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Abstract :   
 
For its greenhouse effects, atmospheric CO2 can critically influence the global climate on millennial and 
centennial timescales. Pleistocene atmospheric CO2 variations must involve changes in ocean storage 
of carbon, but the mechanisms and pathways of carbon transfer between the oceanic and atmospheric 
reservoirs are poorly understood due, in part, to complications associated with interpretation of carbonate 
system proxy data. Here we employ a recently developed approach to reconstruct upper Atlantic air–sea 
CO2 exchange signatures through the last deglaciation. Using this approach, proxy and model data each 
suggest that there was a net release of CO2 via the Atlantic sector of the Southern Ocean during the early 
deglaciation, which probably contributed to the millennial-scale atmospheric CO2 rise during Heinrich 
Stadial 1 at ~18.0–14.7 kyr ago. Moreover, our data reveal a previously unrecognized mechanism for the 
centennial-scale atmospheric CO2 rise at the onset of the Bølling warming event around 14.7 kyr ago, 
namely, the expansion of Antarctic Intermediate Water, a water mass that is especially inefficient at 
sequestering atmospheric CO2. Our findings highlight the role of the Southern Ocean outgassing and 
intermediate water-mass production and volume variations in governing millennial- and centennial-
timescale atmospheric CO2 rises during the last deglaciation. 
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recently developed approach to reconstruct upper Atlantic air-sea CO2 exchange signatures 29 

through the last deglaciation. Using this approach, proxy and model data each suggest that there 30 

was a net release of CO2 via the Atlantic sector of the Southern Ocean during the early 31 

deglaciation, which likely contributed to the millennial-scale atmospheric CO2 rise during 32 

Heinrich Stadial 1 at ~18-14.7 thousand years ago. Moreover, our data reveal a previously 33 

unrecognized mechanism for the centennial-scale atmospheric CO2 rise at the onset of the 34 

Bølling warming event around 14.7 thousand years ago, namely, the expansion of Antarctic 35 

Intermediate Water, a water mass that is especially inefficient at sequestering atmospheric CO2. 36 

Our findings highlight the role of the Southern Ocean outgassing and intermediate water-mass 37 

production and volume variations in governing millennial- and centennial-timescale 38 

atmospheric CO2 rises during the last deglaciation. 39 

 40 

Antarctic ice core data
1
 reveal millennial- and centennial-timescale atmospheric CO2 rises 41 

during the last deglaciation between 18 and 10 thousand years ago (ka). Atmospheric CO2 increased by 42 

~50 ppm during Heinrich Stadial 1 (HS1; ~18-14.7 ka). This millennial increase is generally thought to 43 

be linked to Southern Ocean processes including enhanced upwelling, reduced nutrient utilization, and 44 

sea ice retreat that assisted the release of ocean carbon to the atmosphere
2-6

. However, evidence is 45 

lacking to connect the inferred outgassing at the Southern Ocean surface with the ultimate CO2 loss 46 

from the ocean interior. The origin of centennial atmospheric CO2 rises is even less clear
7
. For 47 

example, the ~12 ppm atmospheric CO2 rise that occurred within ~200 years at the Bølling onset 48 

(~14.7 ka)
8
 has been linked to the reinvigoration of North Atlantic Deep Water (NADW)

9-11
. By 49 

contrast, other studies suggest processes in the Southern Ocean and North Pacific might have 50 
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controlled this abrupt CO2 rise
6,12,13

. To fully understand past carbon cycling, further information from 51 

both marine sediments and models is required. 52 

 53 

Air-sea CO2 exchange tracers: DICas and [CO3
2-

]as 54 

Because air-sea CO2 exchange directly affects atmospheric CO2 levels, reconstructing its 55 

history can provide critical insights into mechanisms controlling past atmospheric CO2 variations. 56 

While affecting atmospheric CO2, air-sea CO2 exchange simultaneously modifies seawater carbonate 57 

chemistry. For a closed system without communication with the atmosphere and sediments, seawater 58 

dissolved inorganic carbon (DIC) and phosphate ([PO4
3-

]) would vary following the stoichiometry of 59 

biogenic matter (including both soft tissue and hard-part skeletons). As [PO4
3-

] is not affected by 60 

air-sea gas exchange, a net air-sea CO2 transfer would decouple the DIC-[PO4
3-

] relationship. Thus, a 61 

combination of DIC, [PO4
3-

] and biogenic matter stoichiometry provides a means to calculate air-sea 62 

CO2 exchange signatures, as originally developed by Broecker and Peng
14

. Built upon ref. 
14

, Fig. 1 63 

shows an air-sea exchange tracer, DICas (where subscript “as” denotes air-sea exchange), for the 64 

preindustrial Atlantic
15,16

. NADW had high DICas values and acted as a major sink for atmospheric 65 

CO2, because its source waters absorbed atmospheric CO2 in the North Atlantic, much like today
16-18

. 66 

By contrast, Antarctic Intermediate Water (AAIW) had the lowest DICas and was the water mass least 67 

efficient at sequestering atmospheric CO2, reflecting CO2 outgassing in the Southern Ocean
19

. In the 68 

preindustrial Southern Ocean, DIC-rich Circumpolar Deep Waters were upwelled to the surface by 69 

prevailing southern westerlies in the Antarctic Zone
2,20,21

. Owing to inefficient biological utilization of 70 

nutrients and carbon, the upwelled waters had higher CO2 partial pressures than the atmosphere, 71 
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resulting in CO2 outgassing
17

. As long as positive sea-to-air CO2 partially pressure gradients were 72 

maintained, upwelled waters continued to outgas CO2 until they subducted to form AAIW and lost 73 

contact with the atmosphere north of the Antarctic Polar Front
17,19,20

. DICas signals of AAIW would 74 

integrate air-sea CO2 exchange histories in broad areas (both meridionally and zonally) in the Southern 75 

Ocean. Due to net CO2 outgassing in these areas, preindustrial AAIW had low source-water 76 

(“preformed”) DICas values (Fig. 1a). Compared to zones at lower latitudes in the Southern Ocean, the 77 

Antarctic Zone hosted upwelling regions and had more elevated nutrient and DIC levels, presenting as 78 

a stronger CO2 source to the atmosphere
17,19,20

. Thus, a DICas decline within AAIW would reflect 79 

enhanced CO2 outgassing, at least, in the Antarctic Zone. 80 

 81 

Since no proxy exists for DIC, seawater carbonate ion ([CO3
2-

]) can be used instead for the 82 

geological past. Following ref. 
16

, tracer [CO3
2-

]as can be used to reflect DICas changes. As can be seen 83 

from Fig. 1, [CO3
2-

]as shows a strong negative correlation with DICas (Extended Data Fig. 1). 84 

Therefore, reconstructing [CO3
2-

]as can place constraints on DICas, which ultimately reflects air-sea 85 

CO2 exchange. More information about DICas and [CO3
2-

]as is given in the Methods. Simply put, when 86 

a water mass sequesters more atmospheric CO2, it has lower [CO3
2-

]as and higher DICas, and vice versa. 87 

 88 

If a net amount of CO2 was outgassed from the Southern Ocean, then a decrease in DICas and an 89 

increase in [CO3
2-

]as would be expected in AAIW and its downstream waters. Here, we use cores from 90 

the upper Atlantic to investigate air-sea CO2 exchange histories in the Atlantic sector of the Southern 91 

Ocean during the last deglaciation (Figs. 2-4). GGC90 (27.4°S, 46.6°W, 1105 m) from the Brazil 92 
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Margin is chosen for its proximity to AAIW and high sedimentation rate during the early deglaciation 93 

(Figs. 1,2). Intermediate-water [CO3
2-

] and [PO4
3-

] reconstructions at GGC90 are from refs. 
22,23

 (Fig. 94 

4), but these data have not yet been used to infer air-sea CO2 exchange histories. Importantly, building 95 

upon previous work
24

, the GGC90 age model is substantially improved by 23 new radiocarbon dates 96 

(Fig. 2). To constrain the pathway of air-sea CO2 exchange, we use NEAP 4K (61.5°N, 24°W, 1627 m) 97 

on Bjorn Drift south of Iceland to reconstruct the North Atlantic changes (Figs. 1,3). Benthic 
13

C in 98 

NEAP 4K shows the characteristic mid-depth North Atlantic minimum during HS1 (Fig. 3)
25-27

, 99 

suggesting that this core sufficiently captures major millennial-scale deglacial climatic signals of the 100 

region. We present new deep-water [CO3
2-

] and [PO4
3-

] reconstructions at NEAP 4K using benthic 101 

foraminiferal B/Ca and Cd/Ca, respectively (Fig. 3). The NEAP 4K age model is based on 4 new and 102 

13 published
28

 radiocarbon dates and new Neogloboquadrina pachyderma (sinistral) coiling ratios 103 

