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Abstract :   
 
The exceptional hidden diversity included in the squat lobster genus Phylladiorhynchus and its wide 
bathymetric and geographic range make it an interesting group to thoroughly study its evolutionary history. 
Here we have analyzed the entire currently known species diversity of Phylladiorhynchus using an 
integrative approach that includes morphological and molecular characters. The aim was to establish 
whether depth range (bathymetry) has played a role in their morphological and molecular evolution and 
in their diversification pathways. Phylogenetic analyses recovered the genus as monophyletic and as the 
sister group of Coralliogalathea, conforming with current systematic hypotheses, although their placement 
in a monophyletic Galatheidae is doubted. All the analyzed species represent well-supported lineages, 
structured in ten clades, correlated in most part with the morphological phylogeny. The reconstruction of 
ancestral habitat showed that the most recent common ancestor of Phylladiorhynchus most likely lived in 
shallow water environments. The divergence time estimation analyses dated the origin of the genus back 
to the Upper Jurassic, preceding the origin of all the other galatheoid lineages. Morphological analyses 
suggested that species from deeper waters exhibit greater morphological divergences and lower genetic 
divergences in comparison to species from shallower waters. In Phylladiorhynchus, the colonization of 
deeper waters has taken place independently multiple times since the Lower-Cretaceous. Our 
reconstruction of ancestral habitat suggests that shallow waters ancestors might show an acceleration in 
the molecular rate of evolution in comparison to deep sea lineages, and a slowdown in the rates of 
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morphological evolution. However, although lineages from shallow and deep sea habitats show slight 
differences in diversification trends, bathymetry does not significantly affect the diversification rate in 
Phylladiorhynchus according to our diversification analyses. 
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Highlights 

► The known diversity of Phylladiorhynchus recently increased from five to 55 species. ► Multilocus and 
morphological phylogenies were inferred based on all known Phylladiorhynchus diversity to test the effect 
of depth on the evolution and diversification of the genus. ► Our phylogenetic reconstruction showed that 
the sister group of Phylladiorhynchus is Coralliogalathea and this clade is not closely related to other 
Galatheidae. ► Ten morphologically well-delimited clades are identified within the genus. ► The ancestor 
of the genus originated in shallow water during the Upper Jurassic and independently colonized deeper 
waters during diversification. ► Shallow water species present a slowdown in the morphological evolution 
and a higher molecular substitution rate in comparison with deep-sea species. ► Depth does not 
significantly affect the diversification of Phylladiorhynchus in terms of speciation and extinction rates ► 
Deep-sea species of Phylladiorhynchus tend to be sympatric whereas shallow water species present 
allopatric distributions 
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morphological divergences and lower genetic divergences in comparison to species from 

shallower waters. In Phylladiorhynchus, the colonization of deeper waters has taken place 

independently multiple times since the Lower-Cretaceous. Our reconstruction of ancestral 

habitat suggests that shallow waters ancestors might show an acceleration in the molecular rate 

of evolution in comparison to deep sea lineages, and a slowdown in the rates of morphological 

evolution. However, although lineages from shallow and deep sea habitats show slight 

differences in diversification trends, bathymetry does not significantly affect the diversification 

rate in Phylladiorhynchus according to our diversification analyses.

Key words. Bathymetry, macroevolutionary analyses, Crustacea, fossil calibration, 

morphological evolution, substitution rate

1. INTRODUCTION 

The effect of depth on biological adaptations and diversification in the oceans remains the 

subject of many studies. A number of authors have explored deep sea speciation, phylogenetic 

relationships of invertebrates from the coast to the abyssal plains, and the patterns and 

directions of colonization (Jacobs and Lindberg, 1998; Faure et al., 2009; Raupach et al., 2004, 

2009; Lidner et al., 2008; Osborn et al., 2012; Pante et al., 2012; Thuy et al., 2012, Prada and 

Hellberg, 2021). Many studies on the evolution of marine invertebrates have centered on the 

origin of deep sea taxa, the horizontal barriers affecting speciation and the timing of 

cladogenesis (e.g., Cabezas et al., 2012; Lins et al., 2012; Priede and Froese, 2013; Eilertsen 

and Malaquias, 2015; Herrera et al., 2015). The overall results suggest a main path of 

colonization of deep sea fauna from the shallow to the deep ocean and a timing of these events 

during the Upper Mesozoic or Lower Cenozoic (Jablonski and Bottjer, 1990, McClain and 

Hardy, 2010; Thuy et al., 2012). Only a few studies have explored the effect of the depth in the 

morphological evolution of marine invertebrates (e.g., Rex and Etter, 1998; McClain et al., 

2004; McClain, 2005) and compared the rates of diversification between deep sea and shallow 

water environments (O’Hara et al., 2019; Modica et al., 2020).

Squat lobsters can be excellent biological models to study the evolution and adaptation 

in both the shallow and the deep sea. They are extremely diverse, including more than 1300 

species and occur down to abyssal depths across all oceans (Baba et al., 2008; Schnabel et al., 
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2011a; Baba, 2018, Schnabel, 2020). They constitute an old group, with a crown age dating 

back to the Middle Jurassic followed by a radiation that co-occurred with brachyuran decapods 

during the Upper Jurassic (Schweitzer and Feldmann, 2010; Robins et al., 2012). 

Representatives of all currently known galatheoid families appeared in the fossil record during 

the Mesozoic, also including other extinct families (Robins et al., 2013, 2016; Robins and 

Klompmaker, 2019). The squat lobsters of the superfamily Galatheoidea Samouelle, 1819 are 

the most diverse and include three morphologically, genetically and ecologically distinct 

families: the family Galatheidae Samouelle, 1819 includes mostly shallow water species; 

species of the family Munididae Ahyong, Baba, Macpherson & Poore, 2010 are predominantly 

found in the continental shelf and slope; finally, the species of the family Munidopsidae 

Ortmann, 1892 are usually found in bathyal and abyssal environments (Schnabel et al., 2011a). 

In the last decades, molecular studies have identified an origin of diversification in shallow 

water squat lobsters during the Paleocene-Eocene (Palero et al., 2017; Rodríguez-Flores et al., 

2018) and rapid radiation in the Miocene was observed in deep sea genera (Machordom and 

Macpherson, 2004; Cabezas et al., 2012; Rodríguez-Flores et al., 2020). However, differences 

in trends of diversification between shallow and deep- lineages remain under-investigated 

(Rodríguez-Flores et al., 2020).

Previous approaches have led us to hypothesize the effect of depth transitions of species 

distributions on the evolution of squat lobsters (Schnabel et al., 2011a; Rodríguez-Flores et al., 

2018, 2020). (1) Environmental change can affect rates of molecular and morphological 

evolution: if rates of morphological and molecular evolution are decoupled, they can produce 

high phenotypic plasticity within species, for instance after ecological adaptation (Wagner et 

al., 2012). On the other extreme, a slowdown or lack of morphological change among the 

evolutionary units, while presenting high genetic divergences can result in cryptic species 

(Struck et al., 2019) (Fig 1A). Shallow water squat lobsters are mostly characterized by their 

smaller size and there is a tendency of character miniaturization, cryptic diversity, and a low 

morphological diversity (e.g., genera Lauriea Baba, 1971, Galathea Fabricius, 1793, 

Sadayoshia Baba, 1969 and Coralliogalathea Baba & Javed, 1974) (Schnabel et al., 2011a; 

Macpherson and Robainas-Barcia, 2013, 2015; Macpherson and Baba, 2012; Rodríguez-Flores 

et al., 2018). Moreover, those shallow water lineages seem to exhibit longer branches in 

phylogenetic trees compared to deep sea taxa (Rodríguez-Flores et al., 2018). However, longer 

branches could be an effect of the antiquity of the lineages with significant extinctions, and 

morphological stasis seems to be a tendency within the whole Galatheoidea, since it is also 
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observed in deep sea species (Machordom and Macpherson, 2004). (2) Environmental 

colonization (shallow vs. deep) could affect diversification (cladogenesis): McClain and 

Schlacher (2015) suggested that the long-term stability in deep habitats could increase the 

diversification rate through fine-niche partitioning. They propose that diversification rates and 

cladogenesis could increase with depths, which may result in decreasing average genetic and 

taxonomic distances between deep lineages (McClain and Schlacher, 2015). Therefore, if depth 

has a direct effect on the diversification rate, differences in the parameters of net 

diversification, extinction (μ) and speciation (λ) among species from shallow vs. deep waters, 

would be expected (Fig 1B). (3) Depth distribution can influence geographic lineage ranges 

and geographic speciation patterns: colonization of deeper waters may be expected to shape 

current ranges of vertical or horizontal distribution, as species from deeper waters are expected 

to present wider geographic ranges (McClain and Hardy, 2010), which may be the result of 

changes in dispersal patterns, isolation by distance, vicariance or sympatric speciation. These 

hypotheses remain to be tested in squat lobsters by including morphological/molecular change 

quantification and diversification analyses of closely related species across a range of depths. In 

contrast to most other genera, the diverse genus Phylladiorhynchus is well suited to this 

approach. Until very recently, the genus included only 5 species (Baba, 1991; Baba et al., 

2008). After the revision of material collected in the last decades, more than 40 new species 

have been described in the past three years (Schnabel and Ahyong, 2019; Rodríguez-Flores et 

al., 2021). Phylladiorhynchus currently contains 55 species with representatives from the 

intertidal zone to more than 1000 m depth. The genus is distributed throughout the tropical and 

sub-tropical Indian and Pacific oceans (Fig 1C), with many species from shallow water coral 

reefs, living in dead coral rubbles, and several others from the continental shelf and slope 

(Miyake and Baba, 1965, 1966; Fujita, 2007; Baba et al., 2008, 2009; Dong and Li, 2013; Lee 

et al., 2019a; Schnabel and Ahyong, 2019; Rodríguez-Flores et al., 2021). Their body-size 

range is small, between 1.0 and about 7.0 mm of carapace length (Schnabel and Ahyong, 2019; 

Rodríguez-Flores et al., 2021). The highest latitudinal records are in New Zealand in the south, 

and Korea and Japan in the north (Lee et al., 2019a; Schnabel and Ahyong, 2019). The genus 

also includes high regional diversity and endemism but also a few broadly distributed species 

(Schnabel and Ahyong, 2019; Rodríguez-Flores et al., 2021). The diversity of 

Phylladiorhynchus includes some species that are barely distinguishable using morphological 

characters but presenting high genetic distances (Schnabel and Ahyong, 2019; Rodríguez-

Flores et al., 2021). Therefore, the morphological and genetic diversity, and their bathymetric, 
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and geographic distributions, make it an ideal group for detailed study of the evolution in 

shallow versus deep habitats.

