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Abstract :   
 
Climate change and resource exploitation represent strong selection pressure affecting the spatio-
temporal dynamics of marine assemblages that ensure food provision for humans. However, such 
dynamics remain poorly documented, and their drivers unclear. Here, we investigate changes in fish 
assemblages of two key European fishing areas, the Bay of Biscay (BoB) and the Celtic Sea (CS), during 
the last two decades. We quantify the relative contribution of change in energy (i.e. temperature and 
trophic resources), habitat (depth, substrate, oxygen) and fishing pressure to explaining observed spatial 
and temporal variations in fish diversity. We used long-term scientific surveys to evaluate the spatio-
temporal changes in species richness (SR), abundance and composition of demersal fish (Actinopterygii) 
assemblages at different spatial scales combined with a range of regression models and variance 
partitioning. Diversity patterns showed greater variability in space than in time: SR weakly changed over 
time, while compositional dissimilarity showed local patterns of taxonomic homogenization in the CS and 
differentiation in the southern BoB, where local assemblages were becoming more similar and dissimilar 
over time, respectively. Energy funnelled through small pelagic species as a potential trophic link affecting 
the dynamics of demersal assemblages was the most important driver, while habitat and fishing pressure 
had limited importance. Our study revealed contrasted dynamics of demersal fish assemblages at a 
regional scale that were best explained by the dynamics of small pelagic species. Direct effects of 
environmental forcing and fishing pressure were limited in both regions which have a long history of fishing 
and still remain relatively buffered from global warming effects. This research paved the way to combine 
methods inspired by biogeography with scientific monitoring surveys to detect spatio-temporal dynamics 
of fish assemblages and their drivers in marine ecosystems under multiple pressures. 
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Highlights 

► The spatiotemporal dynamics of demersal fish communities were investigated in the Bay of Biscay 
(BoB) and Celtic Sea (CS). ► The role of two decades of changes in temperature, trophic resources, 
habitat and fishing pressure on community dynamics were assessed. ► Diversity patterns showed greater 
variability in space than in time and species richness and abundance weakly changed overall. ► 
Communities are becoming more spatially similar (homogeneous) in the CS and differentiated in the BoB. 
► Such patterns are best explained by the dynamics of trophic resources mediated by small pelagic 
species rather than changes in temperature or fishing. 

 

Keywords : Actinopterygii, Beta diversity, Energy, Habitat, Long-term ecological surveys, taxonomic 
homogenization. 
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HIGHLIGHTS

1) The spatiotemporal dynamics of demersal fish communities were investigated in the Bay of 

Biscay (BoB) and Celtic Sea (CS).

2) The role of two decades of changes in temperature, trophic resources, habitat and fishing 

pressure on community dynamics were assessed.

3) Diversity patterns showed greater variability in space than in time and species richness and 

abundance weakly changed overall.

4) Communities are becoming more spatially similar (homogeneous) in the CS and differentiated 

in the BoB.

5) Such patterns are best explained by the dynamics of trophic resources mediated by small 

pelagic species rather than changes in temperature or fishing.
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1 INTRODUCTION

Understanding the spatio-temporal dynamics of species assemblages in the Anthropocene is essential 

to predict and mitigate ongoing and future changes (Blowes et al., 2019) to ensure the provision of 

ecosystem services (Tilman et al., 2017). Marine communities are prone to larger spatio-temporal 

dynamics and re-organisation than terrestrial communities (Dornelas et al., 2014) due to their greater 

sensitivity to environmental changes and faster rates of colonisation favoured by higher habitat 

connectivity (Pinsky et al., 2019). The pace of change of marine communities is not uniform across 

oceans and maximal in temperate regions, including the northeast Atlantic Ocean and European shelf 

seas (Antão et al., 2020). Long-term fishing pressure and (over-)exploitation of fish stocks represent 

additional drivers (Pauly et al., 2005). The exploitation of the northeast Atlantic and European shelf 

seas during the 19th and 20th centuries has negatively affected the abundance of many fish populations 

(Thurstan et al., 2010). Anthropogenic drivers are not acting independently, climate change 

interacting with fishing activities affects the recovery of depleted fish stocks (Planque et al., 2010) 

and these interactions are expected to intensify in the coming decades (Britten et al., 2017). 

Decadal variations in the spatio-temporal dynamics of communities are ultimately driven by the 

presence of individuals of different species that depends on 1) stochastic variation in abundance, 2) 

tolerance of individuals in regards to the selective pressure of local environmental conditions, and 3) 

arrival or departure of individuals via dispersal (Vellend, 2010). Environmental forcings of the 

Anthropocene increase the selective pressure on populations and depending on a species’ dispersal 

capacities, its distribution range can shift, shrink or extend (Dornelas et al., 2019). Key variables 

related to environmental forcing are associated with energy either directly through changes of ambient 

energy (i.e. kinetic energy, or solar energy) or indirectly through variations of productive energy (i.e. 

chemical energy, Evans et al., 2005; Koenigstein et al., 2016). Ambient energy corresponds to the 

amount of solar radiation received in the system which is often approximated by temperature (i.e. 

global warming), while productive energy corresponds to the conversion of solar energy into organic 

matter by photosynthetic organisms (i.e. plants, cyanobacteria, phytoplankton) which becomes 

available as trophic resources for heterotrophic organisms (see Evans et al., 2005 for a review). 

Productive energy in marine systems is often approximated by net primary productivity (Tittensor et 

al., 2010; Woolley et al., 2016). Ambient and productive energy represent two key factors of species 

niche through physiological tolerance and trophic requirements known to play a crucial role for 

metabolism, and geographic distribution (Brown et al., 2004; Evans et al., 2005; Valentine & 

Jablonsky, 2015; Tittensor & Worms, 2016). The species-energy hypothesis holds a central position 

to explain large biodiversity gradients through a wide range of mechanisms (Wright 1983; Evans et 

al., 2005; Clarke & Gaston, 2006). Species-energy relationships are mostly either positive or hump-
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shaped (Bonn et al., 2004; Cusens et al., 2012). As such it implies that the number of individuals and 

species increase with energy up to a certain point before possibly decreasing (Cusens et al., 2012). 

Fishing pressure represents an additional selective force affecting species abundance in space and 

time (e.g. Lotze & Worm, 2009). Fishing might not be simply decreasing the abundance of caught 

species, but it can indirectly increase the abundance of non targeted species due to predation release 

or an increase in trophic resources (Moullec et al., 2017). 

Environmental forcings and fishing can increase the spatio-temporal variability of fish assemblages, 

whose diversity dimensions can be differentially affected. Within communities, measures of α 

diversity (i.e. the mean species richness at local scale; Whittaker, 1972), including species richness 

(SR, i.e. the number of species) can increase, decrease or remain stable over time under environmental 

changes (e.g. Blowes et al., 2019; Antão et al., 2020). Variations of biodiversity over time can be 

scale-dependent, and differ in space, across taxa and ecosystems (Albouy et al., 2012; Dornelas et al., 

2014; Magurran et al., 2019). Complementing α diversity, measures of β diversity (Anderson et al., 

2011) can be used to quantify how the difference in species composition among spatial communities 

(dissimilarity) changes over time (Olden, 2006). The arrival of generalist species and the loss of 

locally endemic species may not change species richness (Dornelas et al., 2019) but leads 

communities to become more similar spatially, a phenomenon identified as taxonomic 

homogenization (as opposed to taxonomic differentiation, McKinney & Lockwood, 1999). β diversity 

can also quantify the variability in species composition within a community over time, the so-called 

temporal β diversity (e.g. Albouy et al., 2012; Magurran et al., 2019). These incidence-based indices 

can be less sensitive to environmental variations than abundance-based biodiversity indices (Santini 

et al., 2016). For example, exploitation of fish stocks (i.e. populations) can strongly affect abundance 

(Hutchings et al., 2010), while incidence-based indices will be affected only by local extinction 

(Burgess et al., 2013). Investigating the spatio-temporal dynamics of species assemblages and their 

potential drivers requires a holistic approach documenting simultaneously changes in α and β 

diversity within and among communities over time at different spatial scales (McGill et al., 2015) 

with both presence/absence and abundance-based biodiversity indices (Antão et al., 2020).

Increase in sea surface temperature is hypothesised to be the main driver of the distribution shift 

observed for major Northeast Atlantic commercial marine species (Baudron et al., 2020), the 

taxonomic homogenization of groundfish communities on the west coast of Scotland (Magurran et 

al., 2015), and the taxonomic differentiation of North Sea fish communities (McLean et al., 2019).  

In the Northeast Atlantic, the Bay of Biscay and the Celtic Sea are highly productive shelf seas 

(Moullec et al., 2017) with a long fishing history (Gascuel et al., 2016) and harbouring benthic 
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communities and habitats heavily degraded by bottom trawl fishing activities (Hily et al., 2008). 

Moreover, the combination of diversification of fish stock exploitation and the over-exploitation of 

several stocks has not yet led to a clear recovery in community biomass (Gascuel et al., 2016). Despite 

the effects of global warming being smaller in the Bay of Biscay and Celtic Sea in comparison to 

other regions (Chust et al., 2011), a forty-year time-series revealed an increase in temperature of the 

upper sea layer (200m) of the Bay of Biscay (Michel et al., 2009), which correlates with a northward 

shift of boreal species (Poulard & Blanchard, 2005) and an increase in the abundance of lusitanian 

species (e.g. Hermant et al., 2010) that is expected to further increase in the coming decades 

(LeMarchand et al., 2020). Global warming effects on biodiversity dynamics are not necessarily 

monotonic (Pecl et al., 2017) and subtle environmental forcings may have already triggered important 

community re-organisation (e.g. for species located at the limits of their distribution range) as 

suggested by several examples in the Bay of Biscay and the Celtic Sea (Poulard & Blanchard, 2005; 

Hermant et al., 2010; Iglesias & Lorance, 2016; Merillet et al., 2019). So far, scientific bottom trawl 

surveys in the Bay of Biscay and Celtic Sea have contributed inter alia to the annual assessment of 

commercial species (e.g. ICES, 2017), to study their habitat preferences (Persohn et al., 2009) and 

the dynamics of functional groups (Hosack & Trenkel, 2019). Studies were restricted to smaller areas 

or species pools (Poulard & Blanchard, 2005; Mérillet et al., 2019), or included disparate taxa groups 

(i.e. belonging to different phyla or subphyla) with variable taxonomic resolution (Poulard & Trenkel, 

2007). However, these studies offered mixed results, and a holistic view of the spatio-temporal 

patterns of the demersal fish communities and their potential drivers is currently lacking despite the 

importance of the ecosystem services provided by the Bay of Biscay and Celtic Sea ecosystems. 

In this study, we investigated the spatio-temporal changes of demersal marine ray-finned fishes in the 

Bay of Biscay and the Celtic Sea during the last two decades, and assessed the relative contribution 

of energy, habitat and fishing pressure as drivers of spatial and temporal biodiversity patterns. We 

used data from a standardised scientific survey carried out in the Bay of Biscay and the Celtic Sea 

from 1997 to 2018 to derive biodiversity indices to document changes in α and β diversity within and 

among communities over-time, considering incidence and abundance-based indices at regional and 

local scales. We hypothesised that the spatio-temporal dynamics of communities would be more 

evident using abundance-based indices than presence/absence indices because the effects of climate 

change in the study area remain currently more subtle than further north (Dye et al., 2013). Then, we 

selected a large set of environmental variables related to ambient (e.g. temperature) and productive 

energy (e.g. trophic resources), habitat, and fishing. We performed a variable selection procedure and 

used the best set of variables to assess the relative contribution of energy, habitat and fishing to spatio-

temporal variability in biodiversity using a range of regression models. We hypothesised that fishing 
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pressure should have a higher contribution than energy because the diversification of fish stock 

exploitation following fishing regulations attributed to several over-exploited stocks (Gascuel et al., 

2016) may have a greater impact on spatio-temporal dynamics of fish communities rather than climate 

change effects.

2 MATERIALS AND METHODS

2.1 Data acquisition and study area

The biological data sets came from the French international bottom trawl survey (EVHOE) carried 

out annually during autumn to evaluate demersal fish resources in the Bay of Biscay (BoB) since 

1987 and the Celtic Sea (CS) since 1997 (Fig. 1a). The BoB, which stretches from Spain to Armorica, 

is an intracontinental sea that is largely open to the Atlantic Ocean. The French part of the BoB 

continental shelf (80 000 km²) is narrow in the south and becomes broader in the north mainly 

influenced by the warm water of the Gulf Stream (Palter, 2015; Fig. 1A). The epicontinental CS is 

open to the Atlantic Ocean, stretching between Ireland, Wales, British Cornwall and Armorican 

Brittany. We compiled the presence/absence and abundance data for the period 1997-2018, the most 

homogenous time series in terms of research vessel, taxonomic identification and gear (GOV 36/47, 

the opening is 20 m horizontally at the wings and 4 m vertically). The time series is continuous, 

except for 2017 due to a technical problem, and the number of sampling stations varied between 119 

and 158 per year (n= 2957 in total). Our data set included 180 fish (Actinopterygii) species or genera 

after grouping taxa that could not be unambiguously identified at the species level for the whole time 

series. For example, Trachurus mediterraneus and Trachurus trachurus were merged into Trachurus 

sp. We analysed taxonomic diversity for 171 benthic and demersal species/genera. We excluded from 

diversity calculations, nine of the most abundant small and medium-sized pelagic species (Alosa 

alosa, Alosa fallax, Atherina presbyter, Engraulis encrasicolus, Sardina pilchardus, Scomber 

japonicus, Scomber scombrus, Sprattus sprattus, Trachurus sp.) because the bottom trawl used in 

EVHOE has a 4 m vertical opening, which leads to low catchability and thus unreliable spatial 

patterns (Laffargue et al., 2021, but see Supplementary material S.2 Fig. S6, Fig. S7, Fig.S8, Fig. S9, 

for biodiversity patterns including these 9 species). However, we found that the overall temporal 

abundance trends estimated with the EVHOE data set for most of these pelagic species (see 

Supplementary Material S2. Fig.S13) were in good agreement with temporal biomass trends 

estimated by the dedicated PELGAS acoustic survey (Doray et al. 2018). Therefore, we used pelagic 

species richness and total pelagic abundance from EVHOE as explanatory variables (see 

“Environmental variables and fishing pressure”). We used the ICES statistical rectangle resolution 

(1° longitude x 0.5° latitude, ICES, 2019) to analyse spatial patterns (74 rectangles) and the full data 

set included 1242 ICES rectangles sampled from 1997 to 2018. ICES rectangles corresponded to the 
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highest spatial resolution available for fishing data. We controlled for the temporal imbalance in 

sampling effort (1 to 10 stations per rectangle per year) and the increasing number of stations over 

the years (i.e. increasing sampling effort over time, rSpearman = 0.55, p = 0.01), which biases the 

temporal trends of biodiversity indices (e.g. creates an artificial increase in species richness). We used 

a sample-based rarefaction approach consisting of randomly sampling 1 station per ICES rectangle 

for each year and repeating this process 100 times to calculate average biodiversity indices. This 

approach is commonly undertaken in biodiversity studies to account for heterogeneous sampling 

efforts for both presence/absence and abundance data in an α and β diversity context (Dornelas et al., 

2014; Magurran et al., 2015; Blowes et al., 2019; Antão et al., 2020). 

2.2 Biodiversity indices

We first computed species richness (SR), abundance and evenness (i.e. the uniformity in abundance 

among species within a sample). Abundance was log10 transformed to decrease the overdispersion 

caused by the most abundant species (Zuur et al., 2007). We used Hurlbert’s evenness index (Hurlbert, 

1971) ranging from 0 (uneven community dominated by one species) to 1 (even abundance among 

species). Using presence/absence community data matrices, we decomposed the overall β diversity 

between communities measured by the Jaccard index (β.jac, Jaccard, 1912) into its two additive 

components, turnover (β.jtu) and nestedness-resultant -hereafter called nestedness - (β.jne), that 

represent distinct mechanisms (Baselga, 2012). β.jtu measures the differences in composition caused 

by species replacement independently of the differences in species richness between sampling sites, 

while β.jne measures the differences in species composition caused by species loss or gain. We also 

used the β.ratio, defined as β.jtu/β.jac, to assess the relative importance of turnover vs nestedness. 

Overall, β diversity is dominated by turnover or nestedness for a β.ratio > 0.5 and <0.5, respectively. 

We also partitioned the abundance-based Ruzicka β diversity index (β.ruz, Ruzicka, 1958) into its 

two additive antithetic components, the balanced variation in abundance (β.ruz.bal) and abundance 

gradients (β.ruz.gra, Baselga, 2013). The balanced variation in abundance corresponds to the 

replacement of individuals of some species in one site (or at time t-1) by the same number of 

individuals by different species in another site (or at time t). The abundance gradient describes the 

loss/gain of individuals from one site to another (or between two time periods). We used the 

β.ruz.ratio (β.ruz.bal/β.ruz) to estimate the relative importance of the balanced variation in abundance 

compared to the abundance gradient. We then assessed how local β diversity (LBD) was structured 

in space, which was defined as the average β diversity between a focal ICES rectangle and 

neighbouring rectangles within a certain distance. High LBD values then indicate singular community 

composition in the focal rectangle in comparison to its neighbours. We tested 16 distance thresholds, 

150 to 300 km in 10 km steps (Fig. S4), and retained the threshold that presented the largest number 
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of rectangles with a significant temporal trend for the β diversity indices to test at which spatial scale 

communities were susceptible to express taxonomic differentiation/homogenisation over time. Ten 

kilometre increments allowed a constant increase in the number of neighbours between 150 and 300 

km because distances among rectangle centroids were not evenly spaced. We explored LBD 

variations through time. A temporal decrease (increase) of LBD indicates that the neighbouring 

communities are getting more similar (dissimilar). Therefore, the temporal variation of LBD was used 

as a proxy of taxonomic spatial homogenization (differentiation).

2.3 Environmental variables and fishing pressure

For each year (1997-2018) and the 74 ICES rectangles, we selected 19 variables to test the relative 

influence of three main drivers on SR, abundance, evenness and the LBDs indices. 

 Energy

To investigate the influence of ambient energy, we considered seafloor temperature (°C) and a 

variable that integrated temperature (°C) across the water column. For these two variables, we 

considered annual averages, monthly minima and as a surrogate for seasonality the standard deviation 

of monthly averages. To document the influence of productive energy, we considered the annual 

average of net primary productivity (NPP). We did not retain the seasonality of NPP as its standard 

deviation was highly correlated with the annual average (rPearson = 0.97). In addition, we considered 

species richness and the abundance (log10) of nine pelagic species as they represent potential key 

links in the food web (Cury et al., 2000). 

 Habitat

We retained eight variables to document the contribution of habitats: rectangle surface area (km2), 

distance to the nearest coast (km), average depth (m), diversity of seabed habitats based on substrate, 

minimum and average of mixed layer depth (m, MLD) as a surrogate for water column stratification 

intensity, minimum and standard deviation of monthly oxygen concentrations (O2.l-1). The later 

variables allowed us to assess the prevalence of oxygen minimum zones (OMZs) and the effect of 

oxygen seasonality. Additional details about environmental variables are provided in Supplementary 

material S1.1. 

 Fishing pressure

Fishing pressure (in hours fished) was extracted from the STECF Fisheries Dependent Information 

Database (STECF 18-11, 2018) using the spatial effort information from 2000 to 2016. Due to 

inconsistencies in the French effort time series, effort estimates were extracted from Ifremer’s 

database (Demanèche et al., 2013) using the STECF methodology. We calculated annual fishing 

effort summing across all gear types and estimated fishing diversity using the Shannon index 

(Shannon, 1948) based on the proportion of fishing hours for the 11 main types of fishing gears. This 
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fishing diversity index enabled us to assess the degree of heterogeneity in the fishing effort among 

the different fishing gears. 

Mean spatial patterns of all variables and pairwise Spearman correlation coefficients are provided in 

Supplementary material (Fig. S1, S2). Several explanatory variables were log10 transformed to avoid 

excessive dispersion of model residuals and fulfil the normality assumption of residuals for the linear 

models (see paragraph 2.5 and see Supplementary material S1.1). All variables were normalised by 

subtracting the mean and dividing by the standard deviation. For consistency among explanatory 

variables, we considered a shorter time series from 2000 to 2016 (i.e. including 1014 rectangles over 

the years) when modelling the contribution of energy, habitat and fishing pressure to the variability 

of biodiversity indices. For each variable, we considered the linear and quadratic terms, to account 

for a certain degree of nonlinearity in the response curves in the models. We used elastic-net 

regularised generalised linear models (Elastic-net GLMs: Zou & Hastie, 2005) to select the most 

influential variables related to energy, habitat and fishing pressure separately for each of the 11 

biodiversity metrics, before further modelling. This approach is useful when large numbers of 

potentially correlated variables with limited effect are available. Additional details about this 

approach are provided in Supplementary material S1.2.