(Fig. 3). Seawater [CO3
2-

]as is calculated following the approach in ref. 
16

, with a 2uncertainty of ~15 104 

mol/kg. Fig. 5c presents the first continuous [CO3
2-

]as records with robust age controls for the 105 

Atlantic Ocean during the last deglaciation. DICas is estimated from [CO3
2-

]as using a sensitivity of 106 

-0.48 (Extended Data Fig. 2)
16

. Consideration of influences from past changes in biogenic composition 107 

and global alkalinity does not affect our conclusion (Extended Data Fig. 3). We also employ an Earth 108 

System model
29

 to investigate DICas changes and associated carbon cycling during HS1. See Methods 109 

for analytical and calculation details. 110 

 111 

DICas constraint on millennial atmospheric CO2 changes  112 
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Compared to the early Holocene (~10-11.5 ka), intermediate-water [CO3
2-

] and [PO4
3-

] at 113 

GGC90 were lower during the Last Glacial Maximum (LGM; ~18-22 ka) (Fig. 4). These changes 114 

deviate from the biological effects which would cause an inverse relationship between seawater 115 

[CO3
2-

] and [PO4
3-

] in a closed system
16

. This suggests that a change in air-sea CO2 exchange, which 116 

must have occurred when waters were in contact with the atmosphere, disrupted the [CO3
2-

]-[PO4
3-

] 117 

relationship in the intermediate South Atlantic. Our calculation shows that compared to the Holocene, 118 

LGM intermediate-water [CO3
2-

]as at GGC90 was lower by ~30 mol/kg, corresponding to a ~60 119 

mol/kg increase in DICas (Fig. 5c). In the North Atlantic, deep-water [CO3
2-

] at NEAP 4K show an 120 

LGM-to-Holocene decrease, but this decrease is smaller than the magnitude expected from [PO4
3-

] and 121 

biogenic matter stoichiometry (Fig. 4; Methods). We calculate that LGM [CO3
2-

]as was ~15 mol/kg 122 

lower than the Holocene value, corresponding to a LGM DICas increase of ~30 mol/kg at NEAP 4K 123 

(Fig. 5c). Together, DICas increases at GGC90 and NEAP 4K suggest enhanced atmospheric CO2 124 

storage in the glacial upper Atlantic, lending strong support for more efficient carbon sequestration by 125 

both the Southern Ocean and the North Atlantic during the LGM
2-6,16

.  126 

 127 

During HS1, intermediate-water [CO3
2-

] at GGC90 increased but [PO4
3-

] remained roughly 128 

stable (Fig. 4)
22,23

. These changes lead to a [CO3
2-

]as increase by ~25 mol/kg, corresponding to a 129 

DICas decline by ~50 mol/kg (Fig. 5c). At NEAP 4K, deep-water [CO3
2-

] decreased during HS1 (Fig. 130 

4). Because seawater [CO3
2-

] and DIC are generally inversely correlated
30

, this [CO3
2-

] decrease 131 

suggests a DIC increase (~30 mol/kg) in the mid-depth North Atlantic. Instead of reflecting greater 132 

sequestration of atmospheric CO2, the concomitant [PO4
3-

] increase indicates that this DIC increase 133 

was largely caused by accumulation of respired carbon due to weakened overturning 134 
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circulation
11,27,29,31-33

 (Fig. 5b). Our calculation shows little [CO3
2-

]as and DICas change at NEAP 4K 135 

during HS1. Unlike [CO3
2-

] and [PO4
3-

], DICas in the ocean interior is conservative and can be used to 136 

infer DICas values of source waters (Methods). Neodymium isotope data from the Brazil Margin
34,35

 137 

suggest no increase in the mixing proportion of AAIW in the intermediate South Atlantic from the 138 

LGM to HS1 (Fig. 5d). Given the roughly stable DICas at NEAP 4K, the observed DICas decrease at 139 

GGC90 likely reflects (or passively records) a decline in preformed DICas for AAIW, and hence a net 140 

loss of oceanic CO2 to the atmosphere via the Atlantic sector of the Southern Ocean during HS1. This 141 

conclusion can be drawn without using [CO3
2-

]as and DICas tracers, but using them can substantially 142 

facilitate interpretation (Methods). 143 

 144 

Our inference for HS1 is corroborated by a transient simulation performed with an Earth 145 

System model
29

 (Fig. 6; Methods). When forced by stronger southern hemisphere westerlies, 146 

simulated DICas decreases in the intermediate South Atlantic (GGC90) and remains roughly stable in 147 

the mid-depth polar North Atlantic (NEAP 4K), similar to our proxy reconstructions. Because DICas 148 

increases in the upper ~1 km of the polar North Atlantic (Fig. 6), the DICas decrease at GGC90 must 149 

point to enhanced CO2 outgassing in the Atlantic sector (and possibly Indo-Pacific sectors) of the 150 

Southern Ocean, which is directly supported by simulated air-sea CO2 fluxes
29

. The enhanced CO2 151 

outgassing is, at least in part, caused by reduced biological pump efficiency in the Southern Ocean. 152 

During HS1, both model and proxy data show nearly constant [PO4
3-

] at GGC90
23

 (Figs. 4, 6d). Given 153 

a possible decrease in respired [PO4
3-

] due to enhanced southern ventilation and reduced surface export 154 

in the Sub-Antarctic Zone
3,22

, the lack of any decline in [PO4
3-

] at GGC90 likely indicates a 155 

compensating preformed [PO4
3-

] increase and hence a weaker biological pump in Antarctic and Polar 156 
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Front zones during HS1, as supported by model results (Fig. 6d). Moreover, model results show that 157 

the distribution of DICas differs markedly from those of non-conservative tracers including [CO3
2-

] and 158 

DIC (Fig. 6), highlighting potential pitfalls of relying solely on [CO3
2-

] or DIC to infer the ocean’s role 159 

in affecting atmospheric CO2. For example, the deep-water DIC increase at NEAP 4K during HS1 160 

cannot be interpreted to reflect greater atmospheric CO2 sequestration at this site due to marginal DICas 161 

variations, but instead indicates enhanced biological respiration (Fig. 6). 162 

 163 

Published surface-water proxies including 
15

N and opal flux suggest generally reduced 164 

nutrient utilization and enhanced upwelling in the Antarctic Zone during HS1 (Figs. 5f, g)
2,4,6

. 165 

However, 
15

N and opal flux mainly reflect surface nutrient utilization during phytoplankton blooming 166 

seasons (usually spring/summer), whereas opal flux values and patterns differ spatially in the Antarctic 167 

Zone (Extended Data Fig. 4)
2,4,6

. While acknowledging the usefulness of various surface proxies, it 168 

remains uncertain whether CO2 released during one season (or at one location) was absorbed back into 169 

the ocean in other seasons (or at another location) before surface waters sank to form 170 

intermediate/deep waters. This is exemplified by heterogeneous surface-water CO2 partial pressures 171 

during the preindustrial and last deglaciation in different sectors of the Southern Ocean (Extended 172 

Data Fig. 5)
15,36,37

. In contrast to surface-water conditions, AAIW composition changes would 173 

integrate effects of air-sea CO2 exchange during all seasons across broad regions of the Southern 174 

Ocean. With NEAP 4K to constrain North Atlantic changes, our reconstructed DICas decrease in 175 

AAIW (GGC90) must require a net CO2 release via the Atlantic sector of the Southern Ocean during 176 

HS1 (Fig. 5c). More specifically, the little change in deep-sea coral 
15

N data (Fig. 5f)
6
 has been used 177 

to suggest a minor role of the Antarctic Zone in controlling atmospheric CO2 rise during the early HS1 178 
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(~18-16.3 ka). By contrast, the large DICas decline at GGC90, obtained from both proxy and model 179 

data (Figs. 5,6), indicates that the Antarctic Zone likely acted as a CO2 source to the atmosphere during 180 

this time. Overall, our data provide strong proxy evidence to bridge a critical gap between enhanced 181 

upwelling in the Southern Ocean
2,4,6

 and accomplished reduction of atmospheric CO2 storage in the 182 

ocean interior during HS1. 183 

 184 

During the Bølling/Allerød (~14.6-12.9 ka), GGC90 and NEAP 4K data show relatively small 185 

variations in [CO3
2-

] and [PO4
3-

] and hence [CO3
2-

]as values (Figs. 4,5c). This implies a roughly stable 186 

atmospheric CO2 storage in the upper Atlantic, a situation favourable for maintaining steady 187 

atmospheric CO2 levels
1
 (Fig. 5h). During the Younger Dryas (YD; ~12.9-11.6 ka), deep-water [CO3

2-
] 188 

changed little but [PO4
3-

] increased at NEAP 4K, suggesting an ~10 mol/kg increase in [CO3
2-

]as and 189 

an ~20 mol/kg decrease in DICas (Figs. 4,5c). These signals could be caused by a DICas decrease 190 

associated with AAIW, as expected from enhanced upwelling and reduced nutrient utilization in the 191 

Southern Ocean
2,6

 (Figs. 5f,g). Unfortunately, the sedimentation at GGC90 is too low (~3 cm/ka; Fig. 192 