In this study, we present the first phylogeny of the diverse squat lobster 

Phylladiorhynchus. We analyze six (mitochondrial and nuclear) gene sequences and 

morphological characters for all Phylladiorhynchus species inhabiting the different Indo-

Pacific biogeographical provinces, from East Africa to French Polynesia and Hawai’i, and 

using comparative macroevolutionary phylogenetic methods, to test the previously proposed 

three hypotheses related with the environmental change. We aim to explore (1) the systematics 

and phylogenetic relationship within Galatheoidea, including the timing of diversification of 

the genus, (2) the patterns of inshore/offshore colonization during their evolutionary history, 

(3) the potential effect of depth in their molecular, morphological evolution and (4) in their 

diversification patterns (speciation and extinction); and (5) to discuss the relation between 

depth with geographic lineage range and the speciation patterns.

 

2. MATERIAL AND METHODS

2.1. Sampling and data collection

The material studied here is deposited in the following scientific museum collections: Muséum 

national d'Histoire naturelle, Paris (MNHN), National Institute of Water and Atmospheric 

Research, Wellington (NIWA), Florida Museum of Natural History, Florida (UF), Western 

Australian Museum, Perth (WA), National Taiwan Ocean University, Keelung (NTOU), 

National Museum of Marine Biology & Aquarium, Pingtung (NMMB), Museum of Evolution 

of Uppsala University, Uppsala universitet Evolutionsmuseet (UPSZTY), and National 

Museum of Natural History of the Smithsonian Institution (USNM). Specimens in these 

collections were collected from the Indian and Pacific oceans over the course of deep sea 

cruises and biodiversity surveys carried out by different institutions (e.g., Biodiversity surveys 

operated by MNHN under the exploration program “Our planet reviewed"), from the intertidal 

zone (0 m) to bathyal depths (1261 m). Shallow waters specimens were collected by scuba 

diving using different tools and procedures such as dead coral brushing, vacuum cleaning, 

hand-picking, or they were retrieved from previously deployed Autonomous Reef Monitoring 

Structures (ARMS). Specimens from the continental shelf and slope were collected by dredging 

and trawling and by retrieving previously deployed tangle nets. The examined material, 
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collection data and its sources are detailed in Schnabel and Ahyong (2019) and in Rodríguez-

Flores et al. (2021).

Morphological characters were analyzed for a total of 55 species of Phylladiorhynchus 

from the Pacific Ocean (Chile, Hawaii, French Polynesia, Kiribati, Mariana Islands, American 

Samoa, Japan, Philippines, Taiwan, New Caledonia, New Zealand, Queensland, Indonesia, 

Papua New Guinea, Vanuatu, Chesterfield Islands) and from the Indian Ocean (Western 

Australia, Chagos Archipelago, Reunion Island, Comores and Mayotte Islands, Madagascar 

and Walters Shoal and Red Sea) (Fig. 1C). Except for Phylladiorhynchus bengalensis Tirmizi 

& Javed, 1980, a rare species collected from the Gulf of Bengal and known only from the 

broken holotype, and Phylladiorhynchus ikedai (Miyake & Baba, 1965), morphological data 

was extracted from the examined museum specimens by either direct visits or on loan. 

Morphological data of P. bengalensis and P. ikedai was obtained from the original descriptions 

(Miyake and Baba, 1965; Tirmizi and Javed, 1980). The methodology for collecting 

morphological data and morphometric measurement of each specimen follows Rodríguez-

Flores et al. (2021). After the examination of this material (more than 2000 specimens), 280 

specimens were selected for genetic analyses.

We collected depth data from each examined lot (including one or more specimens) that 

had an associated station with depth values recorded at the time of the collection event. Those 

collection events included data from research vessel operations (dredge, trawl) or depth 

registered by divers at the station where the specimen was collected. Depth data here analyzed 

is reunited in Table S1, and the whole station data of the examined material can be found in 

Rodríguez-Flores et al. (2021) and Schnabel and Ahyong (2019). For each species we 

calculated: a) the bathymetric range, i.e., the maximum and minimum depths where specimens 

of a given species were collected, and b) the median depth. In some stations depth was 

measured as a range of maximum and minimum depths of the collection event (e.g., the depth 

when the dredge is cast and deployed or at the beginning and the end of the dive) or by a single 

value (sampling at constant depth). When depth was measured as a range, the mean of these 

values was calculated, but only when the difference between the minimum and maximum 

depths at a given sampling station did not exceed 200 m. Those stations with a depth range 

difference higher than 200 m were not considered for the calculation of the median depth of 

the species. The mean values of each station were used to calculate the general median 

bathymetric depth of a given species using the formula (n+1) / 2 in Microsoft Excel (2021). 

When stations were sampled at constant depth, the same depth value was considered as the 
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mean value (in most shallow water stations). Some species were represented by a singleton, 

and in this case the median depth is represented by the unique known value or the median 

value of the minimum and maximum depth of the station. This procedure was repeated for the 

total of 730 sampling stations (Table S1). 

2.2. Molecular laboratory and sequence processing

We obtained molecular data from around 175 specimens corresponding to 47 species (83% of 

the known diversity) of Phylladiorhynchus, with an extraction success of about 65%. The 

partial genes here employed were selected based on their resolution for species delimitation, 

their capacity to resolve deep or ancient nodes, their availability in databases for further 

comparisons with other taxa and their demonstrated utility with Decapoda (e.g., Bracken-

Grissom et al., 2013): mitochondrial cytochrome c oxidase subunit one (COI) and 16S rDNA 

(16S), and the nuclear DNA 18S rDNA (18S), 28S rDNA (28S), histone H3 (H3) and 

phosphoenolpyruvate carboxykinase (PEPCK).

The methodology implemented in the laboratory for DNA extraction, amplification and 

purification follows previous studies (Rodríguez-Flores et al., 2018, 2019a, b, 2020), using 

both published and newly designed primers (Table S2). Sanger sequencing of the amplicons 

was performed by Secugen (Madrid). Both strands of DNA sequences were revised using 

Sequencher v.4.8 (Gene Codes Corporation). Ribosomal gene sequences were aligned with 

MAFFT (Katoh et al., 2002), using the iterative method L-INS, which is recommended for 

sequences with one conserved domain and long gaps, like the genes here analyzed, especially 

the 28S. A posterior manual checking and correction of the alignments was carried out in 

AliView (Larsson, 2014). Coding genes were aligned manually after checking for pseudogenes 

using the online tool Expasy (https://web.expasy.org/translate/) considering the invertebrate 

mitochondrial genetic code. The matrix was built with all concatenated genes in PAUP v.4.0a 

(build 169; Swofford, 2002) and included a total of 4667 molecular characters including gaps.

2.3. Molecular phylogenetic analyses 

To provide phylogenetic context of Phylladiorhynchus within the wider Galatheoidea 

phylogenetic framework we included outgroups from all families of galatheoid squat lobsters. 

According to previous data, genetic distances among species of Phylladiorhynchus largely 

surpass those found for species from different genera and even different families (see Schnabel 

and Ahyong, 2019; Rodríguez-Flores et al., 2021). Therefore, we designed the taxonomic 
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sampling aimed to test (a) the monophyly of the genus Phylladiorhynchus and (b) its 

phylogenetic position among other galatheoidean squat lobsters. In the analyses, we included 

data from 31 other squat lobsters of the families Galatheidae (Alainius Baba, 1991, Allomunida 

Baba, 1988, Allogalathea Baba, 1969, Coralliogalathea, Fennerogalathea Baba, 1988, and 

several species of Galathea), Munidopsidae (Galacantha A. Milne Edwards, 1880, 

Leiogalathea Baba, 1969, and Munidopsis Whiteaves, 1874), and a wide taxonomic sampling 

of Munididae, considering the polyphyly of Munida Leach, 1820 and the evolutionary units at 

genus level that are currently being delimited (Machordom et al., in prep). Munidid 

representatives include Agononida Baba & de Saint Laurent, 1996, Anomoeomunida Baba, 

1993, Babamunida Cabezas, Macpherson & Machordom, 2008, Crosnierita Macpherson 1998, 

Munida, Hendersonida Cabezas & Macpherson, 2014, Heteronida Baba & de Saint Laurent, 

1996, Onconida Baba & de Saint Laurent, 1996, Paramunida Baba, 1998, Sadayoshia Baba, 

1969, and some independent lineages currently included under the name Munida sensu lato. A 

porcellanid crab [Porcellana sayana (Leach, 1820), Porcellanidae, Galatheoidea], was 

employed to represent the most closely related group of galatheoid squat lobsters (Palero et al., 

2019) and the phylogenetic analyses were rooted with Calcinus laevimanus (Randall, 1840) 

(Paguroidea, Diogenidae). Details of the taxonomic sampling and the analyzed specimens for 

molecular analyses are in Table S3. Exploratory analyses were run to study the effect of distant 

outgroups in the topology/support of the ingroup: a) including only the ingroup with 

Coralliogalathea as outgroup, and b) removing Calcinus laevimanus and with Porcellana 

sayana as outgroup, in both cases conforming with recently proposed phylogenetic hypotheses 

(Palero et al., 2019; Rodríguez-Flores et al., 2018; Roterman et al., 2019).

