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Abstract. In shelled molluscs, assigning valid species names to independent evolutionary lineages can
be a difficult task. Most original descriptions are based on empty shells and the high levels of variation in
shape, color and pattern in some groups can make the shell a poor proxy for species-level identification.
The deep-sea gastropod turbinid genus Bolma is one such example, where species-level identification
based on shell characters alone is challenging. Here, we show that in Bo/ma both traditional and molecular
taxonomic treatments are associated with a number of pitfalls that can lead to biased inferences about
species diversity. Challenges derive from the few phylogenetically informative characters of shells,
insufficient information provided in original descriptions and sampling artefacts, which at the molecular
level in spatially fragmented organisms can blur distinctions between genetically divergent populations
and separate species. Based on a comprehensive dataset combining molecular, morphological and
distributional data, this study identified several cases of shell-morphological plasticity and convergence.
Results also suggest that what was thought to be a set of distinct, range-restricted species corresponds
instead to a smaller number of more widespread species. Overall, using an appropriate sampling design,
including type localities, allowed us to assign available names to evolutionarily significant units.
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Introduction

While soft-tissue anatomy is used for classification and recognition of higher taxonomic ranks in
Mollusca, shell features are generally considered adequate and more convenient for species identification
(Bouchet & Strong 2010). One of the main reasons why the use of shell features is so emphasized in
classical taxonomic treatments is that empty shells, i.e., the post-mortem remains of living animals,
supplement live records for comprehensively documenting the geographical distribution and intraspecific
variability of species. As a consequence, museum holdings, including type specimens used as concrete
references for species names, mainly consist of empty shells (Bouchet & Strong 2010). Hence, since
the late 20" century polymorphism of mollusc shells has been increasingly documented as a cause of
taxonomic confusion (Knowlton 2000). Indeed, it is not uncommon that nominal species, delimited
mainly or entirely by shell morphology, do not match genetic entities defined using neutral markers.

Discordances between morphospecies and genetic entities not only include cases of shell polymorphism
within genetic entities, but also shell conservatism among distinct genetic entities. Such discordances
were discussed in recent papers, for example in the genus Nacella Schumacher, 1817 (Gonzalez-Wevar
et al. 2011), the genus Bathytoma Harris & Burrows, 1891 (Puillandre et al. 2010b) and the subfamily
Rapaninae Gray, 1853 (Claremont et al. 2012). Alternatively, within a single nominal species analysis of
neutral genetic markers can sometimes lead to the detection of both cryptic lineages and ecotypes (e.g.,
Lottia digitalis (Rathke, 1833); see Crummett & Eernisse 2007). Polymorphism in shell characters may
result from a recent adaptive radiation that can not yet be detected with neutral genetic characters and/or
may be due to developmental plasticity in different environments (as, for example, in Vrijenhoek 2009).
Similarity of shell features may result from parallel evolutionary processes occurring within distinct
lineages evolving under similar environmental constraints (e.g., Littorina Férussac, 1822; Johannesson
et al. 2010), or from allopatric speciation and non-adaptive radiation for maintenance of similar shells
among divergent taxa within a single genus (e.g., Lunella Roding, 1798; Williams ef al. 2011). These
evolutionary processes include parallel divergent selection in reproductively isolated populations and
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also the persistence of ancestral polymorphism among closely related species. Taking into account these
data, species delimitation in molluscs should not be solely based on shell features but on the integration
of complementary sources of data, as discussed in Dayrat (2005) under the umbrella term of ‘integrative
taxonomy’. Such an integrative approach to species delimitation is in accordance with a unified view
of the species concept (de Queiroz & Weins 2007; Barberousse & Samadi 2010). Moreover, in taxa for
which knowledge about the determinism of shell variation is lacking, or for which data provide evidence
of phenotypic plasticity, the morphology of the shells should not be used as primary evidence but as
secondary evidence. This approach has recently been successfully applied, for example, in Weigand
et al. (2011) and formalized in Puillandre et al. (2012). The variability of shell features may then be
interpreted within these species hypotheses to determine diagnostic shell characters, which in turn may
be used on post-mortem remains to complement knowledge about species distributions (as for example
applied in Castelin et al. 2010, 2012).

The deep-sea gastropod turbinid genus Bolma Risso, 1826 is one example of a challenging case for
taxonomic treatment at the species level. Specimens attributed to this genus occur at tropical and
warm-temperate latitudes (in the Mediterranean, West African, South African, and Indo-West Pacific
biogeographic provinces), mostly on hard bottoms at depths between 100 and 500-800 m (Alf et al.
2010), which make them difficult to sample. Nominal species display a wide range of shell morphologies,
colours and sizes, but no consensus exists among taxonomists about which shell-character traits and
which criteria must be evaluated to delineate species hypotheses objectively and operationally. For
instance, geographical isolation has often been emphasized as a good proxy for species delimitation (see
Alf et al. 2010). The rationale underlining this criterion is the bentho-pelagic life cycle (sensu Salvini-
Plawen & Haszprunar 1987) of the superorder Vetigastropoda, to which the genus belongs. Indeed, in
Vetigastropoda the larval development involves three planktonic stages (egg, trochophore and veliger),
each poorly supplied with maternal resources, which limits the planktonic larval duration from several
hours to a week (Salvini-Plawen & Haszprunar 1987). Given these life-history traits, dispersal is expected
to be limited among populations separated by hundreds of kilometers. Moreover, in Bo/ma most species
descriptions are based on only a few individuals collected from one or only a few locations (e.g., Beu &
Ponder 1979). Thus, one of the main impediments to the taxonomic treatment of Bolma is the lack of
documentation of individuals living outside of the type locality. As a consequence, intraspecific shell
polymorphism across a species range is only rarely illustrated.

