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Abstract : 

Hyperspectral (HS) imaging produces an image of an object across a large range of the visible spectrum, 
and not just the primary colors (R, G, B) of conventional cameras. It can provide valuable information for 
object detection, analysis of materials and processes in environmental science in the deep-sea, especially 
for the study of benthic environments and pollution monitoring. In this paper, we address the problem of 
camera calibration towards 3D hyperspectral mapping where GPS is not available, and the platform 
navigational sensors are not accurate enough to allow direct georeferencing of linear sensors, as is the 
case with traditional aerial platform methods. Our approach presents a preliminary method for 3D 
hyperspectral mapping that uses only image processing techniques to reduce reliance on GPS or 
navigation sensors. The method is based on the use of standard RGB camera coupled with the 
hyperspectral pushbroom camera. The main contribution is the implementation and preliminary testing of 
a method to relate the two cameras using image information alone. The experiments presented in this 
paper analyze the estimation of relative orientation and time synchronization parameters for both cameras 
through experiments based on epipolar geometry and Monte-Carlo simulation. All methods are designed 
to work with real world data. 
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I. INTRODUCTION

Hyperspectral (HS) images convey a large amount of
information for environmental research. Recent HS sensors
can provide high spectral resolution data with narrow spectral
bands for each image pixel, typically of 1 nm width and
ranging from 380 to 750 nm, thus generating large quantities
of information for terrain interpretation. These data can
be used in conjunction with suitable sensors to produce
highly accurate spectral maps of large areas [1], from which
physical and ecological characteristics can be extracted.

The application of HS imagery for deep-sea studies is
becoming increasingly popular. Recent work has focused in
topic such as:

‚ Benthic habitat classification, bathymetry, 
seawater

quality [2].
‚ Continental surface properties such as geochemical 
and

‚

‚

geophysical, soil quality [3].
Monitoring of pollution in the sea [4].
Ecological investigation of the marine environment [5] 
and deep-sea environmental research dealing with issues 
related to the critical zone [6].

Fig. 1: Stereo setup of the two cameras on Ariane HROV
from IFREMER [7], [8]. The upper is the RGB frame
camera. The bottom is the pushbroom HS camera. The Z-
axis is in the view direction, X-axis to the right and Y-axis
pointing downwards. The cameras are mounted vertically
having the y-axis as baseline between them.

Currently, hyperspectral imaging is mostly performed us-
ing a satellite or aerial platforms such as aircraft and UAVs
[9]. For coastal applications, aerial platforms are limited
to depths of a few meters for underwater mapping due to
insufficient natural illumination. For shallow water mapping,
unmanned surface vessels have been used [10]. All of these
platforms have access to GPS and accurate navigational data.
To map the deep-sea surface, the hyperspectral sensors must
be mounted on an AUV or ROV. However, HS data is only
useful when we can establish the geometric relationship
between the image pixels and their actual positions on the
ground [11].

Some of the factors influencing the direct georeferencing
and geometry of raw HS data are:
‚ Interior projection and distortion parameters of the HS

camera.
‚ Exterior orientation parameters (camera pose with re-

spect to the vehicle).
‚ Inaccurate navigation sensor data.
‚ Inaccessibility of GPS in underwater scenario.
‚ Deep-sea surface topography.
‚ Insufficient illumination in underwater scenario.
Unlike airborne and satellite platforms, there is no access

to GPS to calculate the position of the AUV with high

978-0-692-93559-0 ©2021 MTSAuthorized licensed use limited to: Institut français l'exploitation Mer (IFREMER). Downloaded on March 21,2022 at 15:37:03 UTC from IEEE Xplore.  Restrictions apply. 



accuracy, and the use of ground control points (GCPs) is
restricted or impossible in many cases. Navigation data from
on-board sensors such as Ultra Short Baseline (USBL) are
affected by environmental conditions such as distance from
the surface and sea waves, and tend to be very inaccurate in
the deep-sea.