2) to resolve detailed changes within the YD, warranting future studies to investigate carbon cycling 193 

during this time interval. 194 

 195 

New mechanism for centennial-scale atmospheric CO2 rise 196 

In addition to millennial-scale changes, data from ~14.5-14.85 ka (corresponding to 72-80 cm) 197 

in core GGC90 reveal a centennial-scale intermediate-water [PO4
3-

] rise and minimal change in 198 

[CO3
2-

] (Fig. 4). These data suggest a [CO3
2-

]as increase by ~15 mol/kg, corresponding to a ~30 199 
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mol/kg decrease in DICas (Fig. 5c). Radiocarbon dates suggest a high sedimentation rate of ~23 200 

cm/ka (~40 year/cm) at this depth range in the core (Fig. 2). Thus, this DICas decrease occurred within 201 

~350 years or even shorter if taking bioturbation into account. The mid-point (76 cm) of the sediments 202 

has an age of 14.7 ± 0.3 ka (1), within the age uncertainty of the Bølling onset at 14.7 ± 0.2 ka
8,38

. So, 203 

we link the timing of this DICas decrease to the Bølling onset (Extended Data Fig. 6). At this time, 204 

deep-water DICas at NEAP 4K, a site located much closer to northern-sourced waters, shows little 205 

variation (Fig. 5c), pointing to Southern Ocean changes as responsible for the DICas decrease at 206 

GGC90. 207 

 208 

The Bølling onset DICas decrease observed at GGC90 is attributable to two factors: increased 209 

Southern Ocean outgassing and AAIW expansion. High-resolution 
15

N and 
11

B data
6,12

 measured on 210 

deep-sea corals from the Drake Passage indicate enhanced upwelling and a weakened biological pump 211 

in the Antarctic Zone at ~14.7 ka (Fig. 5f), which would lower AAIW’s preformed DICas and hence 212 

DICas at GGC90. Northward AAIW expansion at the Bølling onset is supported by increasing Nd at 213 

GGC90 (27.4°S) and sites on Demerara Rise (~8°N), nutrient reconstructions for the intermediate 214 

North Atlantic (~24°N), and model results (Figs. 5d,e; Extended Data Figs. 7-9)
39-43

. The broad 215 

latitudinal range of these data suggest extensive impacts from AAIW expansion at the Bølling onset. 216 

We note that GGC90 is located below the core of AAIW (Fig. 1)
42,44

. Because AAIW has low DICas, a 217 

sudden northward expansion of AAIW would decrease intermediate-water DICas at GGC90 at the 218 

Bølling onset (Figs. 1,5; Extended Data Figs. 8). 219 

 220 
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The abrupt atmospheric CO2 rise at the Bølling onset has been linked to rapid reinvigoration of 221 

NADW
9-11,31

, but the exact mechanism linking the two remains elusive. NADW is an efficient water 222 

mass to sequester atmospheric CO2 (Fig. 1). Everything else being equal, its expansion would lower, 223 

not raise, atmospheric CO2. Thus, concomitant processes are required to counteract the effect of 224 

NADW expansion. Enhanced Southern Ocean CO2 outgassing has been suggested for the Bølling 225 

onset
6,12

. Based on our data, we propose a new mechanism, namely, AAIW expansion leading to rapid 226 

atmospheric CO2 increase, although our proposal is not mutually exclusive with other 227 

hypotheses
9,12,13

. Proxy and model data
33,39-43

 suggest that NADW production increased abruptly at 228 

~14.7 ka, necessitating increased northward transport of its source waters including AAIW (Fig. 5a-e; 229 

Extended Data Figs. 7-10). Compared to NADW, AAIW had lower DICas and was less efficient at 230 

sequestering atmospheric CO2 during the last deglaciation, as expected from its higher preformed 231 

[PO4
3-

] and hence a weaker biological pump
4,6

 (Figs. 1,4,5). By reducing air-sea CO2 storage in the 232 

upper Atlantic as manifested by our reconstructed DICas decline at GGC90, AAIW expansion likely 233 

contributed to the ~12 ppm atmospheric CO2 rise at the Bølling onset (Fig. 5; Extended Data Fig. 6). 234 

Due to its modest volume, relatively short residence time, and thus responsiveness to change
21,43

, 235 

AAIW volume variations present as an attractive candidate to explain abrupt atmospheric CO2 236 

changes. 237 

In addition to the upper Atlantic, AAIW changes could have a far-reaching impact on the 238 

atmospheric CO2 storage in broader oceanic volumes through altering NADW’s compositions. As 239 

illustrated in the preindustrial ocean (Fig. 1; Extended Data Fig. 10), northward AAIW transport could 240 

lower DICas of intermediate waters in the (sub-)polar North Atlantic. At least part of these waters 241 

would be entrained to form NADW
21,40-42,45

, reducing its efficiency to sequester atmospheric CO2 in 242 
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the vast ocean interior that NADW ventilates. Thus, AAIW expansion would decrease DICas of 243 

NADW and thereby counteract any atmospheric CO2 decline due to NADW reinvigoration and 244 

associated volume expansion. A simple calculation shows that AAIW changes could lead to ~4-8 ppm 245 

atmospheric CO2 rise at the Bølling onset (Methods). Despite potentially large uncertainties, our 246 

calculation suggests that AAIW changes likely played an important role in the atmospheric CO2 rise at 247 

this time. Nevertheless, the role of AAIW in controlling past atmospheric CO2 has been 248 

underappreciated. Our results highlight the importance of AAIW dynamics in regulating sharp 249 

atmospheric CO2 changes, with profound implications for understanding past and future carbon cycle 250 

and climate changes. 251 
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Figure captions: 270 

Fig. 1 | Preindustrial Atlantic air-sea CO2 exchange tracers. a,b, Air-sea CO2 exchange signatures 271 

of dissolved inorganic carbon, DICas (a), and carbonate ion, [CO3
2-

]as (b). Note that AAIW had most 272 

negative DICas values, presenting the least efficient water mass at sequestering atmospheric CO2. Also 273 

shown in a are approximate positions of oceanographic fronts and zones
45

. In b, circles represent 274 

studied sediment cores, while the inset shows GLODAP hydrographic data used to generate the 275 

transects
15,46

, following the method described in ref. 
16

. NADW = North Atlantic Deep Water, AABW 276 

= Antarctic Bottom Water, AAIW = Antarctic Intermediate Water, AZ = Antarctic Zone, PFZ = Polar 277 

Front Zone, APF = Antarctic Polar Front, and SAF = Sub-Antarctic Front.  278 

 279 

Fig. 2 | Age model for core GGC90. a, Calendar ages against depth. Orange circles and dark green 280 

squares are based on planktonic and benthic radiocarbon dates, respectively
24; this study

. Open symbols 281 

represent age reversals and are not used for the age model construction. The envelope shows 1age 282 

uncertainties. The sedimentation rate is ~23 cm/ka before ~14.3 ka, but decreases to ~3 cm/ka 283 

afterwards. b, Benthic 
18

O (dark green squares) and the LR04 curve (grey curve)
23,47

. Despite age 284 

reversals associated with planktonic dates (see Methods and ref. 
24

 for detailed discussions), benthic 285 


18

O and 
14

C data suggest that benthic foraminiferal shells can be used for reliable reconstructions.  286 

 287 

Fig. 3 | NEAP 4K deep-water reconstructions and age model. a, N. pachyderma (sinistral) coiling 288 

ratio (Nps%; blue squares) plotted against NGRIP 
18

O
48

 (dark grey curve). The age is based on Nps% 289 

(triangles) and 
14

C (crosses) dating methods. b, Cibicidoides wuellerstorfi B/Ca and reconstructed 290 

[CO3
2-

]
49

. c, C. wuellerstorfi Cd/Ca and reconstructed seawater Cd and [PO4
3-

]. The two green circles 291 

are based on Hoeglundina elegans Cd/Ca. d, C. wuellerstorfi 
13

C
27

. e, OxCal simulation results. The 292 

envelope shows 1age uncertainties. During the last deglaciation, the average sedimentation rate is ~6 293 

cm/ka. HOL = Holocene, YD = Younger Dryas, B/A = Bølling/Allerød, HS1 = Heinrich Stadial 1, and 294 

LGM = Last Glacial Maximum. 295 

 296 

Fig. 4 | Downcore deep-water chemistry reconstructions. a, carbonate ion content, [CO3
2-

]. b, 297 

phosphate content, [PO4
3-

]. Data for GGC90 and NEAP 4K are from refs 
22,23

 and this study, 298 

respectively. Crosses at the bottom indicate age control points. Bold curves and envelopes show 299 

probability maxima and 2errors, respectively. Dashed curves indicate expected [CO3
2-

] changes 300 

relative to 18.5 ka, assuming that biological respiration caused the temporal [PO4
3-

] and [CO3
2-

] 301 

changes without air-sea CO2 exchange (Methods). GGC90 and NEAP 4K data are coded by red and 302 

blue, respectively. 303 

 304 

Fig. 5 | Air-sea exchange tracers compared with other records. a, Greenland NGRIP ice-core 305 