In this context, during the last forty years a suite of oceanographic expeditions organized within the
framework of the Tropical Deep-Sea Benthos program (Bouchet et al. 2008) sampled the deep-sea
benthos of the Indo-West Pacific and provided a large amount of appropriately preserved material that
we took advantage of to clarify Bo/ma’s taxonomy. The sampled specimens displayed a wider range
of shell variability than previously documented (e.g., compared with that described in Beu & Ponder
1979), suggesting either a higher level of intraspecific shell polymorphism than previously recognized
or the presence of several species potentially new to science (cf. the most recently described species
by Alf & Kreipl 2011). The issues raised at the species level also arise at the genus level. Indeed, in
recent phylogenetic results Bo/ma do not constitute a monophyletic lineage (Williams 2007). The genera
Astraea Roding, 1798, Bellastraea Iredale, 1924, and Guildfordia Gray, 1850, which cluster with Bolma
in the same clade, also present a wide variety of shell morphologies. The single valid species of 4Astraea
is restricted to deep waters off New Zealand, the three valid species of Bellastraea are restricted to
Southern Australia and the ten valid species of Guildfordia are restricted to the northwestern Pacific
area.

In this study, we developed an integrative approach that follows the formalized approach to taxonomy
proposed in Puillandre et al. (2012b), in which species hypotheses are primarily built on molecular
character sets rather than on shell characters. We used DNA sequences from cox1 and 28S to build a
molecular phylogeny of the genus Bolma integrating all of the available molecular data from the “deep-
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water” clade of the subfamily Turbininae (Williams 2007, i.e., the genera Astraea, Bellastraea, Guildfordia
and Bolma). The diagnostic value of shell traits was then evaluated in the context of molecular results.
First, we analyzed the shell variation within species hypotheses to assess the significance of the shell
polymorphism among spatially isolated but genetically connected populations. Next, we examined shell
variation among species hypotheses in relation to their phylogenetic relatedness. Last, using the shell
characters determined as diagnostic of the species as defined with our integrative taxonomic treatment,
scientific species names were attributed to the identified species hypotheses after comparing specimens
in this study with type specimens deposited in museum collections or other available taxonomic data
(e.g., original description, revision or type localities).

The results presented here showed that in Bolma, both traditional and molecular taxonomic treatments
are associated with a number of challenges and pitfalls that can lead to poor inferences about species
diversity. The main limitations derive from the poor evolutionary significance of the shell shape, the
insufficient information provided in the original descriptions (notably about shell variability across the
species range), and sampling artefacts, which at the molecular level in spatially fragmented organisms
can blur distinctions between genetically divergent populations and distinct species. Based on both an
integrative taxonomic approach rooted in a multi-locus phylogenetic framework and a large collection
of over two hundred specimens sampled in deep-sea areas covering almost 160 degrees of longitude
(from the Atlantic eastward to the Southwest Indian Ocean and the Southwest Pacific), the present
study produced a comprehensive dataset combining molecular, morphological and distribution data for
22 putative species that can be used in future studies to address a wide variety of eco-evolutionary
questions in tropical deep-sea ecology.

Material and methods
Specimen sampling

Most of the samples studied were collected during expeditions conducted by the Muséum national
d’Histoire naturelle in Paris (MNHN), in partnership with the Institut de Recherche pour le Développe-
ment (IRD), Pro-Natura International (PNI), the Instituto Espafiol de Oceanografia (IOE), the Natural
History Museum of London (NHM) or Nagoya University (and donated to the NHM). Additional new
samples were obtained from field contacts (see Acknowledgements). Samples include 196 specimens
initially attributed to Bolma or Guildfordia collected throughout the Northwest and the Southwest
Pacific Ocean (161 specimens), the Southwest Indian Ocean (32 specimens), the Eastern Atlantic
(2 specimens) and the Mediterranean Sea (1 specimen) (Fig. 1). Overall, about 80 discrete sites were
sampled by scuba diving, dredging and trawling at depths between 20 and 1000 m (Supplementary file).
In the field, living specimens were anesthetized using magnesium chloride (MgCl,) and a piece of tissue
was cut from the head-foot and fixed in 95% ethanol. Shells were kept intact for identification. Vouchers
were deposited in museum collections, primarily MNHN (see Table 1 and the Supplementary file).