The problem of accurate positioning is further exacerbated
for HS cameras with linear sensors, such as the one used for
acquiring the data in this paper. These so-called pushbroom
HS cameras, capture one scan line at a time and rely on the
vehicle motion to form the images. The HS camera used in
this paper captures an image of size 1920ˆ 1 pixels, which
is only a single line of its view compared to a standard frame
camera. This also restricts the use of the algorithm Bundle
Adjustment (BA) [12] directly on the pushbroom HS camera
data due to insufficient texture and overlap. These combined
conditions makes solving this problem a complex one.

As part of its general goal to achieve or maintain marine
natural habitats in a favorable conservation status, Marha
project (EU LIFE) 1 experiments underwater hyperspectral
imaging capabilities as an emerging tool.

To address the above limitations, IFREMER devised a
stereo configuration consisting of an RGB frame camera and
a pushbroom HS camera to acquire the data simultaneously.
In the approach of this paper, the frame camera images
serve as input to the Bundle Adjustment (BA) algorithm,
which outputs the poses of the frame camera and a 3D
map of the deep-sea surface. Corresponding points between
the RGB images and the HS scanline stack are clicked
manually. The two cameras are synchronized using a time-
shift parameter and the frame rates of both cameras. The
frame camera poses are used to compute the pushbroom
HS camera poses for the matched points. Then, a nonlinear
least squares method is applied to minimize the SED error
considering the coplanarity condition and estimate the best
values of the unknown parameters. The estimated parameters
are then used to project the hyperspectral scan lines over the
3D map created from BA using the frame camera images.

The aim of this paper is to develop an algorithm for
creating a 3D hyperspectral map of a deep-sea surface. This
is achieved by superimposing a layer of hyperspectral scan
lines over a 3D map created from RGB images of the same
scene. The contributions in this work to solving the above
problem are:

‚ A new approach to estimate the external calibration
parameters that relate a standard frame camera to a HS
linear pushbroom camera, including unknown synchro-
nization.

‚ Development of a method to produce 3D hyperspectral
textured underwater maps from imagery captured at
close range.

‚ Use of pure image processing techniques, resulting in a
solution that does not rely on GPS or navigation data.

‚ Analysis of parameter sensitivity using Monte-Carlo.

1More information on the Marha Project can be found in: https://
www.life-marha.fr/

II. RELATED WORK

The direct georeferencing of pushbroom HS camera im-
ages has been discussed [13] in extensive literature for
airborne platforms based on navigation data and the GPS.
There is no research work in the literature that directly
addresses the problem of 3D hyperspectral mapping for deep-
sea scenarios. The focus of this paper is to develop a pure
image processing based method on the constraints for the
underwater scenario.

Bongiorno et. al [14] present a solution for co-registration
of hyperspectral and RGB image to create a map of the
seafloor by creating a mosaic of images. The system con-
sisted of ship borne sensors to create an air-water model.
Also, a pair of upward facing spectrometers are mounted
on the ship and on the AUV, to model the light reaching
the sea-floor. The AUV also had a stereo configuration of
a RGB camera and another spectrometer which was facing
downward. The relative pose between the RGB camera and
spectrometer was computed in the lab [15]. The result was a
mosaic of seafloor RGB images projected with hyperspectral
information.

In the solution presented by Barbieux et. al [16], the
IMU data is used and first the relative pose between the
RGB and IMU is computed. These parameters are then used
to calculate the trajectory of the pushbroom HS camera by
directly using the RGB poses for the pushbroom HS camera
due to the very short baseline. Due to the high fps, missing
pose for pushbroom is computed by interpolating RGB poses
to obtain a pushbroom mosaic. The tie points are identified
manually and a least squares problem is formed to minimize
the reprojection error and calculate the relative pose between
the IMU and the pushbroom HS camera.

In another paper [17], the solution is based on automatic
detection of tie points using SURF features [18]. This
solution also uses RGB and pushbroom cameras in a stereo
setup. First, the trajectory for the RGB camera and a DEM
/ orthophoto is obtained by bundle adjustment on frame
images along with the IMU data fused in the Kalman filter.
Using this RGB trajectory for the pushbroom HS camera, the
scan lines are projected into a mosaic. Then automatic SURF
feature detection is used to detect tie points between the
pushbroom mosaic and the orthophoto. Bundle adjustment is
used to reduce the errors between the tie points by estimating
the relative pose between IMU and the pushbroom HS
camera and the intrinsics of the pushbroom HS camera.