2.4 Inferring spatio-temporal patterns 

Regional scale

At the regional scale (i.e. BoB and CS), we estimated the temporal change of average SR, abundance 

and evenness per rectangle and the average pairwise values among all ICES rectangles for β.jac, β.jtu, 

β.jne and β.ratio (see flowchart of the analytical steps in Fig. S5). We applied a generalised additive 

model (GAM) to better detect non linear temporal trends by using the general equation:

Y = a + f(year) + ε, 

where Y is the response variable (i.e. the different biodiversity indices), a is the intercept, f(year) is a 

smooth function (thin plate regression spline) of the fixed effect “year” limited to a maximum of 3 

basis dimensions to avoid overfitting and ε represents residuals. We considered a gaussian error and 

an identity link function for the average SR, abundance and evenness because we modelled the 

average values over the 100 resampled communities which are all positive continuous variables 

truncated at 0, and a Beta error distribution and a logit link function for the average values of β 

diversity indices because they take values between 0 and 1 (i.e. see Figure 1). The relatively short 

time series (maximum 21 years) leads to a small sample size and thus limits the statistical power to 

test for temporal trends (positive vs negative). Considering the strong relationships between p.value 

and sample size, we adapted the significance threshold to the sample size (Pérez & Pericchi, 2014, 
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Betensky 2019). Thus, we reported weak evidence (Muff et al., 2021) for a positive or a negative 

temporal trend (the p.value of the temporal slope < 0.1). In contrast, all temporal slopes associated 

with a p.value > 0.1 were considered as stable. Moreover, to assess general interdecadal trends we 

estimated the slope of generalised linear models (GLM) with year as explanatory variable and 

biodiversity indices as response variables, considering the same error distributions and link functions 

as for GAMs. 

Local scale

We next explored the spatial and temporal patterns of biodiversity indices at the local scale (1° 

longitude x 0.5° latitude, ICES rectangle). For each rectangle we averaged across years SR, 

abundance, evenness and local β diversity indices (LBD.jac, LBD.jtu, LBD.jne, LBD.ruz, 

LBD.ruz.bal, LBD.ruz.gra, see Fig. S5). Then, to test for temporal trends, we estimated the slope of 

a GLM, which represents a summary statistic of the temporal trend with year as explanatory variable 

and biodiversity indices as response variable according to the following equation: 

Y = a + B * year + ε, 

where Y are biodiversity indices, a is the intercept, B is the linear slope of the “year” effect and ε 

represents residuals. Gaussian errors and identity links were considered for SR, abundance and 

evenness and a Beta error with logit link function for LBD indices. To avoid boundary problems with 

the logit link (i.e. response values of 0 or 1), the response variable was transformed following the 

recommendation by Cribari-Neto & Zeileis (2010) as (y * (n - 1) + 0.5)/n, being n the sample size. 

To investigate temporal trends, 71 rectangles sampled at least five years were retained. We considered 

spatial differentiation and homogenisation of communities over time as soon as weak evidence 

(p.value of slope < 0.1, Muff et al., 2021) of either positive or negative temporal linear slopes 

respectively were reported for LBD indices . In addition, we also assessed the variability of species 

composition within a rectangle over time, the so called temporal β diversity (TBI; Albouy et al., 2012), 

using both Jaccard and Ruzicka indices and their respective components (see methodological details 

in Supplementary material S1.3., and Fig. S3 for the pairwise relationships among temporal trends 

for all biodiversity indices).

Partitioning space and time variations

For the full data set of 1242 rectangles sampled from 1997 to 2018, we used a variance partitioning 

approach based on the Moran Eigenvector Map (MEM) method (Dray et al., 2012) to test the relative 

importance of spatial and temporal variability of biodiversity patterns (Legendre et al., 2014; for more 

details see Supplementary material S1.4; Fig. S5).
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2.5 Partitioning diversity variations among energy, habitat and fishing pressure

We applied a steady-state linear mixed effects model (LMM) considering time (i.e. year ) as a random 

effect, to test the relative influence of energy, habitat and fishing pressure on SR, abundance, evenness 

and LBDs indices. Only the most influential variables previously retained with the Elastic-net GLMs 

(see paragraph 2.3) for the three groups of variables were included as fixed effects in the full LMM. 

We used average values of 100 resampled biodiversity indices (i.e. species richness is not an integer 

anymore but can be a decimal value) and we considered a large data set of 1014 rectangles sampled 

between 2000 and 2016. Therefore, the central limit theorem justifies the use of a gaussian error 

model, which we combined with an identity link for all biodiversity indices. Based on these full LMM, 

a variance partitioning approach (Legendre & Legendre, 1998) was performed to estimate the 

independent and shared contributions of the three groups of variables for each biodiversity index. 

The general equation of the full LMM including the best set of variables related to energy, habitat 

and fishing was as follows:

Yi = a + Benergy * xenergy i + Bhabitat * xhabitat i + Bfishing * xfishing i  + Zi * bi + εi, 

where Yi are the biodiversity index in year i, a is the intercept, Benergy, Bhabitat and Bfishing are the slopes 

of the energy, habitat and fishing variables respectively, Zi is a design matrix (identity matrix for the 

random intercept model) associated with the random year effect bi and εi represents model residuals. 

For each biodiversity index, the best set of explanatory variables for energy, habitat and fishing 

retained in the full LMM model for variance partitioning are available in Supplementary material S4 

Table S2. We estimated the marginal R2 (Nakagawa et al., 2017) as a proxy for the variance explained 

by fixed effects. To test for potential lack of fit of the LMMs due to complex nonlinear relationships, 

we conducted the same approach using generalised additive mixed models (GAMM) using the same 

general equation, except that we associated fixed effects with smoothing functions. Normality and 

homogeneity assumptions of the GAMM and LMM residuals were assessed for each model through 

visual inspection (histogram, qqplot, plot of the fitted vs residuals) and shapiro tests (Shapiro & Wilk, 

1965). The list of R packages used for variance partitioning is available in Supplementary material 

S1.5.

2.6 Determining variables importance within energy, habitats and fishing pressure

For each biodiversity index, we used a model selection approach to select the most parsimonious 

model and assess the relative importance of the main variables within the three groups of explanatory 

variables included in the LMMs presented in 2.5. First, we performed a multimodel inference 

approach based on information theory running all possible models (Grueber et al., 2011). We retained 

the most parsimonious model based on the Bayesian Information Criteria (BIC) among the best set 

of models that have less than 2 BIC units difference with the best model with the lowest BIC. Second, 
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we computed the semi-partial marginal R2 as a proxy of explained variance for each variable retained 

in the most parsimonious model (Jaeger et al., 2017; Nakagawa et al., 2017). In addition, for the most 

parsimonious LMM we also considered alternative models to investigate the existence of temporal 

and/or spatial autocorrelation in residuals (Zuur et al., 2009, additional details are provided in 

Supplementary material S1.6). To assess the goodness-of-fit of these alternative models we used the 

Pseudo.R2 (Efron, 1978) which is defined as the coefficient of determination of the linear 

relationships between the observed and fitted values.

2.7 Testing for temporal effects, time lag and environmental forcings

For each biodiversity index, we also investigated the temporal variation of the environmental-

biodiversity relationships by testing 1) the significance of temporal effects in the most parsimonious 

models presented in 2.6, 2) for time lag effects of 1 and 2 years between the biodiversity indices and 

explanatory variables and 3) the relationships between environmental forcing and temporal trends of 

biodiversity indices. All methodological details related to these three approaches are provided in 

Supplementary material S1.7, S1.8 and S1.9 respectively (see Fig. S5 for the flowchart of the 

analytical steps). 

Table 1: Definition of acronyms

Acronym Definition
SR Species richness

β.jac Beta diversity estimated by the Jaccard index (accounting for 
presence/absence)

β.jtu Beta diversity estimated by the Jaccard’s turnover component

β.jne Beta diversity estimated by the Jaccard’s nestedness-resultant component

β.ruz Beta diversity estimated by the Ruzicka index (accounting for abundance)

β.ruz.bal Beta diversity estimated by the balanced variation in abundance component 
of the Ruzicka index

β.ruz.gra Beta diversity estimated by the gradient in abundance component of the 
Ruzicka index

LBD Local beta diversity
LBD.jac Local beta diversity of the Jaccard index
LBD.jtu Local beta diversity of the Jaccard’s turnover component
LBD.jne Local beta diversity of the Jaccard’s nestedness-resultant component
LBD.ruz Local beta diversity of the Ruzicka index 
LBD.ruz.bal Local beta diversity of the Ruzicka’s balanced variation in abundance 

component
LBD.ruz.gra Local beta diversity of the Ruzicka’s gradient in abundance component
TBI Temporal beta diversity indices; suffix specifies which index (Jaccard, or 

Ruzicka) and which component (jtu, jne, bal, gra) is used.
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GLM Generalised linear model

LMM Linear mixed model

GAM Generalised additive model

GAMM Generalised additive mixed model

MEM Moran Eigenvector Map

BIC Bayesian Information Criteria

3 RESULTS 

3.1 Temporal patterns at regional scale

At the regional scale, as expected, abundance-based biodiversity indices displayed clearer temporal 

changes than incidence-based indices. Species richness remained stable in the Bay of Biscay (BoB) 

and Celtic Sea (CS) between 1997-2018 (GAM, edf = 1.65, p = 0.37, Fig. 1b), while overall 

abundance declined (GAM, edf = 1, p = 0.01, GLM slope = -0.01, p = 0.01). The incidence-based β 

diversity was dominated by species turnover. While β.jac increased significantly over time (GAM, 

edf = 1, p = 0.06, GLM slope = 0.004, p = 0.05), none of its components, β.jtu, β.jne and β.ratio, had 

a significant time trend (Fig. 1b). In contrast, overall abundance-based β diversity (β.ruz) as well as 

its two components and β.ruz.ratio showed clear significant time trends (Fig. 1b). β.ruz increased 

significantly since 2005 (GAM, edf = 1.87, p = 0.01). This increase is mainly driven by balanced 

variation in abundance, i.e. compensation between species (β.ruz.bal: GAM, edf = 1.88, p = 0.01; 

β.ruz.ratio: GAM, edf = 1.81, p = 0.01). The abundance gradient component made a smaller 

contribution, remaining stable from 1997 to 2005 and decreasing thereafter (GAM, edf = 1.78, p = 

0.02, Fig. 1b; see Fig. S6-S9 for patterns including small pelagic species).
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Fig. 1: (a) Map depicting the ICES rectangles of the Celtic Sea and the Bay of Biscay covered by the 

EVHOE bottom trawl survey from 1997 to 2018 sampling demersal fish assemblages (n=171 sp.). 

(b) Temporal trend average by ICES rectangle per year for species richness (SR), abundance 

(log10(abundance)), Hurlbert’s evenness, and for all pairwise ICES rectangle comparisons for the 

Jaccard index (β.jac), its species turnover (β.jtu) and nestedness (β.jne) components, the ratio of 

species turnover over the Jaccard index (β.ratio), and abundance-based dissimilarity indices, 

including the Ruzicka index (β.ruz) and its balanced variation in abundance (β.ruz.bal), and 

abundance gradient (β.ruz.gra) components as well as the ratio β.ruz.bal/β.ruz (β.ruz.ratio). The 

continuous curves represent the fits of generalised additive models (GAM), with solid lines indicating 

a significant relationship, while dotted lines indicate a non-significant time trend (p.value > 0.1), and 

the light blue area one standard error around the fitted models.
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3.2 Spatio-temporal patterns at local scale

At the local scale, contrary to our expectation, geographic patterns were clearer for incidence-based 

than for abundance-based biodiversity indices and revealed a pattern of taxonomic homogenization 

in the CS and differentiation in the southern BoB. SR averaged over time showed two local “hot-

spots” (SR = 17-19 species per ICES rectangle), one in the CS along the coasts of Ireland and the UK 

and the other one in the BoB along the coast of France, from Brittany to the Basque country (Fig. 2a). 

The average abundance pattern revealed a geographic division (t test = 5.2, p < 0.001) between the 

CS and the BoB showing higher (log10(abund), mean = 3.6, standard deviation +/- 0.13) and lower 

(log10(abund) mean = 3.42 +/- 0.16) abundances, respectively (Fig. 2a). The average pattern of 

evenness was driven by SR (Fig. 2a). At the local scale, in 75% of rectangles (n = 53), SR remained 

stable during the study period, while 18% (n = 13), mostly located on the outer-shelf and in coastal 

areas of the southern Bay of Biscay, lost species (Fig. 2b). The 7% of rectangles (n = 5) gaining 

species over time were located in the northern part of the Celtic Sea. Similarly, abundance in 73% of 

rectangles (n = 52) had a stable temporal trend, and 23% (n = 17) showed a significant loss of 

individuals. The latter rectangles were located both in the CS and the BoB, mostly near the coast (Fig. 

2b). The pattern of temporal changes of evenness was inverted in comparison to abundance patterns 

(rSpearman = -0.49, p < 0.001, Fig. 2b). 
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Fig. 2: Species richness, abundance (log10 transformed), and the Hurlbert’s evenness patterns of the 

demersal fish assemblages of the Bay of Biscay and the Celtic Sea for the period 1997-2018. The row 

(a) represents the mean species richness (SR), the mean abundance (log10(abundance)) and the mean 

evenness (Hurlbert’s index) over the period 1997-2018. The row (b) shows the trends of the temporal 

evolution of SR, abundance and Hurlbert’s evenness. The beige colour indicates a stable trend (slope 

not significantly different from 0, with a p.value > 0.1), while positive and negative trends are in red 

and blue, respectively.

For incidence-based local β diversity (LBDs), we retained 190 km as the spatial distance maximising 

the number of rectangles with a significant temporal trend of taxonomic 

differentiation/homogenisation to build local β diversity indices (Fig. S4a). Average geographic 

patterns for LBDs indices were dominated by the turnover component (β.jtu) and showed strong 

north/south and coastal/offshore patterns (Fig. 3a). LBD.jac and LBD.jtu indicated similar spatial 

patterns (rSpearman = 0.78 - 0.98) with high values along the coast of the BoB and low values in the 

central CS (Fig. 3a). The nestedness component had a limited contribution to the jaccard index, and 

LBD.jne displayed a reversed pattern (rSpearman = -0.93, p < 0.001; Fig. 3a). The spatial pattern of 

temporal changes of LBD.jac revealed a significant decrease (27% of rectangles, n = 17) in 

compositional dissimilarity over time in the offshore part of the southern CS (Fig. 3b), while the 

coastal communities in the south of the Bay of Biscay and along the Welsh coast became more 

dissimilar (Fig. 3b). The LBD.jac pattern was mostly driven by species turnover (LBD.jtu) reinforcing 

a pattern of taxonomic homogenization (31% of rectangles, mean slope = -0.03 +/- 0.001) in the north 

(Fig. 3b) and taxonomic differentiation (15% of rectangles, mean slope = 0.04 +/- 0.014) mostly in 

the south (Fig. 3b). 
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Fig. 3: Local β diversity of incidence-based indices of the demersal fish assemblages in the Bay of 

Biscay and Celtic Sea for the period 1997-2018. The first row (a) shows the mean local Jaccard index 

(LBD.jac), mean local species turnover (LBD.jtu), and mean local nestedness (LBD.jne) over the 

period 1997-2018. The second row (b) shows the trends of the temporal evolution of LBD.jac, 

LBD.jtu and LBD.jne. The beige colour indicates a stable trend (slope not significantly different from 

0, with a p.value > 0.1), while positive and negative trends are in red and blue, respectively.

For abundance-based LBD indices, average geographic patterns were dominated by balanced 

variations in abundance (LBD.ruz.bal, rSpearman = 0.76, p < 0.001) and showed a more patchy spatial 

pattern than incidence-based indices (Fig. 4a). A distance of 290 km maximising the number of 

rectangles with a significant temporal trend of taxonomic differentiation/homogenisation was 

retained to investigate abundance-based LBDs (Fig. S4b). Spatial patterns for the two components 

LBD.ruz and LBD.ruz.bal were similar (rSpearman = 0.76), with higher values (0.73 - 0.8) in the 

northern part of the Celtic Sea and along the coast of the Bay of Biscay (Fig. 4a), while LBD.ruz.gra 

showed an inverted spatial pattern (rSpearman = -0.95, p < 0 .001; Fig. 4a, additional details in 

Supplementary material S2.1). The temporal trend of the spatial patterns for abundance-based LBD 

indices revealed an increase in LBD.ruz.bal (23% of rectangles, mean slope = 0.03 +-0.01) and a 

decrease in LBD.ruz.gra (18% of rectangles, mean slope = -0.02 +/- 0.01, Fig. 4.b) for both the 

entrance of the St George Channel in the Celtic Sea and the southern coast of the Bay of Biscay. The 
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temporal β diversity (TBI) patterns based on both incidence and abundance-based indices were 

consistent with the identified LDB patterns (see Supplementary material S2.1 Fig. S3, S10a,b, S11a,b).

3.3 Partitioning space and time variations

Overall, partitioning the variance between space and time revealed that the spatial dimension 

explained more than double of the variability (7.6 +/- 2.5%) than time (3.3 +/- 1.26%) for all 

biodiversity indices except LBD.jne (Table S1).

Fig. 4: Local β diversity of abundance-based indices of the demersal fish assemblages in the Bay of 

Biscay and the Celtic Sea for the period 1997-2018. The first row (a) shows the mean local Ruzicka 

index (LBD.ruz), mean local balance variation in abundance (LBD.ruz.bal), and mean local 

abundance gradient (LBD.ruz.gra) over the period 1997-2018. The second row (b) shows the trends 

of the temporal evolution of LBD.ruz, LBD.ruz.bal and LBD.ruz.gra. Only 71 ICES rectangles 

sampled at least 5 times were retained. The beige colour indicates a stable trend (slope not 

significantly different from 0, with a p.value > 0.1), while positive and negative trends are in red and 

blue, respectively.

3.4 Partitioning diversity variations among energy, habitat and fishing pressure

Contrary to our expectation, we found that energy (temperature and trophic resources) had a greater 
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influence on spatio-temporal biodiversity variations than habitat or fishing. The steady-state LMMs 

based on the four best explanatory variables for energy, habitat and fishing pressure (see Table S2 for 

the selection of the explanatory variables for each biodiversity metric) explained on average a small 

proportion of variance (mean = 15.4 +/- 6.53%, Table 2). The explained variance (for the fixed effects) 

was smallest for the evenness model (4.4%), moderate for SR (12.5%), LBD.jne (11%) and all 

abundance-based LBD indices (11.7 - 16%) while variations in abundance (20.3%), LBD.jac (23.2%) 

and LBD.jtu (25%) were best explained (Table 2). Energy explained the highest proportion of 

variance (8.1 +/- 5.5%), followed by habitat (1.6 +/- 0.8%) and fishing pressure (0.9 +/- 0.8%, Table 

2). The largest fraction of shared variance was attributed among the three categories (2.2 +/- 1.7%), 

followed by energy and habitat (1.1 +/- 0.6%; Table 2). The contribution of energy alone was 

particularly high for abundance (14.7%), LBD.jac (14.8%), and LBD.jtu (14.9%). Variance 

partitioning performed with GAMMs showed very consistent results with the results obtained using 

LMMs indicating that the relationships were well captured by simple linear and quadratic terms (i.e. 

second order polynomial; Table S3). 

3.5 Importance of variables within energy, habitats and fishing pressure 

Model selection revealed that SR and the abundance of the nine small pelagic species (i.e. productive 

energy related to trophic resources) were two of the most important variables for explaining 

variability in biodiversity indices (Table S3-S11). Species richness of small pelagics had the highest 

or second highest semi-partial marginal R2 for abundance (5.6%), LBD.jac (8%), LBD.jtu (10.5%) 

and LBD.jne (5.2%). It was positively related to evenness, LBD.jac, LBD.jtu, LBD.ruz and 

LBD.ruz.bal and negatively to abundance, LBD.jne and LBD.ruz.gra (Table S5-S12). The abundance 

of small pelagics achieved the highest or the second highest, though still small, semi-partial marginal 

R2 for SR (5.5%), abundance (5.8%), LBD.jac (10.8%), LBD.jtu (9.7%), LBD.ruz (6.3%), and was 

negatively related to SR and positively related to abundance, LBD.jac, LBD.jtu, and LBD.ruz. 

Distance to the coast, minimum thickness of the mixed layer depth (MLD.min), and bathymetry were 

the most important habitat variables, though they only explained a low percentage of variation in 

diversity indices when they were retained (1.3 - 6%, Table S4-S12). Fishing pressure and its 

heterogeneity were retained for the SR models, while they had limited explanatory power for the 

different incidence and abundance-based LBD indices (0.8 - 4.5%) (Table S3, S7-S12). Overall, 

accounting for the remaining spatial or temporal autocorrelation in the model residuals did not affect 

the importance of the main variables described above but improved the explained variance of the 

models and even more so when both spatial and temporal autocorrelation were simultaneously 

accounted for (pseudo.R2 = 58% +/- 25), in comparison to accounting only for spatial (53% +/- 8) or 

temporal correlations (50% +/- 14), (see Supplementary material S4. Table S4-S12 for model outputs). 