Molecular methods

Total genomic DNA was extracted from the head-foot using the semi-automated ABI PRISM™ 6100
Nucleic Acid PrepStation. The standard barcode region of the mitochondrial cox1 gene, and a fragment
of the nuclear 28S rRNA gene including the D1 and D2 domains (Hassouna et al. 1984; Palumbi et
al. 1991) were amplified using the primers LCO1490 and HCO2198 (Folmer ef al. 1994) and C1 and
D2 (Jovelin & Justine 2001), respectively. Polymerase chain reaction (PCR) protocols are described
in Castelin ef al. (2010). The annealing temperatures of the analyzed genes were 48°C for cox1 and
52°C for 28S. PCR products were purified using Exonuclease I and Shrimp Alkaline Phosphatase, and
sequenced with PCR primers using the BigDye Terminator v. 3.1 kit (Applied Biosystem) and run on an
AB3730XL sequencer. All genes were sequenced in both directions and sequences were aligned using
MUSCLE (Edgar 2004). Unique cox1 sequences were identified using DnaSP v. 5 (Librado & Rozas
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2009) and multiple copies were removed from the full dataset in order to produce a subset including
only unique sequences. All new sequences were deposited in GenBank and the BOLD System in the
MARBOL project DS-BOLMA (Supplementary file).

Additional data

Published sequences for 19 specimens attributed to Bolma, Guildfordia and two other closely related
genera, Astraea and Bellastraea, were also included in the dataset (Supplementary file). Following
previous phylogenetic studies of Turbininae (Williams & Ozawa 2006; Williams 2007), published
sequences attributed to Cookia sulcata (Lightfoot, 1786) (one specimen), Astralium haematragum
(Menke, 1829) (one specimen) and Prisogaster niger (W. Wood, 1828) (two specimens), were used as
outgroup taxa (Supplementary file).

From integrative taxonomy to naming species

The processes of delimiting and identifying candidate species relied on a four-step integrative taxonomy
approach in which species hypotheses are first based on molecular characters. These four steps, as
detailed further in this section, were to: (1) derive primary species hypotheses (PSHs) based on the
phylogenetic analysis using cox1; (2) document this set of PSHs for an unlinked nuclear marker based
on a phylogenetic analysis and a visual inspection of the alignment for diagnostic sites among PSHs;
(3) derive secondary species hypotheses (SSHs) by assessing the morphological variation of the shells
within and among the PSHs and the geographical isolation among the PSHs; (4) assign a valid species
name by comparing sequenced specimens with type specimens or other available taxonomic data (e.g.,
original description, revision or type localities).

For the first step, the cox1 dataset was analysed using the single and the multiple thresholds, General
Mixed Yule Coalescent (GMYC) method (Pons ef al. 2006). The GMYC method was run on both the
cox1 dataset including all sequences and a reduced dataset including only unique sequences. Using
JModeltest 2 (Guindon & Gascuel 2003; Darriba et al. 2012), the best nucleotide substitution model
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Fig. 1. Map showing sampling localities. See Supplementary file for details.
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for both cox1 datasets was determined to be Tamura-Nei with gamma distribution (TrN+G) for the
three codon partitions. A Bayesian ultrametric tree was produced using BEAST v. 1.7.4 (Drummond e?
al. 2012) and a coalescent model of constant population size as the tree prior and heterogeneity of the
mutation rate across lineages set under an uncorrelated log-normal clock. The mutation rate was set to
one to get branch lengths in units of substitutions per site. Two independent analyses, with UPGMA
starting trees, were run over 100 million generations with a sample frequency of 1000. After checking
for adequate mixing and convergence of runs by confirming effective samples size (ESS) values for all
parameters were > 200 with Tracer v. 1.6 (Rambaut et al. 2014), ten million samples were discarded as
a burn-in, the two runs were pooled together and re-sampled every 10000 steps and a maximum clade
credibility tree was compiled using TreeAnnotator (default parameters). The resulting tree served as an
input for the GMYC script, which was run from the R package (R Development Core Team 2012) using
the Splits (Ezard et al. 2009) and Ape (Paradis et al. 2004) libraries. The partitioning was also examined
at the lower confidence limits of the GMYC approach (i.e., lower solution within two log-likelihood
units of the maximum likelihood, equivalent to 95% confidence intervals; Edwards 1984; Monaghan et
al. 2009). Uncorrected p-genetic distances within and among genetic entities defined from the GMYC
analysis were estimated using the Mega 6 software (Tamura et al. 2013) so that values could be directly
compared with the literature.

For the second step, we tried to obtain at least one 28S sequence for each genetic entity recognized
using cox1. Monophyly of the PSHs delineated using cox1 were evaluated based on Bayesian analyses
(BA) produced using BEAST (Drummond & Rambaut 2007). The best nucleotide substitution model
for the 28S dataset was determined using JModeltest 2 (Guindon & Gascuel 2003; Darriba et al. 2012)
to be the Tamura-Nei nucleotide substitution model with a proportion of invariant sites (TrN+1I). Four
independent analyses were each run for 40 million generations with a sample frequency of 5000. After
checking for adequate mixing and convergence of runs, four million samples were discarded as burn-in,
the four runs were pooled together and re-sampled every 5000 steps and a maximum clade credibility
tree was calculated.

In the third step, PSHs were compared across independent molecular markers (cox1 and 28S). When
cox1 and 28S both suggested monophyly of PSHs, the hypothesis of distinct species was favored. When
several PSHs shared the same set of 28S genotypes, two cases were evaluated: (1) when morphological
and cox1 variation among PSHs were low over large spatial scales, the hypothesis of a single species
was favored; (2) when morphological and cox1 variation among PSHs were high over small spatial
scales, the hypothesis of several distinct species was favored. This step allowed the definition of a final
list of secondary species hypotheses (SSHs) that needed to be named.