Phylogenetic analyses were conducted using Bayesian Inference (BI), maximum 

likelihood (ML), and Bayesian time estimation by sampling trees using coalescence to obtain 

an ultrametric tree in BEAST v2.6.3 (Drummond and Bouckaert, 2014; Bouckaert et al., 2014) 

that will serve as input for further phylogenetic comparative methods. We explored the best 

partition scheme using the model selection finder tool in W-IQ-TREE (Trifinopoulos et al., 

2016). The concatenated alignment of the six genes were used as input selecting the following 

parameters: Bayesian Information Criteria (BIC) and considering partition merging for those 

partition than may have the same model. We compared the best scheme with the results 

obtained with PartitionFinder v1.1.0 (Lanfear et al., 2012) and, considering both results, 

selected a scheme with six partitions, by gene, with models TIM+F+I+G4 (COI, 16S), 

GTR+F+I+G4 (H3, 18S), TIM3e+G4 (28S) and TIM2e+I+G4 (PEPCK). To estimate the 
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phylogenetic relationships and posterior probabilities in BI, two parallel runs of four 

Metropolis-coupled Markov chains Monte Carlo (MCMC) were run for 108 generations, 

sampling every 10,000 generations, in MrBayes v.3.2.1 (Ronquist and Huelsenbeck, 2003), 

employing a mixed model to average among substitution models. The first 25% of the trees 

were discarded as burn-in. The ML tree was inferred with W-IQ-TREE online v.1 

(Trifinopoulos et al., 2016). Bootstrap support values were calculated with 1000 

pseudoreplicates and the other parameters were set as default. Nodes were considered 

supported when bootstrap values were higher than 70 and posterior probability higher than 

0.95. BI and ML analyses were carried out with all genes concatenated, with a previous 

exploration with BI for each gene partition to explore incongruences among markers.

An ultrametric tree was obtained with BEAST v2.6.3 in order to recover molecular 

substitution rates considering clock models that allow for rate variation among branches. We 

employed a partial dataset including three concatenated genes (COI, 16S and H3). This data 

subset was chosen to address difficulties during the amplification of large nuclear gene 

markers (due to DNA degradation) and these three markers presented the best representation of 

our sampling and minimized the overall impact of missing data in obtaining the molecular 

substitution rates. For the substitution model selection, we used the model averaging package 

bModelTest in BEAST2 (Bouckaert and Drummond, 2017) for selecting the best substitution 

model fitting our data set (Barido-Sottani et al., 2018). We ran and compared parallel analyses 

in BEAST2 in order to select the best clock model and best tree prior. We compared two clock 

models: a relaxed uncorrelated lognormal clock model (where every branch can have a 

different rate of evolution), and a random clock model (where only a limited series of local 

changes could be required) (Drummond and Suchard, 2010). Best tree prior was selected 

between a Birth–Death model and a Birth–Death Skyline Contemporary (Stadler et al., 2013). 

Clock rates values were set in M=0.002, S=1.0, for the 16S; M=0.006, S=1.0 for the COI and 

M=0.0001, S=1.0 for the H3 [rates obtained from previous studies on squat lobsters: Cabezas 

et al. (2012) and Rodríguez-Flores et al. (2018, 2020)]. Convergence of chains and Effective 

Size Samples (ESS) parameters were checked with Tracer 1.7.1 (Rambaut and Drummond, 

2007; Rambaut et al., 2018). We selected the best model after a comparison of the marginal 

likelihoods with a Bayes factor test run in Tracer 1.7.1. MCMC were run for 108 generations, 

sampling every 10,000. The first 25% of the trees were removed as burn-in when building the 

Maximum Clade Credibility (MCC) tree with Tree Annotator v2.5.1 (Rambaut and 

Drummond, 2007).
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2.4 Morphological analyses

A matrix including 46 morphological characters was built for all the currently known species of 

Phylladiorhynchus (55). The chosen outgroup for rooting the morphological tree was 

Coralliogalathea humilis, since Phylladiorhynchus and Coralliogalathea were proposed as 

related lineages according to morphological characters (Rodríguez-Flores et al., 2018). We 

performed morphological analyses in order to (a) determine the phylogenetic position of 

species that lack molecular data and (b) characterize morphological variation among species. 

Coding of the morphological characters included discrete characters with as many as four states 

per character. The matrix included different traits from the carapace and rostrum (e.g., dorsal 

ornamentation, presence of ridges, and numbers of spines, etc.), and traits from the appendages 

(pereopods, antennula, antennae and maxilliped) (Table S4). Morphological phylogenetic 

analyses were carried out with Maximum Parsimony with Tree analysis using New Technology 

(TNT) (Goloboff and Catalano, 2016) and compared with those results obtained through 

Bayesian estimation by sampling trees in BEAST2. For the TNT analyses the script a.quickie 

was employed but changing the number of parsimonious trees to 1,000 and setting “resample 

replications 200” for two hundred bootstrap replicates.

For the BEAST morphological analyses, we included the data as Markov k (Mk) data. 

Each partition was assigned a site model with the appropriate Lewis Mk substitution model 

with the package bModelTest. Gamma category count and Proportion Invariant were fixed to 

zero. MCMC were run for 2 x 106 generations sampling every 2,000.

2.5 Morphological and molecular change correlation with depth

We estimated phenotypic similarity among species using a morphological distance 

matrix. We only compared taxa from which we were able to obtain molecular data (47 

species). Correlation between molecular and morphological differentiation was performed 

using comparisons between morphological and molecular divergences measured as p-distances 

computed with MEGA X (Kumar et al., 2018) and PAUP (142 Phylladiorhynchus specimens, 

Table S2). As a proxy of molecular change among species, we employed the gene marker COI 

since (a) it is the general marker used for species delimitation, showing increasing values of 

percentage divergences among different taxa at different hierarchical levels (saturation above 

genus level) and (b) it is also used for molecular divergence estimates with an assigned clock 

rate (Knowlton and Weigt, 1998); therefore, the marker p-distances could be also considered as 
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a measure of time of divergence. We test the following hypotheses: 0) there is no difference of 

morphological and molecular divergence with depth, 1) there is a correlation between 

morphological and molecular change in species from shelf depth compared to species from 

deeper slopes, 2) in shallow environments there is a predominance of cryptic species indicating 

a slowdown in the morphological rate of change compared to species from deeper (slope) 

depths. Therefore, we modeled the relationship between morphological and genetic distances 

in Phylladiorhynchus using linear regressions among species from shelf/slope (18 species) and 

species from shallow waters (29 species) in R Core Team (2020) with the function lm (R Core 

Team, 2020). To avoid a confounding effect resulting in high morphological and molecular 

differences by comparisons of unrelated groups, we also compared the correlation among 

species within monophyletic lineages from shelf/slope and shallow waters. Graphics were 

plotted using the package ggplot2 (Wickham 2011).

2.6. Species tree and divergence time estimation

We built a species tree with all six concatenated genes using StarBEAST2 (Heled and 

Drummond, 2010) in BEAST2, in order to obtain divergence time estimation and a single 

branch per species which presents all the biological and evolutionary information. 

Unfortunately, there are no known fossil Phylladiorhynchus to calibrate the molecular clock. 

Therefore, we calibrated the molecular clock by including a complete taxon sampling of all 

galatheoid lineages, which allowed several points of calibration. The most ancient point was 

the crown age of the Galatheoidea squat lobsters, which is dated in the Bathonian, Middle 

Jurassic, with the first appearance of a squat lobsters: Palaeomunidopsis moutieri Van Straelen, 

1925 (Robins et al., 2013, Van Straelen, 1925). The second point of calibration was the age of 

the crown group of Munididae sensu stricto, this is the age at the first appearance of fossils of 

Munididae sharing the Recent synapomorphies: Cretagalathea exigua Garassino, De Angeli & 

Pasini, 2008 from the Upper Cretaceous of southeastern Morocco (Garassino et al., 2008) with 

carapace ornamentation and cheliped morphology as in extant munidid species. The most 

recent point was a secondary calibration obtained from previous studies which estimate the 

split of Hendersonida granulata (Henderson, 1885) from the Paramunida species during the 

Oligocene (Cabezas et al., 2012) (Table S5).

The species tree was obtained following the methodology of Rodríguez-Flores et al. 

(2020). Before estimating divergence times, we first estimated the best partition scheme fitting 

the data with PartitionFinder v1.1.0 (Lanfear et al., 2012). We selected the prior ‘Analytical 
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population size integration’ for the population model due to there was no need to estimate the 

population sizes for each species because our study was focused on species level. We selected 

bModelTest using ‘TransitionTransversionSplit’ and an uncorrelated relaxed log normal clock 

model for each partition. We also used a birth-death model for the tree prior. Mean substitution 

rates were estimated for each gene, for which we assigned non-informative priors for the 

substitution rates (gamma distribution setting values for alpha and beta parameters as 0.01 and 

100, respectively). Log-normal distributions were chosen as temporal priors for the calibration 

points (mean=20, stdv=1, offset = 170) for the root of the tree; mean=10, stdv=1, offset = 92 

for the MRCA of the Munididae sensu stricto group, and mean=1, stdv=1, offset = 30 for the 

MRCA Paramunida-Hendersonida. The Markov Chains Monte Carlo (MCMC) were run for 6 

×108 generations per run, and parameters were logged every 6 × 104 generations. BEAST2 

analyses were run in the Cipres Science Gateway at http://www.phylo.org (Miller et al., 2011).

Convergence of the chains (trace and effective sample sizes, ESSs) was assessed in 

Tracer v1.7. The results were summarized and annotated in an MCC tree generated with Tree 

Annotator v2.5.1 after discarding the first 25% of the trees as burn-in. Species tree was plotted 

using the R packages ggtree (Yu et al., 2017; Yu, 2020), geoscale and strap (Bell, 2015; Bell 

and Lloyd, 2015).

2.7. Phylogenetic signal and ancestral character reconstruction

To investigate the habitat colonization of Phylladiorhynchus, we measured the phylogenetic 

signal of the continuous character “depth” with the R package picante to calculate K statistics, 

p-value and plot the phylogenetic signal (Blomberg et al., 2003; Kembel et al., 2010). 