The method explained in [19] does not use data from GPS
or IMU and is based on correlation of the hyperspectral scan
line and the frame image. A kernel is used to correlate the
two images by sampling the frame images as line images.
This correlation works best for areas that have a good amount
of available features. This method was originally developed
for the aerial platform and has been shown to work well for
urban areas with many buildings with straight features that
span multiple images in the hyperspectral image. For coastal
areas, the authors mention that the method may not perform
well due to the lack of features.
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Several other studies [20]–[25], for pushbroom mapping
used direct georeferencing method based on GPS and navi-
gation data either for a satellite or an aircraft.

In our approach, we use a rigidly coupled setup with
two unsynchronized cameras, an RGB frame sensor and
a hyperspectral pushbroom HS camera. The intrinsics of
the two cameras are precomputed and are not part of the
estimation process. The time-shift between the two cameras
and the relative orientation are estimated by minimizing the
SED geometric distance error for each observed point pair.
Finally, the hyperspectral information is projected onto the
3D map obtained from BA using the estimated relative pose
and time-shift.

Our approach formulates the problem of 3D hyperspectral
mapping of underwater surfaces as a bundle adjustment
approach that eliminates the dependence on GPS and navi-
gation sensors and uses only image processing techniques.

III. METHODOLOGY

The proposed 3D hyperspectral mapping algorithm for
deep-sea surfaces works in several steps, as shown in Fig. 2.
In a preprocessing step, additional data required for the al-
gorithm is obtained. The RGB images are used to build a 3D
model and estimate the trajectory of the RGB frame camera.
The 3D point cloud is further refined to create a textured
mesh of the scene. The starting point for the algorithm is
to manually select corresponding points between the RGB
images and the pushbroom scan line stack. Second, using the
initial guess of the time-shift between the two cameras and
the relative orientation values for each observed point, the
pose of the pushbroom HS camera is calculated based on the
pose of the frame camera. Third, the poses of both cameras
are used to calculate the Symmetric Epipolar Distance (SED)
which serves as the error criteria for each observed matching
point. Fourth, the error is minimized using a nonlinear least
squares method to estimate the optimized parameters of
relative orientation and time-shift between the two cameras.
Fifth, the complete trajectory for the push-broom HS camera
is calculated using these estimated parameters. Finally, the
hyperspectral 3D map is created by projecting the push-
broom scan lines onto the 3D map from frame images.

Fig. 2: Schematic representation of the algorithm steps

IV. DATA PRE-PROCESSING AND INPUT

A. Bundle Adjustment of Frame Images
In the absence of accurate navigation data and GPS to

determine the platform pose, the information from the frame
camera images can be used to estimate the camera pose,
which is used as input to the algorithm.

The state-of-the-art bundle adjustment algorithm can be
used to estimate the trajectory for the frame camera. Using
the open source software openMVG [26] for Structure from
Motion [27], the single frame camera images are processed
in the bundle adjustment. Each pose is associated with one
image. The openMVG works by automatic correspondence
matching and then stitching the RGB images to create the
3D map and estimate the pose of the frame camera in the
world coordinate system over the whole scene. Fig. 3 shows
the point cloud of the 3D scene reconstructed from the RGB
images along with the trajectory.

Fig. 3: Point cloud and RGB frame camera pose generated
from openMVG

Fig. 4: Textured mesh generated from openMVS

The point cloud obtained from the openMVG software
is further processed using another open source software
openMVS [28] to create a textured 3D mesh representing
the detailed 3D map of the deep-sea surface. The final
solution is then to project the hyperspectral pushbroom scan
lines over this textured 3D mesh of the surface using the
estimated relative pose and time-shift parameters. Fig. 4
shows a section of the textured mesh of the surface.