In the last step, all sequenced individuals were examined morphologically. First, we analyzed the shell
variation within SSHs to assess the significance of the shell polymorphism among spatially isolated
but genetically connected populations. Next, to detect morphological convergences, we examined shell
variation among SSHs in relation to their phylogenetic relatedness. Last, specimens were compared
with type specimens or other available taxonomic data (e.g., original description, revision or specimens
from type localities), and focusing on the sequenced specimens collected from the type localities, we
tentatively attributed names to molecular species hypotheses (Supplementary file).

Phylogenetic inferences

The cox1 and 28S datasets were used to reconstruct the evolutionary history of species defined using the
integrative approach described above. We used the Species Tree Ancestral Reconstruction (*BEAST)
method implemented in BEAST v. 1.7.4 (Heled & Drummond 2010; Drummond et al. 2012). By
modelling intraspecific polymorphism and incomplete lineage sorting using several individuals per
species and two loci, this method aims to reduce the discrepancy between the gene trees and the species
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tree. All individuals for which both cox1 and 28S sequences were available were included in the analysis.
Sequences were partitioned by genes and cox1 was further partitioned by codon position. Substitution
models were as used previously. The birth—death model of speciation with incomplete sampling (Stadler
2009) was used as the tree prior and the heterogeneity of the mutation rate across lineages was set under
an uncorrelated, relaxed, log-normal clock. The mean mutation rate was set to one. Two independent
analyses were each run for 50 million generations, sampling every 10000 generations. After checking
for adequate mixing and convergence of runs with Tracer software, five million samples were discarded
as burn-in, the two runs were pooled together and a maximum clade credibility tree was calculated based
on 9000 trees using TreeAnnotator. The maximum clade credibility tree was extracted with median node
heights.

Results

Integrative taxonomy

Cox1 dataset
For the cox1 gene fragment, the ingroup included 196 sequences varying in length from 596 to 658 bp.
After excluding sites with missing data, we found 112 haplotypes, displaying 251 variable base pairs, of
which 228 were phylogenetically informative. Effective sample sizes (ESS) of BA were higher than 500
for all parameters indicating that posterior distributions were well explored.

The multiple-threshold version of GMYC led to a partition where almost each haplotype was considered
as a different PSH (cf. Fujisawa & Barraclough 2013). Therefore, only the results from the single
threshold version are discussed here. No differences were found between the partitioning obtained
using the full cox1 dataset and the dataset including only unique sequences. Therefore, only the results
obtained using the full cox1 dataset are discussed. The single-threshold GMY C analysis showed that the
likelihood of the null model (that all sequences belong to a single species) was significantly lower than
the maximum likelihood of the GMYC model (1728 vs 1746; ratio: 36.6, P = 5.4 x 10®). The threshold
time (T) from the branch tips at which the transition from coalescent to speciation branching patterns
occurred was 0.006 substitutions per site, resulting in the delineation of 37 PSHs labelled PSH-1 to
PSH-37. Among these 37 PSHs, 25 are monophyletic with high (posterior probability, PP > 90%) to low
(PP <70%) support and 12 are singletons (Fig. 2). PSH-1 corresponded to the out-group Cookia sulcata

Fig. 2. [next page] Molecular based species delineation of the genus “Bo/ma”. A. Ultrametric tree
produced using BEAST based on cox1 sequences. B. PSHs derived from the GMY C model and labelled
from 1 to 37. C. PSHs derived from the GMYC model using the lower limit of the equivalent of a
95% confidence interval, and labelled from A to ZD. D. SSHs drawn from congruency between cox1
and 28S. Boxes with a black outline indicate that the SSH was monophyletic in both cox1 and 28S
trees. Boxes without a black outline highlight SSHs for which molecular data were either incomplete
or non-informative. SSHs labelled from A to ZD (following step C) or with the species name when
our sequences matched published data associated with the species names. E. PSHs derived from the
Bayesian analysis based on 28S sequences. F. Bayesian, non-ultrametric tree produced using BEAST
based on 28S sequences. G. Species names retained in the present study. For the SSH E-F-G-H, the
name Bo. henica was retained; however, Bo. henica abyssorum, Bo. henica madagascarensis and
Bo. henica henica are represented as sub-species separated by white dotted lines. For both trees, nodal
support values are posterior probabilities (PP), shown only for PP > 50%. Branches with PP < 50% were
collapsed. Red and green branches correspond to monophyletic species hypotheses. Colour coded boxes:
red corresponds to cox1 PSHs supported by PP > 95%; light red corresponds to cox1 PSH supported
by PP < 95%; light grey corresponds to cox1 and 28S singletons; a grey cross represents missing data;
green corresponds to 28S species hypotheses supported by PP > 95%; light grey corresponds to groups
of genotypes displaying diagnostic 28S sites. Specimen numbers are given in the Supplementary file.
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and PSH-2, PSH-3, PSH-4, PSHs 10-11, PSH-21, PSH-22, PSH-23, PHS-25, PSH-26 and PSH-30
corresponded respectively to published data associated with the species names Bellastraea aurea (Jonas,
1844), Be. rutidoloma (Tate, 1893), Be. kesteveni Iredale, 1924 (accepted as Be. squamifera (Koch,
1844)), Bolma microconcha Kosuge, 1985, Bo. rugosa (Linnaeus, 1767), Guildfordia yoka Jousseaume,
1899, G. triumphans (Philippi, 1841), Bo. andersoni (E.A. Smith, 1902), Bo. girgyllus (Reeve, 1861)
and Astraea heliotropium (Martyn, 1784) (Supplementary file). Mean genetic distances within the 25
PSHs that were not singletons ranged from 0 to 2.4%. Genetic distances among the 36 PSHs of the
ingroup ranged from 3 to 18%. The total number of species hypotheses ranged from 30 to 43 based on
model solutions at 2 log-likelihood units from the maximum, equivalent to 95% confidence intervals
(CI). If the lower CI is used only 30 PSHs are defined (labelled PSH-A to PSH-ZD; Fig. 2 and the
Supplementary file). In this partition PSH-G, PSH-L, PSH-M and PSH-ZB combined respectively with
PSH-7 and PSH-8, PSH-13 and PSH-14, PSH-15 to PSH-19, and PSH-34 to PSH-35. Under this CI, the
18 monophyletic PSHs were supported by PP > 99%. The mean genetic distances within each of the 18
PSHs that are not singletons ranged from 0 to 3.7% whereas mean genetic distances among the PSHs
ranged from 3.8 to 18%.

