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Introduction

Below, we provide supporting material. This includes example imagery during this pe-

riod, clear-sky occurrences during the entire OSMOSIS period, evidence for connections (al-

beit speculative) to spiral eddies documented by Scully-Power [1986]; Munk et al. [2000], er-

rors resulting from optimal interpolation of SeaSoar II measurements and estimates of the lat-

eral shear across the front.

1 Clear-sky occurrences (September 2012-September 2013)

As mentioned in the manuscript, we provide a list of periods classified as clear-sky ac-

cording to our definition and which exceed two hours in duration (Table 1). We believe this

may help in future analysis of the OSMOSIS record. Note: not all imagery obtained during

these periods resulted in stellar imagery. Considerable information might be teased out by us-

ing more sophisticated processing in concert with geosynchronous data. Another option might

be to identify coverage from the MODIS sensor onboard the Aqua spacecraft. This sensor has

a spatial resolution near ∼1 km and would complement these data considerably. Another thing

to note is that the visible portion of the electromagnetic spectrum on both the VIIRS and MODIS

instruments provides information about chlorophyll concentration. Thus, consideration of an

additional sensor could increase the chances of obtaining coincident chlorophyll and in situ

(i.e., mooring- and glider-based) measurements. In summary, these clear-sky periods may be

beneficial to the reader.

2 Additional infrared imagery

Figure 1 provides several example SST images obtained from cross-referencing clear-

sky conditions with VIIRS onboard Suomi-NPP. Two examples are highlighted. One of these

is the unstable front described in the main manuscript on 19 September 2012 (first row, sec-

ond column). The second pertains to upwelling of waters within an anticyclonic mesoscale eddy

west of the observation site during July and August 2013 (e.g., 12 July 2012; fourth row, third
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column) and which may be evidence of symmetric instability within the mesoscale eddy [Bran-

nigan, 2016].

3 Spiral eddies in infrared measurements of sea surface temperature?

We stated within the manuscript that the occurrence of swirling vortices along the ther-

mal front was most likely related to “spiral eddies” documented within optical images by Scully-

Power [1986]; Munk et al. [2000]. Figure 2a illustrates an example of spiral eddies from the

Apollo shuttle missions [Scully-Power, 1986]. Using image processing methods (e.g., morpho-

logical operations and normalization), we isolated tracer concentrations elevated above back-

ground levels. The resulting binary image is displayed in Figure 2b. Finally, we hand-drew

contours of these tracers as objectively as possible, connecting previously unconnected seg-

ments (Figure 2c). The tracer contour has appearance that is similar to the SST contour sep-

arating warm and cool waters in the study. In summary, while we cannot state for certain that

the observed SST image provides evidence of spiral eddies in SST, we suspect they are pro-

duced by the same underlying phenomenon.

4 Interpolation of SeaSoar II measurements

While useful for understanding the horizontal and vertical structure of ocean fronts, in-

terpolation of discrete measurements from SeaSoar II yield density and velocity fields that are

smoothed relative to true values. In particular, the lateral smoothing inherent in the Barnes anal-

ysis employed here [Barnes, 1964, 1994] may bias eddy scales obtained in the BTI analysis;

its effect on the widths of the horizontally-sheared regions, a and b, is paramount.4 In order

to quantify the lower bound for these quantities, we simulated a jet-like velocity field consist-

ing of constant-vorticity sheets and conducted an optimal interpolation of these data. A com-

parison of original and processed fields is shown in Figure 3. For a jet-like profile having sheared

widths a′ = b′ = 8.3 km, the result after the Barnes analysis is a Gaussian-like profile with

widths a = b = 20.0 km. That is, the resulting jet has shear width approximately 2.4 times

its original scale. We have rounded this to 3.0 to be conservative. Given our estimated shear

widths of a = 20.0 and b = 25.0 km, this implies the true widths are no smaller than a′ =
6.7 and b′ = 8.3 km, respectively. Note, that the magnitude of the flow is reduced, as well.

This suggests the unbiased shear parameter to use for the BTI model is larger: U ′
o
≈ 2Uo =

(2)(0.24) m/s = 0.48 m/s. We did not use this value within the text since this parameter mod-

ifies only the growth rate and not the scale of the most unstable mode. We did, however, use

it to estimate the gradient Rossby number (below).

We emphasize that the shear widths obtained above are somewhat conservative. We have

done this in order to be explicit about how the horizontal shear model used in the manuscript

does not explain the observed eddy sizes. In reality, the true shear widths are likely closer to

20/2.5 = 8 km.