B. Corresponding points selection
The corresponding point matching depends on finding the

key points in the image, e.g., an edge or a corner. For con-
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Fig. 5: Input RGB image from the frame camera and selected
points

Fig. 6: Input pushbroom HS camera image and selected
points. x-axis represents pushbroom poses (Total poses:
3130) and y-axis represents pixels on one frame (1920
pixels).

ventional images, automatic feature detection methods can be
used. These methods work by extracting the neighbourhood
of a keypoint in the image that describe the keypoint. SURF
and SIFT [18], [29] are commonly used feature detection
algorithms that are invariant with respect to the scale and
rotation of the image. These methods cannot be used to detect
features on an image from a pushbroom HS camera that is
N ˆ 1. Therefore, for each pixel in the scanned line, there
is no neighbourhood texture around it to detect a keypoint
and extract the texture around it to uniquely represent it as a
feature. To solve this problem, the corresponding keypoints
in the frame camera image and in the pushbroom scan lines
stack must be manually clicked using an app developed in
MatLab. Fig. 5 shows an image of the RGB frame camera
and manually clicked points. Fig. 6 shows a complete HS
image stack and manually clicked points for HS images
stack.

V. OPTIMIZATION

The matched points are used as observations to perform
the nonlinear least squares adjustment [30] and estimate the
time-shift synchronization and relative orientation of the two
cameras. The estimation is performed using the Marquardt-
Levenburg algorithm [31], starting with an adequate initial

guess for the unknown parameters.

A. Unknown parameter vector

The total number of unknown parameters for least squares
estimation is seven, where one parameter is used for inter-
camera synchronization (referred to as time-shift), 3 are used
for translation, and the last 3 for orientation. The vector of
unknown parameters can be represented as follows:

u “ rτ α β γ tx ty tzs (1)

where τ is the time-shift in unit frames, α is roll, β is pitch,
γ is yaw rotation angle, unit in radian and tx, ty, tz are the
translation in x, y, z direction respectively, unit in meters.

B. Time-shift

The start time of data recording is different for the two
cameras. To compute the corresponding frame camera image
j for a particular scan line k, given initial value of time-shift
pτq, the equation is [32]:

jpkq “ τ ` ρk (2)

where ρ “ fr1{fr is the frequency ratio of the acquisi-
tion frequency of the pushbroom HS camera (fr1) and the
frequency of the frame camera (fr). While the frame rate
can differ between surveys, it has to be known and remain
constant within a single survey.

C. Pushbroom HS camera pose

The pose of the pushbroom HS camera at each instance
(WTHSk

) can be calculated based on the estimated trajectory
of the frame camera (WTRGBj ) and the relative orientation
between the frame camera and the pushbroom HS camera
(RGBTHS):

WTHSk
“ WTRGBk

˚ RGBTHS (3)

Due to the difference in the acquisition frequencies and an
unknown relative pose between the two sensors, the pose of
the pushbroom HS camera cannot be extracted directly from
the pose of the frame camera.

As described in Sec. V-B, the image of the frame camera
and the pushbroom scan line can be synchronized using a
parameter τ , which allows us to estimate the pose of the
frame camera at the moment at which the pushbroom scan
line was acquired (WTRGBk

). Each pose is computed by in-
terpolating between two boundary poses of the frame camera,
with the interpolation of the position being calculated using
linear interpolation [33], while the SLERP method [34] is
used for the orientation.

The unknown relative pose RGBTHS is finally estimated
by solving nonlinear least squares problem based on the
previously described corresponding matches between the
RGB images xi,j and the HS stack x1i,k. For each pair of
matched points, the error is calculated as Symmetric Epipolar
Distance [35] where the distance of a point from its projected
epipolar line is computed in each of the images. The funda-
mental matrix F is constructed using the estimated pose of
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pushbroom HS camera and known intrinsic parameters of the
cameras, while the homogeneous coordinates of the epipolar
lines in both images are l “ Fx1i,k and l1 “ FTxi,j . The
error is then computed as:

SED2
i “ d2 pxi,j , lq ` d

2
`

x1i,k, l
1
˘

“

ˆ

1

l21 ` l
2
2

`
1

l121 ` l
12
2

˙

R2
i

(4)

To estimate the unknown parameters Eq. (1), the cost
function is minimized over the complete set of matches:

argmin
m
ÿ

i“1

SED2
i (5)

where m is the total number of corresponding matches
over the RGB image set and the HS stack.