28S dataset
The 28S gene fragment was successfully obtained for a subset of 129 individuals covering almost all
genetic entities defined using the GMYC method (whichever threshold was used). Sequence lengths
varied from 729 to 1452 bp. After excluding sites with missing data, the ingroup displayed 25 genotypes
with 42 polymorphic sites, of which 32 were phylogenetically informative.

Including data available from GenBank, 28S sequences were obtained for 35 out of the 37 PSHs
primarily defined using the GMY C method (Supplementary file). An additional published 28S sequence
corresponding to a single specimen attributed to Bo. modesta (Reeve, 1843) was retained, although no
cox1 data was available. Based on this dataset, PSHs 1 to 4 (C. sculata, Be. aurea, Be. rutidoloma and
Be. squamifera), 22 (G. yoka), 24, 25 (Bo. andersoni), 30 (A. heliotropium) and Bo. modesta displayed
diagnostic 28S sites (Fig. 2). Moreover, PSHs 20, 21, 23, 26 (Bo. girgyllus), 27 (Bo. persica), 31, 36 and
37 were recovered as monophyletic. Five closely related PSHs (PSHs 6-9 corresponding to PSH-F to
PSH-H, 10-11 corresponding to PSH-I and PSH-J, 12—-14 corresponding to PSH-K and PSH-L, 15-19
corresponding to PSH-M and 34-35 corresponding to PSH-ZB) shared the same set of polymorphic 28S
sequences. Conversely, PSH-33 (corresponding to PSH-ZA) shared the same set of polymorphic 28S
with the distant pair of PSHs 34-35 (corresponding to PSH-ZB) (Fig. 2).

Secondary Species Hypotheses (SSHs)
At this stage, the ingroup included 16 PSHs supported by a congruency between the coxl and the
28S datasets (either using a monophyly or a similarity criterion, i.e., by checking for sites in the 28S
alignment that were diagnostic of PSHs) and thus retained as SSHs: Be. aurea, Be. rutidoloma, Be.
squamifera, PSH-M, PSH-N, Bo. rugosa, G. yoka, G. triumphans, PSH-R, Bo. andersoni, Bo. girgyllus,
PSH-U, 4. heliotropium, PSH-Y, PSH-ZC and PSH-ZD (Fig. 2). Thirteen species hypotheses needed
further examination, as molecular data at 28S were either incomplete (i.e., absence of 28S data) or non-
informative (i.e., lack of diagnostic 28S sites among PSHs). For two groups of PSHs (PSHs E-F-G-H
and PSHs Z-ZA-ZB), 28S sequences were shared among PSHs. In the first group (PSHs E-F-G-H), the
PSHs were separated by genetic distances lower than 9.1% and corresponded to distinct biogeographic
areas that are very isolated from one another (Northwest Pacific, Madagascar and Southwest Pacific,
respectively). The hypothesis of a single SSHs was thus favored. In the second group (PSHs Z-ZA-
7ZB), the PSHs were separated by genetic distances higher than 13.2% and corresponded to specimens
sampled in the same biogeographic area (New Caledonia EEZ). The hypothesis of distinct SSHs was thus
favored. Next, in each of the four pairs of PSHs E-F, I-J, K-L, V-W and Z-ZA, one PSH corresponded to a
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singleton that did not correspond to any clear pattern in geographic or depth distribution (Supplementary
file). Based on shell morphology, they were classified as five species hypotheses, which led our dataset
to 22 putative species in total.

Attribution of species names and shell variation
Shell variation within and among putative species was assessed before assigning species names.
However, for the sake of clarity, we present the attributions of species names along with their shell
variation.

Among the 22 final species hypotheses, 10 clustered with sequences published in GenBank with the
corresponding names Be. aurea, Be. rutidoloma, Be. squamifera, Bo. microconcha, Bo. rugosa, G. yoka,
G. triumphans, Bo. andersoni, Bo. girgyllus and A. heliotropium. Among the 22 final species hypotheses,
7 included specimens collected near or at the type locality (Bo. henica (Watson, 1885), cluster of PSHs
E—H; Bo. recens (Dell, 1967), PSH-M; Bo. jacquelineae (Marche-Marchad, 1957), PSH-N; G. superba
Poppe, Tagaro & Dekker, 2005, PSH-R; Bo. persica (Dall, 1907), PSH-U; Bo. fuscolineata Alf & Kreipl,
2009, PSHs V-W; Bo. opaoana Bouchet & Métivier, 1983, PSHs Z—-ZA).