22

Only marginal improvements were obtained by testing for temporal effect by including time as fixed 

effect, or lagged variables, or testing for relationships between environmental forcings and temporal 

trends of biodiversity indices (more detailed results are available in Supplementary material in Table 

S4-S12 for temporal effect, for lag effect see results in paragraph S2.2 and Table S13-S22, for 

environmental forcing see results in paragraph S2.3, Fig. S12 and Table S23-S24).

Table 2: Variance partitioning based on linear mixed models (LMM) including time (i.e. Year effect) 

as a random intercept, for species richness (SR), abundance, Hurlbert’s evenness (evenness), and all 

local β diversity indices (LBD, see text for the meaning of LBD indices), considering 

contemporaneous explanatory variables, for the demersal fish assemblages of the Bay of Biscay and 

the Celtic Sea. E: energy, H: habitat, F: fishing pressure. Values correspond to the percentage of 

explained variance. In abbreviations, energy E, habitat H, and fishing pressure F.

Biodiversity 

index

Explained(%) E 

(%)

H(%) F 

(%)

Shared.E.F. Shared.E.H. Shared.H.F. Shared.E.H.F

SR 12.5 6.5 3 0.7 0.3 2 0.5 0a

Abundance 20.3 14.7 2.1 0.3 0.2 0.7 1.2 1.2

Evenness 4.4 1.7 1.1 0.6 0a 0.3 0.5 0.4

LBD.jac 23.2 14.8 1.1 1 1.6 1.1 0.4 3.3

LBD.jtu 25 14.9 1.8 1.2 1.6 1.1 0.7 3.8

LBD.jne 11 5.9 0.6 0.9 0.7 0.4 0.8 1.7

LBD.ruz 14.3 8.4 1.4 0.2 0.3 1.5 0.3 2.1

LBD.ruz.bal 16 4.2 2.8 0.4 0.4 1.6 1.8 4.7

LBD.ruz.gra 11.7 1.7 1 2.7 0.2 1.6 1.4 3.1
a Negative values were converted to 0 (Legendre and Legendre, 1998), as such the sum of the variance of the individual 

categories might not add-up to the total explained variance.

4 DISCUSSION 

In this study, we investigated the spatio-temporal changes of demersal marine ray-finned fishes in the 

Bay of Biscay and in the Celtic Sea and assessed the relative contribution of energy, habitat and 

fishing pressure, during the last two decades by using long-term scientific surveys. We found that 

species richness weakly changed over time, while compositional dissimilarity showed contrasted 

patterns of taxonomic homogenization in the Celtic Sea and differentiation in the southern Bay of 

Biscay, where local assemblages were becoming more similar and dissimilar over time, respectively. 

In agreement with our first expectation, the temporal trends of the abundance-based indices showed 

stronger relationships than incidence-based indices at regional scale while the latter indices provided 

clearer patterns at local scale. In contrast to our second expectation, we showed that the contrasted 

spatio-temporal changes of demersal fish assemblages were best explained by productive energy 
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funnelled through the dynamics of small pelagic species, whereas effects of environmental forcing 

and most notably fishing pressure were limited.

4.1 Incidence-based biodiversity patterns

One of the striking results of this study was the different temporal dynamics of communities situated 

in the offshore regions of the Celtic Sea (CS) and the southern coast of the French part of the Bay of 

Biscay (BoB). Indeed, our investigation at the local scale of β diversity (up to 200 km) showed 

spatially contrasting patterns of either taxonomic homogenization or differentiation among 

communities that compensated each other at the regional scale. Contrary to our expectation, these 

patterns of homogenization and differentiation were better detected by incidence-based indices at the 

local scale and indicated that variations of species assemblages over time can display different signals 

when analysed at different spatial scales (Chase et al., 2019). In the Celtic Sea, SR was stable or 

increased over time while local β diversity (LBD) driven by species turnover decreased, indicating 

that local communities were becoming more homogenous. A similar pattern of taxonomic 

homogenization for the last three decades has been found for demersal fish communities off the west 

coast of Scotland (Magurran et al., 2015). The stability of SR suggests that taxonomic 

homogenization on the west coast of Scotland is mostly due to community re-organisation of existing 

species. However, in our results the only locations (7% of rectangles) significantly gaining species 

(Agonus cataphractus, Pleuronectes platessa, Trisopterus esmarkii, Callionymus reticulatus) were 

located in the CS suggesting that taxonomic homogenization is the result to both spatial re-

organisation of the communities, with species getting less spatially segregated (more dispersal), and 

the arrival of new taxa within multiple communities (Olden 2006). In contrast, on the south coast of 

the BoB, communities tended to lose species while the temporal increase of the local β diversity was 

mostly influenced by species turnover. Taken together, these results showed spatial differentiation of 

communities and confirmed that temporal dynamics of assemblages can drastically vary over short 

spatial distances (Leprieur et al., 2008). 

Another striking result is that the southern BoB is losing species over time, despite southern 

newcomers having been detected (Iglésias & Lorance 2016). In this region the species turnover 

increased in recent years among local communities (LBD.jtu), potentially due to an increase in 

patchiness of species populations. The loss of species was counterintuitive, as we expected that 

species range shifts and arrival of southerly species would increase species richness (Dornelas et al., 

2019) if the tempo of immigration is higher than extirpation (Chase et al., 2019). Several species were 

becoming rarer, such as Trisopterus minutus, Hippoglossoides platessoides, Melanogrammus 

aeglefinus, Merlangius merlangus or Lophius piscatorius, while others were becoming more frequent 
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(e.g. Scomber colias, Spondyliosoma cantharus, Trigla lyra, Boops boops, Trachinus draco, 

Dicentrarchus labrax, Liza ramada). Additional results showed that at regional scale, incidence-

based biodiversity indices had weak temporal variation when averaged over space, and species 

richness remained stable. These results confirmed that global species range shifts of marine species 

do not necessarily translate into species richness variation over time (Dornelas et al., 2014) or into 

taxonomic homogenization of communities (McKinney & Lockwood, 1997). 

4.2 Abundance-based biodiversity indices

Temporal trends of abundance-based diversity patterns revealed contrasted pictures at regional and 

local scale. At regional scale, in agreement with our expectation, abundance-based indices provided 

clear temporal trends. Abundance of the demersal communities decreased over the time series and 

abundance-based dissimilarity measures indicated a differentiation among communities, which was 

mostly driven by the balanced variation of abundance. This implies that abundant species in one 

community were replaced by other species in other communities and this mechanism of replacement 

increased over the years. The balanced variation in abundance has been previously investigated 

through the compensation mechanism explained by the replacement of the most sensitive species to 

a disturbance (such as fishing) by less sensitive species (Rochet et al., 2013). In a spatial context, an 

increasing compensation mechanism may be related to increasing variation in abundance among 

species present in different locations. Over large spatial and temporal scales, such patterns might be 

caused by fishing and predator-prey interactions that generate fluctuating abundance among prey and 

predators such as suggested between hake and horse mackerel in the BoB (Moullec et al., 2017). 

On the other hand, at local scale, abundance-based patterns were more patchy than incidence-based 

patterns and we did not detect clear ecosystem dynamics as expected. Higher abundances were 

detected in the CS compared to the BoB (for similar results see Moullec et al., 2017), abundances 

remained stable over time for most rectangles (73%) and a majority of species (72%) showed stable 

abundances over the study period (see Table S25). We noticed that our simple estimate of the general 

temporal trend of the abundance can differ from the more detailed trends reported by ICES for several 

commercial stocks on larger spatial scales than considered here using additional data sets (e.g. 

Lophius budegassa and L. piscatorius, ICES, 2020). However, despite EVHOE surveys might have 

different catchability for part of the population (adults or juveniles) of certain species, our results, 

based on abundance, are in line with published results showing that overall fish biomass of most 

European seas has not yet recovered during the last two decades (Gascuel et al., 2016). Over time, 

the balanced variation in abundance among communities increased in coastal rectangles of the 

southern BoB and along the Welsh coast of the CS, showing an increasing exchange of individuals 

belonging to different species among communities. However, it remains unclear how much of this 
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increase is also driven by the influence of species turnover on the balanced variation in abundance as 

the two components are not independent (Baselga, 2013). Disentangling the contributions of balanced 

variations in abundance and abundance gradients to species turnover and nestedness is beyond the 

scope of this study but merits further research. Finally, not only incidence but also abundance-based 

indices revealed greater spatial than temporal variation of community dynamics, which confirmed 

previous findings for the Celtic Sea (Mérillet et al., 2019) and the Bay of Biscay (Poulard et al., 2003). 

Overall, the local patterns may have suffered from high variability in the sampling process (see 

section 4.4), which is unlikely to be improved if bottom trawl remains the main sampling technique 

as it is influenced by meteorological conditions while sampling (Poulard & Trenkel, 2007).

4.3 Evidence for trophic drivers of regional and local-scale biodiversity patterns

Observed spatial patterns of community re-organisations were mainly explained by variables 

describing energy (14.9% Table 2) rather than habitat and fishing. These results contradict our second 

expectation, even though the variance explained by these models remained low (25% Table 2). 

Accounting for the remaining temporal and spatial autocorrelation improved the predictive power of 

all models (Table S4-S14) which suggests that we may be currently missing covariates, or that fine 

scale variability has not yet been captured. Considering the huge source of uncertainty (see section 

4.4 for details) associated with long-term ecological surveys (Cauvy-Fraunié, et al., 2020), what looks 

at first as a deceptive model fit, could yet provide first insights into the main drivers. 

We found that among energy variables, both diversity and abundance of the small pelagics were the 

most important variables, while temperature and primary production had limited explanatory power. 

These results suggest that productive energy, especially the bentho-pelagos trophic link (Cury et al., 

2000) could be an important driver of the studied demersal community dynamics. The increasing 

diversity of small pelagic species and their abundance favoured the differentiation among demersal 

communities, while the abundance of small pelagics was positively related to the abundance of 

demersal species. These results may be related to positive predator-prey interactions allowing 

demersal predators to increase in abundance following increasing pelagic abundance (Moullec et al., 

2017). These predator-prey interactions might be partly driven by the strong recovery of Engraulis 

encrasicolus since 2005 (Fig. S13) and the high biomass of pelagic species in general in the BoB 

supported by high pelagic primary production (Cresson et al., 2020). If pelagic species constitute a 

large proportion of trophic resources consumed by the demersal community, variation in pelagic 

species abundance could significantly affect the variations in the abundance of demersal species as 

well. An indirect relationship driven by the productivity of benthic communities (Lassalle et al., 2011) 

is also possible but could not be tested here. Our results do not confirm the role of rising temperatures 

as the main driver of taxonomic re-organisation as suggested for ecosystems elsewhere (Magurran et 
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al., 2015; McLean et al., 2019). However, our analysis of environmental forcing on temporal 

variations of LBD.jtu revealed that decreasing temperature seasonality favoured taxonomic 

differentiation (southern BoB), while increasing temperature seasonality favoured taxonomic 

homogenization (CS; Fig. S13 and additional results in Supplementary material S2.3). Nevertheless, 

because the temporal trends in temperature seasonality remained non-significant, such results might 

be too preliminary to be attributed to global change yet (see Fig. S14).

Concerning habitat, we confirmed that bathymetry, water stratification (mixed layer depth), and 

distance to the coast were important drivers of the spatial distribution of marine biodiversity, 

specifically the importance of shallow coastal habitat with a thin mixed layer depth (Ray, 1991; 

Poulard et al., 2003; Leathwick et al., 2006; Tittensor et al., 2010; Seitz et al., 2014). 

The limited contribution of fishing pressure might be explained by the long fishing history that may 

have selected the most resilient species and shaped adaptable communities (Blanchard et al., 2004; 

McLean et al., 2019). Indeed, the BoB and the CS have been impacted by fishing for over a century 

(Quéro & Cendrero, 1996; Thurstan et al., 2010; Moullec et al., 2017) and this constant pressure on 

species communities may have been detectable at the beginning of the exploitation (Pauly, 1995; 

Lotze & Worm, 2009) but difficulties to pinpoint fishing as the main driver based on recent (i.e. two 

decades) scientific surveys is common for areas with a long fishing history (Farriols et al., 2017; 

Mérillet et al., 2019). Indeed, BoB ecosystem components in the early 1990s were considered widely 

impacted by fishing and locally by other human activities (Lorance et al., 2009; Gascuel et al., 2016).

Overall, the negligible effect of the tested time lags for environmental variables suggests a rapid 

biological response of communities to the environment, as previously shown for small pelagic species 

(Huret et al., 2018). One exception though was the two year lag for the minimum thickness of the 

mixed layer depth (MLD.min) for LBD indices suggesting a multiannual effect of water stratification 

on the change in species abundance among communities (LBD.ruz.bal), though the causal mechanism 

remains unknown.

4.4 Some limitations of long-term ecological surveys

Long-term ecological surveys (LTES) are key to document temporal dynamics (Kuebbing et al., 

2018), but their drawbacks should also be considered. First, variations in sampling effort over time 

or space are likely especially for LTES carried out over large spatial or temporal scales such as fish 

stock surveys (Trenkel & Cotter, 2009). For the EVHOE time series, it was crucial to use a sample-

based rarefaction approach with resampling (e.g. Dornelas et al., 2014; Magurran et al., 2015; Blowes 

et al., 2019; Antão et al., 2020), to avoid temporal sampling bias that might lead to an artificial 

increase in species richness. Second, variations in species identification due to inherent progress in 

taxonomy, and/or knowledge differences among scientific staff represent another source of bias that 
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must be accounted for. Here, we homogenised the species list over the time series by lumping taxa 

that could have been misidentified during the early years of the survey. As a consequence, all detected 

patterns are expected to be robust and may have been even stronger if a greater precision in species 

identification would have been available from the start of the time series. Finally, the accumulation 

of sources of uncertainty in LTES often leads to weak signal to noise ratios (Cauvy-Fraunier et al., 

2020). For example, the EVHOE survey is carried out during a transitional period, shifting from 

autumn to winter conditions with storms and high wind stress. These climatic conditions can affect 

the variation in catchability among species (Poulard & Trenkel, 2007) and thus impact species 

composition and abundance of the catch. Changes in gear catchability creating a biased representation 

of communities and species abundance is a frequent concern of bottom trawl surveys such as EVHOE 

(Poulard & Trenkel, 2007). Further, trawl selectivity is size-dependent (Krag et al., 2014). However, 

the main advantage of these surveys is that sampling is standardised and constant throughout the time 

series. Indeed, the sampling period (October-December), gear (GOV 36/47), tow duration (30 

minutes) and trawl speed (7.4 km.h-1) remained the same during the whole campaign and over the 

years (Laffargue et al., 2021). Hence, we believe that the identified strong multi-annual trends convey 

a genuine biological signal of change. The EVHOE data set has already been used (e.g. Merillet et 

al., 2019), as have other similar surveys, to derive indicators of diversity (including abundance), and 

ecological status (e.g. Rufino et al., 2018, Mahé et al., 2018). Despite those different sources of 

uncertainty and bias, the different conservative solutions applied in this study enabled us to detect 

spatio-temporal variations of community composition and reassert the crucial role of standardised 

LTES to understand community dynamics in a fast-evolving environment. 

4.5 Conclusion

A suite of complementary biodiversity indices based on scientific surveys allowed us to capture 

spatio-temporal community dynamics at different spatial scales. The stability of species richness, and 

the increasing composition dissimilarities at regional scale for abundance-based indices, hid a 

spatially contrasted pattern of taxonomic homogenization and differentiation for communities within 

the Celtic Sea and the southern Bay of Biscay, respectively. Abundance-based indices showed 

stronger temporal patterns at regional scale and confirmed higher abundance in the Celtic Sea than in 

the Bay of Biscay. However, at a local scale, abundance-based indices might be powerful to detect 

early changes in community dynamics only if new sampling approaches (e.g. environmental DNA; 

Stoeckle et al., 2020) can control and reduce the variability in the sampling process. Our modelling 

approach revealed greater spatial than temporal variation and a larger contribution of energy, 

followed by habitat, while fishing pressure had a very limited contribution. Furthermore, we showed 
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that the bentho-pelagos trophic link (Moullec et al., 2017; Cresson et al., 2020) had a greater influence 

on community dynamics of demersal species than changes in sea temperature (Magurran et al., 2015). 

By applying methods inspired by biogeography and community ecology to a scientific survey data 

set, our study paved the way to better disentangle and explain the subtle dynamics of communities 

and their drivers for ecosystems providing crucial services.
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S1. Supplementary material and methods

1) Additional information about the environmental variables 
We selected the average bathymetry within a ICES rectangle to describe the topography, as other 
potential descriptors of the topographic heterogeneity such as the standard deviation of the 
bathymetry, slope, roughness, Terrain roughness index (TRI), were all highly correlated with the 
average bathymetry (r Pearson = 0.91-0.95). We did not retain any salinity measures as they were all 
strongly correlated with the oxygen concentration (i.e. O2) (r Pearson= 0.82 - 0.9) or net primary 
productivity (NPP), (r Pearson = 0.81-0.86). Both mean and max O2 were highly correlated with the 
minimum O2 and were discarded, (r Pearson = 0.90 and 0.96). The average bathymetry within an ICES 
rectangle was computed from a high resolution (0.004°) bathymetric raster provided by The General 
bathymetric Chart of the Oceans (GEBCO, https://download.gebco.net/). To test the influence of the 
heterogeneity of benthic habitat we computed a Shannon index from 10 seabed substrate habitats 
provided by the European Marine Observation Data Network (EMODnet) Seabed Habitats project 
(EUSeaMap 2019 updated 1st July 2019, http://www.emodnet-seabedhabitats.eu/).  All the monthly 
average data for the bottom sea-floor temperature, sea temperature, Oxygen concentration, net 
primary productivity (NPP), salinity and thickness of the mixed layer depth (MLD) were obtained 
from the Copernicus European programme (available at: http://marine.copernicus.eu/services-
portfolio/access-to-products/) from January 1997 to December 2018 at 0.028° resolution and at 10 
depth strata (0, 20, 50, 110, 220, 330, 450, 565, 630, 770 m). We stopped at 770m because none of 
the trawls conducted during the EVHOE survey was performed deeper. All monthly variables but 
bottom seafloor temperature, were averaged over the maximum depth of the corresponding ICES 
rectangle, to integrate the values over the water column. To improve the normality assumption of 
residuals of the linear models and decrease the dispersion of residuals (i.e. decrease 
heteroscedasticity), we log10 transformed several explanatory variables such as the average 
bathymetry, the average NPP, the minimal MLD, the standard deviation of O2, the standard deviation 
of the bottom temperature, and the fishing pressure (Zuur et al., 2007). All variables were normalized 
by subtracting the mean and dividing by the standard deviation.

2) Variables selection before further modelling
We used elastic-net regularized generalised linear models to select the most influential variables 
related to energy, habitat and fishing pressure separately for each of the 11 biodiversity metrics. 
Elastic-net regularisation methods are efficient to select variables when the number of predictors is 
bigger than the number of observations and when many predictors have a limited contribution and 
are correlated (Zou & Hastie, 2005). In this study, model predictors refers to all linear and quadratic 
terms associated with the explanatory variables included in a model. Elastic-net regularization 
generalised linear models (Elastic-net GLMs) are algorithmically suitable to perform fast variable 

https://download.gebco.net/
http://www.emodnet-seabedhabitats.eu/
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selection on large data sets (Friedman et al., 2010). The elastic-net penalty controls the stringency of 
the model selection and is a compromise between the lasso penalty (α = 1) which performs a stringent 
selection especially when variables are highly correlated, and the ridge regression (α = 0) which uses 
a continuous shrinkage method to optimise the estimate of all predictors in the model (Zou & Hastie, 
2005). To estimate the best optimal elastic-net penalty, we performed 10 cross-validation for each α 
value (from 0.1 to 1 by 0.1 steps). The α providing the lowest cross-validated error (cvm), was 
retained as well as the penalty term of the predictors (ƛ) associated witht the optimal α. A final Elastic-
net GLM was fitted with the selected α and ƛ values, and the coefficients of the model parameters 
were retained. For each of the seventeen years (2000 - 2016), this whole procedure was repeated 10 
times and we reported the number of times the coefficient was non null to rank the variables retained 
the most often over the years. For energy and habitat, we selected the four best predictors retained 
over the years. For fishing pressure, all four predictors were retained, however for the three groups 
of variables, we filtered the predictors present in less than 20% of the iterations over the years. For 
all biodiversity metrics, we considered a gaussian error model and an identity link because we used 
the average biodiversity metric estimated over the 100 community data matrices, providing 
continuous values, and also because the Beta error model was not yet available with the elastic net 
regularization procedure to the best of our knowledge. 