VI. HYPERSPECTRAL DRAPING

Once the complete trajectory of the pushbroom HS camera
is computed using the estimated unknown parameters, the 3D
model, reconstructed using RGB frame camera images, can
be draped with the hyperspectral information by projecting
data utilizing the pushbroom trajectory. An RGB image of
the hyperspectral is created for visual analysis by extracting
data centered on the R,G,B filters with wavelengths of 700
nm, 530 nm, 470 nm. The hyperspectral image stack is
draped over the 3D model as follows:
‚ For each 3D point in the textured map of 3D model,
Xi, the point is projected onto the image plane of the
pushbroom HS camera at all pushbroom HS camera
poses:

xa “ PaXi (6)

where a = 1....numPose is the HS frame and xa is
the projected image point for all pushbroom poses.
The projected point is further undistorted using known
distortion parameters for the pushbroom HS camera.

‚ Given that the pushbroom image is a single scanline
represented by y “ 0.5 with N pixels on the x-axis,
the hyperspectral frame (a) of the projection for the
point Xi is selected based as the one with the minimum
distance from y component of the projected image
point:

a “ argminya ´ 0.5 (7)

‚ Once the best hyperspectral frame (a) is selected, the
projected point is additionally filtered based on the
distance from the scan line and that the projection is
within the sensor size of the pushbroom HS camera in
the x-axis. If the distance of the projected point from
step 2 to the closest actual pixel in pushbroom image
is greater than a threshold (i.e., 5 pixels), the point is
discarded because it is considered to not be seen by the
pushbroom camera. While ideally, the threshold would
be 1 pixel, small increase helps compensate for slight
misalignment.

‚ Finally, for the computed image pixel in the hyperspec-
tral image, the hyperspectral information is extracted
and assigned to the current 3D point on the 3D model
in Fig. 4.

VII. EXPERIMENTAL EVALUATION

The method described in this paper was developed for
offline processing of data to create the 3D hyperpsectral
map. The pre-processing of RGB images to create 3D map
using openMVG/openMVS took 2 hrs to complete. The
optimization run finished in 2 mins while the final draping
of hyperspectral information took 2-3 hrs.

A. Equipment and setup

The deep-sea data was acquired with the Ariane HROV
from IFREMER [36]. Two different cameras were used, a
frame camera and a pushbroom HS camera as shown in the
setup in Fig. 1. The specifications of the cameras are listed
in the table below:

Resolution Frame rate Channels

Frame camera 1920 ˆ 1080 25 fps (R,G,B)
Pushbroom HS camera 1920 ˆ 1 33 fps 320-750 nm (1 nm each)

TABLE I: Camera specifications.

B. Initial values for the unknown parameters

The translation between the two cameras was physically
measured with a tape measure. The relative orientation of
the hyperspectral camera to the RGB camera follows a
typical parallel stereo pair configuration, where the angles
are approximately zero, and these values were used for the
initialization.

For the initial value of the time-shift, there is a dark frame
from the HS scan lines stack at the time when the lighting
on the platform was turned off. This frame is taken as the
reference for the frame ID of the images in both cameras.
The frame rate for both cameras is known. Using Eq. (2) for
the referenced dark frame, the initial value of time-shift in
number of frames is computed.

C. Optimization

The optimization was performed in two steps. In the
first step, the initial guess (Sec. VII-B) for the unknown
parameters was used. In the second optimization step, the
estimated parameter values from the first step were input as
the initial parameter values.

The first optimization uses all the observation points. The
outliers are discarded when the SED error is greater than
25 pixels and the remaining observation points are used for
the second step. The maximum change occurs in the time-
shift and a small change in ty and tz , while all others have
negligible changes.

Fig. 7 shows plot of the SED error. The red plot shows
the residues for the initial guess of the parameter vector
before optimization. The first optimization step reduces the
error, which is shown in the blue plot. The plot before
optimization and the plot of the first optimization step uses
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all observation points. The green plot is after the second
optimization which uses only the observations points after
removing outliers from the first optimization result. The error
was further reduced. For some points, the error increased by
a small value in the second step, which is due to the shift of
the optimization towards the region with more data points.