The SSHs corresponding to the cluster of PSH-E, PSH-F, PSH-G and PSH-H included specimens
sampled near the type localities of three species names (respectively, Astralium abyssorum Schepman,
1908 (currently accepted as Bo. henica) (PSH-E, PSH-F), Bo. madagascarensis Nolf & Verstraeten, 2006
(PSH-G) and Bo. henica (PSH-H)). The retained species name for that SSH was Bo. henica associated
with three geographic subspecies (Bo. henica abyssorum, Bo. henica madagascarensis and Bo. henica
henica). Specimens of PSH-H (Bo. henica henica; Fig. 3A, c) were morphologically very similar to
the specimens of PSH-Y (Fig. 3A, d), although not closely related in either the cox1 or the 28S tree
(Figs 2, 4). After close examination, subtle shell differences were observed among adult specimens of the
two groups. Here, the attribution of the name Bo. cf. minutiradiosa Kosuge, 1983 to PSH-Y was based
on the shell morphology, by comparing the individuals of PSH-Y to morphologically similar specimens
available in the dry collections of the MNHN. In our samples Bo. henica henica has a broad geographic
range, recorded from the Solomon Islands to the New Caledonia EEZ, whereas Bo. cf. minutiradiosa has
anarrow geographic range, restricted to the south of New Caledonia Island, Lansdowne Bank and Kelso
Bank on the Lord Howe seamount Ridge. The two species thus have a narrowly overlapping range, as
they were both found on the Lansdowne Bank at depths between 427 and 550 m (Fig. 3A).

Among the 22 final species hypotheses, 3 SSHs (PSHs K-L, PSH-ZB and PSH-ZD) did not correspond
to any of the names existing in the taxonomic literature, and they were thus described as new species
(respectively, Bo. castelinae Alf, Maestrati & Bouchet, 2010; Bo. pseudobathyraphis Alf, Maestrati &
Bouchet, 2010; Bo. mainbaza Alf, Maestrati & Bouchet, 2010). Species descriptions were based on the
molecular data presented here before their actual publication (see Alf ef al. 2010).

Three species (Bo. recens, Bo. mainbaza and Bo. pseudobathyraphis) exhibited a wide range of
morphological variations. In Bo. recens (Fig. 3B, a—d), the morphological partition was not fully
consistent with the mitochondrial structure. Some morphologically distinct and geographically separate
individuals shared the same mitochondrial cox1 haplotype. Within both Bo. mainbaza (Fig 3C, a) and
Bo. pseudobathyraphis (Fig 3C, b), two morphs were distinguished based on the presence/absence of
spines and the presence of small brown spots. Within Bo. mainbaza, the two forms were found at the
same localities and within the same range of depth. Within Bo. pseudobathyraphis, most individuals
were very similar in shape, sculpture and size, except those from the southern seamounts of the Lord
Howe Ridge (i.e., on the seamounts Nova, Kelso and Capel), where a morph with long spines was
sampled. On these seamounts the spiny and non-spiny morphs co-occurred at the same localities and the
same range of depths, and were not genetically distinct.
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Fig. 3. A. a, Bolma henica madagascarensis (Indian Ocean); b, Bo. henica abyssorum; ¢, Bo. henica
henica, with type locality represented by a white star (Fiji Island, Southwest Pacific); d, Bo. cf.
minutiradiosa. B. a—d, distinct shell morphs found in Bo. recens, with type locality represented by a white
star (Kiwi seamount, Three Kings Ridge). C. a, Bo. mainbaza, with type locality (South Madagascar);
b, Bo. pseudobathyraphis, with type locality (South New Caledonia); ¢, Bo. millegranosa; d, Bo. opaoana
with type locality (South New Caledonia, Crypthélia Bank).
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Considering this wide range of morphological variations, specimens of the spiny morph of Bo.
pseudobathyraphis were morphologically very similar to the specimens of PSH-ZC, which also
bear spines (Fig. 3C, ¢). However, based on comparisons of shell morphology between our samples,
photographs in the original description and available taxonomic revisions, the SSHs-ZC was assigned to
Bo. millegranosa (Kuroda & Habe in Habe, 1958).

Phylogenetic inferences

No incongruence was detected between the single-gene analyses (cox1 and 28S datasets). However,
phylogenetic relationships were generally poorly resolved, with only a few well-supported clades
(cf. Fig. 2). The topologies inferred from single-gene analyses were consistent with the topology
obtained from the species tree using combined sequences. Analyses of the combined dataset supported
the monophyly of the ingroup consisting of species of Astraea, Bellastraea, Bolma and Guildfordia
(PP = 80%, Fig. 4). Within this clade the analysis distinguished four highly supported clades (with
PP > 99%, Fig. 4): (i) the three species attributed to the genus Bellastraea, (ii) Bo. henica abyssorum,
Bo. henica madagascarensis and Bo. henica henica, (iii) Bo. pseudobathyraphis, Bo. millegranosa and
Bo. mainbaza, (iv) the three species attributed to the genus Guildfordia, Bo. castelinae and Bo. recens.
The three following groups were distinguished, although poorly supported (with PP < 83%, Fig. 4):
(a) the group (iii) plus Bo. opaoana, Bo. rugosa, Bo. jacquelineae and Bo. andersoni (PP = 83%),
(b) Bo. fuscolineata, A. heliotropium and Bo. cf. minutiradiosa (PP =75%), (c) Bo. gyrgillus, Bo. persica
and Bo. microconcha (PP < 50%).