18

O
38

. b, GGC5 (34°N, 58°W, 4550 m) sedimentary Pa/Th, a proxy for NADW production rates
33

. c, 306 



14 
 

[CO3
2-

]as and corresponding DICas anomalies (DICas) relative to 18.5 ka for GGC90 (red) and NEAP 307 

4K (blue) with probability maxima (bold curves) and 2 errors (envelopes). Crosses at the bottom 308 

shows age controls. d, Nd at GGC90 (red) and at ~670-1100 m (dark yellow) at the Demerara Rise 309 

(~8°N)
35,50

. e, Modelled cross equator AAIW transport (orange)
43

. f, Antarctic Zone (AZ) 
15

N based 310 

on deep-sea corals (curve; shading: 2) and diatoms (squares)
4,6

. Deep-sea coral 
15

N data are shifted 311 

by -7‰ to facilitate plotting with diatom data. g, AZ opal flux
2
. h, Antarctic ice-core CO2

1
. Literature 312 

records are plotted against their originally published age scales.  313 

 314 

Fig. 6 | Model results. a, Anomalies () in DICas. b, [CO3
2-

]. c, DIC. d, [PO4
3-

]. All anomalies 315 

indicate changes from 17.4 ka to 16 ka during which Southern Ocean upwelling is enhanced by 316 

increasing southern hemisphere westerlies
29

. Circles show locations of sediment cores studied here. 317 

See Methods for details. 318 

 319 
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 447 

 448 

Methods 449 

Air-sea CO2 exchange tracers: DICas and [CO3
2-

]as. Various methods have been used to investigate 450 

past carbon cycle (e.g., refs 
2,51-59

). Here we employ air-sea CO2 exchange tracers, DICas and [CO3
2-

]as, 451 

to investigate how the storage of atmospheric CO2 changed in the ocean interior during the last 452 

deglaciation. Due to their novelty and innate applications to paleoceanography, we briefly describe 453 

concepts of DICas and [CO3
2-

]as. We refer the reader to ref. 
16

 for calculation details. Assuming no 454 

air-sea exchange, [PO4
3-

]–DIC of a package of water would be coupled and change following the 455 

biogenic matter stoichiometry (including Redfield ratio and rain ratio, the latter of which indicates the 456 

soft-to-hard part molar carbon ratio)
14

. If a net air-sea CO2 exchange occurs, then DIC–[PO4
3-

] would 457 

decouple. The air-sea CO2 exchange signal can be described using DICas, following the approach from 458 

Broecker and Peng
14

. This approach has been used to calculate anthropogenic CO2 in the ocean by 459 

recent studies (e.g., ref. 
60

) as well as glacial air-sea CO2 exchange histories (ref. 
16

; see also Fig. 6). 460 

The approach corrects for DIC changes due to evaporation and precipitation effects, and within ocean 461 

https://odv.awi.de/
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DIC redistribution associated with organic carbon and CaCO3 production and deconstructions. After 462 

these corrections, we can obtain DICas which reflects the net effect of air-sea CO2 exchange that occurs 463 

at the ocean-atmosphere interface
16

. Fig. 1a shows the DICas distribution in the preindustrial Atlantic 464 

Ocean using the GLODAP data set
15

. 465 

 466 

Owing to the lack of a quantitative proxy for DIC, we use a linked CO2 system parameter, 467 

[CO3
2-

], to calculate another air-sea CO2 tracer termed [CO3
2-

]as (Fig.1 b), which is used to reflect 468 

changes in [CO3
2-

] due to air-sea CO2 exchange
16

. The calculation accounts for effects of temperature, 469 

salinity, and pressure changes (because these changes would affect [CO3
2-

] via affecting the CO2 470 

system dissociation constants, even without any net air-sea CO2 exchange), and corrects for 471 

within-ocean DIC redistribution associated with biological processes as is done for DICas calculations. 472 

As expected from the CO2 system theory
30

, DICas and [CO3
2-

]as are strongly negatively correlated (Fig. 473 

1; Extended Data Fig. 1).  474 

 475 

DICas and [CO3
2-

]as are calculated using a reference condition of [PO4
3-

] = 2.2 mol/kg (the 476 

global mean ocean value), salinity = 35‰, temperature = 3°C, and pressure = 2500 dbar. Using a 477 

different reference condition (e.g., [PO4
3-

] = 1.3 mol/kg) has no effect on their spatial/temporal 478 

patterns or their correlation. See ref. 
16

 for detailed discussions. 479 

 480 

It is important to note that air-sea CO2 exchange signals induced by marine biological and 481 

physical processes are preserved during the [CO3
2-

]as calculations. To better understand our 482 

calculations, we present the following two examples.  483 
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1. Cooling at a certain deep-water formation region would decrease [CO3
2-

] for two reasons: (i) 484 

changes in the CO2 system dissociation constants due to cooling, and (ii) more atmospheric 485 

CO2 absorption due to an enhanced solubility pump. In contrast to (ii), no air-sea CO2 change 486 

is involved in (i). In the calculation of [CO3
2-

]as, the temperature correction only removes 487 

influences from (i) but preserves the effect of air-sea CO2 exchange from (ii).  488 

2. An enhanced nutrient utilization can have the following two effects: (i) to decrease surface 489 

nutrient and DIC due to phytoplankton consumption, which increases seawater [CO3
2-

], and 490 

(ii) to lower surface CO2 partial pressure and absorb more atmospheric CO2, which decreases 491 

seawater [CO3
2-

]. Only (ii) involves air-sea CO2 exchange. Our [CO3
2-

]as calculation only 492 

corrects for the effect from (i).  493 

 494 

Seawater [CO3
2-

]as has the following characteristics: 495 

 A water mass’ source-water (i.e., “preformed”) [CO3
2-

]as integrates the effects of processes 496 

including solubility (linked to temperature and salinity changes) and biological (linked to 497 

nutrient changes) pump strengths, air-sea contact time (affected by surface residence time of 498 

source waters and sea ice covers), and gas exchange rates (linked to wind speeds)
17,61,62

.  499 

 Preformed [CO3
2-

]as reflects the net CO2 exchange (by all processes mentioned above) between 500 

the ocean and the atmosphere at the ocean surface prior to sinking. 501 

 More CO2 absorption would lead to lower preformed [CO3
2-

]as, and vice versa. 502 

 In the ocean interior, a [CO3
2-

]as at any location is determined by preformed [CO3
2-

]as values of 503 

water masses involved and their mixing proportions.  504 
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 During water mass mixing, [CO3
2-

]as is conservative, not affected by DIC or [PO4
3-

] changes 505 

associated with biological respiration. 506 

 Given a knowledge about water mass mixing, [CO3
2-

]as changes in the ocean interior can be 507 

used to infer preformed [CO3
2-

]as changes, which provides information about air-sea exchange 508 

at the surface. 509 

 Compared to [CO3
2-

] which is affected by biological respiration, using [CO3
2-

]as allows more 510 

direct links to atmospheric CO2 changes.  511 

 The calculation of seawater [CO3
2-

]as involves [CO3
2-

] and [PO4
3-

], but does not require a prior 512 

knowledge about preformed [PO4
3-

] values. This does not mean preformed [PO4
3-

] changes 513 

have no effect on [CO3
2-

]as, because they often do via changing surface CO2 partial pressure 514 

and air-sea CO2 flux. For an example, see “Other approaches to interpret GGC90 data during 515 

HS1” below. 516 

 A package of water with a higher [CO3
2-

]as stores less atmospheric CO2 (or releases more CO2 517 

to the atmosphere), and vice versa.  518 

 The temporal evolution of seawater [CO3
2-

]as may be affected by the global alkalinity and DIC 519 

changes associated with CaCO3 input-output imbalances between the ocean and sediments, but 520 

the effect is generally gradual
63

 and can be investigated based on marine sediment evidence 521 

and simulation results (see Extended Data Fig. 3).  522 

 523 

Cores, samples, analytical methods, and age models. For GGC90, benthic foraminiferal B/Ca and 524 

Cd/Ca data are from Lacerra et al.
22

 and Umling et al.
23

, respectively. Built upon previous work
24

, the 525 

age model of the core is improved by 5 new planktonic radiocarbon dates (Fig. 2). While there are clear 526 
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age reversals in the planktonic foraminiferal 
14

C results, stable isotope analyses of individual benthic 527 

foraminifera show limited effect of bioturbation in this core. As discussed in Lund et al. (2015)
24

, the 528 

age reversals reflect downward burrowing of carbonate-rich Holocene age material with abundant 529 

planktonic foraminifera but sparse benthic foraminifera. As a result, the planktonic 
14

C age model can 530 

display age reversals while the benthic 
18

O time series lack evidence of bioturbation. The robustness 531 

of our age model is corroborated by 18 new benthic foraminiferal radiocarbon dates (Fig. 2). At 532 