Fig. 8 shows the distribution plot of the SED error. The red
points are marked as outliers with SED errors larger than 25
pixels after the first optimization. The yellow points show
the points with error larger than 10 pixels and the green
points show the points with error smaller than 10 pixels
computed after the second optimization. The distribution of
residues shows many green points on the right side of the
scene, which has more points concentrated in a small region.
The left side of the scene is less distinct due to insufficient
illumination, which also affects the geometry. The middle
and the lower part again have less green points due to the
poor geometry of the scene. There could be two reasons for
the high error, first that the points do not match well and
second that the optimization shifts towards the region with
more concentrated points and better geometry, so the points
in the other region produce a higher error.

The blue plot in Fig. 7 shows the error after the first
optimization and depicts that the SED error was higher for
many points which were discarded before the second step.
Since, the points were manually clicked and matched, in the
next section we discuss the quality of outliers.

D. Outlier analysis

In parameter estimation, the outliers, i.e., the points with
SED error larger than 25 pixels, are selected. We have
visually analysed 20 outliers with highest error values in
the optimization described in above section. From the visual
analysis, it can be deduced whether the points are poorly
matched or not. Moreover, Fig. 8 shows that the region with
more outliers has a lower number of matched points.

However, discarding outliers for the second optimization

Fig. 7: SED error per obs. pair. Red: Before optimization
using initial guess for params value. Blue: first estimation
step using the initial guess for params values and all the
observation points. Green: second estimation step using the
estimate params of first step as initial values and excluding
the outliers selected after first optim. Total points: 115 ;
Inliers: 88.

Fig. 8: Plot of the observed points on the pushbroom image
with SED error distribution. Green: error less than 10 pixels,
Yellow: error between 10 and 25 pixels, Red: error larger
than or equal to 25 pixels.

step did not greatly change the value of the estimated
parameters. Visual analysis shows that these points are not
a poor correspondence match. Fig. 9 shows the point with
highest SED error after first optimization and it can be seen
that the point is approximately in the same location in both
the hyperspectral image (left) and the RGB image (right).
Therefore, it can be said that the points with the highest error
are not outliers because they represent a good match. Out of
27 outliers, 20 were visually analysed and they were a good
match. The reason for the high error values could be that due
to less number of points in these regions, the optimization
shifts towards the region with more points, resulting in high
error values for the rest. The reason for fewer matching
points in these regions is the poor visibility of the objects
and also the distorted geometry which makes it difficult to
click the matching points manually. This can be improved by
an automated feature detection and matching method, which
can detect a larger number of points in regions with fewer
objects or poor visibility.

Fig. 9: SED error = 117.08 pixels; Left: hyperspectral image;
Right: RGB camera image

E. Monte Carlo simulation

Monte Carlo simulation [37] is a stochastic algorithm
based on a large number of identical experiments with ran-
dom inputs. It is used to understand the effects of noise and
uncertainty. It is performed by randomly selecting samples

Authorized licensed use limited to: Institut français l'exploitation Mer (IFREMER). Downloaded on March 21,2022 at 15:37:03 UTC from IEEE Xplore.  Restrictions apply. 



and adding noise to the observations which are given as input
to the algorithm to estimate the model parameters for each
sample. This is repeated for a very large number of times to
study the properties of the estimator and also the variance in
the estimated parameters.

Fig. 10: Monte Carlo plot for all the seven estimated param-
eters.

The plots in Fig. 10 show that the estimator is consistent
because the estimated values of the parameters for a large
set of samples, which in this case is 1000, are close to the
expected values.

F. Hyperspectral mapping

The final goal of the paper is to use the estimated param-
eters and create a 3D map of the deep-sea surface on which
the hyperspectral information from the pushbroom scan lines
is draped. The mapping process is described in Sec. VI.

Fig. 4 is the 3D mesh created from the RGB images that
serves as input to the hyperspectral mapping function. For
each 3D point on this mesh, the hyperspectral data shown in
Fig. 11 is projected as explained in Sec. VI.