Blomberg’s K statistic measures the phylogenetic trait signal after comparing the expected 

signal on a tree (considering both topology and branch lengths) with the signal under a 

Brownian motion model character evolution. When K is less than one, there is a tendency for 

less signal than expected (under Brownian motion) (K  0, random or convergent pattern of 

evolution; K = 1 correspond to a Brownian motion process, K >1, strong phylogenetic signal, 

and conservatism of traits) (Blomberg et al., 2003). The mapping of the continuous trait 

evolution for the character “depth” (the median depth of the trawl where the sequenced 

specimens were collected, coded in meters) was performed using the R package phytools and 

the plotting function contMap (Revell, 2012) with a previous tree pruning to remove the 

outgroups using the function drop.tip of the R package ape (Paradis et al., 2004).
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We also treated the character “depth” as a discrete character (different habitat 

colonization), by converting it into a binary categorical trait with only two states (0, 1) 

corresponding to shallow waters or deep waters using a threshold in the bathymetric range set 

at 100 m depth. The selection of this depth threshold value generally corresponds on average to 

the limit between the photic/aphotic zones and agrees with several studies on marine 

invertebrates, such as gastropods (Modica et al., 2020 and references therein). The 100 m 

depth threshold is congruent with sampling strategy and gear/sampling method selectivity 

during Survey and deep sea cruises (Richer de Forges et al., 2013). Moreover, many of these 

squat lobsters are associated with coral reefs, which only occur down to ~100 m (Huston, 

1985). For Phylladiorhynchus this depth marks the general boundary between shallow water 

taxa, which usually do not surpass this boundary, and outer shelf/slope taxa, which are always 

below this depth (Schnabel and Ahyong, 2019; Rodríguez-Flores et al., 2021).

The estimation of ancestral character states for the habitat colonization (depth) traits 

was carried out using a continuous-time Markov chain model (Mk). We performed ancestral 

character reconstruction analyses (ACR) on the calibrated ultrametric tree generated with 

BEAST2 using the R package phytools (Revell, 2012). The analysis was performed by fitting a 

single-rate model (model = ER, nsim = 1000, Q = mcmc) (Revell, 2012). We obtained the 

marginal ancestral states, called as 'empirical Bayesian posterior probabilities’ and join these 

posterior probabilities on the ultrametric tree obtained with BEAST2 using the element lik.anc. 

We graphically compared the ancestral character reconstruction in the tree with the substitution 

rate obtained with BEAST2, to detect changes in the substitution rate associated with changes 

in the habitat colonization.

2.8. Trait dependent diversification analyses

The analyses of diversification estimates [rate of speciation equals speciation rate minus 

extinction rate (r = λ – μ) and the extinction fraction or turnover (ε = μ/λ)] were performed 

using the MCC species tree obtained with StarBEAST2 after pruning outgroups. To study the 

mode and tempo of diversification of Phylladiorhynchus we first use the R package TreePar 

(Stadler, 2011) following the procedure and criteria of López-Estrada et al. (2019). Since this 

method considers the effect of the incomplete taxon sampling on the tree topology and 

diversification, we used a factor of correction of the incomplete taxonomic sampling (85% of 

all species in the genus Phylladiorhynchus) considering the number of species for which we 

have no molecular information (eight of 55 species). In TreePar we used the function 
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bd.shifts.optim to identify shifts or changes in the rate of diversification at particular points in 

time. We estimated the Phylladiorhynchus overall diversification rate under a simple Birth-

Death model (BD), a Pure-Birth or Yule model (PB), and PB and BD models including 

variations/shifts in the diversification rate in one and two discrete points in time: yule 1-rate, 

yule 2-rate, birth-death 1-rate, birth-death 2-rate (Y1r, Y2r and B1r, B2r respectively). We also 

tested another model that predicts slowdowns in the tempo and mode of diversification, 

density-dependent model (DDD). We also used the function fitdAICrc of the package LASER 

(Rabosky, 2006) to compare the results obtained with TreePar and compared here also density-

dependent exponential and density-dependent logistic models (DDX and DDL).

We conducted hypothesis-testing by the Likelihood Ratio Test (LRT) to estimate if the 

diversification rates are dependent on a particular trait (depth) using the Binary State 

Speciation and Extinction model (BiSSE model, Maddison et al., 2007) in the R package 

diversitree (FitzJohn, 2012). We aimed to test whether depth was associated with higher 

speciation rates by constraining a model to have equal speciation rates (λ1 = λ0) and to enforce 

equal speciation rates to be equal across character states (q10 = q01). We first specified the 

sampling fraction for each character state (0.9 for shallow species and 0.7 for deeper species). 

Constrained and full unconstrained models were compared based on their fit to the data (as 

indicated by the AIC values) using the function anova in diversitree, which also indicates 

whether the difference in fit is significant or not. The analysis was run with MCMC for 10,000 

generations for the unconstrained model. The probability density distribution of each character 

dependent parameter were obtained with the function profiles.plot.

Last, we reconstructed Lineage Through Time plots (LTT) from the MCC species tree 

to observe the pattern of diversification and the null model assuming constant speciation (pure 

birth). We then simulated 1000 trees under a pure birth model with the pbtree function in 

phytools and plotted the LTT of the simulated trees joined with the LTT of the MCC tree. The 

estimation of speciation and extinction rates with birth-death models were performed by using 

the function bd also with phytools.

3. RESULTS

3.1. Phylogeny of Phylladiorhynchus and its placement in Galatheoidea

All phylogenetic analyses recovered families Galatheidae and Munididae as polyphyletic 

groups (Fig. 2, Fig. S6). Phylladiorhynchus + Coralliogalathea are united in a well-supported 
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clade at the crown of the tree. Presumed galatheid genera were recovered in three highly 

divergent well-supported lineages and with no common ancestor: Phylladiorhynchus + 

Coralliogalathea, Alainius lineage, and the clade constituted by the other genera (i.e., 

Galathea, Fennerogalathea, Allogalathea).

Therefore, the supported relationships at galatheoid lineage level were the following: 1) 

Munidopsidae was recovered as sister group of all the rest of galatheoids, excluding 

Porcellanidae 2) the Alainius clade formed the basal lineage of a clade including most galatheid 

genera (except for Coralliogalathea and Phylladiorhynchus) which was sister to a munidid 

clade, in turn sister to Phylladiorhynchus + Coralliogalathea + Anomoeomunida. These 

relationships were all supported by posterior probabilities (pP) > 0.95 and bootstrap support 

(bs) >70.

Our results also revealed Phylladiorhynchus as monophyletic with consistent support 

across all analyses, and Coralliogalathea as its sister group with high support. Bayesian 

probability and bootstrap support were generally high (pP > 0.9, bs > 70) for both deep and 

recent nodes. The deletion of distant outgroups did not change the overall topology for the 

ingroup, but the simplest analysis (including Coralliogalathea as the only outgroup) showed 

higher bootstrap support (Fig. S7). A total of 47 highly supported molecular lineages and 55 

morphological lineages were recovered, corresponding to species of Phylladiorhynchus 

delimited in Schnabel and Ahyong (2019) and Rodríguez-Flores et al. (2021) (Fig. 2). Diversity 

of Phylladiorhynchus appeared structured in 10 different clades (Groups I–X) all highly 

supported for all performed phylogenetic analyses (Fig. 2). Morphological and molecular 

relationships mainly presented congruence at clade level, although differed in deep 

relationships (among clade relationships) and within clade relationships. These 10 clades were 

all highly genetically divergent, even showing greater distances than those found between 

families the Galatheidae and Munididae. All shared a particular combination of 

synapomorphies that are clade-specific, listed below.

Clade I (Fig. 2A) consisted of a group of species belonging to the ikedai-group, with 

morphology close to P. ikedai (Miyake and Baba, 1965): having the epigastric ridge usually 

armed with 4–5 epigastric spines, a triangular rostrum with smooth margins usually lacking 

subapical spines, a carapace dorsally flattened or slightly convex without intermediary ridges 

and two spines on flexor margin of third maxilliped merus. It constituted several subclades, the 

first one comprised P. acastus, P. argus, P. paula, P. kermadecensis and P. punctatus. The 

second subclade is constituted by Phylladiorhynchus cepheus + P. maestrati with P. butes as 
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sister. Phylladiorhynchus erebus and P. boucheti were clustered together as sister group of the 

previous subclades. The latter species were characterized by the number of spines on the 

branchial margin of the carapace. Moreover, the clade I ikedai included a subclade (called 

ikedai-2) containing species with five epigastric spines, globose carapace, and upraised ridges 

on carapace: the small pair of species P. koumac + P. pulchrus sister to the pair of species P. 

eneus + P. heptacanthus. The sister group of this clade was a lineage constituted by a rare 

species: P. iphiclus, the only species of the group having 2 epigastric spines. Due to these 

differences in morphological characters, the morphological phylogenetic inferences did not 

recover the clade ikedai-2 as a subclade of the ikedai-group but resolved it as an independent 

lineage. Species lacking molecular data (P. ikedai, P. idas and P. bengalensis) were clustered 

with the remaining clade I ikedai species, sharing the synapomorphies of the rest of the species 

of the group (Fig. 2B).

Clade II (integrirostris-group 2) contained a group of species with two epigastric 

spines, leaf-like rostrum with small to obsolescent subapical spines, a minute hepatic spine, 

three spines on anterior branchial margin, metagastric ridge in dorsal carapace surface scale-

like and one spine on flexor margin of third maxilliped merus. Two pairs of sibling species 

comprised the clade: P. janiqueae + P. medea (with poor support) clustered to the well-

supported subclade P. zetes + P. tiphys (Fig. 2A). These relationships were mirrored in the 

morphological tree clade, considering the low support clustering P. medea + P. janiqueae (Fig. 

2B).

Clade III (integrirostris-group 3) contained three species having a leaf-like tridentiform 

rostrum, with subapical spines well developed, rostrum margins serrated, hepatic spine present 

and three spines on anterior branchial margin and one spine on flexor margin of third 

maxilliped merus (Fig. 2A). Morphological analyses did not support the inclusion of P. talaus. 

