conclude that, if the equilibrium

exists, it is locally stable. For the second equilibrium E2, the Jacobian is

J2 =

\left[  0  - wR(p) EM

0 (r\ast  - r\mathrm{m}\mathrm{i}\mathrm{n})wR(p) 0
0 r\mathrm{m}\mathrm{a}\mathrm{x}(1 - \alpha \ast )wR(p) 0

\right]  (3.9)

with characteristic polynomial

P2(\lambda ) = \lambda 2
\Bigl( 
\lambda  - (r\ast  - r\mathrm{m}\mathrm{i}\mathrm{n})wR(p)

\Bigr) 
.(3.10)

If \alpha \ast > \alpha \ast 
\mathrm{m}\mathrm{i}\mathrm{n}, then J2 has one positive eigenvalue and E2 becomes locally unstable. As for E3,

the Jacobian is

J3 =

\left[   - w\prime 
R(0)(r  - r\mathrm{m}\mathrm{i}\mathrm{n}) 0 EM

(r\mathrm{m}\mathrm{a}\mathrm{x}\alpha  - r)w\prime 
R(0)(r  - r\mathrm{m}\mathrm{i}\mathrm{n}) 0 0

r\mathrm{m}\mathrm{a}\mathrm{x}(1 - \alpha )w\prime 
R(0)(r  - r\mathrm{m}\mathrm{i}\mathrm{n}) 0 0

\right]  (3.11)

with characteristic polynomial

P3(\lambda ) = \lambda 2
\Bigl( 
\lambda + w\prime 

R(0)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})
\Bigr) 
 - EMr\mathrm{m}\mathrm{a}\mathrm{x}(1 - \alpha )w\prime 

R(0)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})\lambda .(3.12)

One root is \lambda = 0, and the two remaining roots can be found by solving the equation

\lambda 2 + \lambda w\prime 
R(0)(r  - r\mathrm{m}\mathrm{i}\mathrm{n}) - EMr\mathrm{m}\mathrm{a}\mathrm{x}(1 - \alpha )w\prime 

R(0)(r  - r\mathrm{m}\mathrm{i}\mathrm{n}) = 0.(3.13)

By the Routh--Hurwitz criterion, the two remaining roots are in the open left half plane if
and only if w\prime 

R(0)(r  - r\mathrm{m}\mathrm{i}\mathrm{n}) > 0 and EMr\mathrm{m}\mathrm{a}\mathrm{x}(1  - \alpha )w\prime 
R(0)(r  - r\mathrm{m}\mathrm{i}\mathrm{n}) < 0, which is never

true. Consequently, for r \not = r\mathrm{m}\mathrm{i}\mathrm{n}, there is at least one positive root, and so the equilibrium is
unstable.D
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3.2. Global behavior. We will study the global behavior of system (S') for the initial
conditions

p(0) > 0, r(0) \in (r\mathrm{m}\mathrm{i}\mathrm{n}, r\mathrm{m}\mathrm{a}\mathrm{x}), m(0) \in (0, r\mathrm{m}\mathrm{a}\mathrm{x}), r(0) +m(0) \leq 1(IC)

and for a given constant allocation parameter

\alpha (t) = \alpha \ast \in (\alpha \ast 
\mathrm{m}\mathrm{i}\mathrm{n}, 1) .(3.14)

Under this constraint, we see that the dynamics of r and m become

\.r = (r\ast  - r)wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n}), \.m = (m\ast  - m)wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n}),(3.15)

which means that, if p > 0 and r > r\mathrm{m}\mathrm{i}\mathrm{n}, the signs of \.r and \.m are given by the signs of r\ast  - r
and m\ast  - m, respectively (and both \.r and \.m are zero if p = 0 or r = r\mathrm{m}\mathrm{i}\mathrm{n}). Then, let us
divide \Gamma into the subsets

\scrR  - .
= \{ (p, r,m) \in \Gamma : r \in (r\mathrm{m}\mathrm{i}\mathrm{n}, r

\ast )\} , \scrM  - .
= \{ (p, r,m) \in \Gamma : m \in (0,m\ast )\} ,

\scrR + .
= \{ (p, r,m) \in \Gamma : r \in (r\ast , r\mathrm{m}\mathrm{a}\mathrm{x})\} , \scrM + .

= \{ (p, r,m) \in \Gamma : m \in (m\ast , r\mathrm{m}\mathrm{a}\mathrm{x})\} 
(3.16)

such that \Gamma = \scrR  - \cup \scrR +
= \scrM  - \cup \scrM +

. In these sets, the following holds.

Lemma 3.4. For \alpha (t) = \alpha \ast \in (\alpha \ast 
\mathrm{m}\mathrm{i}\mathrm{n}, 1), the closed sets \scrR  - 

, \scrR +
, \scrM  - 

, and \scrM +
are invari-

ant by (S'), and\biggl\{ 
\.r \geq 0 if (p, r,m) \in \scrR  - ,
\.r \leq 0 if (p, r,m) \in \scrR +,

\biggl\{ 
\.m \geq 0 if (p, r,m) \in \scrM  - ,
\.m \leq 0 if (p, r,m) \in \scrM +.

(3.17)

Again, the invariance of the sets can be checked by evaluating the vector field over the
boundaries of the sets.

Proposition 3.5. For \alpha (t) = \alpha \ast \in (\alpha \ast 
\mathrm{m}\mathrm{i}\mathrm{n}, 1) and initial conditions (IC), system (S') has a

lower bound

(p, r,m) \geq (p\mathrm{l}\mathrm{o}\mathrm{w}, r\mathrm{l}\mathrm{o}\mathrm{w},m\mathrm{l}\mathrm{o}\mathrm{w}) for all t \geq 0,(3.18)

with

r\mathrm{l}\mathrm{o}\mathrm{w}
.
= min(r(0), r\ast ), m\mathrm{l}\mathrm{o}\mathrm{w}

.
= min(m(0),m\ast ),

p\mathrm{l}\mathrm{o}\mathrm{w} \in 
\biggl\{ 
p \in \BbbR + : (p+ 1)wR(p) =

EMm\mathrm{l}\mathrm{o}\mathrm{w}

r\mathrm{m}\mathrm{a}\mathrm{x}  - r\mathrm{m}\mathrm{i}\mathrm{n}

\biggr\} 
.

(3.19)

Proof. For a trajectory emanating from \scrR  - (respectively, \scrR +), it follows that \.r \geq 0
(respectively, \.r \leq 0) for all t (according to Lemma 3.4), and so r \geq r(0) (respectively, r \geq r\ast )
for all t. This proves that r \geq min(r(0), r\ast ) > r\mathrm{m}\mathrm{i}\mathrm{n} for all t (depending on whether the
trajectory starts in \scrR  - or \scrR +). Similarly, a trajectory starting in \scrM  - (respectively, \scrM +)
meets \.m \geq 0 (respectively, \.m \leq 0) for all t, and so m \geq m(0) (respectively, m \geq m\ast ) for all
t. Then, it follows that m \geq min(m(0),m\ast ) for all t \geq 0. The equation for p can thus be
lower-bounded toD
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\.p \geq EMm\mathrm{l}\mathrm{o}\mathrm{w}  - (p+ 1)wR(p)(r\mathrm{m}\mathrm{a}\mathrm{x}  - r\mathrm{m}\mathrm{i}\mathrm{n}),(3.20)

which means p \geq p\mathrm{l}\mathrm{o}\mathrm{w} for all t \geq 0, with p\mathrm{l}\mathrm{o}\mathrm{w} the solution of (3.19), which is unique by the
same arguments as those used in Theorem 3.3.