5 Magnitude of lateral shear across the front

For completion, we document higher-order derivatives of the SeaSoar II data. In gen-

eral, we are not confident of small-scale features observed in these quantities. This is because

the errors arising during the interpolation scheme will tend to amplify when spatial gradients

are taken. Nevertheless, the general magnitude of horizontal shear across the front should be

well-represented by these estimates. Note: where other optimal interpolation schemes intro-

4 Note, the vertical scale is not affected in the same way since the averaging depth was minimal. As eddy scales under

the BCI model depend heavily on the choice of H , these are not modified greatly. The lateral buoyancy gradient is relaxed,

however, and this will tend to reduce growth rates relative to those reported here.
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duce errors, we have minimized many of these by using the Barnes analysis [Barnes, 1964,

1994].

Figure 4 depicts the gradient Rossby number, Ro = ζ/f ≈ −f−1∂u/∂y, estimated

from the SeaSoar II data. Note that amplitudes do not exceed 0.125. However, given the smooth-

ing inherent in the interpolation scheme, we estimate lower and upper bounds on this value

of 0.1–0.55. These bounds can be obtained as follows. We first subtract from the total cur-

rent magnitude the background value to obtain Uo = 0.24 m s−1. For the upper bound, we

multiply by 2 to obtain U ′
o
= 2Uo m s−1, whereas we retain Uo only for the lower bound.

Finally, we divide by the product of f and the shear width, a. In this calculation, we used a =
8.0 km (upper bound) and a = 20 km (lower bound). [For example, for the upper bound,

|Ro| = f−1(U ′
o
/a) = f−1(0.48/8000) = 0.55, where f ≈ 1.0940x10−4 s−1 and a is ex-

pressed in meters.]

For geophysical flows, a necessary but insufficient criterion for instability is that the cross-

front gradient of potential vorticity, ∂q/∂y, change sign somewhere within the flow. For baro-

clinic instability, this quantity will be dominated by the cross-front gradient of vertical shear,

∂2
u/∂z∂y, whereas for barotropic instability, it will be dominated by the cross-front gradi-

ent of relative vorticity, ∂2u/∂y2. In Figure 5, we depict the meridional (i.e., cross-front) gra-

dient of potential vorticity, qy = ∂q/∂y. While interpretation of this graphic is beyond the

scope of this study, we include it as supporting material since it suggests a two-dimensional

instability analysis may be needed. Two features are suggested in this field. First, there is a

large change in sign of qy at the pycnocline (all cross-front distances, depths 40-50 m), reflect-

ing the dominance of baroclinic instability. Second, there is a more subtle decrease in this quan-

tity on the northward side of the front (cross-front distances 0-7 km, depths 0-30 m), reflect-

ing the smaller but potential importance of barotropic shear on the northern side of the front.

Note: as qy is a second-order derivative, we encourage only qualitative interpretation of this

graphic and have therefore provided it only as supporting material.
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Table 1. Clear-sky occurrences exceeding 2 hours at the OSMOSIS mooring site and average fractional

cloud cover (FCC) amongst all four small circles and within each period.