In turn, it united P. serrirostris Melin, 1939 as species belonging to the clade, supported by the 

presence of strongly serrated rostrum and well-developed subapical spines (Fig. 2B). We were 

not able to obtain molecular data for P. serrirostris.

Clade IV consisted of a group of species belonging to the integrirostris-4 group, 

characterized by having a leaf-like rostrum with subapical spines obsolescent or absent, usually 

two epigastric spines, two spines on anterior branchial margin, plumose setae on pereiopods 

and one spine on the flexor margin of the third maxilliped merus (Fig. 2).

Clade V (pusillus-group) included the genus type species P. pusillus (Henderson, 1885) 

and its sister species P. poeas, both species considered as pseudocryptic species (Fig. 2A). 
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Morphological analyses also included other species in this cluster that we were not able to 

amplify but present morphological affinities to P. pusillus: P. porteri, P. lenzi and P. triginta 

united these species with this group (Fig. 2B). The pusillus-group is characterized by the 

typical presence of a leaf-like rostrum with small subapical spines, usually four spines in the 

epigastric ridge (except for P. triginta) and three spines on the anterior carapace margin. 

However, among the species within the clade, allometric variation in the epigastric spines 

exists (from two to six spines).

Clade VI or true integrirostris-group contained a group of four species that included P. 

integrirostris (Dana, 1852) and related species characterized by the presence of a leaf-like 

rostrum with small subapical spines, margin serrated, hepatic spine absent, two spines on 

anterior branchial margin, usually iridescent setae on carapace like and one spine on flexor 

margin of third maxilliped merus (Fig. 2A). Identical relationships were recovered in the 

morphological tree (Fig. 2B).

Clade VII or nudus-group consisted of small species characterized by having the 

epigastric ridge on the carapace unarmed, usually a leaf-like rostrum, carapace globose with 

uplifted ridges, dactylar spines on walking legs, sexual dimorphism with females more robust 

than males and two spines on flexor margin of third maxilliped merus. The group contains 

cryptic species, with a clade that included sibling species, P. phanus and P. marina, and with 

P. jeffkinchi as sister of this species pair. Phylladiorhynchus phlias was recovered as sister of 

this subclade and with P. nudus Macpherson, 2008 as the sister lineage of the rest of the 

species (Fig. 2A). These relationships were recovered in the morphological tree (Fig. 2B).

Clade VIII, the spinosus-group, consisted of four species having a dagger-like rostrum, 

carapace with secondary ridges, third sternite with a blunted median projection, dactylar spines 

on walking legs, and one spine on flexor margin of the third maxilliped merus (Fig. 2A). The 

morphological tree supported the relationships between P. spinosus Schnabel & Ahyong, 2019 

+ P. asclepius as sister to the pair P. lini + P. euryalus (Fig. 2B).

Clade IX (integra-group) comprised medium-sized species: P. integrus (Benedict, 

1902), P. australis and P. nui (both Schnabel & Ahyong, 2019). This group was characterized 

by having leaf-like or dagger-like rostrum, four epigastric spines, biconcave third sternite and 

one spine on flexor margin of the third maxilliped merus. Internal relationships were not clear 

or poorly unsupported by the molecular data (Fig. 2A), and internal relationships between 

species varied slightly in the proposed morphological tree (Fig. 2B).
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Clade X (integrirostris-group 5) included two sibling species (P. joannotae and P. 

amphion) characterized by having an unarmed epigastric ridge on the carapace, a leaf-like 

rostrum with small subapical spines, carapace globose with uplifted ridges, dactylar spines on 

walking legs, sexual dimorphism with females more robust than males and one spine on flexor 

margin of third maxilliped merus. The morphology tree identified this clade with strong 

support (Fig. 2B).

Concerning the molecular relationships among these clades, group I was recovered as 

sister of the other clades, clades II–VI formed a group, which was sister lineage to the group 

containing clades VII–X, each with high support. Whereas internal phylogenetic relationships 

among the cluster containing clades II–VI were mostly unresolved, relationships among clades 

VII–X were well supported: the clade VII (nudus-group) and clade VIII (spinosus-group) were 

clustered together, the integra-group (clade IX) was sister to this group and the clade X or 

integrirostris-5 was recovered as sister of the others.

3.2. Morphological and molecular change correlation with depth

Our results of the simple linear regression among morphological and molecular evolution in 

Phylladiorhynchus indicated correlation in species from both deep vs. shallow waters: p-values 

2.779-13 and 0.01933; slope (b) 0.35951 and 0.08935 respectively (Fig. 3). However, the 

regression slope became much steeper in Phylladiorhynchus from the continental shelf and 

slope than in shallow species, showing a more positive correlation. When considering only 

comparisons among species within clades, this correlation became more significant in species 

from shelf/slope (p-value = 6.55-16, b = 0.39615) and not significant in shallow species (p-value 

= 0.05896, b = 0.49264). Average values of morphological distances were higher in deep sea 

species whereas average genetic distances were higher in shallow water species, also in the 

cases comparing species within lineages (Fig. 3).

3.3. Species tree and time divergence estimation

Each gene partition was treated separately to build the species tree according to the results of 

the PartitionFinder. The time to the most recent common ancestor (tMRCA) of 

Coralliogalathea and Phylladiorhynchus was at 183.27 million years ago (Ma) during the 

Toarcian, Lower Jurassic (95% HPD: 212.68–159.61). The origin of the genus 

Phylladiorhynchus was estimated at 157.96 Ma (95% HPD: 185.43–134.26), at the transition of 

the Oxfordian and the Kimmeridgian during the Upper Jurassic. The origin of the genus 
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preceded the origin of a clade including all the other galatheoid lineages (143.72 Ma; 95% 

HPD: 176.18–113.20) and the origin of all galatheoid genera analyzed (Fig. 4). The split of the 

ikedai-group from other lineages of Phylladiorhynchus was estimated in the Lower Cretaceous 

at 130.28 Ma (95% HPD: 156.13–106.59). Subsequently, the nudus clade started diversifying 

in the Turonian (Upper Cretaceous), placed at 90.95 Ma (95% HPD: 112.42–69.32). The 

tMRCA of the true-integrirostris was placed at the end of the Campanian (Upper Cretaceous), 

74.82 Ma (95% HPD: 102.62–52.08). Clade III (integrirostris-3) has an origin of 

diversification dated back to the Paleocene at 64.87 Ma (95% HPD: 86.09–42.51), with a 

subsequent split of the lineage to form P. pollux and P. peneleos at 58.63 Ma (95% HPD: 

80.66–33.32). The tMRCA of several of the Phylladiorhynchus lineages were placed at the 

Oligocene, in the Chattian: integrirostris-2 (clade II), 27.11 Ma (95% HPD: 38.42–16.92), 

spinosus-group (clade VIII), 26.70 Ma (95% HPD: 40.38–15.65); integrirostris-5 group (clade 

X) 26.67 Ma (95% HPD: 44.24–11.13); followed by the diversification of the integra-group 

(clade IX) (17.36 Ma, 95% HPD: 24.16–10.51), and the most recent split of the P. pusillus + P. 

poeas (clade V) at the Miocene, Tortonian, with an estimate age of 8.40 Ma (95% HPD: 15.88–

1.75) (Fig. 4).

3.4. Phylogenetic signal of the habitat, molecular substitution rate and ancestral reconstruction 

of the depth

We obtained a Blomberg’s K statistic = 0.7 for the bathymetry in Phylladiorhynchus, indicating 

that the observed signal in the depth can be fit in a Brownian motion model of trait evolution on 

the phylogeny but have a certain convergent pattern of evolution. We also obtained a 

PIC.variance.P (p-value of observed vs. random variance of phylogenetic independent 

contrasts) = 0.001, which means the bathymetry has nonrandom phylogenetic signal in the 

phylogeny of Phylladiorhynchus.

According to the results obtained with BEAST and Tracer, best clock model and best 

tree prior of our data were an uncorrelated lognormal clock and a Birth-Death model. The 

ultrametric tree obtained with the COI + 16S + H3 dataset recovered a similar topology 

compared to the other phylogenetic results and overall high support for the different ten 

lineages recovered by BI an ML analyses, with some of the deep nodes unsupported and some 

changes in the species relationships within the clade I ikedai-group (Fig. 5). Clustering of 

clades II–VI and clades VII–IX were also supported.
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Median substitution rate was mapped out along the ultrametric tree based on COI + 16S 

+ H3 partitions, to detect accelerations and slowdowns along the branches and nodes allowed 

by the uncorrelated lognormal clock (Fig. 5). The results of the ancestral state reconstruction 

indicated that colonization of deeper waters from shallow water ancestors occurred 

independently at least three times during the evolution of Phylladiorhynchus (Fig. 5). The root 

ancestral state of the genus was most likely a shallow water ancestor. The first deep sea 

colonization event occurred in the ikedai-group (clade I) ancestor, a group mainly found on the 

continental shelf and slope, with a reversion to the ancestral habitat in the clade containing the 

species P. pulchrus and P. koumac, both ikedai species from shallow water reefs. The second 

event took place in the ancestral lineage of the integra-group (clade IX) and the third and last 

event was in the pusillus-group (clade V), which includes also P. lenzi (Rathbun, 1907) and P. 

porteri according to morphological relationships (Fig 2B). Acceleration in the median 

substitution rate was shown in several branches along the phylogeny; most of them coincided 

with a change of habitat between deep and shallow waters occurred; on the branch preceding 

the ancestor of P. pulchrus and P. koumac being more than twice that of the rate of the sister 

group (ikedai-group deep species), and those preceding the ancestor of the spinosus-group 

(clade VIII) and nudus-group (clade VII), being twice compared with the rate of the branching 

of integra-group. Interestingly, a slowdown was detected in the branch preceding the pusillus-

group ancestor, where a habitat colonization changes from shallow to deep-environment 

occurred (Fig. 5). This evidence suggests a bathymetric effect in the molecular substitution rate 

in Phylladiorhynchus, although change of rate was also seen in the branching of P. orpheus 

with respect to other species of the true integrirostris-group (clade VI).