A lower bound on system (S') is a stronger condition than the classical persistence for bio-
logical populations, as the bound is imposed not only for t \rightarrow \infty but for the whole trajectory.
As a consequence, the growth rate never vanishes, as it meets \mu (p, r) \geq wR(p\mathrm{l}\mathrm{o}\mathrm{w})(r\mathrm{l}\mathrm{o}\mathrm{w} - r\mathrm{m}\mathrm{i}\mathrm{n}) >
0 for all t \geq 0. Then, the global stability of the system is straightforward.

Theorem 3.6. For \alpha (t) = \alpha \ast \in (\alpha \ast 
\mathrm{m}\mathrm{i}\mathrm{n}, 1) and initial conditions (IC), every solution of (S')

converges to the equilibrium E1.

Proof. Since p \geq p\mathrm{l}\mathrm{o}\mathrm{w} > 0 and r \geq r\mathrm{l}\mathrm{o}\mathrm{w} > r\mathrm{m}\mathrm{i}\mathrm{n} for all t \geq 0, we have that sign( \.r) =
sign(r\ast  - r) and sign( \.m) = sign(m\ast  - m), showing that r and m converge asymptotically to r\ast 

and m\ast , respectively. Consequently, the dynamical equation of p becomes \.p = EMm\ast  - (p+
1)wR(p)(r

\ast  - r\mathrm{m}\mathrm{i}\mathrm{n}) and so sign( \.p) = sign(p\ast  - p), which means that p converges asymptotically
to the steady-state value p\ast .

Remark 3.7. For the case over the invariant plane given by r(0) = r\mathrm{m}\mathrm{i}\mathrm{n} and m(0) > 0,
concentrations m and r are constant along the whole trajectory, and p increases linearly with
time (as \.p = EMm(0)). This is a degenerate case that contradicts the assumption p \ll 1 and
lacks biological relevance.

3.3. Maximum steady-state growth rate. A classical hypothesis in the literature is to
suppose bacterial populations in steady-state regimes maximize their growth rate ([10] and
references therein). We are interested in finding the static allocation strategy \alpha \ast that produces
this situation. Since the only equilibrium that admits bacterial growth is E1, we will express
the static optimization problem as

max
\alpha \ast \in [\alpha \ast 

\mathrm{m}\mathrm{i}\mathrm{n},1]
\mu (p\ast , r\ast ),(3.21)

which can be rewritten as \mu (p\ast , r\ast ) = wR(p
\ast )(r\ast  - r\mathrm{m}\mathrm{i}\mathrm{n}). It is possible to express \alpha \ast in terms

of p\ast through the relation

\alpha \ast (p\ast ) =
EM + (p\ast + 1)wR(p

\ast )\alpha \ast 
\mathrm{m}\mathrm{i}\mathrm{n}

EM + (p\ast + 1)wR(p\ast )
.(3.22)

Moreover, since the above function \alpha \ast (p\ast ) : \BbbR + \rightarrow (\alpha \ast 
\mathrm{m}\mathrm{i}\mathrm{n}, 1] is monotone decreasing, it is

possible to write the optimization problem in terms of p\ast instead of \alpha \ast . The growth rate in
terms of p\ast can be written as

wR(p
\ast )(r\ast  - r\mathrm{m}\mathrm{i}\mathrm{n}) = (r\mathrm{m}\mathrm{a}\mathrm{x}  - r\mathrm{m}\mathrm{i}\mathrm{n})

\biggl( 
EMwR(p

\ast )

EM + (p\ast + 1)wR(p\ast )

\biggr) 
.(3.23)

We differentiate w.r.t. p\ast , and we get the relation wR(p
\ast )2 = EMw\prime 

R(p
\ast ), which has a unique

solution since, according to Hypothesis 2.1, wR(p)
2 is a monotone increasing function satisfying

w2
R(0) = 0 and limp\rightarrow \infty w2

R(p) = 1, and w\prime 
R(p) is a monotone decreasing function satisfyingD
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w\prime 
R(0) > 0 and limp\rightarrow \infty w\prime 

R(p) = 0 (as wR(p) is a strictly increasing upper-bounded function).
Then, the condition for optimality can be expressed as

wR(p
\ast 
\mathrm{o}\mathrm{p}\mathrm{t})

2

EMw\prime 
R(p

\ast 
\mathrm{o}\mathrm{p}\mathrm{t})

= 1.(3.24)

Thus, the optimal allocation parameter \alpha \ast is obtained by replacing p\ast \mathrm{o}\mathrm{p}\mathrm{t} in (3.22), and the
maximal static growth rate can be calculated using (3.23). From (3.24), it can be seen
that p\ast \mathrm{o}\mathrm{p}\mathrm{t} depends neither on r\mathrm{m}\mathrm{i}\mathrm{n} nor on r\mathrm{m}\mathrm{a}\mathrm{x}, suggesting that the steady-state precursor
concentration is independent of the housekeeping protein fraction q and of the growth rate-
independent ribosomal fraction. Conversely, the precursor concentration is rather determined
by the environmental conditions and by the nature of the function wR(p). It can be proven
that the latter result is not a consequence of assumption (2.4): when considering a definition
of the bacterial volume as \beta (P+R+M+Q), which takes into account the mass P, the optimal
precursor concentration amounts to p\ast \mathrm{o}\mathrm{p}\mathrm{t}/(1 + p\ast \mathrm{o}\mathrm{p}\mathrm{t}).

In addition, from \.p = 0 in (S'), we get

r\ast  - r\mathrm{m}\mathrm{i}\mathrm{n}

m\ast =
EM

(p\ast + 1)wR(p\ast )
.(3.25)

This shows that, for the optimal steady state, the concentration ratio of the active gene expres-
sion machinery over the metabolic machinery does not depend on r\mathrm{m}\mathrm{a}\mathrm{x} either. Thus, a cellular
strategy regulating the precursor concentration and the balance between gene expression and
metabolism could lead to the optimal equilibrium, regardless of the demand for Q.