3) Inferring spatio-temporal patterns 

To assess the temporal β diversity (TBI) within a rectangle, we considered the multi-site version of 
the incidence and abundance-based β diversity indices (Baselga, 2017). Then, to test for temporal 
change of the variability in species composition within a rectangle, we estimated the TBI of the 
different indices for pairs of consecutive years. Then, to test the temporal trend, we used the slope of 
a GLM with year as the explanatory variable and TBI indices as the response variable considering a 
Beta distribution and a logistic link. 
The pairwise and multisite β diversity indices were computed using the betapart R package (Baselga 
et al., 2018), while the GAM, and Beta regression models were fitted using mgcv (Woods, 2004) and 
betareg (Cribari-Neto & Zeileis, 2010) R packages.

4) Partitioning the spatial and temporal variation
We used a variance partitioning approach based on the Moran Eigenvector Maps (MEMs) method 
(Legendre et al., 2014) to test the relative importance of the spatial and temporal variability of the 
biodiversity patterns. MEMs corresponds to an eigenvector decomposition of spatial or temporal 
weighting matrix (SWM) which describes the spatial or temporal relations among a set of sampling 
units that can be included as multiscale (spatial or temporal) predictors in univariate or multivariate 
models (Dray et al., 2006, 2012; Bauman et al., 2018). SWM is the product of a connectivity matrix 
(defined the neighbors) and a weighting matrix (defined the strength of the relation) and the selection 
among the many SWMs possible is best performed using a data-driven approach (Dray et al., 2006; 
Bauman et al., 2018). To select the optimal set of spatial MEMs supporting significant correlation 
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with each biodiversity metric, we followed the approach of Bauman et al. (2018) to account for the 
influence of different spatial weighting matrices (SWM). We tested the influence of different graph-
based (Delaunay triangulation, Gabriel graph, and relative neighbor graph) and distance-based 
connectivity matrices (Minimal distance connecting all rectangles, 100, 150, 200 km) and different 
spatial weighting schemes (linear: Flin = 1-(d/dmax) and concave-down: Fcon-dow = 1-(d/dmax)*α 
with α = 2). A first global test of goodness of fit (i.e. R2) including all MEMs for each SWM was 
performed with a p.value correction (Sidak correction) for multiple testing to only retain the 
significant SWMs. Then, for the remaining SWMs, a forward selection was performed with a double 
stopping criterion (Blanchet et al., 2008) to retain the best subset of MEMs. Finally, the SWM 
providing the best subset of MEMs yielding the highest adjusted R2 was retained (Bauman et al., 
2018). In the selection procedure, 199 permutations were performed to compute the p.values. Before 
analyses, the geographic coordinates of the centroid of the ICES rectangle were slightly jittered (10 
meters difference in average) to remove spatial duplicates caused by the temporal replication of the 
sampling scheme. The temporal MEMs were defined using distance-based MEMs (Dray et al., 2006), 
considering a truncation of the temporal distance of 2 years (the largest distance between two 
consecutive years). The selection of the best subset of temporal MEMs was also performed with the 
double stopping criterion (Blanchet et al., 2008) and the p.values were computed using 199 
permutations. Then, we partitioned the variance with a linear model using the adjusted R2 considering 
each biodiversity metric as response variable and the best set of spatial and temporal MEMs to 
estimate the unique and shared fractions of explained variance attributed to space and time (Legendre 
& Legendre, 1998; Legendre et al., 2014). The general equation of the full model including both the 
best set of spatial and temporal MEMs was as follows:
Y = a + BspatialMEMs * xspatialMEMs + BtemporalMEMs * xtemporalMEMs + ε, 

where the term Y is the response variable (i.e. the different biodiversity indices), a is the intercept, 

BspatialMEMs, and BtemporalMEMs are the parameters (i.e. slope) of the variables attributed to the spatial 

MEMs, and the temporal MEMs, respectively, and ε represents the model residuals. The MEMs 

selection and variance partitioning were performed with adespatial (Dray et al., 2019) and vegan 

(Oksanen et al., 2019) R packages, respectively.

5) Partitioning the variance among energy, habitat and fishing pressure
We fitted linear mixed models (LMMs) and generalised additive mixed models (GAMMs) with R 
packages lme4 (Bates et al., 2015) and mgcv (Wood, 2004) respectively, we used the R package 
MuMIn (Bartoń, 2019) to estimate the marginal R2, and we performed the variance partitioning 
following a simple set of equations as described in Legendre & Legendre (1998).

6) Variables importance within energy, habitats and fishing pressure and accounting 
for temporal and spatial autocorrelation in the model residuals

For each biodiversity index, we used a model selection approach to select the most parsimonious 

model and assess the relative importance of the main variables within the three groups of explanatory 
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variables included in the linear mixed models (LMMs) presented in 2.5 (main manuscript). First, we 

performed a multimodel inference approach based on information theory running all possible models 

(Grueber et al. 2011). We retained the most parsimonious model based on the Bayesian Information 

Criteria (BIC) among the best set of models that have less than 2 BIC units difference with the best 

model (i.e. the model with the lowest BIC). Second, we computed the semi-partial marginal R2 as a 

proxy of explained variance for each variable retained in the most parsimonious model (Jaeger et al. 

2017; Nakagawa et al. 2017). We used the R packages MuMIn (Bartoń, 2019) and r2glmm (Jaeger, 

2017) for multi-model inference and to compute the semi-partial R2 respectively.

To account for the temporal and spatial autocorrelation in the residuals for the most parsimonious 
linear mixed models (LMM), we considered the following three step approach. First, we included an 
auto-regressive correlation structure in the residuals of order 1 (corAR1 in nlme R package, or ar1 in 
glmmTMB R package) based on the year effect accounting for the temporal autocorrelation (see Zuur 
et al., 2009 pages 149-150). The auto-regressive correlation structure is expressed as follows: 
cor(εs, εt) = ρ|s-t|, 
where εs and εt are the model residuals at time s and t respectively, and ρ is the auto-correlation 
parameter estimated from the data.
Second, we tested the presence of spatial autocorrelation in the residuals of the different models for 
each year separately using the Moran.I statistic considering the inverse great circle distance as a 
spatial weight and 199 monte carlo permutations. Then, we included an exponential correlation (i.e. 
corExp in the nlme R package or exp in the glmmTMB R package, see Zuur et al., 2009, page 167-
168) structure using “year” as a grouping variable to account for slight differences in the spatial 
distribution of ICES rectangles over the years (Zuur et al., 2009). 
The equation of the shape of the exponential correlation function is as follows:
γ(si, ρi) = 1 - e(si/ρi), 
with si is the distance and ρi the range for the year i (year is considered as a discrete variable here), 
and γ(si, ρi) is the variogram representing the shape of the spatial correlation structure of the model 
residuals. In other words, for a given year, the correlation between two observations is e(−s/ρ).

Third, both temporal and spatial autocorrelation structures were simultaneously included in the most 
parsimonious models. To assess the general goodness of fit of the most parsimonious models 
including a correlation structure in the residuals we used the Pseudo.R2 (Efron, 1978) which is defined 
as the coefficient of determination of the linear relationships between the observed and the fitted 
values of the model.
We performed LMM models including both temporal and spatial autocorrelation structures, and 
Moran.I with, lme4 (Bates et al., 2015), glmmTMB (Brooks et al., 2017), nlme (Pinheiro et al.,  2019) 
and spdep (Bivan et al., 2013) R packages.

7) Testing for temporal effect in the most parsimonious LMM model
To test for a temporal effect and its interaction with explanatory variables we included the continuous 

variable “time” (year) as a fixed effect and tested for two-way interactions between each variable 
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retained previously in the most parsimonious model and time in a linear model (LM). We performed 

multimodel inferences to retain the most parsimonious model according to the BIC and we assessed 

the relative importance of each variable using partial R2. We also tested the robustness of parameters 

estimates and their significance to the remaining temporal and spatial non-independence in the 

residuals (see paragraph S1.6 above in Supplementary material). 

8) Testing a lag effect
Lag effects can appear when the response variable lagged behind the explanatory variable, and the 
explanatory variable from a previous time period offers a better fit to the response variable than the 
contemporary explanatory variable (Huret et al., 2018). We developed the following three steps 
model selection procedure to test for this lag effect. First, for each biodiversity index and explanatory 
variable separately, we performed a suite of generalised additive mixed models (GAMMs, max of 3 
basis dimensions for smooth terms). We constructed 3 models considering the absence of lag, a one 
year, and a two years lag. As in the previous steady-state model, “year” was considered as a random 
effect, and we accounted for spatial autocorrelation in the residuals, by including an exponential 
correlation structure using “year” as a grouping variable. Then, we performed a model selection based 
on the Akaike information criterion corrected for small sample size (AICc) to select the best model 
with lag effect (i.e. we compared the AICc of the models without lag, with 1 and 2 years lag). A lag 
was retained only if its associated model got the lowest AICc, the adjusted R2 of the lag variable was 
higher than 2% and the increase in explained deviance in comparison to the contemporaneous model 
(i.e. absence of lag) was higher than 2%. We performed the model selection for the lag models 
considering the time series between 2000 and 2016 for the response variables. We tested for lag 
effects only for the dynamic environmental variables (e.g. bottom sea-floor temperature, sea 
temperature, oxygen concentration, NPP, salinity MLD, SR and abundance of the nine species of 
small and medium size pelagic fishes), and not for the static variables such as bathymetry, and 
distance to the coast. However we did not test for a lag effect for the fishing pressure variables because 
the missing values before 2000 trimmed too much the time series. Second, after the best variables 
were considered for a lag effect, we performed the variable selection using the GLM Elastic net 
procedure considering the linear and quadratic terms. Three, we performed the whole steady-state 
(see paragraph 2.5) and temporal modeling (see Supplementary Material S1.7) including the variance 
partitioning (see 2.5) and the model selection (see 2.6) to compare the results of the models with and 
without lag. 

9) Testing for the relationships between environmental forcing and the temporal trend 
of biodiversity metrics

We explored the relationships between the temporal trend of the biodiversity metrics and the temporal 
dynamic of the explanatory variables by applying a four steps procedure. First, for each of the 71 
ICES rectangles visited at least 5 times during the time series, we computed the slope of the linear 
model as a proxy of the temporal trend using each dynamic environmental variable as response 
variable and year as explanatory variable. Second, we described the relationship between the previous 
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estimated slope of the biodiversity metrics (see and the temporal trend of each explanatory variable 
using GAMM (max of 3 basis dimensions for smooth terms), and including an exponential correlation 
structure to account for potential spatial autocorrelation. Third, for each biodiversity metric we 
retained the explanatory variables with a significant smoothing parameter ( α = 0.05) and an adjusted 
R2 above 0.05. Fourth, we considered generalised least squares (GLS) models including the linear 
and quadratic term of the best explanatory variables previously retained and we accounted for the 
spatial autocorrelation using an exponential structure in the residuals (Zuur et al., 2009). Finally, we 
used multimodel inferences to run all possible GLS models and retained the best set of models 
according to AICc (delta AICc <2 with the best model). This model subset allowed us to measure the 
relative importance of each predictor as the sum of AICc weights of models in which the predictor 
occurred and to perform a multi-model averaging approach to get the estimate and significance of the 
predictors retained (Burnham & Anderson, 2002).
GAMM, multimodel inferences and GLS models were performed with mgcv (Wood, 2004), MuMIn 
(Bartoń, 2019) and nlme (Pinheiro et al., 2019) R packages, respectively.

S2. Supplementary results

1) Results about the spatio-temporal patterns at local scale

The temporal change of TBI.jac was also driven by species turnover (TBI.jtu, r Spearman = 0.96, p < 
0.001), and showed an even clearer decrease of community dissimilarities over time for 39% (n = 28, 
mean slope = -0.05, sd = 0.02) of rectangles located in the Celtic Sea and the northern and central 
Bay of Biscay (Fig. S10B). The increase over time of TBI.jac and TBI.jtu in the southern and coastal 
Bay of Biscay (8-10% of rectangles) confirmed the temporal differentiation of fish communities at 
the local scale (Fig. S10B). The spatial patterns of the abundance-based temporal beta diversity (TBI) 
indices were also in agreement with the abundance-based LBD patterns especially for balance 
variation in abundance (r Spearman = 0.41, p < 0.001), the abundance gradient and the ratio (r Spearman= 
0.56, p < 0.001, Fig. S11A). On the contrary, the temporal evolution of the TBI.ruz decreased 
significantly in dissimilarities within communities over time for 35% of rectangles (n = 25, mean 
slope = -0.05, sd = 0.02) spread over the whole area (Fig. S11B). This pattern was driven mostly by 
the balance variation of abundance (r Spearman = 0.81, p < 0.001).
Spatial patterns for the two components LBD.ruz and LBD.ruz.bal were similar (r Spearman = 0.76), 
with higher values (0.73 - 0.8) in the northern part of the Celtic Sea and along the coast of the Bay of 
Biscay (Fig. 4A). Lower values (0.67 - 0.71) were located in the offshore regions of the Celtic Sea, 
and the Bay of Biscay to some extent. However, the offshore area between the south of the Celtic Sea 
and the north of the Bay of Biscay showed an increase in LBD.ruz (0.89 - 0.92) caused by higher 
abundance gradients (LBD.ruz.gra, Fig. 4A). The local gradient in abundance (LBD.ruz.gra) had 
overall values systematically lower than LBD.ruz.bal (paired t.test t = 97.02, p < 0.001, LBD.ruz.bal 
mean = 0.72, sd = 0.029, LBD.ruz.gra mean = 0.17, sd = 0.021), and showed an inverted spatial 
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pattern (r Spearman = -0.95, p < 0 .001; Fig. 4A).

2) Results related to the lag effect.

Individual tests for time lag effect for each dynamic environmental variable showed that significant 
improvements were detected for all biodiversity metrics except abundance and evenness (Table S13). 
For SR, one year and two years lag for the minimal bottom temperature and oxygen seasonality (e.g. 
O2.sd) respectively, offered small (2%) but significant improvement and were retained in the 
multivariate models. For LBD metrics, the most significant improvement in the explained variance, 
up to almost 5% for LBD.ruz.gra, was attributed to the two years lag for the minimal mixed layer 
depth (MLD.min, Table S13). Other variables such as a two year lag for the minimal oxygen 
concentration, and one year lag for the annual average thickness of the mixed layer depth were also 
retained for LBD.jne and LBD.ruz.gra (Table S13). After another variable selection step including 
the best lag variables for SR, and all LBD.metrics (see Table S14 for the best explanatory variables 
retained for each biodiversity metric), the variance partitioning revealed slight improvements (1+/- 
1.1% for the overall variance) in comparison to the contemporaneous variables. Most notables 
improvements were attributed to LBD.jac (2.3% overal) and LBD.ruz.bal (2.2% overal), that were 
mostly attributed to the habitat category (2.2% for LBD.jac and 2.1% for LBD.ruz.bal, see Table 
S15).  The overall picture of the variance partitioning and the contribution of the independent 
variables did not change significantly in comparison to the models including contemporaneous 
variables only (see Table S16-S22 for the model outputs for the different biodiversity metrics).

3) Results related to environmental forcing. 

The selection procedure revealed that the temporal trend of at least one dynamic environmental 
variable (from 1 to 5), was significantly related to the temporal trend for SR, Abundance, LBD.jtu, 
LBD.ruz, LBD.ruz.bal and LBD.ruz.gra, however the goodness of fit remained low to moderate (best 
adjusted.R2 = 0.206, Table S23). The multi-model inference based on GLS confirmed the importance 
of the four main relationships worth mentioning (Table S24, Fig. S12). The temporal trend of the 
species abundance was negatively related to the temporal trend of the annual average of net primary 
productivity, and positively related to the minimum oxygen concentration. The temporal trend of 
LBD.jtu showed a negative relationship with the temporal trend of the temperature seasonality and 
the temporal trend of LBD.ruz.gra was negatively related to the species richness of small pelagic 
species (Fig. S12, S14). All relationships were robust to spatial autocorrelation and collinearity 
associated with the additional variables retained for the modelling (Table S23, S24).
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S3. Supplementary figures:

Fig. S1: Map of the average value over the time series (1997-2018) at the scale of the ICES rectangle 
for 19 environmental variables. bottomT.min: minimal annual bottom sea floor temperature, 
bottomT.mean: annual average of the bottom sea floor temperature, bottomT.sd: seasonality of the 
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bottom sea floor temperature, Temp.min: minimal annual temperature integrated over depth, 
Temp.mean: average annual temperature integrated over depth, Temp.sd: seasonality of the 
temperature integrated over depth, nppv.mean: annual average of the net primary productivity, 
SR.Sm.Pel: species richness of the small pelagic species, Abund.Sm.Pel: Abundance of the small 
pelagic species, MLD.min: minimal annual thickness of the mixed layer depth, MLD.mean: average 
annual thickness of the mixed layer depth, o2.min: minimal annual oxygen concentration, o2.sd: 
seasonality of the oxygen concentration, Area_Km2: aera of the ICES rectangle, Bathy: average 
bathymetry of the ICES rectangle, Dist2coast: distance to the nearest coast, Substrate.Hab.Shannon: 
habitat diversity based on the Shannon index of 11 substrat classes, Fishing.Pressure: sum of the 
fishing effort, Shannon.Fishing.Pressure: diversity of the fishing pressure based on the Shannon index 
of the fishing effort of the different fishing gears.
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Fig. S2: Spearman correlation coefficients among all 19 environmental variables, belonging to energy, 
habitat and fishing pressure categories. bottomT.min: minimal annual bottom sea floor temperature, 
bottomT.mean: annual average of the bottom sea floor temperature, bottomT.sd: seasonality of the 
bottom sea floor temperature, Temp.min: minimal annual temperature integrated over depth, 
Temp.mean: average annual temperature integrated over depth, Temp.sd: seasonality of the 
temperature integrated over depth, nppv.mean: annual average of the net primary productivity, 
SR.Sm.Pel: species richness of the small pelagic species, Abund.Sm.Pel: Abundance of the small 
pelagic species, MLD.min: minimal annual thickness of the mixed layer depth, MLD.mean: average 
annual thickness of the mixed layer depth, o2.min: minimal annual oxygen concentration, o2.sd: 
seasonality of the oxygen concentration, Area_Km2: aera of the ICES rectangle, Bathy: average 
bathymetry of the ICES rectangle, Dist2coast: distance to the nearest coast, Substrate.Hab.Shannon: 
habitat diversity based on the Shannon index of 11 substrat classes, Fishing.Pressure: sum of the 
fishing effort, Shannon.Fishing.Pressure: diversity of the fishing pressure based on the Shannon index 
of the fishing effort of the different fishing gears.
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Fig. S3: Spearman correlation coefficient among the temporal evolution of all biodiversity metrics. 
See Fig. S2 for the definition of the variables.
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Fig. S4: Selection of the best geographic distance used to computed the local beta diversity (LBD) 
maximising the the number of ICES rectangles (i.e. cells) showing a significant temporal evolution 
(differentiation and homogenisation), for all incidence-based LBD (a) and abundance-based LBD 
indices (b). We estimated the LBD indices as the average beta diversity indices between a focal ICES 
rectangle and its neighbors defined within a distance radius (16 distance classes were considered from 
150 to 300 km every 10 km). The smallest distance classes maximizing the number of rectangles with 
a significant temporal evolution (differentiation or homogenisation) was retained. Differentiation and 
homogenisation were considered for positive and negative slopes of a linear model respectively, that 
were significantly different from 0 (the p.value of the slope < 0.1), otherwise temporal trends were 
considered stable. 
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Fig. S5: Flowchart of the analytical steps related to the presentation of the biodiversity patterns and 
the modelling.
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Fig. S6: a) Map depicting the ICES rectangles of the Celtic Sea and the Bay of Biscay sampled by 
the EVHOE bottom trawl survey from 1997 to 2018 including small pelagic species. b) Temporal 
trend average by ICES rectangle per year for SR, abundance (log10(abundance)), Hurlbert’s evenness, 
or among all pairwise ICES rectangle comparisons for the Jaccard index (β.jac), its species turnover 
(β.jtu) and nestedness (β.jne) components, the ratio of species turnover over the Jaccard index 
(β.ratio), and the abundance-based dissimilarity index, including the Ruzicka index (β.ruz) and its 
balance variation in abundance (β.ruz.bal), and abundance gradient (β.ruz.gra) components as well as 
the ratio (β.ruz.ratio) of β.ruz.bal/β.ruz. The blue curves represent the fit of generalised additive 
models (GAM), with solid lines indicating a significant relationship, while the dotted lines indicate a 
non-significant trend (with a p.value > 0.1), and the light blue area the standard error around the fit 
of the model. 
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Fig. S7: Species richness, abundance (log10 transformation), and the Hurlbert’s evenness patterns of 
the demersal fish assemblages of the Bay of Biscay and the Celtic Sea for the period 1997-2018 
including small pelagic species. The Line (a) represents the mean species richness (SR), the mean 
abundance (log10(abundance)) and the mean evenness (Hurlbert’s index) over the period 1997-2018. 
The line (b) showsthe temporal evolution of SR, abundance and Hurlbert’s evenness. for the 71 
retained ICES rectangles sampled at least 5 times. The beige colour indicates a stable trend (slope not 
significantly different from 0, with a p.value > 0.1), while positive and negative trends are in red and 
blue, respectively.
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Fig. S8: Local beta diversity of incidence-based index of the demersal fish assemblages of the Bay 
of Biscay and the Celtic sea for the period 1997-2018 including small pelagic species.  The line (a) 
represents the mean local Jaccard index (LBD.jac), mean local species turnover (LBD.jtu), and mean 
local nestedness (LBD.jne) over the period 1997-2018. The line (b) shows the trends of the temporal 
evolution of LBD.jac, LBD.jtu, and LBD.jne when 71 ICES rectangles sampled at least 5 times were 
retained. We computed the local beta diversity indices by averaging the dissimilarities among the 
focal rectangle and all its neighbours in a radius of 220km which was the distance maximising the 
number of rectangles with a significant temporal trend. The beige colour indicates a stable trend 
(slope not significantly different from 0, with a p.value > 0.1), while positive and negative trends are 
in red and blue, respectively.
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Fig S9: Local β diversity of abundance-based index of the demersal fish assemblages of the Bay of 
Biscay and the Celtic Sea for the period 1997-2018 including small pelagic species. The line (a) 
represents the mean local Ruzicka index (LBD.ruz), mean local balance variation in abundance 
(LBD.ruz.bal), and mean local abundance gradient (LBD.ruz.gra) over the period 1997-2018. The 
line (b) shows the trends of the temporal evolution of LBD.ruz, LBD.ruz.bal, and LBD.ruz.gra, only 
71 ICES rectangles sampled at least 5 times were retained. We computed the local beta diversity 
indices by averaging the dissimilarities among the focal rectangle and all its neighbours in a radius 
of 290km which was the distance maximising the number of rectangles with a significant temporal 
trend. The beige colour indicates a stable trend (slope not significantly different from 0, with a p.value 
> 0.1), while positive and negative trends are in red and blue, respectively.
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Fig. S10: Temporal beta diversity (TBI) patterns of the demersal fish assemblages of the Bay of 
Biscay and the Celtic Sea for the period 1997-2018 for incidence-based beta diversity indices. The 
line (a) represents the multisite (i.e. multiple years for the same ICES rectangle) Jaccard index 
(TBI.jac), species turnover (TBI.jtu), species nestedness (TBI.jne) over the period 1997-2018. The 
line (b) shows the trends of the temporal evolution of TBI.jac, TBI.jtu, and TBI.jne, only 71 ICES 
rectangles sampled at least 5 times were retained. The temporal evolution was measured as the slope 
of the linear model considering the pairwise TBI between adjacent periods(i.e. 1997-1998, 1998-1999) 
for a focal ICES rectangle. The beige colour indicates a stable trend (slope not significantly different 
from 0, with a p.value > 0.1), while positive and negative trends are in red and blue, respectively.
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Fig. S11: Temporal beta diversity (TBI) patterns of the demersal fish assemblages of the Bay of 
Biscay and the Celtic Sea for the period 1997-2018 for abundance-based beta diversity indices. The 
line (a) represents the multisite (i.e. multiple years for the same ICES rectangle) Ruzicka index 
(TBI.ruz), the balance variation in abundance (TBI.ruz.bal) and the abundance gradient (TBI.ruz.gra) 
over the period 1997-2018. The line (b) shows the temporal evolution of TBI.ruz, TBI.ruz.bal, and 
TBI.ruz.gra, for the 71 selected ICES rectangles sampled at least 5 times. The temporal evolution was 
measured as the slope of the linear model considering the pairwise TBI between adjacent time periods 
(i.e. 1997-1998, 1998-1999) for a focal ICES rectangle. The beige colour indicates a stable trend 
(slope not significantly different from 0, with a p.value > 0.1), while positive and negative trends are 
in red and blue, respectively.
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Fig. S12: Four of the main relationships between the temporal evolution of biodiversity metric and 
the temporal evolution of environmental variables. We present the relations between abundance and 
the annual average of the net primary productivity (a), abundance and the minimum oxygen 
concentration (b), LBD.jtu and temperature seasonality (c) and LBD.ruz.gra (local beta diversity of 
the gradient of abundance component) and the species richness of the small pelagic species. We used 
the slope of a linear model between a response variable and time as a proxy of temporal evolution. 
The relationships were fitted with generalised least square (GLS) models taking into account spatial 
autocorrelation using an exponential structure in the residuals. We retained linear and quadratic terms 
for (a) and (c), while only a linear term was retained for (b) and (d). Continuous lines represented the 
fit with all the 71 ICES rectangles while the dotted line represented the fit after removing one outlier 
ICES rectangle (n=70). All relationships were significant and the pseudo R2 were 0.24, 0.16, 0.24, 
0.21 for (a, b, c) and (d), respectively.
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Fig. S13: (a) Temporal trends average by ICES rectangle per year for SR, abundance 
(log10(abundance)), Hurlbert’s evenness for the 9 species of small pelagics of the Bay of Biscay and 
the Celtic Sea, and (b) the temporal trend of the abundance (log10) for each of the 9 species. 
ALOSALO: Alosa alosa, ALOSAFAL: Alosa fallax, ATHERPRE: Atherina presbyter, ENGRENC: 
Engraulis encrasicolus, SARDPIL: Sardina pilchardus, SCOMJAP: Scomber japonicus, SCOMSCO: 
Scomber scrombrus, SPRASPR: Sprattus sprattus, TRAC: Tachurus sp.. The blue curves represent 
the fit of generalised additive models (GAM), with solid lines indicating a significant relationship, 
while the dotted lines indicate a non-significant trend (with a p.value > 0.1), and the light blue area 
the standard error around the fit of the model. 
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Fig. S14: Maps showing the temporal evolution of 15 dynamic environmental variables. bottomT.min: 
annual minimum bottom sea floor temperature, bottomT.mean: annual average of the bottom sea floor 
temperature, bottomT.sd: seasonality of the bottom sea floor temperature, Temp.min: annual 
minimum temperature integrated over depth, Temp.mean: average annual temperature integrated over 
depth, Temp.sd: seasonality of the temperature integrated over depth, nppv.mean: annual average of 
the net primary productivity, MLD.min: minimal annual thickness of the mixed layer depth, 
MLD.mean: average annual thickness of the mixed layer depth, o2.min: annual minimum oxygen 
concentration, o2.sd: seasonality of the oxygen concentration, Fishing.Pressure: sum of the fishing 
effort, Shannon.Fishing.Pressure: diversity of the fishing pressure based on the Shannon index of the 
fishing effort of the different fishing gears, SR.Sm.Pel: species richness of the small pelagic species, 
Abund.Sm.Pel: Abundance of the small pelagic species. Only 71 ICES rectangles sampled at least 5 
times were retained for SR.Sm.Pel and Abund.Sm.Pel. The beige colour indicates a stable trend (slope 
not significantly different from 0 with a p.value > 0.1), while positive and negative trends are in red 
and blue, respectively.
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S4. Supplementary tables

Table S1: Variance partitioning based on linear model using the adjusted R2 and considering the best 

set of spatial and temporal moran eigenvectors (MEM) in order to partition the variance attributed to 

space and time and their shared variance for each diversity index, for the demersal fish assemblages 

of the Bay of Biscay and the Celtic Sea. The full data set of 1242 rectangles by years was used to 

select the best spatial and temporal MEMs following the approach developed by Bauman et al. (2018). 

Values correspond to the percentage of explained variance. 

Metric Explained Space Time Shared.S.T.

SR 10.4 6.3 4.5 0a

Abundance 12.9 9.9 2.6 0.4

Evenness 11.4 9.3 1.7 0.4

LBD.jac 11 8.9 2.5 0a

LBD.jtu 12.9 11.1 1.7 0.1

LBD.jne 8.5 2.7 5.7 0.1

LBD.ruz 8 5.6 2.3 0

LBD.ruz.bal 12.1 8.4 3.4 0.4

LBD.ruz.gra 12.9 8.6 4 0.3
aNegative values were converted to 0 (Legendre and Legendre, 1998), as such the sum of the variance of the individual 

categories might not add-up to the total explained variance.
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Table S2: Variables and predictors (i.e. all linear and quadratic terms of the explanatory variables included in the model) selected for energy, habitat, and fishing 
pressure for all taxonomic alpha indices, for the contemporaneous variables. The 4 best predictors were retained per group of variables. To be retained, a 
predictor had to be selected in more than 20% of the iterations of the elastic-net GLM per year. bottomT.min: annual minimum bottom sea floor 
temperature, bottomT.mean: annual average of the bottom sea floor temperature, bottomT.sd: seasonality of the bottom sea floor temperature, Temp.min : 
annual minimum temperature integrated over depth, Temp.mean: average annual temperature integrated over depth, Temp.sd: seasonality of the 
temperature integrated over depth, nppv.mean: annual average of the net primary productivity, SR.Sm.Pel: species richness of the small pelagic species, 
Abund.Sm.Pel: Abundance of the small pelagic species, MLD.min: annual minimum thickness of the mixed layer depth, MLD.mean: average annual 
thickness of the mixed layer depth, o2.min : annual minimum oxygen concentration, o2.sd: seasonality of the oxygen concentration, Area_Km2: aera of 
the ICES rectangle, Bathy: average bathymetry of the ICES rectangle, Dist2coast: distance to the nearest coast, Substrate.Hab.Shannon: habitat diversity 
based on the Shannon index of 11 substrat classes, Fishing.Pressure: sum of the fishing effort, Shannon.Fishing.Pressure: diversity of the fishing pressure 
based on the Shannon index of the fishing effort of the different fishing gears.



64

Variables.group Metric SR Abundance Evenness LBD.jac LBD.jtu LBD.jne LBD.ruz LBD.ruz.bal LBD.ruz.gra
bottomT.min 1 1 1 0 0 0 0 1 1
bottomT.mean 1 0 1 1 0 0 0 0 1
bottomT.sd 0 0 0 0 0 0 0 0 0
Temp.min 0 0 0 0 0 0 0 0 0
Temp.mean 0 0 0 0 1 0 0 0 0
Temp.sd 0 0 0 0 0 0 0 0 0
nppv.mean 0 0 0 0 0 0 0 0 0
SR.Sm.Pel 0 0 1 0 0 1 0 1 1
Abund.Sm.Pel 1 1 0 1 1 0 1 0 0
bottomT.min^2 0 0 0 0 0 1 1 0 0
bottomT.mean^2 0 0 0 0 0 0 0 0 0
bottomT.sd^2 0 0 0 1 1 1 1 1 0
Temp.min^2 0 0 0 0 0 0 0 0 0
Temp.mean^2 0 0 0 0 0 0 0 0 0
Temp.sd^2 0 0 0 0 0 0 0 0 0
nppv.mean^2 0 0 0 0 0 0 0 0 0
SR.Sm.Pel^2 0 1 1 1 1 1 1 1 1

Energy

Abund.Sm.Pel^2 1 1 0 0 0 0 0 0 0
MLD.min 1 1 1 1 1 0 0 0 1
MLD.mean 0 0 0 1 1 0 1 1 1
o2.min 0 0 0 0 0 1 0 0 0
o2.sd 1 0 0 0 0 0 0 0 0
Area_Km2 0 0 0 0 0 0 1 0 0
Bathy 0 0 0 0 0 0 0 0 0
Dist2coast 1 0 1 0 0 0 1 1 1
Substrate.Hab.Shannon 0 0 1 0 0 1 0 0 1
MLD.min^2 0 1 0 0 1 1 0 1 0
MLD.mean^2 0 1 0 1 0 0 0 0 0
o2.min^2 0 0 1 0 0 0 0 0 0

Habitat

o2.sd^2 0 1 0 0 0 0 0 0 0



65

Area_Km2^2 0 0 0 0 0 0 0 0 0
Bathy^2 1 0 0 1 1 0 1 1 0
Dist2coast^2 0 0 0 0 0 1 0 0 0
Substrate.Hab.Shannon^2 0 0 0 0 0 0 0 0 0
Fishing.Pressure 1 1 1 1 1 1 1 1 1
Shannon.Fishing.Pressure 1 1 1 1 1 1 1 1 1
Fishing.Pressure^2 1 1 1 1 1 1 1 0 1

FishingP

Shannon.Fishing.Pressure^2 1 1 1 1 1 1 1 1 1



66

Table S3: Variance partitioning based on GAMM models including time (i.e. Year effect) as a 
random intercept, for species richness (SR, abundance (log10.abundance), Hurlbert's evenness, and 
all local beta diversity metrics, without the time lag for the explanatory variables. The adjusted R2 
was used to estimate the proportion of explained variance by the fixed effects. E: energy, H: habitat, 
F: fishing pressure.

Metric Explained E H F Shared.E.F Shared.E.H Shared.H.F Shared.E.H.F
SR 12.3 6.2 3.5 0.7 0.8 0a 0.1 3.1
Log10.Abundance 23.2 18.4 3 1 0a 0a 0.5 4.4
Hurlbert.Evenness 5.2 1.2 3.1 0.4 0a 0a 0 3.7
LBD.jac 26.9 18.1 2.1 0.8 1.1 0a 0.4 4.5
LBD.jtu 28.6 18.8 1.3 1.9 0.7 1.4 0a 4.8
LBD.jne 10.7 6.7 0.7 1.6 0a 0.2 0a 2.8
LBD.ruz 21.2 12.2 1.9 1.7 0a 0a 0a 7.4
LBD.ruz.bal 21.5 7.9 4.2 3.5 0a 0a 0a 12
LBD.ruz.gra 15.6 4 3.7 2.6 0a 0a 1.8 5.1

 aNegative values were converted to 0 (Legendre & Legendre, 1998), as such the sum of the variance of the individual 
categories might not add-up to the total explained variance.
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Table S4: Estimates and significance of the contemporaneous predictors (i.e. all linear and quadratic terms of the explanatory variables included in the 
model) retained in the most parsimonious steady-state and temporal models for SR, including models taking into account temporal and spatial 
autocorrelation in the residuals. Pred.: Predictors. Est: coefficient estimates based on a LMM with time as a random intercept, and a LM for the steady-
state and temporal models respectively.  Est.AR1: coefficient estimates for LMM and LM models including a temporal autocorrelation structure (AR1) 
in the residuals. Est.Exp: coefficient estimates for LMM and LM models including a spatial autocorrelation structure (exponential structure) in the 
residuals. Est.AR1.Exp:  coefficient estimates for LMM and LM models including temporal and spatial autocorrelation structures in the residuals. 
Coefficient estimates with a significant p.value (lower than 0.05) are indicated in bold, and variables explaining at least 5% of the explained deviance 
are highlighted in grey. Part.Marg.R2.: express the semi-partial marginal R2 (surrogate of the relative importance of each predictor based on the marginal 
R2 [Nakagawa et al., 2017]) for each predictor in %. Psd.R2 : corresponds to the Pseudo R2, which is the R2 from a linear model between the observed 
and the fitted values. Cond.R2: it is the conditional R2 including both the fixed and the random effects; it is available in the column Est. for the steady-
state model only fitted with LMM including time as a random effect. Abund.Sm.Pel : Abundance of the small pelagic species. SR.Sm.Pel : Species 
richness of the small pelagic species.

Metric Model Pred. Est. P.LMM Part.Marg.R2 Est.AR1 P.LMM.AR1 Est.Exp P.LMM.Exp Est.AR1.Exp P.LMM.AR1.Exp
SR Steady-

state
Dist2coast -0.723 0 6.042 -0.699 0 -0.629 0 -0.641 0

SR Steady-
state

Fishing.Pressure -0.287 0.002 1.005 -0.273 0.015 -0.257 0.008 -0.253 0.017

SR Steady-
state

Abund.Sm.Pel -0.607 0 5.500 -0.57 0 -0.389 0 -0.394 0

SR Steady-
state

Psd.R2/Cond.R2 0.17 - 0.108 0.582 - 0.668 - 0.885 -

SR Temp. Dist2coast -0.588 0 4.538 -0.573 0 -0.531 0 -0.541 0
SR Temp. Abund.Sm.Pel -0.634 0 5.718 -0.606 0 -0.392 0 -0.398 0
SR Temp. Psd.R2/Cond.R2 - - 0.103 0.507 - 0.671 - 0.881 -
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Table S5: Estimates and significance of the contemporaneous predictors (i.e. all linear and quadratic terms of the explanatory variables included in the 
model) retained in the most parsimonious steady-state and temporal models for abundance, including models taking into account temporal and spatial 
autocorrelation in the residuals. Pred.: Predictors. Est: coefficient estimates based on a LMM with time as a random intercept, and a LM for the steady-
state and temporal models respectively.  Est.AR1: coefficient estimates for LMM and LM models including a temporal autocorrelation structure (AR1) 
in the residuals. Est.Exp: coefficient estimates for LMM and LM models including a spatial autocorrelation structure (exponential structure) in the 
residuals. Est.AR1.Exp: coefficient estimates for LMM and LM models including temporal and spatial autocorrelation structures in the residuals. 
Coefficient estimates with a significant p.value (lower than 0.05) are indicated in bold, and variables explaining at least 5% of the explained deviance 
are highlighted in grey. Part.Marg.R2.: express the semi-partial marginal R2 (surrogate of the relative importance of each predictor based on the marginal 
R2 [Nakagawa et al., 2017]) for each predictor in %. Psd.R2: corresponds to the Pseudo R2 , which is the R2 from a linear model between the observed 
and the fitted values. Cond.R2: it is the conditional R2 including both the fixed and the random effects; it is available in the column Est. for the steady-
state model only fitted with LMM including time as a random effect. Abund.Sm.Pel: Abundance of the small pelagic species. SR.Sm.Pel: Species richness 
of the small pelagic species.

Metric Model Pred. Est. P.LMM Part.Marg.R2 Est.AR1 P.LMM.AR1 Est.Exp P.LMM.Exp Est.AR1.Exp P.LMM.AR1.Exp
Abund. Steady-

state
Abund.Sm.Pel 0.134 0 5.775 0.134 0 0.14 0 0.138 0

Abund. Steady-
state

MLD.min 0.091 0 3.747 0.087 0 0.087 0 0.088 0

Abund. Steady-
state

MLD.min^2 -0.029 0.002 0.909 -0.026 0.012 -0.027 0.012 -0.027 0.016

Abund. Steady-
state

o2.sd^2 0.032 0.001 1.020 0.03 0.01 0.036 0 0.034 0.003

Abund. Steady-
state

SR.Sm.Pel -0.101 0 2.790 -0.099 0 -0.099 0 -0.097 0

Abund. Steady-
state

SR.Sm.Pel ^2 -0.046 0 2.799 -0.042 0 -0.044 0 -0.043 0

Abund. Steady-
state

Psd.R2/Cond.R2 0.216 - 0.195 0.463 - 0.599 - 0.693 -

Abund. Temp. Abund.Sm.Pel 0.132 0 3.578 0.133 0 0.14 0 0.138 0
Abund. Temp. MLD.min 0.093 0 4.017 0.09 0 0.087 0 0.088 0
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Abund. Temp. MLD.min^2 -0.028 0.003 0.624 -0.026 0.01 -0.026 0.014 -0.026 0.019
Abund. Temp. o2.sd^2 0.033 0.001 0.517 0.031 0.007 0.036 0 0.034 0.003
Abund. Temp. SR.Sm.Pel -0.1 0 8.743 -0.098 0 -0.099 0 -0.097 0
Abund. Temp. SR.Sm.Pel ^2 -0.046 0 2.363 -0.042 0 -0.044 0 -0.043 0
Abund. Temp. Time -0.037 0.003 0.69 -0.042 0.003 -0.032 0.101 -0.035 0.074
Abund. Temp. Psd.R2/Cond.R2 - - 0.205 0.443 - 0.608 - 0.719 -
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Table S6: Estimates and significance of the contemporaneous predictors (i.e. all linear and quadratic terms of the explanatory variables included in the 
model) retained in the most parsimonious steady-state and temporal models for Hurlbert’s evenness, including models taking into account temporal and 
spatial autocorrelation in the residuals. Pred.: Predictors. Est: coefficient estimates based on a LMM with time as a random intercept, and a LM for the 
steady-state and temporal models respectively. Est.AR1: coefficient estimates for LMM and LM models including a temporal autocorrelation structure 
(AR1) in the residuals. Est.Exp: coefficient estimates for LMM and LM models including a spatial autocorrelation structure (exponential structure) in 
the residuals. Est.AR1.Exp: coefficient estimates for LMM and LM models including temporal and spatial autocorrelation structures in the residuals. 
Coefficient estimates with a significant p.value (lower than 0.05) are indicated in bold, and variables explaining at least 5% of the explained deviance 
are highlighted in grey. Part.Marg.R2.: express the semi-partial marginal R2 (surrogate of the relative importance of each predictor based on the marginal 
R2 [Nakagawa et al., 2017]) for each predictor in %. Psd.R2: corresponds to the Pseudo R2 , which is the R2 from a linear model between the observed 
and the fitted values. Cond.R2: it is the conditional R2 including both the fixed and the random effects; it is available in the column Est. for the steady-
state model only fitted with LMM including time as a random effect. Abund.Sm.Pel: Abundance of the small pelagic species. SR.Sm.Pel: Species richness 
of the small pelagic species.