Start Time End Time FCC

2012-09-01 03:00:00 2012-09-01 11:00:00 0.24

2012-09-05 21:00:00 2012-09-07 02:00:00 0.23

2012-09-13 23:00:00 2012-09-14 05:00:00 0.31

2012-09-15 19:00:00 2012-09-15 23:00:00 0.19

2012-09-18 20:00:00 2012-09-19 13:00:00 0.37

2012-09-21 08:00:00 2012-09-21 21:00:00 0.18

2012-09-28 15:00:00 2012-09-29 03:00:00 0.45

2012-10-21 11:00:00 2012-10-21 19:00:00 0.26

2012-10-23 22:00:00 2012-10-24 02:00:00 0.23

2012-11-19 04:00:00 2012-11-19 12:00:00 0.42

2012-11-21 00:00:00 2012-11-21 13:00:00 0.60

2012-12-17 10:00:00 2012-12-17 13:00:00 0.15

2012-12-18 22:00:00 2012-12-21 00:00:00 0.60

2012-12-25 14:00:00 2012-12-25 17:00:00 0.17

2013-01-07 23:00:00 2013-01-09 05:00:00 0.47

2013-01-25 13:00:00 2013-01-25 21:00:00 0.15

2013-01-29 23:00:00 2013-01-30 10:00:00 0.59

2013-02-07 13:00:00 2013-02-08 11:00:00 0.39

2013-02-13 21:00:00 2013-02-14 09:00:00 0.36

2013-02-17 19:00:00 2013-02-18 01:00:00 0.22

2013-02-18 18:00:00 2013-02-20 03:00:00 0.38

2013-02-21 01:00:00 2013-02-21 06:00:00 0.19

2013-02-22 06:00:00 2013-02-22 12:00:00 0.44

2013-03-25 00:00:00 2013-03-25 07:00:00 0.35

2013-03-28 22:00:00 2013-03-30 04:00:00 0.49

2013-03-30 21:00:00 2013-03-31 05:00:00 0.20

2013-04-01 22:00:00 2013-04-02 15:00:00 0.24

2013-04-12 02:00:00 2013-04-12 09:00:00 0.35

2013-04-14 14:00:00 2013-04-15 01:00:00 0.43

2013-04-18 09:00:00 2013-04-18 21:00:00 0.51

2013-04-19 15:00:00 2013-04-20 05:00:00 0.40

2013-04-30 11:00:00 2013-04-30 15:00:00 0.36

2013-05-04 15:00:00 2013-05-04 17:00:00 0.28

2013-05-12 04:00:00 2013-05-12 13:00:00 0.35

2013-05-31 19:00:00 2013-06-01 06:00:00 0.12

2013-06-02 16:00:00 2013-06-02 21:00:00 0.32

2013-06-03 14:00:00 2013-06-04 02:00:00 0.44

2013-06-12 19:00:00 2013-06-13 01:00:00 0.24

2013-06-14 07:00:00 2013-06-14 12:00:00 0.49

2013-06-18 21:00:00 2013-06-19 07:00:00 0.12

2013-06-28 20:00:00 2013-06-29 03:00:00 0.12

2013-07-04 00:00:00 2013-07-05 00:00:00 0.41

2013-07-05 14:00:00 2013-07-06 06:00:00 0.10

2013-07-07 00:00:00 2013-07-09 13:00:00 0.27

2013-07-10 04:00:00 2013-07-13 05:00:00 0.33

2013-07-16 16:00:00 2013-07-17 21:00:00 0.39

2013-07-18 19:00:00 2013-07-19 15:00:00 0.43

2013-07-22 21:00:00 2013-07-22 23:00:00 0.25

2013-08-05 00:00:00 2013-08-05 02:00:00 0.34

2013-08-19 15:00:00 2013-08-19 19:00:00 0.29

2013-08-21 13:00:00 2013-08-21 16:00:00 0.19

2013-08-22 21:00:00 2013-08-22 23:00:00 0.26

2013-08-27 21:00:00 2013-08-28 06:00:00 0.21

2013-08-29 18:00:00 2013-08-30 04:00:00 0.40

2013-08-31 15:00:00 2013-09-01 00:00:00 0.32
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Figure 1. SST from Visible and Infrared Imaging Radiometer Suite (VIIRS) during September 2012-

September 2013. The circles (R1 = 17 km) circumscribing the asterisks indicate the OSMOSIS observation

location. Note: VIIRS SST indicate an unstable thermal front on 19 September 2012, 03:34 UTC (top panel,

black box), and which we examine in this study (see Figure 3c of the manuscript). Also note: an anticyclonic

mesoscale eddy is observed immediately west of the observation location, for example, on 12 July 2013

at 02:46 UTC. The decrease in temperatures compared to surrounding waters suggests upwelling of cool,

nutrient-rich waters, a process attributed to symmetric instability by Brannigan [2016].

–5–



Confidential manuscript submitted to JGR-Oceans

(a) 0 4 8 km (b) 0 4 8 km 0 4 8 km(c)

Tracer contour

Figure 2. (a) Optical image of the ocean surface from the Apollo spacecraft mission, 7 October 1984,

STS41G-35-94. (reproduced from Munk et al. [2000] with permission from The Royal Society). (b) Binary

image after normalization and morphological operations [Gonzalez et al., 2004]. (c) Tracer contour drawn by

the author using the binary image shown in (b). The tracer contour has an appearance similar to the passive

tracer contour (i.e., SST) documented within this study.

Figure 3. Result of applying the Barnes analysis to a simulated jet: (a) original jet-like velocity field, U(y),

(b) jet-like velocity field after optimal interpolation, U ′(y), and (c) comparison of zonally-averaged profiles,

U(y) and U ′(y).
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Figure 4. Lateral shear across the front normalized by the Coriolis parameter as a function of depth and

distance across the front. This figure should be cross-referenced with Figure 4d of the manuscript.

Figure 5. The cross-front gradient of potential vorticity, ∂q/∂y, as a function of depth and distance across

the front.
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