4. Model calibration. Whereas the parameter values do not affect the results above and
the optimal control analysis in the next section, they are nevertheless important for simulations
illustrating the dynamics and optimal allocation strategies of system (S'). Below, we derive
such parameters for the model bacterium Escherichia coli, using published sources. The \beta 
constant used in the definition of the bacterial volume (2.4) corresponds to the inverse of the
protein density, which is set to 0.003 [L g - 1] based on [10]. According to [6], the ribosomal
fraction of the proteome1 can vary between 6\% and 55\%. In more recent studies [27], this
sector is divided into growth rate-dependent and -independent fractions. The maximal growth
rate-dependent ribosomal fraction of the proteome is estimated to be 41\%, and the growth rate-
independent fraction is 9\%. Based on these experimental estimations, we set r\mathrm{m}\mathrm{a}\mathrm{x} = 0.41 +
0.09 = 0.5. We performed further calibrations using data sets from [29, 30, 6, 27] containing
measurements of various strains of E. coli growing in different media. The data sets are
composed essentially of data points (growth rate,RNA/protein mass ratio) measured at steady
state. Most RNA is ribosomal RNA found overwhelmingly in ribosomes, the main constituent
of the gene expression machinery. In order to adjust the measurements to model (S'), the
observed RNA/protein ratios can be converted to mass fractions r through multiplication
with a conversion factor \rho = 0.76 \mu g of protein/\mu g of RNA [6]. As a result, we have n
measurements of form (\widetilde \mu k, \widetilde rk) which are assumed to follow a linear relation [6], as seen in
Figure 2(a).

1The proteome is the total amount of protein in the cell.
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(a) Data set (b) Steady-state growth rate

Figure 2. Experimental data from [6, 29, 30] plotted in (a) shows a linearity of r2 = 0.9739 (dashed line,
fitted to data) with a vertical intersect r\mathrm{m}\mathrm{i}\mathrm{n} = 0.07 and slope kR = 6.23 h - 1. In (b), steady-state growth rate
curves \mu \ast are shown in terms of the mass fraction r\ast \in (r\mathrm{m}\mathrm{i}\mathrm{n}, r\mathrm{m}\mathrm{a}\mathrm{x}) for different fitted values of eM . Each
optimal pair (\mu \ast 

\mathrm{o}\mathrm{p}\mathrm{t}, r
\ast 
\mathrm{o}\mathrm{p}\mathrm{t}) marked with color circles corresponds to a sample from the data set of Scott et al.

denoted in (a) with circles of matching colors.

From the vertical intercept of the linear regression performed using the data points, we
obtain r\mathrm{m}\mathrm{i}\mathrm{n} = 0.07, in agreement with previous studies [6, 13, 27]. Each data point, composed
of an observed growth rate and its associated ribosomal mass fraction, can be related to an
optimal steady state of system (S') for a certain environmental condition eM . Thus, each
kth pair (\widetilde \mu k, \widetilde rk) of the n measurements should yield a constant environmental condition
eM,k, and all pairs should simultaneously adjust the rate constant kR. Such fitting can be
done by resorting to the Michaelis--Menten kinetic form introduced in (2.12). Based on [10],
we fix the half-saturation constant of protein synthesis KR = 1 g L - 1. We then define
the parameter vector \theta = (kR, eM,1, . . . , eM,n) which is computed by solving a least-squares
regression problem. Using the relation (2.17), the cost function to minimize is

min
\theta \in \BbbR n+1

+

n\sum 
k=1

(\widetilde \mu k  - \mu \ast 
\mathrm{o}\mathrm{p}\mathrm{t}(kR, eM,k))

2 + (\widetilde rk  - r\ast \mathrm{o}\mathrm{p}\mathrm{t}(kR, eM,k))
2,(4.1)

where the nondimensional growth rate \mu \ast 
\mathrm{o}\mathrm{p}\mathrm{t} is calculated using (3.23), and the optimal steady

state (r\ast \mathrm{o}\mathrm{p}\mathrm{t}, p
\ast 
\mathrm{o}\mathrm{p}\mathrm{t},m

\ast 
\mathrm{o}\mathrm{p}\mathrm{t}) is expressed in terms of \alpha \ast 

\mathrm{o}\mathrm{p}\mathrm{t} (using Theorem 3.3) which is, at the same
time, a function of kR and eM,k. The numerical solution yields kR = 6.23 h - 1, and different
values of eM matching different nutrients from the data set (see Figure 2(b)). We can validate
these results by computing the maximal growth rate kR(r\mathrm{m}\mathrm{a}\mathrm{x}  - r\mathrm{m}\mathrm{i}\mathrm{n}) = 2.68 h - 1 based on
the adjusted parameters, which is a value that corresponds well with literature values of the
maximal growth rate of E. coli in rich media [30].D

ow
nl

oa
de

d 
01

/1
1/

22
 to

 1
28

.9
3.

17
6.

36
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

150 YABO, CAILLAU, GOUZ\'E, DE JONG, AND MAIRET

5. Optimal resource allocation.

5.1. Problem definition. In this section we formulate the dynamic optimization problem
under the hypothesis that microbial populations have evolved resource allocation strategies
enabling them to maximize their biomass [31, 32]. This is represented by an optimal control
problem where the objective is to maximize the final volume at time T given by \scrV (T ). For the
sake of convenience, we propose to maximize the quantity log\scrV (T ) (since log is an increasing
function) given by

log\scrV (T ) =
\int T

0
\mu (p, r) dt+ log\scrV (0).(5.1)

As the initial condition \scrV (0) is fixed, we define the cost function

J(u)
.
=

\int T

0
\mu (p, r) dt =

\int T

0
wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n}) dt.(5.2)

Since \scrV appears neither in the dynamics nor in the cost function, the optimal problem will
be written considering the reduced system introduced in (S') with initial conditions given by
(IC). We write the optimal control problem\left\{                     

maximize J(u) =

\int T

0
wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n}) dt

subject to dynamics (S'),

initial conditions (IC),

\alpha (\cdot ) \in \scrU ,

(OCP)

with \scrU the set of admissible controllers, which are Lebesgue measurable real-valued functions
defined on the interval [0, T ] and satisfying the constraint \alpha (t) \in [0, 1]. Problem (OCP) has
neither final state constraints nor path constraints. In the context of dynamical optimization,
the use of path constraints can be useful to restrict the solutions to those meeting certain
physical and biological limitations, especially when dealing with more complex models. While
enforcing additional constraints on the optimal control problem increases the dimension of
the problem, standard optimal control solvers are able to handle such formulations. In this
work, imposing initial conditions (IC) guarantees that every trajectory of the system stays
within the set \Gamma defined in Lemma 3.1, which ensures that the solutions are consistent with the
biological assumptions. In principle, this formulation of the problem resembles the optimal
control problem proposed in [10]: the objective is to maximize the accumulation of a certain
quantity within the system during a fixed time interval [0, T ]. The main difference lies in the
dynamics of the system, as the introduction of the protein Q increases the system dimension
by one, which yields a more relevant (and more complex) associated optimal control problem.
We will see in following sections that the problem raised in this work can be solved by a
generalization of Giordano et al.'s approach.D
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5.2. PMP. Existence of a solution for this class of optimal control problems is rather triv-
ial. Given that there are no terminal constraints, there is no controllability issue. Moreover,
the dynamics is affine in the control with the latter included in a compact and convex set (a
closed interval), and one can easily check that every finite-time trajectory remains bounded.
So existence is guaranteed by Filippov's theorem [33]. Then, for an optimal control problem
(OCP) with state \varphi \in \BbbR n, the PMP ensures that there exist \lambda 0 \leq 0 and a piecewise abso-
lutely continuous mapping \lambda (\cdot ) : [0, T ] \rightarrow \BbbR n, with (\lambda (\cdot ), \lambda 0) \not = (0, 0), such that the extremal
(\varphi , \lambda , \lambda 0, \alpha ) satisfies the generalized Hamiltonian system\left\{             