The continuous mapping analysis performed on the MCC species tree obtained with 

starBEAST2 also determined a shallow water root as the ancestral state, supporting the 

ancestral reconstruction of discrete characters (Figs. 5, 6). The first colonization of deeper 

waters from shallow dwelling ancestors was estimated to occur during the Lower Cretaceous, 

with the origin of diversification of the ikedai-group, which includes mostly species from the 

continental shelf and slope, with a median estimated between the Upper Jurassic and the Lower 

Cretaceous (~140 Ma). The reversion within this group to shallower waters was estimated to 

be at the Lower Miocene 20.29 Ma (HPD: 33.23–17.79) in P. koumac + pulchrus. The second 

event was along the branch leading to the clade integra-group clade in the 133.20–17.36 Ma 

interval, with a median in the Campanian (Upper Cretaceous). It contains P. nui, which 

colonized deeper water than its congeners (exceeding 1200 m depth); lastly, the most recent 
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event occurred on the branch leading to the pusillus-clade, in which species are typically from 

around 100 m depth usually not surpassing 200 m, in the 75.8–8.4 Ma interval, with a median 

in the Bartonian (Middle Eocene) (Fig. 6).

3.3. Tempo and mode of diversification of Phylladiorhynchus

According to our results with LASER and TreePar we cannot reject a pure-birth diversification 

model with zero extinction (parameter μ = 0) (Table S8). The PB model was selected as the 

best model fitting our data in TreePar. We recovered from the analyses with LASER also a PB 

as best constant rate model and a Y2r as best rate variable model. In conclusion, we cannot 

reject the null hypothesis of cladogenesis under constant rates for the diversification of 

Phylladiorhynchus. We recovered slight differences in the rate of speciation among character 

states according to the BiSSE models (Fig. 7), but these differences were not significant when 

comparing full and constrained models, and the model that fitted our data best was that with 

equal speciation rates across character states. Moreover, there were no differences in the 

diversification between deep and shallow dwelling Phylladiorhynchus (Fig. 7) leading to the 

conclusion that bathymetry does not have a significant effect on the diversification of the 

genus, given our data.

On the other hand, LTT plots showed different diversification trends for each shallow 

and deep lineage (considering the ikedai-lineage, being the most diverse lineage with most 

species from shelves and slope) (Fig. 8), although again not differences in the speciation 

parameter (ikedai-group λ = 0.0143263, shallow water Phylladiorhynchus λ = 0.0140435), and 

we gathered the same result as previous analyses for the extinction parameter (μ = 0). The LTT 

analyses of Phylladiorhynchus (Fig. 8 first panel) showed a trend of constant diversification 

even above a pure birth model, with an initial radiation followed by a slowdown or stasis 

during time span 120 to 80 Ma (Cretaceous), then a recovery of the accumulation of lineages 

followed by other stasis during the Paleocene (ca. 45–20 Ma) and a final acceleration since the 

last 15 Ma. The lineage accumulation trends differ slightly among the predominant deep sea 

Phylladiorhynchus (ikedai-group) and the shallow water counter parts, showing both groups an 

initial radiation, two events of slowdown or diversification stasis with a recover in the between 

and an acceleration to the present. These events were longer in time, steeper (considering the 

diversification curve), even under the constant diversification model, and more recent in the 

ikedai-group (first event ca. 85–45 Ma, second ca. 38–7 Ma) compared to the shallow 
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Phylladiorhynchus (first event in the Cretaceous, ca. 120–80 Ma, second event in the 

Paleogene, ca. 50–30) (Fig. 8).

4. DISCUSSION

4.1. Systematics and phylogenetic relationships of Phylladiorhynchus within Galatheoidea

The generally accepted relationships among galatheoid families and the monophyly of 

Galatheidae and Munididae (Ahyong et al., 2010, 2011a; Schnabel et al., 2011b; Bracken-

Grissom et al., 2013; Palero et al., 2019; Rodríguez-Flores et al., 2018) were not recovered in 

our analyses (Fig. 2, Fig. 4). This is not surprising since previous studies have pointed out the 

polyphyly of the more diverse genera of each family (e.g., Munida: Rodríguez-Flores et al., 

2018; Munidopsis: Ahyong et al., 2011b). The sister group of Phylladiorhynchus is 

Coralliogalathea, conforming with the current systematic hypotheses that propose these two 

groups as closely related lineages (Rodríguez-Flores et al., 2018), with the chief synapomorphy 

being the presence of gonopods only on the second abdominal somite of males (Tirmizi and 

Javed, 1980; Macpherson and Baba, 2011). A close relationship between the monospecific 

genus Anomoeomunida (from the Caribbean Sea), and Coralliogalathea plus 

Phylladiorhynchus is supported in the phylogenetic analyses (Fig. 2). The clade constituted by 

the three lineages is united by synapomorphies such the presence of an excavated orbit that is 

delimited by a lateral orbital spine (Macpherson and Baba 2011; Rodríguez-Flores et al., 2018; 

Schnabel and Ahyong, 2019; Rodríguez-Flores et al 2021). Unfortunately, the calibrated 

species tree did not support this clade, recovering Anomoeomunida as part of the Munididae 

group (Fig. 4). Therefore, the phylogenetic position of Anomoeomunida remains ambiguous 

until more evidence is gathered. However, our results provide strong support for 

Coralliogalathea + Phylladiorhynchus as an independent evolutionary lineage separate from 

Galatheidae s.s., suggesting that the family-level classification should be revised. The 

cladogenesis in this group appears to have started earlier during the Lower Jurassic with the 

split of Coralliogalathea from Phylladiorhynchus, followed by an origin of diversification of 

Phylladiorhynchus, dated to the Upper Jurassic (Fig. 4), at around the same time as the 

radiation of the remaining squat lobsters began (Robins et al., 2012, 2013; Robins and 

Klompmaker, 2019).

Several modern genera of squat lobsters have been recognized in the Cenozoic fossil 

record or later (e.g., Sadayoshia, Agononida or Shinkaia Baba & Williams, 1988; De Angeli 
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and Garassino, 2003; Garassino et al., 2008; Schweitzer and Feldmann, 2000; Hyžný and 

Schlögl, 2011). Other modern squat lobsters are known from the Cretaceous, e.g., Munida and 

Munidopsis, or even before, appearing during the Tithonian (Upper Jurassic), e.g., Galathea 

(Schweitzer et al., 2010; Ahyong et al., 2011a). The phylogenetic reconstructions of genera 

without fossil record has revealed more recent age estimates: Mesozoic (Lauriea), Lower 

Cenozoic (Coralliogalathea) and Tertiary (Leiogalathea and Paramunida) (Cabezas et al., 

2012, Palero et al., 2017, Rodríguez-Flores et al., 2019a, 2020). Taking into account all these 

data, our results indicate that Phylladiorhynchus is one of the contemporary genera of squat 

lobsters with the most ancient origin of diversification. Indeed, the Jurassic squat lobster 

Juracrista Robins, Feldmann & Schweitzer, 2012 and in particular J. costaspinosa Robins, 

Feldmann & Schweitzer, 2012 closely resembles to Phylladiorhynchus in the shape of the 

rostrum and supraorbital spines (Robins et al., 2012; Rodríguez-Flores et al., 2021), and may 

even be congeneric. The main lineages within Phylladiorhynchus (clades I–X) also appear to be 

surprisingly ancient, with divergence times in the Cretaceous and throughout the Miocene. 

Cladogenesis events in Phylladiorhynchus even precede the origin of diversification of most 

other galatheoid (Rodríguez-Flores et al., 2019b, 2020).

Although all current genus diversity is distributed in the Indo-Pacific region, 

considering the proposed time of divergence and the existence of related forms, a Tethyan 

geographic origin appears most likely for Phylladiorhynchus. Previous studies have proposed 

diversification of the main squat lobster lineages in the Central Indo-Pacific (sensu Spalding et 

al., 2007; Ahyong et al., 2011a) with several biogeographical reconstructions of galatheoids 

highlighting the importance of the southwest Pacific area for diversification. These we 

proposed to be associated with the geological and ecological changes that took place in this 

region during the late Paleogene-early Neogene period (Schnabel et al., 2011a; Cabezas et al., 

2012; Palero et al., 2017; Rodríguez-Flores et al., 2020). However, the antiquity of the lineages 

with respect to other squat lobsters, the existence of high diversity in the ancient Tethys Sea 

during the Jurassic (Robins et al., 2012, 2013) and some fossil species in the area with close 

morphology (Robins et al., 2012; Beschin et al., 2016) supports a more likely Tethyan origin 

for Phylladiorhynchus.

4.2. Patterns of inshore/offshore colonization during their evolutionary history

Our results indicate some degree of phylogenetic signal related with the bathymetry but 

also a degree of convergent evolution. This phylogenetic signal is a quantitative measure of the 
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degree to which phylogeny predicts the ecological similarity of species, which tend to 

resemble each other more than under a null model (Kembel et al., 2010; Blomberg and 

Garland, 2002). It seems that independent habitat colonization between deep sea and shallow 

waters have occurred in the evolutionary history of Phylladiorhynchus. Previously, two 

evolutionary scenarios have been proposed to explain the directionality of environmental 

colonization: (1) from shallow to deep-waters (inshore–offshore trends), a pattern observed for 

the majority of marine taxa (Jablonski and Bottjer, 1990; Sepkoski, 1991; Jacobs and 

Lindberg, 1998; Raupach et al., 2004, 2009; Smith and Stockley, 2005; Priede and Froese, 

2013; Lee et al., 2019b) and (2) invasion of shallower waters from the deep sea (offshore–

inshore trends), a rarer pattern observed for instance in some groups of corals (Lindner et al., 

2008; Hoeksema, 2012).