Fig. 12 shows the top view of the two 3D maps, where
the right image is the 3D mesh created from frame images,
and the left is the 3D mesh projected with hyperspectral
information using the estimated parameters. The whole area
of the 3D mesh is well fitted with the hyperspectral infor-
mation and the draping quality is good. However, there are
local distortions in the hyperspectral map. The object under
the pink rectangle has half of the area occupied by ground
color information. The reason for this distorted information
draping can be deduced from Fig. 11. The view angle of
the pushbroom HS camera was limited and it never captured
the information from the side of the object in question. The
frame camera has a wide angle of view and thus the frame
images capture greater detail, which is better represented
when a mesh is created. The single line captured by the
pushbroom HS camera restricts such detailed information.

The object under the green rectangle in Fig. 12 has a good
fit with the hyperspectral information. There are some shifts,
but they are negligible. Again, these shifts can be attributed to

Fig. 11: Input RGB image extracted from hyperspectral
image to be used as a visual template to asses the quality of
hyperspectral draping. The marked regions are analysed for
the quality of hyperspectral draping.

Fig. 12: (Left) 3D map projected with hyperspectral informa-
tion. (Right) 3D map generated from frame camera images.
Marked areas show local distortions and are analyzed in the
text

the larger field of view of the frame camera, which captures
more detail than the pushbroom HS camera.

Fig. 13: (Left) Object on HS map with initial parameter
values. (Right) Object on HS map with estimated parameter
values

Fig. 13 shows an object on the hyperspectral map. The
left image is with the parameter values before optimization,
the hyperspectral information does not fit completely on
the object structure and a shift can be observed. The right
image is the hyperspectral map using the estimated parameter
values. It shows that the hyperspectral information covers the
full object and the shift has been corrected.
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Fig. 14: (Left) Object on HS map with initial parameter
values. (Right) Object on HS map with estimated parameter
values

Fig. 14 shows the shift correction for another object.
The estimated parameters fits the hyperspectral information
perfectly which covers the correct geometry of the object.

Fig. 15: (Left) Object on HS map with initial parameter
values. (Right) Object on HS map with estimated parameter
values

Fig. 15 shows a third example. However there is a local
distortion for this object as it lies at the edge of the
hyperspectral. Fig. 11 shows this object marked with blue
rectangle at the bottom. As compared with the 3D RGB
map in Fig. 4, the geometry of the objects near the edge is
distorted which could be a possible reason for a bad fit of the
hyperspectral information on this object. Therefore, from the
observation of three objects in different regions of the map,
it can be concluded that the estimated parameters drapes
the hyperspectral information on the 3D map matching the
geometry of the object.

VIII. CONCLUSION

In this paper, we present an approach to 3D hyperpsectral
mapping using only image processing methods. The imaging
setup consists of an RGB frame camera and a pushbroom
HS camera in a parallel stereo configuration. Data were
acquired for the seafloor by mounting the setup on an HROV.
The points are manually matched between the RGB images
and the pushbroom scan lines. Then, the symmetric epipolar
distance (SED), error is calculated for all matched points
and minimized using the nonlinear least squares method to
estimate the relative pose and time-shift between the two
cameras.

There is no research work that addresses the problem of
deep-sea 3D hyperspectral mapping yet. All available ap-
proaches are for terrestrial or shallow water scenarios using
aerial platforms or surface vessels. The main contributions
of this work are:
‚ Development of a 3D hyperspectral mapping method

for deep-sea surfaces by coupled use of a frame camera
and a linear pushbroom HS camera.

‚ Eliminate the use of GPS and navigation data and only
image processing based solution.

Our approach gives good results of the final hyperspectral
mapping of the deep-sea surface. The optimization problem
works well to estimate the unknown parameters. As future
work, the method is being extended with automatic feature
detection and matching which can eliminate the problem of
few points in certain regions with poor visibility and distorted
geometry which is the drawback in manual search. Also,
there are local distortions in the final result of the generated
hyperspectral map, which can be improved with automatic
feature detection.
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[31] J. J. Moré, “The levenberg-marquardt algorithm: implementation and

theory,” in Numerical analysis, pp. 105–116, Springer, 1978.
[32] C. Albl, Z. Kukelova, A. Fitzgibbon, J. Heller, M. Smid, and T. Pajdla,

“On the two-view geometry of unsynchronized cameras,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4847–4856, 2017.
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