\.\varphi = \partial 
\partial \lambda H(\varphi , \lambda , \lambda 0, \alpha ),

\.\lambda =  - \partial 
\partial \varphi H(\varphi , \lambda , \lambda 0, \alpha ),

H(\varphi , \lambda , \lambda 0, \alpha ) = max\alpha \in [0,1]H(\varphi , \lambda , \lambda 0, \alpha )

(PMP)

for almost every t \in [0, T ]. For our particular case, we have the state vector \varphi 
.
= (p, r,m) and

adjoint vector \lambda 
.
= (\lambda p, \lambda r, \lambda m) and the Hamiltonian given by

H(\varphi , \lambda , \lambda 0, \alpha ) = \lambda 0wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n}) + \langle \lambda , F (\varphi , u)\rangle ,(5.3)

where F represents the right-hand side of system (S'). Given that in (OCP) there is no
terminal condition on the state \varphi (T ), the transversality condition for the adjoint state is
\lambda (T ) = 0, and we can discard abnormal extremals from the analysis. In other words, any
extremal (\varphi , \lambda , \lambda 0, \alpha ) satisfying the PMP is normal, so \lambda 0 \not = 0. Developing (5.3) yields the
Hamiltonian

H =
\Bigl( 
EM m - (p+ 1)wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})

\Bigr) 
\lambda p + (r\mathrm{m}\mathrm{a}\mathrm{x}\alpha  - r)wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})\lambda r(5.4)

+ (r\mathrm{m}\mathrm{a}\mathrm{x}(1 - \alpha ) - m)wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})\lambda m  - \lambda 0wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n}),(5.5)

and the adjoint system is

\left\{                           

\.\lambda p = wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})\lambda p + (p+ 1)w\prime 
R(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})\lambda p  - (r\mathrm{m}\mathrm{a}\mathrm{x}\alpha  - r)w\prime 

R(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})\lambda r

 - (r\mathrm{m}\mathrm{a}\mathrm{x}(1 - \alpha ) - m)w\prime 
R(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})\lambda m + \lambda 0w\prime 

R(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n}),

\.\lambda r = (p+ 1)wR(p)\lambda p + wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})\lambda r  - (r\mathrm{m}\mathrm{a}\mathrm{x}\alpha  - r)wR(p)\lambda r

 - (r\mathrm{m}\mathrm{a}\mathrm{x}(1 - \alpha ) - m)wR(p)\lambda m + \lambda 0wR(p),

\.\lambda m =  - EM\lambda p + wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})\lambda m.

(5.6)

Since the Hamiltonian is linear in the control \alpha , we rewrite it in the input-affine form H =
H0 + \alpha H1 withD
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H0 =
\Bigl( 
EM m - (p+ 1)wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})

\Bigr) 
\lambda p  - rwR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})\lambda r(5.7)

+
\Bigl( 
r\mathrm{m}\mathrm{a}\mathrm{x}  - m

\Bigr) 
wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})\lambda m  - \lambda 0wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n}),(5.8)

H1 = r\mathrm{m}\mathrm{a}\mathrm{x}wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})(\lambda r  - \lambda m).(5.9)

The constrained optimal control \alpha should maximize the Hamiltonian, so the solution is

\alpha (t) =

\left\{   
0 if H1 < 0,
1 if H1 > 0,

\alpha \mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}(t) if H1 = 0,
(5.10)

where \alpha \mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}(t) is called a singular control, showing that any optimal control is a concatenation
of bang (\alpha = \pm 1) and singular arcs, depending on the sign of the switching function H1. As
obtained in [21, 23], a bang arc \alpha = 0 (respectively, \alpha = 1) corresponds to a pure allocation
strategy where the production of R (respectively, M) is completely switched off. While a
full description of the optimal control is often difficult to obtain through the PMP, there are
certain analyses that can be performed to help understand its structure. We will first see that
the final bang of the optimal control is an upper bang \alpha = 1.

Lemma 5.1. There exists \epsilon such that the optimal control solution of (OCP) is \alpha (t) = 1 for
the interval of time [T  - \epsilon , T ].

Proof. We define \lambda z = \lambda r  - \lambda m, where its dynamics can be obtained from (5.6). It can be
seen that, when evaluating its dynamics at final time, we get

\.\lambda z(T ) = \lambda 0wR(p(T )) < 0(5.11)

due to the whole adjoint state being null at final time except for \lambda 0. As \lambda z(T ) also vanishes
due to the transversality conditions, we have \lambda z(T  - \epsilon ) > 0 for a certain \epsilon . Then, H1 > 0 for
the interval [T  - \epsilon , T ], which corresponds to a bang arc \alpha = 1.

A control \alpha = 1 implies a strategy in which all resources are allocated to ribosome synthe-
sis, thus favoring the synthesis of proteins. An intuitive interpretation of Lemma 5.1 is that,
when approaching the final time T , the most efficient strategy is to exploit as much as possible
the available precursors. This is achieved by maximizing the proteins catalyzing vR, at the
expense of arresting the uptake of nutrients vM from the environment. In order to further
describe the optimal control, we can analyze the singular extremals. A singular arc occurs
when the switching function H1 vanishes over a subinterval of time. A detailed description
of the singular arcs can be done by differentiating succesively the switching function H1 until
the singular control \alpha \mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g} can be obtained as a function of the state \varphi and the adjoint state \lambda .

5.3. Study of the singular arcs.

5.3.1. Introduction. We assume H1 vanishes on a whole subinterval [t1, t2] \subset [0, T ], so
the extremal belongs to the singular surface

\Sigma 
.
=

\bigl\{ 
(\varphi , \lambda ) \in \BbbR 6 : H1(\varphi , \lambda ) = 0

\bigr\} 
.(5.12)D
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Since H1 vanishes identically, so does its derivative with respect to time. Differentiating along
an extremal (\varphi , \lambda ) amounts to taking a Poisson bracket2 with the Hamiltonian H [33]. Indeed,
along the singular arc,

0 = \.H1 =
\partial H1

\partial \varphi 
\.\varphi +

\partial H1

\partial \lambda 
\.\lambda =

n\sum 
i=1

\biggl( 
\partial H

\partial \lambda i

\partial H1

\partial \varphi i
 - \partial H

\partial \varphi i

\partial H1

\partial \lambda i

\biggr) 
= \{ H,H1\} = \{ H0, H1\} .

The first derivative \.H1 = H01
.
= \{ H0, H1\} is equal to \langle \lambda , F01\rangle , where F01 corresponds to the

Lie bracket of the vector fields F0 and F1. Differentiating again we obtain

0 = \.H01 = H001 + \alpha H101.