The most likely explanation for observed patterns of present-day depth distribution is 

that the genus Phylladiorhynchus originated in a shallower environment and colonized deeper 

waters, consistent with the inshore–offshore hypothesis (Fig. 5 and 6). This inference is 

congruent with the extant diversity in coral reefs and shallow environments (Rodríguez-Flores 

et al., 2021) and is also supported by the typical habitat in shallow coral reefs of their sister 

group (Coralliogalathea) (Rodríguez-Flores et al., 2018). Subsequently, radiation towards 

deeper environments has independently occurred at least twice: (1) in the integra-group (clade 

IX), reaching the deepest records for Phylladiorhynchus (P. nui and P. integra down to >1200 

m and (2) in the ikedai-group (clade I; Baba et al., 2009; Lee et al., 2019a; Schnabel and 

Ahyong, 2019), (Figs. 5 and 6). Lastly, the group constituted by the sibling species P. poeas 

and P. pusillus seems to prefer shelf habitats, usually appearing below 50 meters and rarely 

deeper than 300 meters depth (Schnabel and Ahyong, 2019; Rodríguez-Flores et al., 2021). A 

pattern of multiple lineages independently colonizing the deep sea during the Cenozoic Era 

have been already shown in several marine taxa, including fishes, crustaceans, mollusks, and 

echinoderms (Raupach et al., 2004, 2009; Lorion et al., 2010; Lins et al., 2012; Priede and 

Froese, 2013; Kou et al., 2020).

The timing estimates for these colonization events revealed an interesting pattern in 

Phylladiorhynchus. From shallow water ancestors, a first environmental change towards the 

deep sea in Phylladiorhynchus was estimated to be early during the evolution of the squat 

lobsters, during the Lower Cretaceous, e.g., ikedai-group, followed by two more recent events 

of deeper water colonization (Fig. 6). Deep sea colonization events by the modern fauna have 

occurred predominantly during the Cenozoic (McClain and Hardy, 2010 and references 
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therein), including the colonization of hydrothermal vents (Herrera et al., 2015). Nevertheless, 

considering the fossil record, the current Paleozoic-origin deep sea fauna constitutes only a very 

small fraction of the modern taxa (Lipps and Hickman 1982, McClain and Hardy, 2010). 

Oceanic anoxic events and the increase of the temperature at the Permian–Triassic boundary 

and from the Mesozoic to the early Cenozoic caused mass extinction events, even leading to the 

complete loss of some deep sea taxa (Jacobs and Lindberg, 1998). However, some taxa 

survived and persisted in the deep sea or, alternatively, in oxygenated shallow water refugia 

with a prior re-colonization of the deep sea or suffered allopatric fragmentation (White, 1988, 

Wilson, 1999; Lins et al., 2012; Kou et al., 2020; Thuy et al., 2012). Recent studies suggest that 

some crustaceans colonized the deep sea and persisted there during the Mesozoic Era (Lins et 

al., 2012; Audo et al., 2021; Kou et al., 2020). This could also be the case for 

Phylladiorhynchus, whose bathyal members appear to have persisted in deep waters since the 

Lower Cretaceous.

4.3. Potential effect of depth in rates of molecular and morphological evolution

We hypothesized that the environmental change from shallow to deep waters or vice versa 

could leave a footprint in the rates of molecular and morphological evolution. Linear 

regressions between morphological and molecular divergences overall indicated a strong effect 

of the habitat with depth, considering the correlation of morphological and molecular evolution 

of Phylladiorhynchus, and therefore a general trend of more cryptic/pseudocryptic species in 

shallow water than in the deep sea (Fig. 3). Species from deeper waters (ikedai-, integra and 

pusillus-lineages) present greater morphological and lower genetic divergences in comparison 

to species from shallower water. These positive correlations could be also an effect of 

comparing ancient lineages with high phylogenetic distances and different evolutionary 

trajectories. However, most deep sea species belong to the same subclade sharing a common 

ancestor. On the contrary, shallow water species belong to independent clades not sharing the 

same common ancestor (Fig. 5). Therefore, we compare these changes among closely related 

species within lineages (clades I–X) instead among all species from different lineages and 

obtained the same results. These patterns of morphological evolution in shallow versus deep-

waters resembles the proposed scenario for the deep sea under the stability-time hypothesis 

(McClain and Schlacher, 2015), in which low physiological stress promotes ecological 

speciation processes through fine niche partitioning (McClain and Schlacher, 2015). 

Ecological speciation could promote higher levels of morphological diversification among 
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related species by reducing constraints of phenotypic evolution in species at greater depths 

(Pfenning et al., 2010; Fitzpatrick, 2012). On the other hand, higher prevalence of shallow 

water cryptic species of Phylladiorhynchus could arise from convergent evolution 

(independent lineages adopting similar solutions) and stasis (strong stabilizing selection 

reducing the morphological divergence) (Struck et al., 2019).

The genetic distances among some of these species largely surpass those observed 

between other squat lobster genera (Machordom and Macpherson, 2004, Cabezas et al., 2008; 

Macpherson and Robainas-Barcia, 2013, Schnabel and Ahyong, 2019, Rodríguez-Flores et al., 

2021). Our BEAST2 analyses with a molecular clock that allows consideration of different 

rates for each branch, recovered an acceleration in the stem branch of the ancestor of the whole 

group but also an ancient origin of cladogenesis (Upper Jurassic), so observed high divergences 

might be explained by a combination of antiquity and acceleration of the molecular substitution 

rate. On the other hand, our reconstruction suggests that the stem of shallow water ancestors 

might show an acceleration in the molecular rate of evolution in comparison to deep sea 

lineages, who appear to undergo a slowdown on such rate (Fig. 5). Life at depth could be 

associated with a scattered food and oxygen availability, stable but low temperatures, and high 

hydrostatic pressures (Rex and Etter 2010), which could be linked to a low metabolic rate, long 

generation time and large body size. This might result in a deceleration in the molecular 

evolution rate (or an acceleration compared to the shallow water sister taxa). Differences in 

habitat colonization have a deep impact in the molecular evolution of related crustaceans 

(Hebert, 2002; Saclier et al., 2018). Therefore, analyzing a proxy of molecular evolution (e.g., 

transition over transversion, the ratio of non- synonymous over synonymous substitution rates) 

between shallow and deep squat lobster is an interesting prospect for future studies, of course 

gathering a larger set of molecular data.

4.4. Potential effect of depth in the diversification/speciation of Phylladiorhynchus

We proposed that environmental colonization (shallow versus deep) could affect diversification 

rate (mode and tempo of cladogenesis). Our results suggest that best model of diversification 

fitting our Phylladiorhynchus dataset is a pure birth model, whereas according to BiSSE 

analyses, deep sea colonization is not a key innovation that affecting the speciation/net 

diversification rates (Fig. 7). In this sense, results are surprising that such an ancient group does 

not exhibit any significant shift on their diversification and that such a lack of extinction rate in 

the models employed (Table S8), although slight differences were detected in the cladogenetic 
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trends between shallow and deep clades. The diversification trend dynamics of the whole group 

is characterized by an early burst of speciation (Fig. 8) followed by decelerated periods of 

diversification with intermittent diversification recoveries. The slowdowns are more 

pronounced in the main deep sea clade ikedai even under the model that consider constant 

diversification, whereas the slopes are steeper although, there were not significant differences 

between the speciation rates in deep and shallow lineages (Fig. 8). The first of these slowdowns 

in the diversification rate of the deep sea ikedai clade spans the Upper Cretaceous-Lower 

Paleogene, coinciding with the K-Pg transition (Cretaceous-Tertiary extinction), when three-

quarters of the life forms on Earth went extinct (Hull, 2015); the second took place during the 

Oligo-Miocene (integra group), where high tectonic activity in the Indo-Pacific might have 

influenced the dynamics of speciation (Williams and Duda, 2008; Cabezas et al., 2012). On the 

other hand, shallow water diversification slowdowns coincide with the Cretaceous anoxic 

periods (Rex and Etter, 2010) and with post Cretaceous extinctions. The higher species 

diversity in the ikedai clade (about 20 species) in comparison to the shallow water clades, 

characterized by having a poorer species richness (from 2 to 6 species) could be indicative of 

an effect of the depth in the diversification of the group. This pattern of clade diversity might 

correspond with McClain and Schlacher’s (2015) proposal of decreasing taxonomic distance 

with increasing depth. According to this hypothesis, in a phylogeny of a group occurring in 

both shallow and deep waters, it would be likely to find higher ancient lineage diversity in 

shallow waters than in the deep sea. This is the case of Phylladiorhynchus, with seven main 

lineages found in shallow waters and only three typical of deeper waters. Other authors have 

found unexpected effects of depth in the diversification rate of marine invertebrates. Modica et 

al. (2020) found that diversification rate was unaffected by depth in Terebridae but suggested 

an increase in the rate triggered by the colonization of deep waters. Conversely, O’Hara et al. 

(2019) pointed out that in Ophiuroidea, deep sea diversity is attended by a low diversification 

rate, but also strongly influenced by latitude. Therefore, we must avoid generalizations in the 

diversification trends of marine taxa, since the evolutionary history of each group may have 

been shaped by distinct factors.

In spite of the diversification trends of the group, our results recover a constant 

diversification rate in Phylladiorhynchus. This result could be an effect of the incomplete and 

biased taxon sampling of the extant and extinct species, and so the diversification analyses and 

their fluctuation in relation to environmental factors should be interpreted cautiously. Several 

authors have proposed that inferring diversification parameters with only extant taxa using 
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molecular phylogenetics in the absence of the fossil taxa cannot be reliable (Rabosky, 2010; 

Loucas and Pennell, 2020). The genus Phylladiorhynchus is characterized by an unexpectedly 

high diversity, with around 50 species discovered in the last few years (Schnabel and Ahyong, 

2019; Rodríguez-Flores et al., 2021). At least 4 of the previously described species include 

species complexes (Rodríguez-Flores et al., 2021) and some of the records from the East 

Pacific could represent additional new taxa (e.g., DiSalvo et al., 1988; Retamal & Arana, 

2016). Considering that we suspect we only know of one-third of species of galatheoid squat 

lobsters (Appeltans et al., 2012) and with our limited knowledge of the deep sea floor 

(Ramirez-Llodra et al., 2010), further sampling and taxonomic identifications are required to 

better understand the diversification dynamics of squat lobsters and other groups. Nevertheless, 

given that the recent taxonomic synopses of Phylladiorhynchus (Schnabel and Ahyong, 2019; 

Rodríguez-Flores et al., 2021) are based on the results of more than three decades of intensive 

sampling in the Indo-Pacific, lending confidence to the general robustness of our analyses.