Metric Model Pred. Est. P.LMM Part.Marg.R2 Est.AR1 P.LMM.AR1 Est.Exp P.LMM.Exp Est.AR1.Exp P.LMM.AR1.Exp
Hurlbert.Evenness Steady-

state
Dist2coast -

0.013
0 1.377 -0.012 0.005 -0.01 0.018 -0.011 0.023

Hurlbert.Evenness Steady-
state

SR.Sm.Pel ^2 0.006 0.001 1.140 0.006 0.001 0.006 0.001 0.006 0.001

Hurlbert.Evenness Steady-
state

Psd.R2/Cond.R2 0.056 - 0.026 0.352 - 0.459 - 0.561 -

Hurlbert.Evenness Temp. Dist2coast -
0.013

0 1.437 -0.012 0.005 -0.01 0.017 -0.01 0.018

Hurlbert.Evenness Temp. SR.Sm.Pel ^2 0.007 0 1.351 0.007 0 0.006 0.001 0.006 0.001
Hurlbert.Evenness Temp. Psd.R2/Cond.R2 - - 0.028 0.29 - 0.463 - 1 -
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Table S7: Estimates and significance of the contemporaneous predictors (i.e. all linear and quadratic terms of the explanatory variables included in the 
model) retained in the most parsimonious steady-state and temporal models for LBD.jac, including models taking into account temporal and spatial 
autocorrelation in the residuals. Pred.: Predictors. Est: coefficient estimates based on a LMM with time as a random intercept, and a LM for the steady-
state and temporal models respectively.  Est.AR1: coefficient estimates for LMM and LM models including a temporal autocorrelation structure (AR1) 
in the residuals. Est.Exp: coefficient estimates for LMM and LM models including a spatial autocorrelation structure (exponential structure) in the 
residuals. Est.AR1.Exp: coefficient estimates for LMM and LM models including temporal and spatial autocorrelation structures in the residuals. 
Coefficient estimates with a significant p.value (lower than 0.05) are indicated in bold, and variables explaining at least 5% of the explained deviance 
are highlighted in grey. Part.Marg.R2.: express the semi-partial marginal R2 (surrogate of the relative importance of each predictor based on the marginal 
R2 [Nakagawa et al., 2017]) for each predictor in %. Psd.R2: corresponds to the Pseudo R2 , which is the R2 from a linear model between the observed 
and the fitted values. Cond.R2: it is the conditional R2 including both the fixed and the random effects; it is available in the column Est. for the steady-
state model only fitted with LMM including time as a random effect. Abund.Sm.Pel: Abundance of the small pelagic species. SR.Sm.Pel: Species richness 
of the small pelagic species.

Metric Model Pred. Est. P.LMM Part.Marg.R2 Est.AR1 P.LMM.AR1 Est.Exp P.LMM.Exp Est.AR1.Exp P.LMM.AR1.Exp
LBD.jac Steady-

state
Bathy_mean^2 0.01 0 3.938 0.01 0 0.008 0 0.008 0

LBD.jac Steady-
state

Fishing.Pressure 0.009 0 1.511 0.009 0.012 0.005 0.056 0.006 0.049

LBD.jac Steady-
state

Fishing.Pressure^2 0.006 0 1.610 0.006 0.001 0.001 0.559 0.002 0.348

LBD.jac Steady-
state

Abund.Sm.Pel 0.025 0 10.804 0.022 0 0.014 0 0.015 0

LBD.jac Steady-
state

SR.Sm.Pel ^2 0.012 0 7.950 0.011 0 0.009 0 0.009 0

LBD.jac Steady-
state

Psd.R2/Cond.R2 0.265 - 0.227 0.776 - 0.86 - 0.92 -

LBD.jac Temp. Bathy_mean^2 0.01 0 3.714 0.01 0 0.008 0 0.008 0
LBD.jac Temp. Fishing.Pressure 0.011 0 1.655 0.01 0.002 0.006 0.03 0.006 0.032
LBD.jac Temp. Fishing.Pressure^2 0.006 0 2.886 0.006 0.002 0.001 0.431 0.002 0.3



72

LBD.jac Temp. Abund.Sm.Pel 0.024 0 8.019 0.022 0 0.015 0 0.015 0
LBD.jac Temp. SR.Sm.Pel ^2 0.011 0 6.332 0.01 0 0.009 0 0.009 0
LBD.jac Temp. Time -0.015 0 0.633 -0.014 0 0 0.969 -0.001 0.878
LBD.jac Temp. Bathy_mean^2:Time 0.009 0 2.4 0.008 0 0.005 0 0.005 0
LBD.jac Temp. Psd.R2/Cond.R2 - - 0.256 0.773 - 0.856 - 0.914 -
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Table S8: Estimates and significance of the contemporaneous predictors (i.e. all linear and quadratic terms of the explanatory variables included in the 
model) retained in the most parsimonious steady-state and temporal models for LBD.jtu, including models taking into account temporal and spatial 
autocorrelation in the residuals. Pred.: Predictors. Est: coefficient estimates based on a LMM with time as a random intercept, and a LM for the steady-
state and temporal models respectively. Est.AR1: coefficient estimates for LMM and LM models including a temporal autocorrelation structure (AR1) 
in the residuals. Est.Exp: coefficient estimates for LMM and LM models including a spatial autocorrelation structure (exponential structure) in the 
residuals. Est.AR1.Exp: coefficient estimates for LMM and LM models including temporal and spatial autocorrelation structures in the residuals. 
Coefficient estimates with a significant p.value (lower than 0.05) are indicated in bold, and variables explaining at least 5% of the explained deviance 
are highlighted in grey. Part.Marg.R2.: express the semi-partial marginal R2 (surrogate of the relative importance of each predictor based on the marginal 
R2 [Nakagawa et al. 2017]) for each predictor in %. Psd.R2: corresponds to the Pseudo R2 , which is the R2 from a linear model between the observed 
and the fitted values. Cond.R2: it is the conditional R2 including both the fixed and the random effects; it is available in the column Est. for the steady-
state model only fitted with LMM including time as a random effect. Abund.Sm.Pel : Abundance of the small pelagic species. SR.Sm.Pel : Species 
richness of the small pelagic species.

Metric Model Pred. Est. P.LMM Part.Marg.R2 Est.AR1 P.LMM.AR1 Est.Exp P.LMM.Exp Est.AR1.Exp P.LMM.AR1.Exp
LBD.jtu Steady-

state
Bathy_mean^2 0.009 0 2.083 0.01 0.001 0.009 0 0.009 0

LBD.jtu Steady-
state

Fishing.Pressure^2 0.006 0.001 1.083 0.006 0.008 0.001 0.593 0.001 0.443

LBD.jtu Steady-
state

Abund.Sm.Pel 0.028 0 9.683 0.024 0 0.014 0 0.015 0

LBD.jtu Steady-
state

MLD.min -0.013 0 1.574 -0.005 0.258 -0.006 0.343 -0.006 0.344

LBD.jtu Steady-
state

MLD.min^2 0.009 0 2.083 0.007 0.003 0.007 0.005 0.007 0.007

LBD.jtu Steady-
state

SR.Sm.Pel ^2 0.016 0 10.546 0.015 0 0.012 0 0.013 0

LBD.jtu Steady-
state

Psd.R2/Cond.R2 0.263 - 0.243 0.821 - 0.858 - 0.924 -

LBD.jtu Temp. Bathy_mean^2 0.01 0 4.298 0.011 0 0.009 0 0.009 0
LBD.jtu Temp. Abund.Sm.Pel 0.024 0 7.168 0.022 0 0.015 0 0.015 0
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LBD.jtu Temp. MLD.min -0.015 0 0.688 -0.006 0.116 -0.005 0.356 -0.006 0.335
LBD.jtu Temp. MLD.min^2 0.008 0 1.937 0.005 0.036 0.004 0.112 0.004 0.116
LBD.jtu Temp. SR.Sm.Pel ^2 0.015 0 9.48 0.014 0 0.012 0 0.012 0
LBD.jtu Temp. Time -0.024 0 0.38 -0.021 0 -0.012 0.214 -0.012 0.203
LBD.jtu Temp. Bathy_mean^2:Time 0.007 0.001 2.467 0.005 0.037 0.005 0.001 0.005 0.004
LBD.jtu Temp. MLD.min:Time -0.017 0 0.812 -0.018 0 -0.017 0.004 -0.017 0.003
LBD.jtu Temp. MLD.min^2:Time 0.012 0 1.821 0.012 0 0.009 0.001 0.009 0.001
LBD.jtu Temp. Psd.R2/Cond.R2 - - 0.291 0.828 - 0.857 - 0.923 -
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Table S9: Estimates and significance of the contemporaneous predictors (i.e. all linear and quadratic terms of the explanatory variables included in the 
model) retained in the most parsimonious steady-state and temporal models for LBD.jne, including models taking into account temporal and spatial 
autocorrelation in the residuals. Pred.: Predictors. Est: coefficient estimates based on a LMM with time as a random intercept, and a LM for the steady-
state and temporal models respectively. Est.AR1: coefficient estimates for LMM and LM models including a temporal autocorrelation structure (AR1) 
in the residuals. Est.Exp: coefficient estimates for LMM and LM models including a spatial autocorrelation structure (exponential structure) in the 
residuals. Est.AR1.Exp: coefficient estimates for LMM and LM models including temporal and spatial autocorrelation structures in the residuals. 
Coefficient estimates with a significant p.value (lower than 0.05) are indicated in bold, and variables explaining at least 5% of the explained deviance 
are highlighted in grey. Part.Marg.R2.: express the semi-partial marginal R2 (surrogate of the relative importance of each predictor based on the marginal 
R2 [Nakagawa et al. 2017]) for each predictor in %. Psd.R2: corresponds to the Pseudo R2 , which is the R2 from a linear model between the observed 
and the fitted values. Cond.R2: it is the conditional R2 including both the fixed and the random effects; it is available in the column Est. for the steady-
state model only fitted with LMM including time as a random effect. Abund.Sm.Pel: Abundance of the small pelagic species. SR.Sm.Pel: Species richness 
of the small pelagic species.

Metric Model Pred. Est. P.LMM Part.Marg.R2 Est.AR1 P.LMM.AR1 Est.Exp P.LMM.Exp Est.AR1.Exp P.LMM.AR1.Exp
LBD.jne Steady-

state
Fishing.Pressure^2 -

0.002
0.003 0.837 -0.002 0.009 -0.001 0.102 -a -a

LBD.jne Steady-
state

Shannon.Fishing.Pressure -
0.003

0 1.282 -0.003 0.002 -0.002 0.159 -a -a

LBD.jne Steady-
state

SR.Sm.Pel ^2 -
0.004

0 5.237 -0.004 0 -0.003 0 -a -a

LBD.jne Steady-
state

Psd.R2/Cond.R2 0.202 - 0.089 0.917 - 0.705 - -a -

LBD.jne Temp. Shannon.Fishing.Pressure -
0.004

0 2.845 -0.004 0 -0.002 0.071 -0.002 0.058

LBD.jne Temp. SR.Sm.Pel ^2 -
0.004

0 5.998 -0.004 0 -0.003 0 -0.003 0

LBD.jne Temp. Psd.R2/Cond.R2 - - 0.088 0.892 - 0.706 - 1 -

a The model did not converge properly
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Table S10: Estimates and significance of the contemporaneous predictors (i.e. all linear and quadratic terms of the explanatory variables included in the 
model) retained in the most parsimonious steady-state and temporal models for LBD.ruz, including models taking into account temporal and spatial 
autocorrelation in the residuals. Pred.: Predictors. Est: coefficient estimates based on a LMM with time as a random intercept, and a LM for the steady-
state and temporal models respectively. Est.AR1: coefficient estimates for LMM and LM models including a temporal autocorrelation structure (AR1) 
in the residuals. Est.Exp: coefficient estimates for LMM and LM models including a spatial autocorrelation structure (exponential structure) in the 
residuals. Est.AR1.Exp: coefficient estimates for LMM and LM models including temporal and spatial autocorrelation structures in the residuals. 
Coefficient estimates with a significant p.value (lower than 0.05) are indicated in bold, and variables explaining at least 5% of the explained deviance 
are highlighted in grey. Part.Marg.R2.: express the semi-partial marginal R2 (surrogate of the relative importance of each predictor based on the marginal 
R2 [Nakagawa et al. 2017]) for each predictor in %. Psd.R2: corresponds to the Pseudo R2 , which is the R2 from a linear model between the observed 
and the fitted values. Cond.R2 : it is the conditional R2 including both the fixed and the random effects, it is available in the column Est. for the steady-
state model only fitted with LMM including time as a random effect. Abund.Sm.Pel: Abundance of the small pelagic species. SR.Sm.Pel: Species richness 
of the small pelagic species.

Metric Model Pred. Est. P.LMM Part.Marg.R2 Est.AR1 P.LMM.AR1 Est.Exp P.LMM.Exp Est.AR1.Exp P.LMM.AR1.Exp
LBD.ruz Steady-

state
Bathy_mean^2 0.005 0 4.799 0.005 0 0.005 0 0.005 0

LBD.ruz Steady-
state

bottomT.min -0.005 0 2.275 -0.006 0 -0.005 0.003 -0.005 0.006

LBD.ruz Steady-
state

Abund.Sm.Pel 0.009 0 6.274 0.009 0 0.008 0 0.008 0

LBD.ruz Steady-
state

SR.Sm.Pel ^2 0.003 0 1.753 0.003 0 0.003 0 0.003 0

LBD.ruz Steady-
state

Psd.R2/Cond.R2 0.164 - 0.128 0.648 - 0.783 - 0.859 -

LBD.ruz Temp. Bathy_mean^2 0.005 0 4.103 0.005 0 0.005 0 0.005 0
LBD.ruz Temp. bottomT.min -0.005 0 1.48 -0.005 0 -0.005 0.003 -0.005 0.006
LBD.ruz Temp. Abund.Sm.Pel 0.009 0 5.703 0.009 0 0.008 0 0.008 0
LBD.ruz Temp. SR.Sm.Pel ^2 0.003 0 1.593 0.003 0 0.003 0 0.003 0
LBD.ruz Temp. Psd.R2/Cond.R2 - - 0.129 0.617 - 0.785 - 0.86 -
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Table S11: Estimates and significance of the contemporaneous predictors (i.e. all linear and quadratic terms of the explanatory variables included in the 
model) retained in the most parsimonious steady-state and temporal models for LBD.ruz.bal, including models taking into account temporal and spatial 
autocorrelation in the residuals. Pred.: Predictors. Est: coefficient estimates based on a LMM with time as a random intercept, and a LM for the steady-
state and temporal models respectively. Est.AR1: coefficient estimates for LMM and LM models including a temporal autocorrelation structure (AR1) 
in the residuals. Est.Exp: coefficient estimates for LMM and LM models including a spatial autocorrelation structure (exponential structure) in the 
residuals. Est.AR1.Exp: coefficient estimates for LMM and LM models including temporal and spatial autocorrelation structures in the residuals. 
Coefficient estimates with a significant p.value (lower than 0.05) are indicated in bold, and variables explaining at least 5% of the explained deviance 
are highlighted in grey. Part.Marg.R2.: express the semi-partial marginal R2 (surrogate of the relative importance of each predictor based on the marginal 
R2 [Nakagawa et al. 2017]) for each predictor in %. Psd.R2: corresponds to the Pseudo R2 , which is the R2 from a linear model between the observed 
and the fitted values. Cond.R2: it is the conditional R2 including both the fixed and the random effects; it is available in the column Est. for the steady-
state model only fitted with LMM including time as a random effect. Abund.Sm.Pel: Abundance of the small pelagic species. SR.Sm.Pel: Species richness 
of the small pelagic species.

Metric Model Pred. Est. P.LMM Part.Marg.R2 Est.AR1 P.LMM.AR1 Est.Exp P.LMM.Exp Est.AR1.Exp P.LMM.AR1.Exp
LBD.ruz.bal Steady-

state
Bathy_mean^2 0.01 0 2.803 0.01 0 0.009 0 0.009 0

LBD.ruz.bal Steady-
state

bottomT.min -0.013 0 2.367 -0.013 0 -0.008 0.027 -0.008 0.03

LBD.ruz.bal Steady-
state

MLD.min -0.016 0 2.674 -0.012 0.001 -0.009 0.113 -0.008 0.155

LBD.ruz.bal Steady-
state

MLD.min^2 0.01 0 2.639 0.009 0 0.007 0.002 0.007 0.006

LBD.ruz.bal Steady-
state

SR.Sm.Pel 0.016 0 3.964 0.016 0 0.014 0 0.014 0

LBD.ruz.bal Steady-
state

Psd.R2/Cond.R2 0.203 - 0.147 0.736 - 0.774 - 0.865 -

LBD.ruz.bal Temp. Bathy_mean^2 0.011 0 4.46 0.011 0 0.009 0 0.009 0
LBD.ruz.bal Temp. bottomT.min -0.012 0 2.727 -0.012 0 -0.009 0.017 -0.009 0.02
LBD.ruz.bal Temp. MLD.min -0.013 0 0.693 -0.008 0.025 -0.009 0.112 -0.008 0.15
LBD.ruz.bal Temp. MLD.min^2 0.01 0 2.91 0.008 0 0.007 0.002 0.007 0.006
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LBD.ruz.bal Temp. SR.Sm.Pel 0.017 0 3.899 0.017 0 0.014 0 0.014 0
LBD.ruz.bal Temp. Time 0.008 0.001 0.902 0.01 0.001 0.013 0.057 0.012 0.069
LBD.ruz.bal Temp. Psd.R2/Cond.R2 - - 0.156 0.684 - 0.779 - 0.868 -
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Table S12: Estimates and significance of the contemporaneous predictors (i.e. all linear and quadratic terms of the explanatory variables included in the 
model) retained in the most parsimonious steady-state and temporal models for LBD.ruz.gra, including models taking into account temporal and spatial 
autocorrelation in the residuals. Pred.: Predictors. Est: coefficient estimates based on a LMM with time as a random intercept, and a LM for the steady-
state and temporal models respectively. Est.AR1: coefficient estimates for LMM and LM models including a temporal autocorrelation structure (AR1) 
in the residuals. Est.Exp: coefficient estimates for LMM and LM models including a spatial autocorrelation structure (exponential structure) in the 
residuals. Est.AR1.Exp: coefficient estimates for LMM and LM models including temporal and spatial autocorrelation structures in the residuals. 
Coefficient estimates with a significant p.value (lower than 0.05) are indicated in bold, and variables explaining at least 5% of the explained deviance 
are highlighted in grey. Part.Marg.R2.: express the semi-partial marginal R2 (surrogate of the relative importance of each predictor based on the marginal 
R2 [Nakagawa et al. 2017]) for each predictor in %. Psd.R2: corresponds to the Pseudo R2 , which is the R2 from a linear model between the observed 
and the fitted values. Cond.R2: it is the conditional R2 including both the fixed and the random effects; it is available in the column Est. for the steady-
state model only fitted with LMM including time as a random effect. Abund.Sm.Pel: Abundance of the small pelagic species. SR.Sm.Pel: Species richness 
of the small pelagic species.

Metric Model Pred. Est. P.LMM Part.Marg.R2 Est.AR1 P.LMM.AR1 Est.Exp P.LMM.Exp Est.AR1.Exp P.LMM.AR1.Exp
LBD.ruz.gra Steady-

state
Dist2coast 0.011 0 3.114 0.011 0 0.006 0.031 0.007 0.017

LBD.ruz.gra Steady-
state

Shannon.Fishing.Pressure -
0.012

0 3.439 -0.011 0 -0.006 0.011 -0.006 0.012

LBD.ruz.gra Steady-
state

SR.Sm.Pel -
0.007

0 1.517 -0.008 0 -0.007 0 -0.007 0

LBD.ruz.gra Steady-
state

Psd.R2/Cond.R2 0.182 - 0.11 0.659 - 0.75 - 0.843 -

LBD.ruz.gra Temp. Dist2coast 0.011 0 6.056 0.011 0 0.006 0.028 0.007 0.017
LBD.ruz.gra Temp. Shannon.Fishing.Pressure -

0.012
0 4.091 -0.012 0 -0.006 0.01 -0.006 0.012

LBD.ruz.gra Temp. SR.Sm.Pel -
0.008

0 1.507 -0.008 0 -0.007 0 -0.007 0

LBD.ruz.gra Temp. Psd.R2/Cond.R2 - - 0.117 0.575 - 0.75 - 0.843 -
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Table S13: Univariate selection of the explanatory variables fitted with a generalised additive mixed model (GAMM) with the best lag worth to be 
retained. The temporal effect was included as a random intercept in the GAMM model and the spatial autocorrelation in the residuals was accounted for 
by an exponential structure. To avoid overfitting, a maximum of 3 basis dimensions were used to represent the smooth term in the GAMM. We have 
also presented the outcomes of the multivariate selection procedure for energy, habitat and fishing pressure based on the GLM elastic net models including 
the best lag variables when the 4 best predictors were retained. Highlighted in grey are the variables with lag providing an improvement of the adjust.R2 
higher than 0.03 (3%) comparatively to the contemporaneous (absence of lag) variable. Best.lag: the lag retained by the selection  procedure, GAM.adj.R2: 
The adjusted R2 produced by the GAMM model, Improvement.R2.lag0: improvement of the adjusted R2 provided by the best lag in comparison to the 
fit of the contemporaneous variable. Select.4best; when 1 the variable was retained by the Elastic-net GLM approach, when 0 the variable was not 
retained.