Again, H001
.
= \langle \lambda , F001\rangle , where, with the same notation as before, F001 is the Lie bracket of

F0 with F01. If, on the set

\Sigma \prime .
=

\bigl\{ 
(\varphi , \lambda ) \in \BbbR 6 : H1(\varphi , \lambda ) = H01(\varphi , \lambda ) = 0

\bigr\} 
,

the bracket H101 is also zero, the control disappears from the previous equality, and one has
to differentiate at least two more times to retrieve the control: H0001 is also zero, and

(5.13) 0 = H00001 + \alpha H10001.

If the length-five bracket H10001 is not zero, the singular arc is of order two. When H101

vanishes not only on \Sigma \prime but on all \BbbR 6, the order is said to be intrinsic and connections
between bang and singular arcs can only occur through an infinite number of switchings
[34], the so-called Fuller phenomenon. Otherwise, the order is termed local, and the Fuller
phenomenon may or may not occur. Using (5.13), the singular control us is obtained as a
function of both the state \varphi and the adjoint state \lambda as

\alpha s(\varphi , \lambda )
.
=  - H00001

H10001
\cdot 

In our low-dimensional situation, there exists the possibility that the singular control is in
feedback form, that is, as a function of the state only. The latter can be verified by rewriting
the system in dimension four (Mayer optimal control formulation where the final volume is
maximized), in terms of \widetilde \varphi .

= (p, r,m,\scrV ) and its adjoint \widetilde \lambda .
= (\lambda p, \lambda r, \lambda m, \lambda \scrV ). The dynamics is

affine in the control,

\.\widetilde \varphi = \widetilde F0(\widetilde \varphi ) + \alpha \widetilde F1(\widetilde \varphi ),
2The Poisson bracket \{ f, g\} of two functions f and g along an extremal (\varphi , \lambda ) is defined as

\{ f, g\} =

n\sum 
i=1

\biggl( 
\partial f

\partial \lambda i

\partial g

\partial \varphi i
 - \partial f

\partial \varphi i

\partial g

\partial \lambda i

\biggr) 
.
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and so is the Hamiltonian:

\widetilde H(\widetilde \varphi , \widetilde \lambda , \alpha ) = \widetilde H0 + \alpha \widetilde H1

with \widetilde Hi = \langle \widetilde \lambda , \widetilde Fi\rangle , i = 0, 1. The same computation as before leads to the following relations
along a singular arc of order two:

0 =
\.\widetilde H1 =

\.\widetilde H01 =
\.\widetilde H001 =

\.\widetilde H0001

and

0 = \widetilde H00001 + \alpha \widetilde H10001.

Proposition 5.2. Assume that, for all \varphi , \widetilde F1, \widetilde F01, and \widetilde F001 are independent. Then, an
order two singular control depends only on the state \widetilde \varphi and can be expressed as

\alpha s(\widetilde \varphi ) =  - 
det

\Bigl( \widetilde F1, \widetilde F01, \widetilde F001, \widetilde F00001

\Bigr) 
det

\Bigl( \widetilde F1, \widetilde F01, \widetilde F001, \widetilde F10001

\Bigr) \cdot 
Proof. The previous relations imply that \widetilde \lambda is orthogonal to \widetilde F1, \widetilde F01, \widetilde F001, and also to\widetilde F00001+\alpha \widetilde F10001. If these four vector fields were independent at some point along the singular

arc, \widetilde \lambda \in \BbbR 4 would vanish: for a problem in Mayer form, this would contradict the maximum
principle. So their determinant must vanish everywhere along the arc and

det
\Bigl( \widetilde F1, \widetilde F01, \widetilde F001, \widetilde F00001

\Bigr) 
+ \alpha det

\Bigl( \widetilde F1, \widetilde F01, \widetilde F001, \widetilde F10001

\Bigr) 
= 0.

If the second determinant were zero, given the rank assumption on the first three vector fields,
F10001 would belong to their span; but this is impossible since it would imply H10001 = 0,
contradicting the fact that the singular is of order two.

Going back to the three-dimensional formulation, one can make explicit the computations
by successively differentiating the expression (5.9).

5.3.2. Singular arc in feedback form. The condition H1 = 0 could be a consequence of
the growth rate wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n}) vanishing over the whole interval [t1, t2]. We will see this is
not possible given the dynamics of the system.

Proposition 5.3. The growth rate \mu (p, r) = wR(p)(r - r\mathrm{m}\mathrm{i}\mathrm{n}) cannot vanish along the optimal
solution of (OCP).

Proof. For any trajectory of (S') with initial conditions (IC), control \alpha (\cdot ) \in \scrU , and
t \in [0, T ], we have \.p \leq EMr\mathrm{m}\mathrm{a}\mathrm{x}, which means p \leq pT\mathrm{m}\mathrm{a}\mathrm{x}

.
= EMr\mathrm{m}\mathrm{a}\mathrm{x}T + p(0). Then,

\.r \geq  - r\mathrm{m}\mathrm{a}\mathrm{x}wR(p
T
\mathrm{m}\mathrm{a}\mathrm{x})(r  - r\mathrm{m}\mathrm{i}\mathrm{n}). Additionally, since wR(p) is continuously differentiable, there

exists c such that cp \geq wR(p), which means that \.p \geq  - cp(pT\mathrm{m}\mathrm{a}\mathrm{x} + 1)(r\mathrm{m}\mathrm{a}\mathrm{x}  - r\mathrm{m}\mathrm{i}\mathrm{n}). Then,
at worst, the state p (respectively, r) decays exponentially towards the value 0 (respectively,
r\mathrm{m}\mathrm{i}\mathrm{n}), which cannot be attained in finite time.D
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As a consequence of Proposition 5.3, the condition H1 = 0 becomes

\lambda r  - \lambda m = 0.(Condition 1)

We define the quantity \phi (\varphi , \lambda )
.
= (r\mathrm{m}\mathrm{a}\mathrm{x} - m - r)\lambda r - (p+1)\lambda p - \lambda 0, so that the time derivative

of (Condition 1) is

\phi (\varphi , \lambda )wR(p) - EM\lambda p = 0.(Condition 2)

Along a singular arc, the Hamiltonian can be rewritten as

H = EMm\lambda p + \phi (\varphi , \lambda )wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n}),(5.14)

and, using (Condition 1) and (Condition 2), the adjoint system becomes\left\{         
d\lambda p

dt
= wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})\lambda p  - \phi (\varphi , \lambda )w\prime 

R(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n}),

d\lambda r

dt
= wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})\lambda r  - \phi (\varphi , \lambda )wR(p).

(5.15)

Proposition 5.4. Neither \phi (\varphi , \lambda ) nor \lambda p can vanish along a singular arc.

Proof. According to (Condition 2), if either \phi (\varphi , \lambda ) or \lambda p is null, then both of them are null.
Then, if \phi (\varphi , \lambda ) = \lambda p = 0, (5.14) would imply that the Hamiltonian vanishes in \Sigma , and there-
fore it would vanish for the whole interval [0, T ] (as it is constant along the solution). However,
one can see in (5.3) that the Hamiltonian evaluated at final time is  - \lambda 0wR(p(T ))(r(T ) - r\mathrm{m}\mathrm{i}\mathrm{n})
which cannot be 0 due to Proposition 5.3 and \lambda 0 \not = 0.