GGC90, no large surface reservoir age is expected due to its subtropical gyre setting where air-sea 533 

radiocarbon exchange is close to equilibrium
23

. Previous work suggests little change in the ventilation 534 

ages at intermediate water depths off the Brazil Margin
64

. We thus converted radiocarbon ages 535 

converted into calendar ages using the CALIB 7.01
65

 with the Marine13 calibration curve
66

 and ΔR 536 

values of 0±200 years (planktonics) and 1000±200 years (benthics) (1). The age uncertainty is 537 

estimated using the OxCal program
67

. At GGC90, sedimentation rates varied from ~3 cm/ka during 538 

10-14.3 ka to ~23 cm/ka during 14.3-20 ka (Fig. 2), favourable for early deglacial reconstructions.  539 

 540 

For NEAP 4K, about 20 cm
3
 of sediment from each sample (~1 cm thickness) was disaggregated 541 

in de-ionized water and was wet sieved through 63 m sieves. The epifaunal benthic foraminiferal 542 

species C. wuellerstorfi was picked from the 250-500 m size fraction. To ensure comparability of 543 

data with GGC90, we used the same analytical procedures to measure trace elements in NEAP 4K. For 544 

each sample, ~10-20 shells were picked and then double checked under a microscope before crushing 545 

to ensure that consistent morphologies were used throughout the core. For trace element analyses (n = 546 

28 pairs), all foraminiferal shells were cleaned with the “Cd-cleaning” protocol
27,68,69

. Benthic B/Ca 547 

and Cd/Ca ratios (Fig. 3) were measured on an inductively-coupled plasma mass spectrometer 548 
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(ICP-MS) using procedures outlined in ref. 
70

, with an analytical error better than ~4% (2). Mn/Ca 549 

and Al/Ca were also measured, and they showed no correlation with Cd/Ca or B/Ca, suggesting 550 

minimal influences from silicate or diagenetic coatings. The age model for NEAP 4K is based on 551 

published
28

 and new radiocarbon dates as well as new Neogloboquadrina pachyderma (sinistral) 552 

abundance counting (Fig. 3). Radiocarbon ages were converted into calendar ages using the CALIB 553 

7.01
65

 with the Marine13 calibration curve
66

. Previous work
71

 suggested significant increases in 554 

glacial surface reservoir ages at the core location, possibly linked to insufficient air-sea radiocarbon 555 

exchange in the polar North Atlantic. Following ref. 
72

, surface R values are assigned to be 0±200 556 

years and 400±500 years (1) for <165 cm (corresponding to the Holocene) and >180 cm 557 

(corresponding to the LGM), respectively. No radiocarbon dating is used for the HS1. Uncertainties of 558 

the age model are estimated using the OxCal program
67

. Our data reveal a mean sedimentation rate of 559 

~6 cm/ka during the last deglaciation (Fig. 3). 560 

 561 

Benthic B/Ca to deep-water [CO3
2-

]. At NEAP 4K, deep-water [CO3
2-

] values are reconstructed 562 

using benthic B/Ca
30,49

 from [CO3
2-

]downcore = [CO3
2-

]PI + B/Cadowncore-coretop/k, where [CO3
2-

]PI is the 563 

preindustrial (PI) deep-water [CO3
2-

] value estimated from the GLODAP dataset
15

, B/Cadowncore-coretop 564 

represents the deviation of B/Ca of down-core samples from the core-top value, and k is the 565 

B/Ca-[CO3
2-

] sensitivity of C. wuellerstorfi (1.14 mol/mol per mol/kg)
49

. We use a reconstruction 566 

uncertainty (2) of 10 mol/kg in [CO3
2-

] based on global core-top calibration samples
49,73

. For 567 

GGC90, deep-water [CO3
2-

] reconstructions are reconstructed using Cibicidoides pachyderma B/Ca 568 

(ref. 
22

) and a calibration specific to this species (ref. 
74

), with a reconstruction error of 10 mol/kg 569 

(2). 570 
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 571 

Benthic Cd/Ca to deep-water [PO4
3-

]. For NEAP 4K, we follow the established approach
75-77

 to 572 

convert C. wuellerstorfi Cd/Ca into deep-water Cd concentrations. We use a partition coefficients 573 

(DCd) of 2.2
27

 to calculate deep water Cd from: Cd (nmol/kg) = [(Cd/Ca)foram/DCd] × 10. The abundance 574 

of Hoeglundina elegans in NEAP 4K is very low, but measurements on a few H. elegans samples yield 575 

consistent Cd results with those based on C. wuellerstorfi (Fig. 3). Benthic Cd/Ca from this core were 576 

measured previously
27

, but we prefer to use our new Cd/Ca which were measured using the same 577 

solutions for B/Ca. This is because paired Cd/Ca and B/Ca measurements based on the same solutions 578 

are conducive to improving the accuracy of [CO3
2-

]as reconstructions. For GGC90, intermediate water 579 

Cd is reconstructed using H. elegans Cd/Ca and a DCd of 1, as published by Umling et al.
23

. Seawater 580 

Cd is converted into [PO4
3-

] using the relationship from ref. 
78

. Using other equations has little impact 581 

on the pattern of our reconstructions. Previous studies (e.g., refs 
79,80

) employing the same 582 

reconstruction approach have used ~6-9% errors (2) with [PO4
3-

]. To be conservative, we assign 10% 583 

uncertainty (2) for our [PO4
3-

] reconstructions.  584 

 585 

Deep-water temperature, salinity, and pressure estimates. For NEAP 4K, deep-water temperature 586 

(T) is estimated from the ice volume corrected benthic 
18

O (
18

OIVC) and the 
18

O-temperature 587 

equation of Marchitto et al.
81

 from: T = 2.5 – (
18

OIVC – 2.8)/0.224, where 
18

OIVC = 
18

Obenthic – 588 


18

Oglobal_sealevel. 
18

Oglobal_sealevel was estimated from sea level curves
82,83

 with a global 
18

Oseawater−sea 589 

level scaling of 0.0085‰/m
84

. For GGC90, T is reconstructed using H. elegans Mg/Li
23

. Owing to the 590 

relative weak sensitivity of [CO3
2-

] to T and narrow deep-water T variations in the past, using other 591 

methods to estimate T would negligibly affect our final [CO3
2-

]as values. Deep-water salinity (S) is 592 
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calculated by: S = Score_top + 1.11 × 
18

Oglobal_sealevel, where Score_top is the modern S (34.95 and 34.34 at 593 

NEAP 4K and GGC90, respectively
15

) and the term 1.11 is the scaling factor for a global 594 

S−
18

Oglobal_sealevel relationship
20,84

. We assume 1°C and 1‰ uncertainties (2) in T and S, respectively. 595 

Deep water pressure (P) is estimated using today’s water depths (1627 m and 1105 m for NEAP 4K 596 

and GGC90, respectively) and past relative sea level (RSL) reconstructions from: P = today’s water 597 

depth – RSL. 598 

 599 

[CO3
2-

]as and DICas calculations. Following the approach in ref. 
16

, calculation of [CO3
2-

]as involves 600 

two steps. First, we calculate normalized ([CO3
2-

]Norm) to account for salinity (S), temperature (T) and 601 

pressure (P) effects on [CO3
2-

] using the following equation: 602 

[CO3
2-

]Norm = [CO3
2-

] + (35 – S) × Sen_S + (3 – T) × Sen_T + (2500 – P)/100 × Sen_P                 (1) 603 

where Sen_S, Sen_T, and Sen_P represent sensitivities to S, T, and P (3 μmol/kg per ‰ change in S, 0.5 604 

μmol/kg per °C, and 0.1 μmol/kg per 100 dbar) as defined and shown in Fig. 4 of ref. 
16

. Then, [CO3
2-

]as 605 

is calculated by: 606 

[CO3
2-

]as = [CO3
2-

]Norm + ([PO4
3-

] – 2.2) × [CO3
2-

]Norm/[PO4
3-

] sensitivity – 78           (2) 607 

where [CO3
2-

]Norm/[PO4
3-

] sensitivity is the sensitivity of  [CO3
2-

]Norm to [PO4
3-

] changes due to 608 

biological processes (see Fig. 4 in ref. 
16

 for details), 2.2 represents the global mean ocean [PO4
3-

], and 609 

78 is an arbitrary term. In Fig. 5, we use sensitivities based on a Redfield ratio (C/[PO4
3-

]) of 127 and a 610 

rain ratio (R) of 4. Using other C/[PO4
3-

] and R values
85,86

 does not affect our conclusions (Extended 611 

Data Fig. 3).  612 

The error associated with [CO3
2-

]as is calculated using the following equation: 613 
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 [PO4
3-
]     . Based on uncertainties with individual parameters used, we 617 

obtain an average error in [CO3
2-

]as of 15 mol/kg (2). 618 

 619 

It is worth noting that [CO3
2-

]as calculations for all samples from NEAP 4K and majority of 620 

samples from GGC90 are based on paired [CO3
2-

] and [PO4
3-

] reconstructions using the same solutions 621 

(NEAP 4K) or co-existing shells (GGC90). This enables the two key parameters, [CO3
2-