4.5. Relation of depth with geographic lineage range and geographic speciation patterns

We initially hypothesized that deep sea colonization can influence both geographic 

lineage ranges and geographic speciation patterns. General reviews have demonstrated that 

shallow water species usually have smaller geographic ranges than species inhabiting deeper 

areas such as continental shelf, slope, or abyssal plains (Halsband et al., 2020). Therefore, 

smaller clade ranges are more likely for lineages from shallow than from deep waters. 

However, throughout the study of Phylladiorhynchus we did not find any sign that indicates a 

relationship between the clade range and the bathymetric range (Fig. 6). The genus presents a 

largely tropical distribution (Fig. 1C) that includes some widely distributed species, a pattern 

like many other species of Galatheoidea (Macpherson and Baba 2012; Cabezas et al., 2011; 

Rodríguez-Flores et al., 2018). All clades of shallow water Phylladiorhynchus included species 

with allopatric distributions with lack of geographic overlap, for instance the clade III, 

distributed from Western Australia to French Polynesia, with an absence of species range 

overlap in its distribution area. Clade VIII has a disjunct distribution from Western Australia to 

New Caledonia and New Zealand, and in Taiwan, with only two species that overlap in their 

distribution (Rodríguez-Flores et al., 2021) (Fig. 6). On the other hand, the ikedai-group 

includes several sympatric deep sea species that are closely related (Rodríguez-Flores et al., 

2021) (Fig. 6). The overlap of geographic ranges of species of the same clade is more common 

in continental shelf/slope species than in shallow species, warranting further investigation.
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Some species may have formed by allopatric speciation facilitated by bathymetric shifts, 

for instance, within the integra-group, P. nui Schnabel & Ahyong, 2019, and P. australis 

Schnabel & Ahyong, 2019 overlap in their geographic range but do not overlap in their 

bathymetrically. However, the eurybathic P. integrus that shares the subclade with the above 

species does not overlap geographically with the others. Vertical speciation has been previously 

reported for some species of Leiogalathea together with morphological adaptations to deeper 

environments (Rodríguez-Flores et al., 2020) a pattern repeatedly observed in deep sea 

invertebrates (e.g., Prada and Hellberg, 2021; Breusing et al., 2020).

Shallow water Phylladiorhynchus include often cryptic species (Rodríguez-Flores et al., 

2021) (Fig. 3) that are generally allopatric, reducing selective pressures promoting the evolution 

of morphological differences related to species interactions, whereas sympatric species often 

accumulate morphological differences that might allow them to avoid competitive exclusion 

(Chenuil et al., 2019). Sympatric distributions in shallow cryptic species might be explained by 

ancient divergence and recent secondary contact (see the case of Coralliogalathea in 

Rodríguez-Flores et al., 2018), whereas in the deep sea, ecological speciation and 

morphological divergence might account for overlapping of the distributions in species of the 

same clade. Ecological divergence and allopatric isolation play a key role in speciation of 

marine invertebrates, generating allopatric divergence after the generation of horizontal/vertical 

barriers and ecological isolation due to niche segregation in the deep sea (Prada and Hellberg, 

2021; Breusing et al., 2020).

5. CONCLUSIONS

<Reconstructing the evolutionary history of Phylladiorhynchus has not only shown that there is 

still much to uncover about the systematics of squat lobsters, but also that Phylladiorhynchus is 

one of the most ancient lineages of extant squat lobsters, with a complex evolutionary history 

since the Jurassic, and several independent shallow- to deep-water colonization events. Indeed, 

this environmental shift has shaped the molecular and morphological diversity in the group and 

it may be possible for related groups to be differentially affected by habitat change. This line of 

research should be extended to squat lobsters that are highly diverse and where contrasting 

evolutionary phenomena, such as adaptive radiation, rapid speciation, cryptic species or high 

morphological diversification have been previously detected (Machordom and Macpherson, 

2004; Rodríguez-Flores et al., 2019a,b; Dong et al., 2019, 2021). However, to better understand 
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the effects of the depth on evolutionary dynamics, speciation and extinction, increased 

taxonomic effort is essential for understanding the evolutionary pathways of this and other 

crustacean groups.
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Figure captions

Figure 1. Selected hypotheses of the evolutionary history of the squat lobsters Phylladiorhynchus over time and 

considering environmental shifts: A. Selective models of molecular evolution in terms of the decoupling of 

morphological and molecular change, B. Adaptive radiation patterns: Changes in the diversification rates, in terms 

of speciation (λ) and extinction (μ) rates, appear in phylogram as a result of environmental change (e.g., bathymetric 

shifts); C. The current distribution of Phylladiorhynchus species spans the tropical and subtropical Indo-Pacific 

region could also have been affected by the colonization of deep versus shallow environments.

Figure 2. Phylogenetic hypotheses of Galatheoidea based on A., concatenated genetic markers (COI, 16S, PEPCK, 

H3, 28S, 18S) obtained with BI and ML, and based on B., morphological characters obtained with TNT and BEAST. 

Asterisk above branches in A indicate bootstrap support (2 asterisk = support from BI and ML, one asterisk = support 

from only one of the treatments. Values of bootstrap lower than 70 and pP lower than 0.80 are not shown. Posterior 

probability is reflected in each node in B. Species groups are indicated with color squares and roman numeration; 

species names are indicated at branch tips in both trees. Pictures from the top to the botton: P. paula, P. koumac, P. 

zetes, P. gustavi, P. peneleos, P. poeas, P. orpheus, P. phanus, P. lini, P. nui, P. joannotae. Credit images (MNHN, 

UF, NIWA): L. Corbari, K. Schnabel, B. Richer de Forges, G. Paulay, TY. Chan, Z. Duris, A. Anker, and P.C. 

Rodríguez-Flores.

Figure 3. Linear regression results of the relation between molecular (COI) differentiation and morphological 

differentiation (in terms of uncorrected p-distance) in A) all set of Phylladiorhynchus species from shallow waters 

(left) and comparisons only within Phylladiorhynchus shallow clades (II, II, IV,VI, VII, VIII), (right), and B) all set 

of Phylladiorhynchus species from deep waters (left) and comparisons within Phylladiorhynchus deep clades I, V 

and IX (right), p-value of each analysis is indicated on the top right of each graph. Carapaces exemplify the 

morphological diversity among shallow water clades (A) and deep sea clades (B).

Figure 4. Maximum clade credibility tree for Phylladiorhynchus in a Galatheoidea phylogenetic context obtained 

with StarBEAST2 using 78 species. Calibration points considered in the analysis are highlighted with *. Numbers 

on nodes indicate posterior probability for the corresponding nodes. Bars represent the 95 % highest posterior 

density. Yellow circles at nodes indicate tMRCA of Phylladiorhynchus genus (most ancient circle) and tMRCA for 

most other Galatheoidea lineages for comparison of ancestry (circle most recent).

Figure 5. Ultrametric tree obtained from BEAST of the concatenated genes (COI, 16S and H3) after pruning 

outgroups and ancestral discrete character reconstruction on the tree for the character “depth” codified as shallow 

and deep. Legend indicates the range of the substitution rate along the branches obtained with the relaxed molecular 

clock in BEAST, grey color indicates unsupported branches. Circle size on nodes indicate Bayesian posterior 

probabilities (pP) and marginal the marginal ancestral states for the character depth. Species names are indicated at 

the branch tips. Roman numbers indicate each reconstructed phylogenetic clade, I: ikedai-group, II: integrirostris-
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group 2, III: integrirostris- group 3, IV: integrirostris-group 4, V: pusillus-group, VI: true integrirostris-group, VII: 

nudus-group, VIII: spinosus-group, IX: integra-group, X: integrirostris-group 5).

Figure 6. Continuous mapping of the species median depth on the calibrated species tree obtained from BEAST 

after pruning outgroups and clade geographic range for the main phylogenetic lineages of Phylladiorhynchus, from 

the top to the bottom: integrirostris-5 group and spinosus-group, integra-group and nudus-group, ikedai-group and 

true integrirostris-group, integrirostris-2 and 3 group; and integrirostris-4 and pusillus-group. Vertical lines indicate 

median age of habitat change. Roman numbers indicate each reconstructed phylogenetic clade, I: ikedai-group, II: 

integrirostris-group 2, III: integrirostris- group 3, IV: integrirostris-group 4, V: pusillus-group, VI: true 

integrirostris-group, VII: nudus-group, VIII: spinosus-group, IX: integra-group, X: integrirostris-group 5.

Figure 7. A. Diversification rate, speciation rate and extinction rate for shallow and deeper Phylladiorhynchus using 

BiSSE models via MCMC chain runs for 10000 generations in each case for a full unconstrained model (see text).

Figure 8. Lineages-through-time (LTT) plot based on the MCC species tree (black line) showing the diversification 

of Phylladiorhynchus lineages throughout time in million years (X-axis). Background colors represents the expected 

distribution of 1000 trees under a pure-birth model and assuming constant diversification (red line). The Y-axis is 

on a logarithmic scale.
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Highlights

The known diversity of Phylladiorhynchus recently increased from five to 55 species

Multilocus and morphological phylogenies were inferred based on all known Phylladiorhynchus 

diversity to test the effect of depth on the evolution and diversification of the genus.

Our phylogenetic reconstruction showed that the sister group of Phylladiorhynchus is Coralliogalathea 

and this clade is not closely related to other Galatheidae

Ten morphologically well-delimited clades are identified within the genus

The ancestor of the genus originated in shallow water during the Upper Jurassic and independently 

colonized deeper waters during diversification

Shallow water species present a slowdown in the morphological evolution and a higher molecular 

substitution rate in comparison with deep-sea species

Depth does not significantly affect the diversification of Phylladiorhynchus in terms of speciation and 

extinction rates

Deep-sea species of Phylladiorhynchus tend to be sympatric whereas shallow water species present 

allopatric distributions
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