Discussion

Molecular data as the primary source of information for exploring species hypotheses

Using molecular, rather than morphological characters as primary sources of evidence enabled rapid,
objective and effective production of species hypotheses. Unlike molecular data, shell morphology had
a poor species-level taxonomic resolution, especially for polymorphic, cryptic and sibling species. In
these cases, shell polymorphism was actually greater within species than among species and led to
incorrect species hypotheses compared with those defined using molecular characters. For example, on
New Caledonia seamounts two co-occurring morphs, corresponding to the presence/absence of spines,
were assigned through traditional malacological methods, following the classification schemes of Beu &
Ponder (1979), to two separate species hypotheses: the “spine-bearing” Bo. millegranosa and the
“spineless” Bo. bathyraphis (E. A. Smith, 1899). Molecular data revealed an entirely different partitioning
scheme, with a polymorphic species hypothesis including both “spine-bearing” and “spineless”
forms (Bo. pseudobathyraphis; Alf et al. 2010), and a morphologically more homogeneous species
hypothesis containing only the “spine-bearing” forms (Bo. millegranosa) (Fig. 3C, c). In this particular
case, similarities of the general shell shape between these closely related species (or the retention of
a plesiomorphic similarity), combined with the non-obligatory presence of spines within one of the
two species caused considerable taxonomic confusion. Marine gastropod species often change shell
morphologies under different environmental and biological conditions, primarily for protection from the
environment and/or predators. In the shallow-water turbinid 7urbo cornutus Lightfoot, 1786, different
degrees of seashore wave exposure have been shown to influence spine lengths (Ino 1953; Kurihara et al.
2006). Our study showed other cases of intraspecific shell polymorphism, for instance within Bo. henica
henica and Bo. recens, thus emphasizing the difficulty in estimating species diversity in this genus. We
also showed that the presence or absence of spines can occur within a single environment.

Our data also revealed crypticism between species that are not sister species (herein assigned to
Bo. henica henica (Fig. 3A, ¢) and Bo. cf. minutiradiosa (Fig. 3A, d), but both traditionally recognized
as Bo. henica). Despite exhibiting similar morphology and ecology (co-occurrence on the Lansdowne
Bank in the New Caledonia EEZ), the multi-locus phylogeny provided evidence that the two species
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are distantly related species within Bolma. These findings are consistent with the hypothesis that their
morphological similarity may be a result of local adaptation to similar environments. Convergent
evolution of shell-shape among phylogenetically divergent species experiencing similar environmental
selection pressures has been widely documented (even though not always formally tested) in molluscs,
including the freshwater limpets of the African genus Burnupia (Albrecht et al. 2004), freshwater
snails inhabiting geothermal springs in Oregon (Physa Draparnaud, 1801; Moore et al. 2015), the
hydrothermal vent snails Alviniconcha Okutani & Ohta, 1988 (Johnson ef al. 2015) and the bathyal
gastropod genus Gemmuloborsonia Shuto, 1989 (Puillandre et al. 2010a). Along with these examples,
our study suggested that shell shape in Bolma is highly adaptive and therefore has poor species-level
significance. Overall, this reinforces the idea that in shelled molluscs, shell shape cannot be used as a
primary proxy for assessing species hypotheses and that, where possible, molecular characters should
be used to assess species hypotheses.

Geography is also a bad proxy for species delineation

Most of the analyzed species were geographically restricted to either a single site, a single marine
ecoregion or a single province (sensu Spalding et al. 2007) despite widespread sampling. This reinforces
the general assumption that because of their lecithotrophic mode of larval development, Bolma species
mostly have restricted distribution ranges. However, the presence in our samples of a minority of
surprisingly widespread species (extending from the Western Indian Ocean to the Southwest Indo-
Pacific) suggests that a range-restricted pattern cannot be generalized within Bo/ma and that some
processes may have enabled certain species to gain a wider geographic range than others. In shallow-
water habitats, numerous studies have shown that a positive relationship between dispersal ability and
geographical range size is not a general rule for marine organisms (Lester ef al. 2007). Species range
size is influenced by various factors, including variability in physiological and ecological tolerances or
large-scale changes in resource and habitat availability (e.g., Brown 1984; Gaston et al. 2003). Though
such factors could not be evaluated here, they may also influence the distribution of deep-sea organisms
(Castelin et al. 2010, 2012). In a taxonomic context, this suggests that geographic isolation, even when
suspected from expected dispersal abilities, should not be used as a proxy for delineating species.
Indeed, the integrative framework applied here indicated that what was thought to be a set of distinct,
range-restricted species (Bo. henica henica, Bo. henica madagascarensis, Bo. henica abyssorum,
Bo. recens recens and Bo. recens clemenceae) corresponds to a smaller number of more widespread
species (Bo. henica and Bo. recens). This is a rare contrary example of taxonomic inflation, where
multiple nominal species are synonymized thanks to the molecular taxonomic approach (Isaac et al.
2004). Similarly, future integrative taxonomic efforts may show that some species of Bo/ma, currently
described as rare and spatially restricted to a single isolated site, such as for example the French
Polynesian Bo. tantalea Alf, Maestrati & Bouchet, 2010, may have a larger geographic distribution than
initially thought. Indeed, although no mitochondrial data are available, our nuclear data (not included
in this study) did not support the genealogical independence of that species from the widespread Bo.
recens.