] and [PO4
3-

], 622 

needed for computing [CO3
2-

]as to be estimated for the same shell growth environments, conducive to 623 

improving the accuracy of [CO3
2-

]as reconstructions.  624 

 625 
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DICas changes (DICas) are calculated from [CO3
2-

]as changes ([CO3
2-

]as) using: DICas = 626 

[CO3
2-

]as ÷ [CO3
2-

]as /DICas sensitivity. At NEAP 4K and GGC90, deglacial [CO3
2-

]Norm ranges from 627 

~70 to 100 mol/kg (here, [CO3
2-

]Norm = [CO3
2-

]as + 78), corresponding to [CO3
2-

]as/DICas sensitivities 628 

of -0.43 to -0.53 (Extended Data Fig. 2). We use a mean sensitivity of -0.48 to estimate DICas shown 629 

in Fig. 5c. 630 

 631 

Statistical analyses. Here we focus on millennial- and centennial-scale trends defined by multiple 632 

data points based on statistical analyses, and refrain from interpreting shorter timescale variations 633 

revealed by individual reconstructions. Uncertainties associated with [CO3
2-

], [PO4
3-

], and [CO3
2-

]as 634 

were evaluated using a Monte-Carlo approach
87,88

. Errors associated with the chronology (x-axis) and 635 

[CO3
2-

], [PO4
3-

], and [CO3
2-

]as reconstructions (y-axis) are considered during error propagation. Age 636 

errors are estimated using OxCal (see above)
67

. Methods to calculate errors associated with individual 637 

[CO3
2-

] and [PO4
3-

], [CO3
2-

]as reconstructions (y-axis) are given above. All data points were sampled 638 

separately and randomly 5,000 times within their chronological and [CO3
2-

] (or [PO4
3-

], [CO3
2-

]as) 639 

uncertainties, and each iteration was then interpolated linearly. At each time step, the probability 640 

maximum and data distribution uncertainties of the 5,000 iterations were assessed. Figs. 4 and 5 show 641 

probability maxima (bold curves) and ±95% (light grey; 2.5
th

-97.5
th

 percentile) probability intervals 642 

for the data distributions, including chronological and proxy uncertainties. For details, see refs 
87,88

. 643 

To objectively assess timing of DICas at GGC90 and atmospheric CO2 changes at ~14.7 ka, we 644 

employed the Rampfit software
89

. As can be seen from Extended Data Fig. 6, the DICas decline was 645 

concurrent with the ~12 ppm atmospheric CO2 rise at the Bølling onset, consistent with Monte-Carlo 646 

results (Figs. 5c,h). 647 
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 648 

Expected [CO3
2-

] calculation (Fig. 4). For a package of water that has no exchange of CO2 with the 649 

atmosphere and sediments, its [CO3
2-

] and [PO4
3-

] can be altered by varying amounts of biological 650 

matter respired. In this case, changes in [CO3
2-

] and [PO4
3-

] vary following the biogenic matter 651 

stoichiometry (including Redfield ratio and rain ratio). This provides a means to calculate the expected 652 

[CO3
2-

] changes for a water mass solely driven by biological recycling of carbon and nutrient within 653 

the ocean, if its [PO4
3-

] changes are known. For down core calculations, we use [PO4
3-

] and [CO3
2-

] at 654 

18.5 ka as reference values. The choice of 18.5 ka is to facilitate consideration of changes relative to 655 

the LGM, and using values at other ages does not affect our conclusion. For other times, [PO4
3-

] 656 

changes ([PO4
3-

]) relative to 18.5 ka are calculated by: [PO4
3-

] = [PO4
3-

] – [PO4
3-

]@18.5ka. Regarding 657 

[CO3
2-

] calculations, we first convert in-situ [CO3
2-

] at 18.5 ka into [CO3
2-

]Norm@18.5ka using equation 658 

(1). Then, the expected [CO3
2-

]Norm values at other ages are calculated by: expected [CO3
2-

]Norm = 659 

[CO3
2-

]Norm@18.5ka + [PO4
3-

] × [CO3
2-

]Norm/[PO4
3-

] sensitivity. Afterwards, the expected [CO3
2-

]Norm is 660 

converted back into expected in-situ [CO3
2-

] (dashed curves in Fig. 4a) to account for effects from 661 

T-S-P changes through time, a reversion for calculating [CO3
2-

]Norm. Note that this expected in-situ 662 

[CO3
2-

] assumes no air-sea CO2 exchange during the calculation. 663 

 664 

Other approaches to interpret GGC90 data during HS1. In the main text, we have used [CO3
2-

]as to 665 

infer enhanced Southern Ocean CO2 outgassing during HS1. Here, we demonstrate that the same 666 

conclusion can also be reached by combined use of [PO4
3-

] and [CO3
2-

], without using [CO3
2-

]as. 667 

During HS1, intermediate-water [PO4
3-

] remained roughly stable while [CO3
2-

] increased at site 668 
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GGC90. Given little increase in the mixing proportion of AAIW at GGC90
34,35

 (Fig. 5d, e), we 669 

consider the following scenarios from the LGM to HS1: 670 

(i) AAIW’s preformed [PO4
3-

] stayed stable. This would require no change in respired carbon 671 

and higher preformed [CO3
2-

]. However, the required little change in respired carbon is 672 

inconsistent with reduced export and remineralization in the South Atlantic during the early 673 

last deglacial
3,22

. Thus, we consider this possibility unfeasible. 674 

(ii) AAIW’s preformed [PO4
3-

] decreased. This would require greater respired carbon to keep 675 

intermediate-water [PO4
3-

] at a stable level at GGC90. A lower preformed [PO4
3-

] would 676 

imply a stronger biological pump, which would limit CO2 outgassing and thus store more 677 

carbon in the ocean, with an effect to lower seawater [CO3
2-

]
30

. Not only does this scenario 678 

contradict the observed reduction in phytoplankton export
3
, but greater biological 679 

respiration would also lower seawater [CO3
2-

] of AAIW, inconsistent with reconstructed 680 

[CO3
2-

] at GGC90. Thus, we discard this possibility. 681 

(iii) AAIW’s preformed [PO4
3-

] increased. The stable intermediate-water [PO4
3-

] at GGC90 682 

would require a reduction in respired carbon, consistent with proxy results
22

. Also, 683 

increased preformed [PO4
3-

] suggests a weaker biological pump in the Southern Ocean, 684 

consistent with opal flux and 
15

N data (Fig. 5)
2,4,54

. This further implies enhanced 685 

outgassing of CO2 via the Southern Ocean, contributing to a [CO3
2-

] increase in AAIW as 686 

manifested by the reconstruction at GGC90. Thus, this scenario is consistent with 687 

intermediate-water [PO4
3-

] and [CO3
2-

] at GGC90 as well as other proxy and model 688 

data
2,4,29,54

.  689 

 690 
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Based on consideration of various scenarios above, intermediate-water [PO4
3-

] and [CO3
2-

] at 691 

GGC90 most likely reflect CO2 outgassing via the Southern Ocean during HS1. As demonstrated in 692 

the main text, it is more straightforward to use [CO3
2-

]as to infer air-sea CO2 exchanges. Due to its 693 

conservative nature, [CO3
2-

]as can be used to infer preformed value changes, which can then be further 694 

used to infer air-sea gas exchange associated with source waters. 695 

 696 

Model results. We use results from a transient simulation
29

 to explore and corroborate feasibility of 697 

our air-sea tracers and associated pathways of the early deglacial CO2 release from the ocean to the 698 

atmosphere. Fig. 6 shows results for the “LH1-SO-SHW” transient simulation of the last deglaciation 699 

using the Earth System Model LOVECLIM
29

. Details on the experimental set-up are provided in ref. 700 

29
. Briefly, LOVECLIM includes an ocean general circulation model (3° by 3° and 20 vertical levels) 701 

coupled to a dynamic/thermodynamic sea-ice model, a quasi-geostrophic T21 atmospheric model, a 702 

land surface and vegetation model, and a terrestrial and marine carbon cycle
90

. The LGM state is 703 

obtained by forcing the model with appropriate boundary conditions (i.e., orbital parameters, Northern 704 

Hemispheric ice-sheet topography and albedo, and greenhouse gasses), and is constrained by oceanic 705 


13

C and ventilation distributions
91

. The experiment described here is a transient simulation of the 706 

period 19-15 ka forced by time-varying changes in orbital parameters, and Northern Hemispheric 707 

ice-sheet topography and albedo but with freely evolving atmospheric CO2 concentration and its 708 

isotopic compositions. The total alkalinity is kept constant throughout the deglacial simulation. 709 

“LH1-SO-SHW” includes meltwater input in the North Atlantic (0.04 Sv between 19 and 17.6 ka, and 710 