Metric Variable Best.lag GAM.adj.R2 Improvement.R2.lag0 Select.4best
bottomT.min 1 0.042 0.021 1
bottomT.mean 1 0.022 0.02 0
Temp.min 2 0.034 0.026 0

SR

o2.sd 2 0.045 0.022 1
LBD.jac MLD.min 2 0.074 0.03 1
LBD.jtu MLD.min 2 0.08 0.037 1
LBD.jne o2.min 2 0.043 0.022 1
LBD.ruz MLD.min 2 0.048 0.021 1
LBD.ruz.bal MLD.min 2 0.116 0.045 1

Temp.sd 2 0.064 0.021 0
MLD.min 2 0.114 0.049 1

LBD.ruz.gra

MLD.mean 1 0.065 0.02 1
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Table S14: Variables and predictors (i.e. all linear and quadratic terms of the explanatory variables included in the model) selected for energy, habitat, 
and fishing pressure for all taxonomic alpha indices, with the best time lag selected for the explanatory variables. The 4 best predictors were retained per 
group of variables. To be retained, a predictor had to be selected in more than 20% of the iterations of the elastic-net GLM per year. bottomT.min: annual 
minimum bottom sea floor temperature, bottomT.mean: annual average of the bottom sea floor temperature, bottomT.sd: seasonality of the bottom sea 
floor temperature, Temp.min: annual minimum temperature integrated over depth, Temp.mean: average annual temperature integrated over depth, 
Temp.sd: seasonality of the temperature integrated over depth, nppv.mean : annual average of the net primary productivity, SR.Sm.Pel: species richness 
of the small pelagic species, Abund.Sm.Pel: Abundance of the small pelagic species, MLD.min: annual minimum thickness of the mixed layer depth, 
MLD.mean: average annual thickness of the mixed layer depth, o2.min: annual minimum oxygen concentration, o2.sd: seasonality of the oxygen 
concentration, Area_Km2: aera of the ICES rectangle, Bathy: average bathymetry of the ICES rectangle, Dist2coast: distance to the nearest coast, 
Substrate.Hab.Shannon: habitat diversity based on the Shannon index of 11 substrat classes, Fishing.Pressure: sum of the fishing effort, 
Shannon.Fishing.Pressure: diversity of the fishing pressure based on the Shannon index of the fishing effort of the different fishing gears.

Variables.group Metric SR Abundance Evenness LBD.jac LBD.jtu LBD.jne LBD.ruz LBD.ruz.bal LBD.ruz.gra
bottomT.min 1 0 1 1 0 0 1 1 1
bottomT.mean 0 0 1 0 0 0 0 0 1
bottomT.sd 0 0 0 0 0 0 0 0 0
Temp.min 0 0 1 0 0 0 0 0 0
Temp.mean 0 0 1 0 1 0 0 0 0
Temp.sd 0 0 0 0 0 0 0 0 0
nppv.mean 0 0 0 0 0 0 0 0 0
SR.Sm.Pel 0 1 0 0 0 1 1 1 1
Abund.Sm.Pel 1 1 0 1 1 0 1 0 0
bottomT.min^2 1 0 0 0 0 1 0 0 0
bottomT.mean^2 0 0 0 0 0 0 0 0 0
bottomT.sd^2 0 0 0 1 1 1 1 1 0
Temp.min^2 0 0 0 0 0 0 0 0 0
Temp.mean^2 0 0 0 0 0 0 0 0 0
Temp.sd^2 0 0 0 0 0 0 0 0 0

Energy

nppv.mean^2 0 0 0 0 0 0 0 0 0
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SR.Sm.Pel^2 0 1 0 1 1 1 0 1 1
Abund.Sm.Pel^2 1 1 0 0 0 0 0 0 0
MLD.min 1 1 1 1 1 1 0 0 1
MLD.mean 0 0 0 1 1 0 0 1 1
o2.min 0 0 0 0 0 1 0 0 0
o2.sd 1 0 0 0 0 0 0 0 0
Area_Km2 0 1 0 0 0 0 1 0 0
Bathy 0 0 0 0 0 0 0 0 0
Dist2coast 1 0 1 0 0 0 1 1 1
Substrate.Hab.Shannon 0 0 1 0 0 0 0 0 0
MLD.min^2 1 1 0 1 1 1 1 1 0
MLD.mean^2 0 0 0 0 0 0 0 0 1
o2.min^2 0 0 0 0 0 0 0 0 0
o2.sd^2 0 0 1 0 0 0 0 0 0
Area_Km2^2 0 0 0 0 0 0 0 0 0
Bathy^2 0 0 0 1 1 1 1 1 0
Dist2coast^2 0 0 0 0 0 0 0 0 0

Habitat

Substrate.Hab.Shannon^2 0 1 0 0 0 0 0 0 0
Fishing.Pressure 1 1 1 1 1 1 1 1 1
Shannon.Fishing.Pressure 1 1 1 1 1 1 1 1 1

Fishing.Pressure^2 1 1 1 1 1 1 1 0 0

FishingP

Shannon.Fishing.Pressure^2 1 1 1 1 1 0 1 1 0
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Table S15: Variance partitioning based on LMM models including time (i.e. Year effect) as a random intercept, for species richness (SR), and all local 
beta diversity metrics, with the best time lag for the explanatory variables. The marginal R2 (Nakagawa et al., 2017) was used to estimate the proportion 
of explained variance by the fixed effects for the LMMs. E: energy, H: habitat, F: fishing pressure.

Metric Explained E H F Shared.E.F Shared.E.H Shared.H.F Shared.E.H.F
SR 12.6 6.8 2 1.2 0.1 2.8 0.3 0a

Log10.Abundance No lag 
retained

Hurlbert.Evenness No lag 
retained

LBD.jac 25.5 14.4 3.3 1 0.8 1.6 0.3 4.1
LBD.jtu 26.5 14.3 3.3 1.1 1.1 1.6 0.8 4.3
LBD.jne 11.1 5.7 0.9 1.1 0.6 0.6 0.5 1.7
LBD.ruz 14.7 7.1 3.1 0.3 0 1.5 0.3 2.4
LBD.ruz.bal 18.2 4.8 4.9 0.1 0 1.1 2.1 5.1
LBD.ruz.gra 12.3 1.4 1.7 1.9 0.1 1.9 2.1 3.1

 aNegative values were converted to 0 (Legendre & Legendre, 1998), as such the sum of the variance of the individual categories might not add-up to the total explained variance.
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Table S16: Estimates and significance of the predictors (i.e. all linear and quadratic terms of the explanatory variables included in the model) retained 
in the most parsimonious steady-state and temporal models for SR, including the best lag variables and models taking into account the temporal and 
spatial autocorrelation in the residuals. Pred.: Predictors. Est: coefficient estimates based on a LMM with time as a random intercept, and a LM for the 
steady-state and temporal models respectively. Est.AR1: coefficient estimates for LMM and LM models including a temporal autocorrelation structure 
(AR1) in the residuals. Est.Exp: coefficient estimates for LMM and LM models including a spatial autocorrelation structure (exponential structure) in 
the residuals. Est.AR1.Exp: coefficient estimates for LMM and LM models including temporal and spatial autocorrelation structures in the residuals. 
Coefficient estimates with a significant p.value (lower than 0.05) are indicated in bold, and variables explaining at least 5% of the explained deviance 
are highlighted in grey. Part.Marg.R2.: express the semi-partial marginal R2 (surrogate of the relative importance of each predictor based on the marginal 
R2 [Nakagawa et al. 2017]) for each predictor in %. Psd.R2: corresponds to the Pseudo R2 , which is the R2 from a linear model between the observed 
and the fitted values. Cond.R2: it is the conditional R2 including both the fixed and the random effects; it is available in the column Est. for the steady-
state model only fitted with LMM including time as a random effect. Abund.Sm.Pel: Abundance of the small pelagic species. SR.Sm.Pel: Species richness 
of the small pelagic species.

Metric Model.Type Parameters Est. P.LMM Part.Marg.R2 Est.AR1 P.LMM.AR1 Est.Exp P.LMM.Exp Est.AR1.Exp P.LMM.AR1.Exp
SR Steady-state bottomT.min -0.314 0.001 1.105 -0.292 0.008 -0.293 0.026 -0.286 0.036
SR Steady-state Dist2coast -0.579 0 3.328 -0.567 0 -0.489 0 -0.502 0
SR Steady-state Fishing.Pressure -0.333 0 1.322 -0.313 0.005 -0.302 0.002 -0.298 0.006
SR Steady-state Abund.Sm.Pel -0.6 0 5.46 -0.57 0 -0.393 0 -0.397 0
SR Steady-state Psd.R2/Cond.R2 0.175 - 0.117 0.567 - 0.663 - 0.876 -
SR Temp. bottomT.min -0.342 0 3.911 -0.341 0.001 -0.278 0.028 -0.278 0.028
SR Temp. Dist2coast -0.564 0 1.653 -0.551 0 -0.489 0 -0.489 0
SR Temp. Fishing.Pressure -0.318 0.001 1.213 -0.312 0.002 -0.288 0.003 -0.288 0.003
SR Temp. Abund.Sm.Pel -0.614 0 5.48 -0.598 0 -0.403 0 -0.403 0
SR Temp. Time 0.208 0.01 0.393 0.213 0.017 0.13 0.487 0.13 0.487
SR Temp. bottomT.min:Time -0.424 0 2.218 -0.423 0 -0.428 0 -0.428 0
SR Temp. Psd.R2/Cond.R2 - - 0.149 0.485 - 0.648 - 0.648 -
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Table S17: Estimates and significance of the predictors (i.e. all linear and quadratic terms of the explanatory variables included in the model) retained 
in the most parsimonious steady-state and temporal models for LBD.jac, including the best lag variables and models taking into account the temporal 
and spatial autocorrelation in the residuals. Pred.: Predictors. Est: coefficient estimates based on a LMM with time as a random intercept, and a LM for 
the steady-state and temporal models respectively. Est.AR1: coefficient estimates for LMM and LM models including a temporal autocorrelation structure 
(AR1) in the residuals. Est.Exp: coefficient estimates for LMM and LM models including a spatial autocorrelation structure (exponential structure) in 
the residuals. Est.AR1.Exp: coefficient estimates for LMM and LM models including temporal and spatial autocorrelation structures in the residuals. 
Coefficient estimates with a significant p.value (lower than 0.05) are indicated in bold, and variables explaining at least 5% of the explained deviance 
are highlighted in grey. Part.Marg.R2. : express the semi-partial marginal R2 (surrogate of the relative importance of each predictor based on the marginal 
R2 [Nakagawa et al. 2017]) for each predictor in %. Psd.R2: corresponds to the Pseudo R2 , which is the R2 from a linear model between the observed 
and the fitted values. Cond.R2: it is the conditional R2 including both the fixed and the random effects, it is available in the column Est. for the steady-
state model only fitted with LMM including time as a random effect. Abund.Sm.Pel: Abundance of the small pelagic species. SR.Sm.Pel: Species richness 
of the small pelagic species.

Metric Model.Type Parameters Est. P.LMM Part.Marg.R2 Est.AR1 P.LMM.AR1 Est.Exp P.LMM.Exp Est.AR1.Exp P.LMM.AR1.Exp
LBD.jac Steady-state Bathy_mean^2 0.006 0 1.542 0.005 0.028 0.007 0 0.007 0
LBD.jac Steady-state Abund.Sm.Pel 0.025 0 11.461 0.021 0 0.014 0 0.015 0
LBD.jac Steady-state MLD.min -

0.017
0 3.658 -0.021 0 -0.013 0.008 -0.015 0.005

LBD.jac Steady-state MLD.min^2 0.012 0 3.507 0.014 0 0.01 0 0.01 0
LBD.jac Steady-state SR.Sm.Pel^2 0.012 0 8.276 0.011 0 0.009 0 0.009 0
LBD.jac Steady-state Psd.R2/Cond.R2 0.289 - 0.243 0.789 - 0.855 - 0.915 -
LBD.jac Temp. Bathy_mean^2 0.006 0 3.714 0.007 0.003 0.007 0 0.007 0
LBD.jac Temp. Abund.Sm.Pel 0.021 0 8.773 0.019 0 0.014 0 0.014 0
LBD.jac Temp. MLD.min -

0.019
0 1.445 -0.016 0 -0.013 0.006 -0.014 0.004

LBD.jac Temp. MLD.min^2 0.013 0 3.179 0.014 0 0.009 0 0.009 0
LBD.jac Temp. SR.Sm.Pel^2 0.01 0 6.668 0.01 0 0.009 0 0.009 0
LBD.jac Temp. Time -

0.019
0 0.604 -0.013 0.002 -0.009 0.28 -0.009 0.287
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LBD.jac Temp. Bathy_mean^2:Time 0.006 0 2.699 0.005 0.013 0.005 0 0.005 0.001
LBD.jac Temp. MLD.min:Time -

0.016
0 1.65 -0.016 0 -0.016 0.001 -0.015 0.003

LBD.jac Temp. MLD.min^2:Time 0.006 0.001 0.712 0.002 0.277 0.006 0.009 0.006 0.016
LBD.jac Temp. Psd.R2/Cond.R2 - - 0.294 0.801 - 0.858 - 0.909 -



88

Table S18: Estimates and significance of the predictors (i.e. all linear and quadratic terms of the explanatory variables included in the model) retained 
in the most parsimonious steady-state and temporal models for LBD.jtu, including the best lag variables and models taking into account the temporal 
and spatial autocorrelation in the residuals. Pred.: Predictors. Est: coefficient estimates based on a LMM with time as a random intercept, and a LM for 
the steady-state and temporal models respectively. Est.AR1: coefficient estimates for LMM and LM models including a temporal autocorrelation structure 
(AR1) in the residuals. Est.Exp: coefficient estimates for LMM and LM models including a spatial autocorrelation structure (exponential structure) in 
the residuals. Est.AR1.Exp: coefficient estimates for LMM and LM models including temporal and spatial autocorrelation structures in the residuals. 
Coefficient estimates with a significant p.value (lower than 0.05) are indicated in bold, and variables explaining at least 5% of the explained deviance 
are highlighted in grey. Part.Marg.R2.: express the semi-partial marginal R2 (surrogate of the relative importance of each predictor based on the marginal 
R2 [Nakagawa et al. 2017]) for each predictor in %. Psd.R2: corresponds to the Pseudo R2 , which is the R2 from a linear model between the observed 
and the fitted values. Cond.R2: it is the conditional R2 including both the fixed and the random effects, it is available in the column Est. for the steady-
state model only fitted with LMM including time as a random effect. Abund.Sm.Pel: Abundance of the small pelagic species. SR.Sm.Pel: Species richness 
of the small pelagic species.

Metric Model.Type Parameters Est. P.LMM Part.Marg.R2 Est.AR1 P.LMM.AR1 Est.Exp P.LMM.Exp Est.AR1.Exp P.LMM.AR1.Exp
LBD.jtu Steady-state Bathy_mean^2 0.009 0 1.949 0.008 0.008 0.009 0 0.009 0
LBD.jtu Steady-state Abund.Sm.Pel 0.028 0 9.904 0.023 0 0.014 0 0.015 0
LBD.jtu Steady-state MLD.min -0.02 0 3.640 -0.022 0 -0.016 0.009 -0.017 0.006
LBD.jtu Steady-state MLD.min^2 0.015 0 3.580 0.016 0 0.011 0 0.011 0
LBD.jtu Steady-state SR.Sm.Pel^2 0.016 0 10.181 0.014 0 0.012 0 0.012 0
LBD.jtu Steady-state Psd.R2/Cond.R2 0.272 - 0.252 0.837 - 0.855 - 0.923 -
LBD.jtu Temp. Bathy_mean^2 0.008 0 4.298 0.008 0.002 0.008 0 0.009 0
LBD.jtu Temp. Abund.Sm.Pel 0.023 0 7.168 0.02 0 0.014 0 0.015 0
LBD.jtu Temp. MLD.min -

0.024
0 1.936 -0.021 0 -0.016 0.006 -0.017 0.004

LBD.jtu Temp. MLD.min^2 0.015 0 3.16 0.016 0 0.01 0 0.01 0
LBD.jtu Temp. SR.Sm.Pel^2 0.013 0 8.443 0.013 0 0.012 0 0.012 0
LBD.jtu Temp. Time -

0.023
0 0.322 -0.015 0.002 -0.011 0.263 -0.01 0.267

LBD.jtu Temp. Bathy_mean^2:Time 0.007 0 2.626 0.006 0.012 0.006 0 0.005 0.002
LBD.jtu Temp. MLD.min:Time -0.02 0 1.27 -0.018 0 -0.018 0.003 -0.018 0.003
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LBD.jtu Temp. MLD.min^2:Time 0.01 0 1.196 0.004 0.083 0.008 0.005 0.008 0.008
LBD.jtu Temp. Psd.R2/Cond.R2 - - 0.304 0.852 - 0.857 - 0.924 -
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Table S19: Estimates and significance of the predictors (i.e. all linear and quadratic terms of the explanatory variables included in the model) retained 
in the most parsimonious steady-state and temporal models for LBD.jne, including the best lag variables and models taking into account the temporal 
and spatial autocorrelation in the residuals. Pred.: Predictors. Est: coefficient estimates based on a LMM with time as a random intercept, and a LM for 
the steady-state and temporal models respectively. Est.AR1: coefficient estimates for LMM and LM models including a temporal autocorrelation structure 
(AR1) in the residuals. Est.Exp: coefficient estimates for LMM and LM models including a spatial autocorrelation structure (exponential structure) in 
the residuals. Est.AR1.Exp: coefficient estimates for LMM and LM models including temporal and spatial autocorrelation structures in the residuals. 
Coefficient estimates with a significant p.value (lower than 0.05) are indicated in bold, and variables explaining at least 5% of the explained deviance 
are highlighted in grey. Part.Marg.R2.: express the semi-partial marginal R2 (surrogate of the relative importance of each predictor based on the marginal 
R2 [Nakagawa et al. 2017]) for each predictor in %. Psd.R2: corresponds to the Pseudo R2 , which is the R2 from a linear model between the observed 
and the fitted values. Cond.R2: it is the conditional R2 including both the fixed and the random effects; it is available in the column Est. for the steady-
state model only fitted with LMM including time as a random effect. Abund.Sm.Pel: Abundance of the small pelagic species. SR.Sm.Pel: Species richness 
of the small pelagic species.

Metric Model.Type Parameters Est. P.LMM Part.Marg.R2 Est.AR1 P.LMM.AR1 Est.Exp P.LMM.Exp Est.AR1.Exp P.LMM.AR1.Exp
LBD.jne Steady-state Bathy_mean^2 -

0.003
0 1.552 -0.003 0.001 -0.002 0.002 -a -a

LBD.jne Steady-state Fishing.Pressure^2 -
0.002

0 1.133 -0.002 0.003 -0.001 0.116 -a -a

LBD.jne Steady-state SR.Sm.Pel^2 -
0.004

0 5.600 -0.004 0 -0.003 0 -a -a

LBD.jne Steady-state Psd.R2/Cond.R2 0.207 - 0.092 0.921 - 0.711 - -a -
LBD.jne Temp. Bathy_mean^2 -

0.003
0 2.286 -0.003 0 -0.002 0.001 -0.002 0.002

LBD.jne Temp. SR.Sm.Pel^2 -
0.004

0 6.602 -0.004 0 -0.003 0 -0.003 0

LBD.jne Temp. Psd.R2/Cond.R2 - - 0.089 0.883 - 0.715 - 1 -
a The model did not converge properly.
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Table S20: Estimates and significance of the predictors (i.e. all linear and quadratic terms of the explanatory variables included in the model) retained 
in the most parsimonious steady-state and temporal models for LBD.ruz, including the best lag variables and models taking into account the temporal 
and spatial autocorrelation in the residuals. Pred.: Predictors. Est: coefficient estimates based on a LMM with time as a random intercept, and a LM for 
the steady-state and temporal models respectively. Est.AR1: coefficient estimates for LMM and LM models including a temporal autocorrelation structure 
(AR1) in the residuals. Est.Exp: coefficient estimates for LMM and LM models including a spatial autocorrelation structure (exponential structure) in 
the residuals. Est.AR1.Exp: coefficient estimates for LMM and LM models including temporal and spatial autocorrelation structures in the residuals. 
Coefficient estimates with a significant p.value (lower than 0.05) are indicated in bold, and variables explaining at least 5% of the explained deviance 
are highlighted in grey. Part.Marg.R2.: express the semi-partial marginal R2 (surrogate of the relative importance of each predictor based on the marginal 
R2 [Nakagawa et al. 2017]) for each predictor in %. Psd.R: corresponds to the Pseudo R2 , which is the R2 from a linear model between the observed and 
the fitted values. Cond.R2: it is the conditional R2 including both the fixed and the random effects; it is available in the column Est. for the steady-state 
model only fitted with LMM including time as a random effect. Abund.Sm.Pel: Abundance of the small pelagic species. SR.Sm.Pel: Species richness of 
the small pelagic species.