We differentiate (Condition 2) w.r.t. time, and we get \.\phi (\varphi , \lambda )wR(p) + \phi (\varphi , \lambda )w\prime 
R(p) \.p  - 

EM
\.\lambda p = 0. Replacing the latter and using Proposition 5.4 allows us to reduce the expression

to

 - (r\mathrm{m}\mathrm{a}\mathrm{x}  - r\mathrm{m}\mathrm{i}\mathrm{n})wR(p)
2 + EM (m+ r  - r\mathrm{m}\mathrm{i}\mathrm{n})w

\prime 
R(p) = 0,(Condition 3)

which allows us to express m+ r in terms of p.

Lemma 5.5. Along a singular arc over the interval [t1, t2],

m+ r = x(p)(5.16)

with x(p) : \BbbR + \rightarrow [r\mathrm{m}\mathrm{i}\mathrm{n},\infty ) defined as

x(p)
.
= (r\mathrm{m}\mathrm{a}\mathrm{x}  - r\mathrm{m}\mathrm{i}\mathrm{n})

wR(p)
2

EMw\prime 
R(p)

+ r\mathrm{m}\mathrm{i}\mathrm{n},(5.17)

which, using (3.24), yields x(p\ast \mathrm{o}\mathrm{p}\mathrm{t}) = r\mathrm{m}\mathrm{a}\mathrm{x}.
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The fact that the control does not show up in (Condition 3)---which is obtained by dif-
ferentiating (Condition 1) twice---means that the singular arc is at least of order two. We
differentiate (Condition 3), and we get\Bigl( 

r\mathrm{m}\mathrm{a}\mathrm{x}  - x(p) + (p+ 1)x\prime (p)
\Bigr) 
wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n}) - EMmx\prime (p) = 0.(Condition 4)

We define the function

y(p)
.
= wR(p)

\Bigl( 
r\mathrm{m}\mathrm{a}\mathrm{x}  - x(p) + (p+ 1)x\prime (p)

\Bigr) 
.(5.18)

Using (Condition 3) and (5.18) in (Condition 4) yields

(x(p) - r\mathrm{m}\mathrm{i}\mathrm{n})y(p) - 
\Bigl( 
EMx\prime (p) + y(p)

\Bigr) 
m = 0,(5.19)

which means we can express m and r in terms of p along the singular arc.

Lemma 5.6. Along a singular arc over the interval [t1, t2],

m = (x(p) - r\mathrm{m}\mathrm{i}\mathrm{n})
y(p)

EMx\prime (p) + y(p)
,(5.20)

r = x(p) - (x(p) - r\mathrm{m}\mathrm{i}\mathrm{n})
y(p)

EMx\prime (p) + y(p)
.(5.21)

We differentiate (Condition 4), and we get

 - (r\mathrm{m}\mathrm{a}\mathrm{x}(1 - \alpha ) - m)wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n}) + x\prime (p)
y(p)

EMx\prime (p) + y(p)
\.p

+(x(p) - r\mathrm{m}\mathrm{i}\mathrm{n})

\biggl( 
y\prime (p)

EMx\prime (p) + y(p)
 - y(p)

(EMx\prime (p) + y(p))2
(EMx\prime \prime (p) + y\prime (p))

\biggr) 
\.p = 0,

(5.22)

meaning that we can express

\alpha \mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}(p) = 1 - m

r\mathrm{m}\mathrm{a}\mathrm{x}

\biggl( \biggl( 
x\prime (p)

x(p) - r\mathrm{m}\mathrm{i}\mathrm{n}
+

y\prime (p)

y\prime (p)
 - EMx\prime \prime (p) + y\prime (p)

EMx\prime (p) + y(p)

\biggr) 
\.p

wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n})
+ 1

\biggr) 
.

(5.23)

While (Condition 3) showed that the order of the singular arc is at least two, the latter relation
proves that it is exactly two. Indeed, the coefficient before \alpha in (5.22) is  - r\mathrm{m}\mathrm{a}\mathrm{x}wR(p)(r - r\mathrm{m}\mathrm{i}\mathrm{n}),
which cannot vanish as proven in Proposition 5.3. The singular arc is said to be locally of order
two, as the coefficient of \alpha in (Condition 3) is zero along the singular arc but not everywhere
on the cotangent bundle [34]. In this case, the presence of the Fuller phenomenon (i.e., the
junctions between bang and singular arcs constituting an infinite number of switchings) is
not guaranteed. However, this turns out to be the case, as will be shown in the numerical
computations. Besides, in accordance with Proposition 5.2, the order two singular control can
be expressed in feedback form, i.e., as a function of the state only. We performed a numerical
rank test using singular value decomposition, which confirmed that the rank condition is
fulfilled. More precisely, the actual computation proves that the singular control can be
expressed as a function of p only (Lemma 5.6 entails that r, m, and therefore \.p can be
expressed in terms of p), which allows us to retrieve the turnpike behavior as described in the
following section.D
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5.3.3. The turnpike phenomenon. Using (5.20) and (5.21), we see that, along a singular
arc, the dynamical equation of p becomes

\.p = EMwR(p)
x(p) - r\mathrm{m}\mathrm{i}\mathrm{n}

EMx\prime (p) + y(p)

\Bigl( 
r\mathrm{m}\mathrm{a}\mathrm{x}  - x(p)

\Bigr) 
,(5.24)

which is only equal to 0 when r\mathrm{m}\mathrm{a}\mathrm{x} = x(p). This is only true at p = p\ast \mathrm{o}\mathrm{p}\mathrm{t}, and so

sign ( \.p) = sign
\bigl( 
p\ast \mathrm{o}\mathrm{p}\mathrm{t}  - p

\bigr) 
,(5.25)

meaning that, in a singular arc over the interval [t1, t2], the concentration p converges asymp-
totically to the optimal value p\ast \mathrm{o}\mathrm{p}\mathrm{t}. This means thatm and r would also converge to the optimal
values m\ast 

\mathrm{o}\mathrm{p}\mathrm{t} and r\ast \mathrm{o}\mathrm{p}\mathrm{t}, respectively, and the singular control \alpha \mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g} to \alpha \ast 
\mathrm{o}\mathrm{p}\mathrm{t}. We formalize this in

the following theorem.

Theorem 5.7. On a singular arc, the system states and singular control tend asymptotically
to

(p, r,m) = (p\ast \mathrm{o}\mathrm{p}\mathrm{t}, r
\ast 
\mathrm{o}\mathrm{p}\mathrm{t},m

\ast 
\mathrm{o}\mathrm{p}\mathrm{t}),(5.26)

\alpha \mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}(t) = \alpha \ast 
\mathrm{o}\mathrm{p}\mathrm{t}.(5.27)

The above theorem is an explicit proof of the presence of the turnpike property: an opti-
mal control characterized by a singular arc that stays exponentially close to the steady-state
solution of the static optimal control problem [35]. This phenomenon has been considerably
studied in econometry [36] and more recently in biology [37, 10, 20]. It has been shown that,
for large final times, the trajectory of the system spends most of the time near the optimal
steady state and that in infinite horizon problems, it converges to this state.