0.07 Sv between 17.6 and 16.2 ka) to simulate HS1, as well as a strengthening of the Southern 711 

Hemispheric westerlies in three steps at ~17.2 ka, 17 ka and 16.2 ka, and a decrease in buoyancy 712 
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forcing in the Southern Ocean at 17.6 ka and 16.2 ka. As a result, a ~28 ppm atmospheric CO2 increase 713 

is simulated between 18.5 and 16 ka. Based on modelled surface CO2 partial pressure and CO2 flux 714 

calculations, it is known that the modelled atmospheric CO2 rise is mostly driven by enhanced CO2 715 

release via the Southern Ocean.  716 

 717 

Here, we investigate how DICas changed in the upper Atlantic during 17.4-16 ka. Following 718 

ref. 
16

, DICas for each time of 17.4 ka and 16 ka is calculated by: 719 

DICas = DICs – ([PO4
3-

]s – [PO4
3-

]
mo

) × C/[PO4
3-

]  720 

– ½ × (ALKs – ALK
mo

 +[NO3
-
]s – [NO3

-
]

mo
) – DICconstant  721 

                  --  (4) 722 

where the subscript “s” represents values normalized to S (= 32.13) at 17.4 ka, the superscript “mo” 723 

denotes mean ocean values at 17.4 ka, [NO3
-
] = 16 × [PO4

3-
], C/[PO4

3-
] = 117, and the arbitrary 724 

DICconstant = 2377.42 to yield a global mean DICas of zero at 17.4 ka. Fig. 6a shows the Atlantic zonal 725 

mean DICas anomalies (16 ka relative to 17.4 ka) for 60°W-0°W. 726 

 727 

As can be seen from Fig. 6, the North Atlantic remains a sink of atmospheric CO2 (positive 728 

DICas anomalies), possibly linked to an enhanced solubility pump driven by strong cooling and 729 

declining salinity due to fresh water input. By contrast, the South Atlantic acts as a source of CO2 to the 730 

atmosphere (negative DICas anomalies), linked to enhanced upwelling of DIC-rich (high CO2 partial 731 

pressure) deep waters in the Antarctic Zone driven by strengthened Southern Hemisphere westerlies. 732 

These statements based on DICas are supported by surface water CO2 partial pressure and CO2 flux 733 
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calculations
29

, lending credence for using DICas to infer air-sea CO2 exchanges between the ocean and 734 

the atmosphere. 735 

 736 

Bølling onset signals. Due to potential complications (e.g., bioturbation) associated with marine 737 

sediment reconstructions, it is necessary to be cautious when interpreting short-lived signals. 738 

However, the fidelity of our reconstructed GGC90 [CO3
2-

]as rise at the Bølling onset is supported by 739 

several lines of evidence. First, we rely on the trends obtained from Monte-Carlo and Rampfit 740 

analyses, instead of individual measurements (Fig. 5c; Extended Data Fig. 6). The [CO3
2-

]as rise at the 741 

Bølling onset is well defined by multiple datapoints before, during, and after the transition. Given the 742 

short duration (~200 years) of the transition, it is fortuitous that we obtained three data points to define 743 

the [CO3
2-

]as rise, which is based on paired [CO3
2-

] and [PO4
3-

] reconstructions (Methods). Second, if 744 

taking bioturbation into account, the [CO3
2-

]as rise may have occurred over shorter time and with a 745 

greater [CO3
2-

]as magnitude. Thus, our current estimate of the signal magnitude is likely conservative. 746 

Also, we note the success of using sediment cores with comparable or even lower sedimentation rates 747 

to investigate centennial events
9,10,92,93

. Similar to our work, previous studies had only a couple of data 748 

points during the Bølling onset, which is a natural consequence associated with the abrupt event. 749 

Third, our inferred AAIW expansion at the Bølling onset is supported by published proxy and model 750 

results
33,39-43

 (Fig. 5; Extended Data Figs. 7-9), lending credence to the robustness of our [CO3
2-

]as 751 

reconstructions.  752 

 753 

Carbon budget estimates at the Bølling onset. The effect of AAIW expansion to raise atmospheric 754 

CO2 includes two parts: (i) decreasing DICas in the upper Atlantic and (ii) decreasing DICas of NADW 755 
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and thereby DICas of the large oceanic volume that NADW ventilates. The effect from (i) can be 756 

estimated as follows. The total atmospheric CO2 storage reduction in the upper Atlantic (∑C) is 757 

calculated by: ∑C = V × density × DICas × 12, where V is the water mass volume experienced CO2 758 

loss and is estimated to be 1.9×10
16

 m
3
 (assuming 50% of waters at 0.6-1.2 km and 50°S-60°N in the 759 

Atlantic), density = 1027.8 kg/m
3
 (ref. 

20
), and the number 12 converts C from moles into weight. 760 

Today, AAIW is found at ~500-1200 m
94

 and distributed across most of the Atlantic up to ~30°N
95

. 761 

Based on DICas of ~33 mol/kg as reconstructed from GGC90 (Fig. 5c), we obtain total ∑C change 762 

of ~8 PgC. Using a factor of 2.1 PgC per ppm CO2, the air-sea CO2 storage change in the upper 763 

Atlantic corresponds to ~4 ppm atmospheric CO2 increase, accounting for ~1/3 of the observed 764 

atmospheric CO2 rise.  765 

 766 

The effect from (ii) is difficult to assess because we cannot easily quantify AAIW’s impact on 767 

DICas change associated with NADW. Because AAIW is a weak water mass at sequestering 768 

atmospheric CO2, more AAIW production would cause more CO2 release. The total amount of CO2 769 

released due to an increased production of AAIW may be calculated by: ∑C = Sv × t × density × 770 

DICas × 12, where Sv is the increase in AAIW production rate over the duration (t) of the Bølling 771 

onset. This calculation provides an estimate of AAIW’s influences on atmospheric CO2 from both (i) 772 

and (ii). Model data (Fig. 5e)
43

 show a pulse of increased AAIW production by ~7 Sv (Sv) over ~200 773 

years (t). The ~200-year duration is also revealed by the high-resolution ice-core CO2 record
1
. Using 774 

DICas of 33 mol/kg based on GGC90 reconstructions, we obtain a ∑C of 18 PgC, corresponding to 775 

~8 ppm change in atmospheric CO2. 776 

 777 
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We acknowledge potentially large uncertainties associated with our calculations due to poor 778 

geographic coverage of proxy data and assumptions with the AAIW production rate. Nevertheless, our 779 

calculations indicate that AAIW variations could have played an indispensable role in driving up 780 

atmospheric CO2 at the Bølling onset. Additional proxy data and employment of models are required 781 

to better quantify AAIW’s effects on atmospheric CO2. 782 

 783 

Data availability 784 

All new data are archived in PANGAEA (XX) and also provided in Supplementary Data. 785 
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Extended Data Fig. 1 | Preindustrial Atlantic [CO3
2-

]as vs DICas as shown in Fig. 1. Data are from 813 

ref. 
1
, based on the calculation method from ref. 

2
. Black curve represents the best fit of the data. 814 

Simply put, when a water mass sequesters more atmospheric CO2, it has lower [CO3
2-

]as and higher 815 

DICas, and vice versa. For example, adding CO2 into a package of water would increase its DICas. At 816 

the same time, because the added CO2 would convert some [CO3
2-

]as into bicarbonate, its [CO3
2-

]as 817 

should decrease. Thus, the negative [CO3
2-

]as–DICas correlation is exactly expected from the CO2 818 

system theory
3
. See ref. 

2
 and Methods for detailed discussions. 819 

 820 

 821 

 822 

 823 

 824 

 825 

 826 

 827 

 828 

Extended Data Fig. 2 | [CO3
2-

]as/DICas sensitivity vs. [CO3
2-

]Norm. [CO3
2-

]Norm = [CO3
2-

]as + 78. The 829 

sensitivity is calculated based on the method from ref. 
2
. The large circle indicates the average 830 

sensitivity (-0.48) for [CO3
2-

]Norm ranges (shaded region) observed at sites GGC90 and NEAP 4K 831 

during the last deglaciation. 832 

 833 

 834 



36 
 

 835 

 836 

 837 

Extended Data Fig. 3 | Effect of biogenic composition and global alkalinity change on GGC90 838 

[CO3
2-

]as. a, Biogenic composition effect. C/[PO4
3-

] and R values represent Redfield ratio and rain 839 

ratio (i.e., molar carbon ratio between soft and skeleton parts), respectively. b-d, Effect of global 840 

alkalinity (ALK) changes associated with carbonate compensation. Assuming little change in 841 

continental weathering, increased carbonate burial in the deep ocean
10-13

 and on shelves driven by sea 842 

level rise
14-16

 would decrease the global ALK (b) and DIC at a 2:1 ratio during the last deglaciation. 843 

These changes would lower seawater [CO3
2-

]as (c), even without any air-sea CO2 exchange. Taken this 844 

global ALK effect into account, [CO3
2-

]as at GGC90 would show a larger increase during the last 845 

deglacial (d), suggesting greater CO2 outgassing from the upper Atlantic. Here we use a recent 846 

model-based global ALK change
17

 to demonstrate the global ALK effect. Using other ALK estimates 847 

may yield different amplitudes of [CO3
2-

]as changes, but the overall pattern should maintain. Due to the 848 

large and slow response of the global oceanic ALK reservoir, any global ALK change would affect 849 