Assigning scientific names using DNA and type localities

Using an appropriate sampling design, including as many type localities as possible and as many species
as possible, was fundamental to assigning existing species names to evolutionarily significant units. Until
recently, species descriptions were based on few specimens collected from very restricted locations. As a
consequence, the extent of the distribution ranges of these species, and most importantly, the geographic
variation of shell polymorphism outside of the type locality, were usually not documented. In this study,
as we observed species with both a high level of shell diversity and a wide geographic distribution, and
the incompleteness of old taxonomic data challenged linking newly sampled species to existing names.
In this context, only species that were characterized by obvious shell characters (Bo. opaoana), or that
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included specimens collected at the type locality (B. recens, Bo. henica henica) could be attributed to a
name with confidence. Alternatively, and when none of the existing descriptions could be confidently
assigned to delineated species, new species were described (Bo. mainbaza, Bo. pseudobathyraphis,
Bo. castelinae; Alf et al. 2010). This approach was more difficult to apply when several cryptic species
occurred at the same locality (Bo. henica henica, Bo. cf. minutirasiosa), but only a single name (here,
Bo. henica henica) was a priori available for that area and that morph. In these cases, a more critical
examination of specimens to look for diagnostic shell characters enabling the distinction of cryptic
species, combined with the examination of dry shells collected from other locations in the Indo-Pacific,
allowed us to propose species names (Bo. henica henica, type locality: Fiji; Bo. minutiradiosa, type
locality: Balut Island, Bohol Sea, Philippines), which will need to be validated with further sequencing
of specimens of Bo. minutiradiosa collected near the type locality.

Undersampled, spatially fragmented organisms may challenge GMYC accuracy

Our results suggested that within species, high levels of genetic differentiation at cox1, combined with
a small sample size, could prevent the GMYC model from distinguishing the break between coalescent
and speciation branching rate. Most of the analyzed species showed high levels of intraspecific genetic
differentiation at cox1, and in five cases (Bo. microconcha, Bo. castelinae, Bo. recens, Bo. fuscolineata
and Bo. pseudobathyraphis), GMYC overestimated species richness. However, when the sample size
was high (as in Bo. recens and Bo. pseudobathyraphis), the lower confidence limits identified these
diverging PSHs as belonging to a single species. In every case, both the use of a second, independent
molecular marker and the analysis of distribution patterns were critical for selecting the best set of PSHs
produced by GMYC. Previous studies have shown the tendency for GMY C to over-split unresolved nodes
that result from under-sampled species and/or strong intraspecific genetic structure (e.g., Fujisawa &
Barraclough 2013; Talavera et al. 2013; Zhang et al. 2013). In accordance with a previous study on
the vetigastropod genus Lunella Roding, 1798 (Williams et al. 2011), our results showed that the
lower confidence limits of the GMYC approach provided the best PSH set and may therefore be more
appropriate, when sample size is sufficient, for distinguishing between intra- and interspecific genetic
divergences in groups with low dispersal potential (or high intraspecific genetic structuring).

Microhabitat partitioning

Although it could not be evaluated formally, our data suggested microhabitat partitioning, which
may indicate that species of Bol/ma are subject to strong local selection pressures. As mentioned
above, most of the abundantly sampled species displayed strong genetic structuring. However, while
Bo. castelinae, for example, showed genetic structuring congruent with geographical isolation
of populations (e.g., Lord Howe Ridge vs Norfolk Ridge), Bo. recens, Bo. henica henica and
Bo. pseudobathyraphis had very inconsistent genetic structuring, with nearby populations showing
greater genetic differentiation than more distant ones. Similarly and independently, for these species
the different morphs observed within species were not strictly clustered by geographic location (Fig. 3).
Genetic responses to local selection pressures and ecotype-selective sweeps have been documented in
seashore gastropods with restricted gene flow (e.g., Johannesson et al. 2010; Kemppainen et al. 2010;
Ilves et al. 2010) and may explain some of these observations. The detection of genetic structuring
in a mitochondrial marker that is incongruent with the spatial distribution of organisms, if not due to
methodological or sampling artefact, could be a result of local adaptation to different microenvironments.
Further studies might also investigate the hypothesis of selection favoring a beneficial mutation, resulting
in hitchhiking of neutral mitochondrial markers.

Conclusion

Overall, this study showed that both the alpha taxonomy of molluscs and the traditional criteria applied in
species description (i.e., the use of dried material, shell-morphology, and a geographic isolation criterion)
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may lead to poor inferences about species diversity and constitute a barrier toward understanding and
managing marine ecosystems. Modern species descriptions should be based on objective and robust
species hypotheses established within a phylogenetic framework, and ideally including several specimens
in order to reflect both species ranges and morphological polymorphism across these ranges. With the
increased accessibility to high throughput DNA sequencing, future species descriptions should always
include molecular data.
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