5.4. Numerical results. The computations of the optimal trajectories were performed
with Bocop [38], which solves the optimal control problem through a direct method. An
online version of the numerical computations can be visualized and executed on the gallery
of the ct (Control Toolbox) project.3 The time discretization algorithm used is Lobato IIIC
(implicit, 4-stage, order 6) with 2000 time steps. Figure 3 shows an optimal trajectory with
r(0) +m(0) < r\mathrm{m}\mathrm{a}\mathrm{x}, where most of the bacterial mass corresponds to class Q proteins. The
obtained optimal control confirms the conclusions of the latter section: a large part of the
time, the optimal control remains near the optimal steady-state allocation \alpha \ast 

\mathrm{o}\mathrm{p}\mathrm{t}, according
to the turnpike theory (Theorem 5.7). The solution presents chattering after and before the
singular arc, as expected in the presence of Fuller's phenomenon (even if only a finite number
of bangs is computed by the numerical method), and the final bang corresponds to \alpha = 1
(Lemma 5.1).

In order to verify the optimality of the singular arc, we performed a numerical computation
of the derivatives of H1, which is shown in Figure 4. The fact that the factor of \alpha in the
fourth derivative is different from 0 confirms that the singular arc is of order 2. Moreover, its
negativity complies with the generalized Legendre--Clebsch condition given by

3https://ct.gitlabpages.inria.fr/gallery/bacteria/bacteria.html.
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Figure 3. Numerical simulation of (OCP) obtained with Bocop for the parameter values derived in section
4. Initial state is p(0) = 0.03, r(0) = 0.1, m(0) = 0.2 with EM = 0.6. As predicted, the optimal control \alpha 
involves chattering after and before the singular arc. The mass fraction q converges to 1 - r\mathrm{m}\mathrm{a}\mathrm{x} and m+ r to
r\mathrm{m}\mathrm{a}\mathrm{x}. Moreover, along the singular arc, the states (p\ast , r\ast ,m\ast ) converge asymptotically to (p\ast \mathrm{o}\mathrm{p}\mathrm{t}, r

\ast 
\mathrm{o}\mathrm{p}\mathrm{t},m

\ast 
\mathrm{o}\mathrm{p}\mathrm{t}).

( - 1)k
\partial 

\partial \alpha 

\biggl( 
d2k

dt2k
H1

\biggr) 
< 0(5.28)

along the singular arc, which is a necessary condition for optimality. As we state in [23], even
if there exists no available sufficient condition to verify local optimality of extremals with
Fuller arcs, a check of the Legendre--Clebsch condition along the singular arc can ensure that
the extremal obtained is not a too crude local minimizer. For the second-order singular arc
case, the condition corresponds to the case k = 2. The initial conditions used in Figure 3 were
only chosen to confirm the theoretical results found throughout this section by emphasizing
the main features of the solution. However, from a biological perspective, a situation where
r+m is significantly different from its steady-state value r\mathrm{m}\mathrm{a}\mathrm{x} is not to be expected: a common
assumption in these classes of coarse-grained models is that the transcription of Q proteins
is autoregulated around stable levels [39], which translates into a constant q = 1 - r\mathrm{m}\mathrm{a}\mathrm{x} (and
therefore m + r = rmax) for the whole interval [0, T ]. We will see in next section that this
hypothesis produces a very particular structure of the optimal control solution.

6. Biologically relevant scenarios. Despite their simplicity, self-replicator models have
been capable of accounting for a number of observable phenomena during steady-stateD
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Figure 4. Factors of \alpha in the derivatives of H1 evaluated over the trajectory plotted in Figure 3. The
intervals where the functions vanish are marked in red. As expected, all functions vanish along the singular arc
except for the factor in the fourth derivative (highlighted in green) which is negative according to the Legendre--
Clebsch condition (5.28).

microbial growth, under the assumption that bacteria allocate their resources in such a way
as to maximize growth. Here, we apply the general optimal allocation strategy derived in
the previous section to predict the bacterial response to certain environmental changes. We
consider two situations that commonly affect bacteria: changes in the nutrient concentration
in the medium and changes in the environment subjecting the cell to a particular stress.

6.1. Nutrient shift. Bacteria are known to traverse different habitats throughout their
lifetime, experiencing fluctuating nutrient concentrations in the medium. In [10], we explored
how bacteria dynamically adjust their allocation strategy when facing a nutrient upshift. In
this work, we show that considering a class of growth rate-independent proteins in the model
refines these previous results. We consider the optimal control problem with the initial state
being the optimal steady state for a low value of EM , and we set a higher EM for the time
interval [0, T ], representing a richer medium. Setting initial conditions at steady state has an
impact on the singular arc of the optimal control: it holds that m+r = r\mathrm{m}\mathrm{a}\mathrm{x} and q = 1 - r\mathrm{m}\mathrm{a}\mathrm{x}

for the whole trajectory, which yields a constant singular arc.

Theorem 6.1. If r(0) + m(0) = r\mathrm{m}\mathrm{a}\mathrm{x} (i.e., q starts from a steady-state value), then any
singular arc over the interval [t1, t2] of the optimal control corresponds to the optimal steady
state.
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Proof. The dynamical equation for q is \.q = ((1 - r\mathrm{m}\mathrm{a}\mathrm{x}) - q)wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n}), where it can
be seen that the set q = 1 - r\mathrm{m}\mathrm{a}\mathrm{x} is invariant. This means that, for any trajectory emanating
from a steady state, q remains constant even under changes of the nutrient quality EM . Then,
by using the relation (2.16), we obtain

m+ r = r\mathrm{m}\mathrm{a}\mathrm{x}.(6.1)

Along the singular arc, it holds that m+ r = x(p), which, using (6.1), implies that p = p\ast \mathrm{o}\mathrm{p}\mathrm{t},
meaning that the precursor concentration along the singular arc is constant and optimal.
Then, \alpha \mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g} = \alpha \ast 

\mathrm{o}\mathrm{p}\mathrm{t}, m = m\ast 
\mathrm{o}\mathrm{p}\mathrm{t}, and r = r\ast \mathrm{o}\mathrm{p}\mathrm{t} for the whole singular arc.

A numerical simulation of this scenario is shown in Figure 5. As expected, the increase
in EM produces a higher ribosomal mass fraction r, which translates into an increase of the
growth rate, stabilizing at the maximal steady-state growth rate \mu \ast 

\mathrm{o}\mathrm{p}\mathrm{t} through an oscillatory
phase. It is noteworthy that, in comparison to Giordano et al.'s model, the relative changes
in mass fractions r and m are much lower, which corresponds well with the relative changes
observed in [6]. Additionally, while the presence of r\mathrm{m}\mathrm{i}\mathrm{n} does not noticeably affect the solution
of the optimal control problem, it contributes to a model that more accurately reproduces the
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Figure 5. Numerical simulation of the optimal control problem starting from a steady state. The initial
state corresponds to the optimal steady state for EM = 0.3 (poor medium), and the new environmental constant
is fixed to EM = 0.7 (rich medium). As predicted, m + r (= 1  - q) remains constant, even if they vary
individually, in opposition to the previous case. Naturally, an increase in the nutrient quality produces a higher
steady-state ribosomal mass fraction r\ast , which yields an increased steady-state growth rate \mu \ast 

\mathrm{o}\mathrm{p}\mathrm{t} with respect to
the growth rate before the upshift.D

ow
nl

oa
de

d 
01

/1
1/

22
 to

 1
28

.9
3.