[CO3
2-

]as would be gradual (c). As can be seen, even considering potential influences from biogenic 850 

composition and global ALK changes, deglacial [CO3
2-

]as evolution pattern persists, supporting our 851 

interpretation in the main text.  852 

 853 

 854 

Extended Data Fig. 4 | Antarctic Zone opal flux data from different sectors of the Southern 855 

Ocean. As can be seen, opal fluxes differ in absolute values (e.g., much higher deglacial fluxes in the 856 

Atlantic sector core 13PC than in other cores) and patterns (e.g., a substantial decline in the Atlantic 857 

core 13PC during Bølling/Allerød, which is not seen in other cores; sustained opal flux increase in 858 

PS75/072-4 during the Holocene, but not seen in other cores). These different patterns may reflect 859 

varying hydrological conditions between different sectors of the Southern Ocean. This warrants the 860 

use of additional proxies to check palaeoceanographic inferences based on opal fluxes. Opal flux data 861 

are from refs. 
18-20

. Literature data are plotted against their originally published age models. 862 

 863 

 864 

Extended Data Fig. 5 | Heterogeneous surface-water CO2 partial pressure (pCO2) in the 865 

Southern Ocean. a, Spatial surface-water pCO2 during the preindustrial, based on the GLODAP data 866 

set
1
. Note that the data coverage is incomplete and should not be treated to reflect the annual mean 867 

conditions. b, Temporal surface water and atmospheric pCO2 gradient (pCO2) at PS2498-1 from the 868 

South Atlantic. c, Temporal pCO2 at MD97-2106 from the South Pacific (see also ref. 
21

). 869 

Surface-water pCO2 was heterogeneous in the Southern Ocean, both spatially and temporally. Despite 870 

the Southern Ocean being an overall source of CO2 to the atmosphere, some surface ocean regions had 871 

lower pCO2 than the atmosphere, possibly reflecting seasonal and hydrographical variations in surface 872 

conditions. When using surface data, this highlights the need to obtain data for different seasons at 873 

broad locations to gain complete information about the Southern Ocean’s role in atmospheric CO2
22

. 874 

Literature data are plotted against their originally published age models. 875 

 876 

 877 

 878 
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 879 

Extended Data Fig. 6 | Concurrent changes in atmospheric CO2 and DICas in core GGC90 at 880 

the Bølling onset. a, WDC ice-core atmospheric CO2
1
. b, ΔDICas in core GGC90 (this study). The 881 

ramp fittings of atmospheric CO2 and ΔDICas records are indicated in gray and red lines, respectively. 882 

The estimated change-points (±standard errors) of the CO2 transition are: t1 (start) = 14.77±0.04 ka, 883 

t2 (end) = 14.63±0.03 ka. The estimated change-points (±standard errors) of the ΔDICas transition 884 

are: t1 (start) = 14.89±0.35 ka, t2 (end) = 14.53±0.34 ka. Note that the large errors with ΔDICas 885 

change-point dates are mainly sourced from the assumed uncertainties (±200 years) associated with 886 

surface reservoir ages used for age model constructions (Methods). The slightly broader ramp in 887 

DICas at GGC90 is expected due to bioturbation. The results are based on 1,000 bootstrap 888 

replications. The black dash lines highlight the concurrence of the atmospheric and oceanic 889 

transitions. The analyses are based on Rampfit software
39

. 890 

 891 

 892 

 893 

 894 

Extended Data Fig. 7 | Increased AAIW mixing at GGC90 at the Bølling onset. a, Core locations 895 

against modern seawater salinity
1
. b, Pa/Th

23
. Everything else being equal, NADW invigoration at the 896 

Bølling onset (vertical yellow bar) would decrease Nd at GGC90. To prevent any Nd decline at 897 

GGC90, a concomitant increase in AAIW production would be required. c, GGC90 Nd
24

 compared 898 

with records from high latitudes North [eastern basin: BOFS 17K
25

; western basin: KNR198 cores
26

] 899 

and South [curves: TNO57-21
27

 and MD07-3076Q
28

; circles: deep-sea corals
29

] Atlantic. At the 900 

Bølling onset, GGC90 Nd shifted towards southern-sourced water (SSW) compositions (light blue 901 

shading), suggesting more AAIW mixing. d, Deep Atlantic Nd
26

 became even less radiogenic than 902 

shallower water Nd (grey shading), possibly linked to enhanced weathering of the North America
26

. 903 

e, Authigenic Nd at the Blake Bahama Outer Ridge
24

. In d and e, Nd declines at the Bølling onset 904 

possibly suggest addition of less radiogenic Nd during the southward transport of NADW
24,26,30

. This 905 

effect [e.g., non-conservativeness during mixing
31

] would require even more AAIW mixing to 906 

maintain radiogenic Nd at GGC90 at the Bølling onset. Grey and light blue bars along y-axes indicate 907 

modern northern-sourced water (NSW) and SSW endmembers, respectively. These endmembers are 908 

thought to have changed in the past
25,26,30

. Literature data are plotted against their originally published 909 

age models. 910 

 911 

 912 

Extended Data Fig. 8 | Northward AAIW expansion at the Bølling onset. a, Core locations against 913 

the modern seawater [PO4
3-

] (shading)
1
. Solid and dashed white curves show, respectively, inferred 914 

AAIW geometries for HS1 and the Bølling onset, based on proxy and model results [
13

C
32,33

, 915 

Nd
34-36

, Cd/Ca
37,38

, and model
39

]. More data are needed to better constrain these geometries. b, Pa/Th 916 

at GGC5
23

. c, Benthic Cd/Ca for the mid-depth Atlantic
5,37,38, this study

. At NEAP 4K, C. wuellerstorfi 917 

Cd/Ca are adjusted by a factor of 2.2 to account for DCd difference between H. elegans and C. 918 

wuellerstorfi
9,40

. Vertical band shows the Bølling onset at ~14.7 ±0.25 ka. Compared to 26JPC (grey 919 

circles), NEAP 4K (blue circles) and GGC100 (blue squares) are more affected by NADW due to their 920 

deeper water depths and higher latitudinal locations (a). Without increased AAIW mixing, enhanced 921 

production of low-Cd NADW would have lowered Cd at 26JPC. Additionally, enhanced ventilation by 922 



38 
 

NADW would decrease respired nutrient and thereby lower Cd at 26JPC. Thus, the sustained high Cd 923 

at 26JPC (and NEAP 4K) suggests increased mixing of AAIW at intermediate depths of the tropical 924 

North Atlantic at the Bølling onset, which is also supported by Nd data shown in Extended Data Fig. 925 

9. Literature data are plotted against their originally published age models. 926 

 927 

 928 

 929 

 930 

Extended Data Fig. 9 | Increased AAIW mixing at the intermediate North Atlantic at the Bølling 931 

onset. a, Core locations against modern seawater salinity
1
. b, Pa/Th, a proxy for NADW strength

23
. c, 932 

Nd at 26 JPC [discrete and connected circles are based on fish teeth and Fe-Mn leachates, 933 

respectively
41,42

]. Grey and light blue shadings and blue circles are defined in Extended Data Fig. 7. 934 

Nd at 26JPC was well within the range of NSW values (grey shading) during HS1, but shifted 935 

towards SSW values (light blue shading) at the Bølling onset. This is consistent with a northward 936 

expansion of AAIW at the Bølling onset
33,37-39

. Vertical grey and light blue bars along y-axis indicate 937 

modern NSW and SSW endmembers, respectively. 938 

 939 

  940 

 941 

 942 

 943 

 944 

 945 

Extended Data Fig. 10 | Northward transport of AAIW in the preindustrial Atlantic Ocean. a, 946 

DICas–neutral density (
N
) transect. b, DICas–salinity transect. Along isopycnal surfaces (

N
 = ~27.5 947 

kg/m
3
 for AAIW), the low-DICas signals of AAIW can be traced at the intermediate depths in the 948 

high-latitude North Atlantic
26-31

 (a). Cross-equator transport of AAIW is also suggested by the 949 

northward extension of low-salinity waters at ~1 km (b). AAIW is found at ~500-1200 m
32

. Latest 950 

analyses suggest AAIW is distributed across most of the Atlantic up to ~30°N
33

. Because at least part 951 

of intermediate waters in the North Atlantic would be entrained to form NADW
26-28

, northward AAIW 952 

expansion would affect NADW’s DICas values. At the Bølling onset, our and previous results
30,31,34-37

 953 

suggest a sudden northward expansion of AAIW (Extended Data Figs. 7-9) with an effect to lower 954 

DICas and thus atmospheric CO2 sequestration efficiency of NADW. Map generated using Ocean Data 955 

View based on the GLODAP data set
14,38

. 956 
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