17
6.

36
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GLOBAL ANALYSIS AND OPTIMALITY OF MICROBIAL GROWTH 161

Figure 6. Left: original case. Right: new proposed case, where q remains unchanged but the maximal
allocation m+ r is restricted to a rw\mathrm{m}\mathrm{a}\mathrm{x} < r\mathrm{m}\mathrm{a}\mathrm{x}.

experimental data (Figure 2(a)), representing a significant improvement from the modeling
point of view.

6.2. Bacterial response to stress. The other scenario of interest is an environmental
change imposing a certain stress on the microbial population, which is counteracted through
the synthesis of a stress response protein W. This protein is also growth rate-independent like
Q, and its production can be triggered by many different situations. For instance, when subject
to extreme temperatures, the production of so-called molecular chaperones helps bacteria
counter the effect of protein unfolding [40, 14]. Likewise, the production of other proteins is
known to protect bacteria like E. coli against acid stress [41]. Another possible scenario is the
response to metabolic load imposed by the induced overexpression of a heterologous protein
[42]. All of these situations are known to reduce the resources available for growth-associated
proteins (Figure 6), consequently decreasing the maximal growth rate attainable. Here, we
model a general stress response through the production of the W protein that takes up a
fraction w of the proteome, thus reducing r\mathrm{m}\mathrm{a}\mathrm{x} to a certain rw\mathrm{m}\mathrm{a}\mathrm{x} < r\mathrm{m}\mathrm{a}\mathrm{x}.

As before, we assume q takes up a constant fraction 1  - r\mathrm{m}\mathrm{a}\mathrm{x} of the proteome, but the
proportions of resources allocated to M and R are now rw\mathrm{m}\mathrm{a}\mathrm{x}\alpha and rw\mathrm{m}\mathrm{a}\mathrm{x}(1  - \alpha ), respectively.
By construction, we have w = r\mathrm{m}\mathrm{a}\mathrm{x}  - m - r, which means we can express

\.w = (r\mathrm{m}\mathrm{a}\mathrm{x}  - rw\mathrm{m}\mathrm{a}\mathrm{x}  - w)wR(p)(r  - r\mathrm{m}\mathrm{i}\mathrm{n}),(6.2)

showing that the mass fraction w converges asymptotically to the difference r\mathrm{m}\mathrm{a}\mathrm{x} - rw\mathrm{m}\mathrm{a}\mathrm{x}. The
remaining mass fractions p, r, and m obey the dynamics of system (S'), so the application of
the optimal solution found in last section is straightforward. An example is shown in Figure
7. As predicted, m+ r converges to the reduced rw\mathrm{m}\mathrm{a}\mathrm{x}, q remains constant at 1 - r\mathrm{m}\mathrm{a}\mathrm{x} and w
converges to rw\mathrm{m}\mathrm{a}\mathrm{x}  - r\mathrm{m}\mathrm{a}\mathrm{x}. The reduction of resources available for growth-associated proteins
(M and R) causes the growth rate to drop, as was shown experimentally [6].

7. Conclusion. In this work, we proposed a dynamical self-replicator model of bacterial
growth based on the work of [10], which introduces a growth rate-independent class of pro-
tein. As a consequence, the proteome of the bacterial cell can be divided into the metabolic
machinery M, the gene expression machinery R, and the housekeeping machinery Q. While Q
is growth rate-independent, this is also the case for a fraction of R required for cell replication
to occur. As a consequence of this hypothesis, a maximum ribosomal concentration r\mathrm{m}\mathrm{a}\mathrm{x} ap-
pears in the model kinetics, limiting the allocation of resources to M and R. We studied theD
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Figure 7. Numerical simulation of an optimal trajectory where the initial conditions are the optimal steady
state for EM = 0.7 and r\mathrm{m}\mathrm{a}\mathrm{x} = 0.5. A certain stress is induced at t = 0, which triggers the synthesis of the
growth rate-independent protein w, reducing the fraction r\mathrm{m}\mathrm{a}\mathrm{x} to rw\mathrm{m}\mathrm{a}\mathrm{x} = 0.3. As a result, the steady-state
growth rate is significantly reduced.

asymptotic behavior of the system, showing that, under certain conditions, all solutions con-
verge towards the only globally attractive equilibrium. We then explored the optimal dynamic
allocation strategies that consider maximizing the bacterial population volume in terms of the
resource allocation parameter \alpha . This involved a study of the static and dynamic aspects
of optimal strategies. For the first one, we showed there is a unique optimal steady state,
which corresponds to experimental observations of growing cultures of E. coli [29, 30, 6, 27].
The dynamic problem is approached through optimal control theory by application of the
PMP. The obtained optimal control has a Fuller-singular-Fuller structure with a nonconstant
singular arc, in contrast to the constant singular arc obtained in Giordano et al.'s approach.
We performed a detailed analysis of the optimal control problem in both analytic and nu-
merical ways. In particular, the singular arc of the optimal solution is characterized by (i)
its feedback form (i.e., being expressed as a function of the state only), (ii) being exactly of
order 2, and (iii) the turnpike phenomenon (where the state trajectory and optimal control
converge asymptotically towards the optimal steady state and control). Moreover, we showed
that, when the mass fraction of class Q proteins is at steady state, the singular arc of the
optimal solution corresponds to the optimal steady state. Additionally, we showed that the
dynamical approach can be used to predict the behavior of the system when subject to stress.
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The latter is modeled through a reduction of the fraction of growth rate-dependent protein
synthesis as the production of a w protein that reduces r\mathrm{m}\mathrm{a}\mathrm{x}.

While the main features of Giordano et al.'s work are present in this approach, our gen-
eralization shows a better agreement with the experimental data given by the introduction
of the parameters r\mathrm{m}\mathrm{a}\mathrm{x} and r\mathrm{m}\mathrm{i}\mathrm{n} in the model. Additionally, the proposed partitioning of
the proteome in a dynamic setting can account for certain natural phenomena known to re-
duce the fraction of growth rate-dependent proteins in the cell. These modifications yield
interesting optimal control problems, which could potentially help understand the internal
decision-making mechanisms evolved by bacteria.

Our approach was built on the joint exploitation of theoretical and numerical results.
When tackling more complex problems as proposed, e.g., in Tsiantis and Banga [43], a PMP
perspective tends to yield very complicated mathematical formulations. Using direct methods
has the advantage of avoiding these issues, but it often requires some knowledge to initialize
the optimization algorithm or to check the validity of the solutions. In order to investigate
complex biological systems, we advocate the development and theoretical analysis of simple
models, in line with the question to be investigated, coupled with numerical exploration of
optimal solutions (using larger models if necessary).

Acknowledgments. We would like to acknowledge the help of S. Psalmon and B. Schall
from Polytech Nice Sophia for the numerical simulations.
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