Metric Model.Type Parameters Est. P.LMM Part.Marg.R2 Est.AR1 P.LMM.AR1 Est.Exp P.LMM.Exp Est.AR1.Exp P.LMM.AR1.Exp
LBD.ruz Steady-state Bathy_mean^2 0.005 0 3.065 0.004 0 0.005 0 0.005 0
LBD.ruz Steady-state bottomT.min -

0.004
0 1.358 -0.004 0.002 -0.004 0.023 -0.004 0.025

LBD.ruz Steady-state Abund.Sm.Pel 0.009 0 5.670 0.008 0 0.007 0 0.007 0
LBD.ruz Steady-state MLD.min -

0.004
0.002 0.967 -0.004 0.012 -0.005 0.027 -0.005 0.051

LBD.ruz Steady-state MLD.min^2 0.005 0 2.225 0.005 0 0.004 0.001 0.004 0.003
LBD.ruz Steady-state Psd.R2/Cond.R2 0.169 - 0.132 0.608 - 0.797 - 0.851 -
LBD.ruz Temp. Bathy_mean^2 0.004 0 4.103 0.004 0 0.005 0 0.005 0
LBD.ruz Temp. bottomT.min -

0.004
0 1.48 -0.004 0.002 -0.003 0.027 -0.004 0.025

LBD.ruz Temp. Abund.Sm.Pel 0.009 0 5.703 0.008 0 0.007 0 0.007 0
LBD.ruz Temp. MLD.min -

0.005
0 0.198 -0.005 0.002 -0.005 0.027 -0.004 0.049

LBD.ruz Temp. MLD.min^2 0.004 0 1.774 0.005 0 0.004 0.001 0.004 0.003
LBD.ruz Temp. Time 0.001 0.642 0.609 0.001 0.418 0.001 0.588 0.002 0.546
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LBD.ruz Temp. Bathy_mean^2:Time 0.002 0.002 0.822 0.002 0.018 0.003 0 0.003 0.002
LBD.ruz Temp. Psd.R2/Cond.R2 - - 0.147 0.554 - 0.799 - 0.847 -
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Table S21: Estimates and significance of the predictors (i.e. all linear and quadratic terms of the explanatory variables included in the model) retained 
in the most parsimonious steady-state and temporal models for LBD.ruz.bal, including the best lag variables and models taking into account the temporal 
and spatial autocorrelation in the residuals. Pred.: Predictors. Est: coefficient estimates based on a LMM with time as a random intercept, and a LM for 
the steady-state and temporal models respectively. Est.AR1: coefficient estimates for LMM and LM models including a temporal autocorrelation structure 
(AR1) in the residuals. Est.Exp: coefficient estimates for LMM and LM models including a spatial autocorrelation structure (exponential structure) in 
the residuals. Est.AR1.Exp: coefficient estimates for LMM and LM models including temporal and spatial autocorrelation structures in the residuals. 
Coefficient estimates with a significant p.value (lower than 0.05) are indicated in bold, and variables explaining at least 5% of the explained deviance 
are highlighted in grey. Part.Marg.R2.: express the semi-partial marginal R2 (surrogate of the relative importance of each predictor based on the marginal 
R2 [Nakagawa et al. 2017]) for each predictor in %. Psd.R2: corresponds to the Pseudo R2 , which is the R2 from a linear model between the observed 
and the fitted values. Cond.R2: it is the conditional R2 including both the fixed and the random effects; it is available in the column Est. for the steady-
state model only fitted with LMM including time as a random effect. Abund.Sm.Pel: Abundance of the small pelagic species. SR.Sm.Pel: Species richness 
of the small pelagic species.

Metric Model.Type Parameters Est. P.LMM Part.Marg.R2 Est.AR1 P.LMM.AR1 Est.Exp P.LMM.Exp Est.AR1.Exp P.LMM.AR1.Exp
LBD.ruz.bal Steady-state Bathy_mean 0.017 0 2.523 0.015 0 0.013 0 0.013 0.002
LBD.ruz.bal Steady-state bottomT.min -

0.022
0 4.226 -0.021 0 -0.017 0 -0.016 0.001

LBD.ruz.bal Steady-state MLD.min -0.03 0 11.128 -0.029 0 -0.024 0 -0.025 0
LBD.ruz.bal Steady-state MLD.min^2 0.019 0 7.092 0.018 0 0.015 0 0.014 0
LBD.ruz.bal Steady-state SR.Sm.Pel 0.017 0 4.315 0.016 0 0.014 0 0.014 0
LBD.ruz.bal Steady-state Psd.R2/Cond.R2 0.222 - 0.177 0.754 - 0.769 - 0.865 -
LBD.ruz.bal Temp. Bathy_mean 0.018 0 0.631 0.016 0 0.014 0 0.013 0.001
LBD.ruz.bal Temp. bottomT.min -

0.023
0 1.45 -0.021 0 -0.018 0 -0.017 0

LBD.ruz.bal Temp. MLD.min -
0.032

0 5.552 -0.031 0 -0.025 0 -0.025 0

LBD.ruz.bal Temp. MLD.min^2 0.02 0 6.585 0.019 0 0.015 0 0.015 0
LBD.ruz.bal Temp. SR.Sm.Pel 0.015 0 3.729 0.015 0 0.014 0 0.014 0
LBD.ruz.bal Temp. Time 0.009 0 1.111 0.011 0 0.013 0.022 0.013 0.03
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LBD.ruz.bal Temp. MLD.min:Time -
0.009

0 1.201 -0.01 0 -0.007 0.058 -0.007 0.087

LBD.ruz.bal Temp. Psd.R2/Cond.R2 - - 0.203 0.745 - 0.777 - 0.871 -
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Table S22: Estimates and significance of the predictors (i.e. all linear and quadratic terms of the explanatory variables included in the model) retained 
in the most parsimonious steady-state and temporal models for LBD.ruz.gra, including the best lag variables and models taking into account the temporal 
and spatial autocorrelation in the residuals. Pred.: Predictors. Est: coefficient estimates based on a LMM with time as a random intercept, and a LM for 
the steady-state and temporal models respectively. Est.AR1: coefficient estimates for LMM and LM models including a temporal autocorrelation structure 
(AR1) in the residuals. Est.Exp: coefficient estimates for LMM and LM models including a spatial autocorrelation structure (exponential structure) in 
the residuals. Est.AR1.Exp: coefficient estimates for LMM and LM models including temporal and spatial autocorrelation structures in the residuals. 
Coefficient estimates with a significant p.value (lower than 0.05) are indicated in bold, and variables explaining at least 5% of the explained deviance 
are highlighted in grey. Part.Marg.R2.: express the semi-partial marginal R2 (surrogate of the relative importance of each predictor based on the marginal 
R2 [Nakagawa et al. 2017]) for each predictor in %. Psd.R2: corresponds to the Pseudo R2 , which is the R2 from a linear model between the observed 
and the fitted values. Cond.R2: it is the conditional R2 including both the fixed and the random effects; it is available in the column Est. for the steady-
state model only fitted with LMM including time as a random effect. Abund.Sm.Pel: Abundance of the small pelagic species. SR.Sm.Pel: Species richness 
of the small pelagic species.

Metric Model.Type Parameters Est. P.LMM Part.Marg.R2 Est.AR1 P.LMM.AR1 Est.Exp P.LMM.Exp Est.AR1.Exp P.LMM.AR1.Exp
LBD.ruz.gra Steady-state Dist2coast 0.011 0 3.114 0.011 0 0.006 0.031 0.007 0.017
LBD.ruz.gra Steady-state Shannon.Fishing.Pressure -

0.012
0 3.439 -0.011 0 -0.006 0.011 -0.006 0.012

LBD.ruz.gra Steady-state SR.Sm.Pel -
0.007

0 1.517 -0.008 0 -0.007 0 -0.007 0

LBD.ruz.gra Steady-state Psd.R2/Cond.R2 0.182 - 0.11 0.659 - 0.75 - 0.843 -
LBD.ruz.gra Temp. Dist2coast 0.011 0 6.056 0.011 0 0.006 0.028 0.007 0.017
LBD.ruz.gra Temp. Shannon.Fishing.Pressure -

0.012
0 4.091 -0.012 0 -0.006 0.01 -0.006 0.012

LBD.ruz.gra Temp. SR.Sm.Pel -
0.008

0 1.507 -0.008 0 -0.007 0 -0.007 0

LBD.ruz.gra Temp. Psd.R2/Cond.R2 - - 0.117 0.575 - 0.75 - 0.843 -
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Table S23: Results of the modelling of the temporal evolution of each biodiversity metric in relation to the temporal evolution of each dynamic 
environnemental variable using generalised additive mixed models, taking into account for spatial autocorrelation in the residual with an exponential 
structure. We used the slope of the linear model between a response variable (Biodiversity metric and environmental variables) and time as surrogate of 
the temporal evolution of the metric over the time series. Temporal evolution for each biodiversity metric and environnemental variable was estimated 
for each of the 71 ICES rectangles visited at least 5 times by the biodiversity survey between 1997 and 2018 (without 2017) but for fishing pressure and 
Shannon of the fishing pressure (2000-2016). To avoid overfitting of the GAMMs, we used a maximum of 3 basis dimensions to represent the smooth 
term. For each biodiversity we considered a Gaussian error and identity link. The prefix « Slope. » for both biodiversity metrics and environmental 
variables is a reminder that the slope had been used as a proxy of temporal evolution of the variables. bottomT.min: annual minimum bottom sea floor 
temperature, bottomT.mean: annual average of the bottom sea floor temperature, bottomT.sd: seasonality of the bottom sea floor temperature, Temp.min: 
annual minimum temperature integrated over depth, Temp.mean: average annual temperature integrated over depth, Temp.sd: seasonality of the 
temperature integrated over depth, nppv.mean: annual average of the net primary productivity, SR.Sm.Pel: species richness of the small pelagic species, 
Abund.Sm.Pel: Abundance of the small pelagic species, MLD.min: annual minimum thickness of the mixed layer depth, MLD.mean: average annual 
thickness of the mixed layer depth, o2.min: annual minimum oxygen concentration, o2.sd: seasonality of the oxygen concentration, Fishing.Pressure: 
sum of the fishing effort, Shannon.Fishing.Pressure: diversity of the fishing pressure based on the Shannon index of the fishing effort of the different 
fishing gears. Edf: Estimated degrees of freedom, reference degrees of freedom, F: F statistic, Adj.R.sq: Adjusted R squared, AICc: Akaike’s Information 
criterion corrected for small sample size. Variables highlighted in grey were retained for the multi-model inference approach; they had to have a 
significant p.value and adjusted.R2 above 0.05.

Metric Explar.Var edf Ref.df F p.value Adj.R.sq AICc
Slope.SR Slope.Fishing.Pressure 1 1 4.476 0.038 0.041 -111.825
Slope.SR Slope.o2.min 1 1 4.133 0.046 0.084 -111.466
Slope.SR Slope.bottomT.sd 1 1 3.163 0.08 -0.204 -110.179
Slope.SR Slope.nppv.mean 1.63 1.63 0.762 0.293 0.054 -109.101
Slope.SR Slope.Temp.sd 1.623 1.623 0.821 0.464 0.003 -108.137
Slope.SR Slope.Temp.mean 1.568 1.568 0.762 0.542 0.057 -107.928
Slope.SR Slope.Abund.Sm.Pel 1 1 0.411 0.523 0.016 -107.853
Slope.SR Slope.MLD.mean 1.495 1.495 0.599 0.612 -0.059 -107.838
Slope.SR Slope.bottomT.min 1 1 0.1 0.753 -0.04 -107.532
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Slope.SR Slope.MLD.min 1 1 0.065 0.8 0.01 -107.501
Slope.SR Slope.bottomT.mean 1 1 0.061 0.806 -0.001 -107.501
Slope.SR Slope.o2.sd 1 1 0.055 0.815 -0.016 -107.497
Slope.SR Slope.SR.Sm.Pel 1 1 0.044 0.835 -0.013 -107.486
Slope.SR Slope.Temp.min 1 1 0.046 0.831 0.008 -107.479
Slope.SR Slope.Shannon.Fishing.Pressure 1 1 0.012 0.915 -0.02 -107.452
Slope.Abundance Slope.nppv.mean 1.906 1.906 8.954 0.003 0.206 -350.679
Slope.Abundance Slope.SR.Sm.Pel 1 1 9.337 0.003 0.145 -348.372
Slope.Abundance Slope.Temp.min 1.865 1.865 3.88 0.016 0.132 -348.364
Slope.Abundance Slope.o2.min 1.852 1.852 6.713 0.016 0.12 -348.221
Slope.Abundance Slope.o2.sd 1 1 5.37 0.023 0.021 -345.618
Slope.Abundance Slope.Temp.sd 1.645 1.645 4.724 0.065 0.094 -345.528
Slope.Abundance Slope.MLD.mean 1.862 1.862 3.19 0.03 0.137 -345.452
Slope.Abundance Slope.Temp.mean 1.812 1.812 1.944 0.097 0.088 -344.187
Slope.Abundance Slope.bottomT.min 1.578 1.578 1.326 0.161 0.066 -343.362
Slope.Abundance Slope.bottomT.mean 1.743 1.743 1.241 0.188 0.069 -342.868
Slope.Abundance Slope.Fishing.Pressure 1.647 1.647 0.797 0.284 0.035 -342.234
Slope.Abundance Slope.Shannon.Fishing.Pressure 1 1 1.688 0.198 0.014 -342.079
Slope.Abundance Slope.MLD.min 1 1 1.142 0.289 -0.008 -341.521
Slope.Abundance Slope.Abund.Sm.Pel 1.191 1.191 0.841 0.449 -0.026 -341.08
Slope.Abundance Slope.bottomT.sd 1 1 0.279 0.599 -0.002 -340.674
Slope.Evenness Slope.o2.sd 1 1 2.68 0.106 0.024 -356.527
Slope.Evenness Slope.SR.Sm.Pel 1 1 2.242 0.139 0.018 -356.071
Slope.Evenness Slope.Temp.min 1.751 1.751 1.172 0.216 0.029 -355.907
Slope.Evenness Slope.Fishing.Pressure 1 1 1.381 0.244 0.005 -355.276
Slope.Evenness Slope.o2.min 1 1 1.241 0.269 0.003 -354.938
Slope.Evenness Slope.bottomT.mean 1.143 1.143 0.607 0.393 0.001 -354.77
Slope.Evenness Slope.nppv.mean 1.595 1.595 1.001 0.468 0.01 -354.722
Slope.Evenness Slope.bottomT.min 1.501 1.501 0.321 0.515 0.006 -354.627
Slope.Evenness Slope.Temp.sd 1.115 1.115 0.697 0.466 -0.004 -354.517
Slope.Evenness Slope.Temp.mean 1.471 1.471 0.244 0.576 0.003 -354.455
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Slope.Evenness Slope.bottomT.sd 1.043 1.043 0.456 0.529 -0.008 -354.329
Slope.Evenness Slope.MLD.mean 1.231 1.231 0.045 0.796 -0.008 -353.995
Slope.Evenness Slope.Shannon.Fishing.Pressure 1 1 0.069 0.793 -0.014 -353.958
Slope.Evenness Slope.MLD.min 1 1 0.03 0.863 -0.014 -353.919
Slope.Evenness Slope.Abund.Sm.Pel 1 1 0.001 0.973 -0.014 -353.89
Slope.LBD.jac Slope.Temp.sd 1.823 1.823 3.846 0.075 0.125 -392.845
Slope.LBD.jac Slope.SR.Sm.Pel 1.648 1.648 0.996 0.225 0.099 -390.922
Slope.LBD.jac Slope.Fishing.Pressure 1.78 1.78 1.916 0.203 0.005 -390.746
Slope.LBD.jac Slope.bottomT.sd 1.037 1.037 2.095 0.158 -0.12 -390.649
Slope.LBD.jac Slope.bottomT.mean 1.284 1.284 1.102 0.227 0.132 -390.456
Slope.LBD.jac Slope.Temp.mean 1 1 0.971 0.328 0.108 -389.474
Slope.LBD.jac Slope.MLD.min 1 1 0.612 0.437 0.057 -389.196
Slope.LBD.jac Slope.Temp.min 1 1 0.558 0.458 0.057 -389.163
Slope.LBD.jac Slope.Abund.Sm.Pel 1 1 0.26 0.612 0.016 -388.867
Slope.LBD.jac Slope.o2.min 1 1 0.185 0.669 -0.027 -388.794
Slope.LBD.jac Slope.MLD.mean 1.337 1.337 0.087 0.763 0.003 -388.759
Slope.LBD.jac Slope.Shannon.Fishing.Pressure 1 1 0.022 0.883 -0.014 -388.636
Slope.LBD.jac Slope.o2.sd 1 1 0.008 0.93 -0.013 -388.621
Slope.LBD.jac Slope.bottomT.min 1 1 0.001 0.971 -0.011 -388.615
Slope.LBD.jac Slope.nppv.mean 1 1 0 0.985 -0.016 -388.614
Slope.LBD.jtu Slope.Temp.sd 1.847 1.847 4.679 0.044 0.129 -387.737
Slope.LBD.jtu Slope.Fishing.Pressure 1.792 1.792 1.998 0.184 0.007 -384.671
Slope.LBD.jtu Slope.SR.Sm.Pel 1.684 1.684 0.959 0.241 0.082 -384.516
Slope.LBD.jtu Slope.bottomT.mean 1.462 1.462 0.952 0.237 0.121 -384.488
Slope.LBD.jtu Slope.bottomT.sd 1.298 1.298 1.775 0.259 -0.099 -384.065
Slope.LBD.jtu Slope.Temp.min 1 1 0.621 0.433 0.058 -383
Slope.LBD.jtu Slope.Temp.mean 1 1 0.665 0.418 0.088 -382.996
Slope.LBD.jtu Slope.Abund.Sm.Pel 1 1 0.296 0.588 0.017 -382.673
Slope.LBD.jtu Slope.o2.sd 1 1 0.212 0.646 -0.009 -382.595
Slope.LBD.jtu Slope.o2.min 1 1 0.075 0.785 -0.022 -382.454
Slope.LBD.jtu Slope.MLD.min 1 1 0.058 0.811 0.009 -382.436
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Slope.LBD.jtu Slope.bottomT.min 1 1 0.031 0.862 0.002 -382.411
Slope.LBD.jtu Slope.nppv.mean 1 1 0.022 0.884 -0.023 -382.401
Slope.LBD.jtu Slope.Shannon.Fishing.Pressure 1 1 0.012 0.915 -0.014 -382.392
Slope.LBD.jtu Slope.MLD.mean 1 1 0.002 0.962 -0.013 -382.382
Slope.LBD.jne Slope.MLD.mean 1.873 1.873 3.01 0.048 -0.077 -464.053
Slope.LBD.jne Slope.Temp.sd 1.698 1.698 3.524 0.124 0.105 -463.298
Slope.LBD.jne Slope.o2.sd 1.622 1.622 1.151 0.19 -0.009 -462.412
Slope.LBD.jne Slope.bottomT.mean 1.173 1.173 1.579 0.171 0.113 -461.85
Slope.LBD.jne Slope.bottomT.min 1.326 1.326 0.655 0.34 0.071 -461.015
Slope.LBD.jne Slope.Temp.min 1 1 1.143 0.289 0.075 -460.841
Slope.LBD.jne Slope.Shannon.Fishing.Pressure 1.245 1.245 1.009 0.418 -0.01 -460.613
Slope.LBD.jne Slope.MLD.min 1 1 0.544 0.463 -0.084 -460.227
Slope.LBD.jne Slope.o2.min 1 1 0.527 0.471 0.002 -460.226
Slope.LBD.jne Slope.SR.Sm.Pel 1.514 1.514 0.285 0.626 0.018 -460.082
Slope.LBD.jne Slope.Temp.mean 1.018 1.018 0.314 0.572 0.054 -460.01
Slope.LBD.jne Slope.Fishing.Pressure 1.383 1.383 0.123 0.7 -0.009 -459.973
Slope.LBD.jne Slope.bottomT.sd 1.188 1.188 0.111 0.699 0.006 -459.943
Slope.LBD.jne Slope.nppv.mean 1 1 0.07 0.792 0 -459.774
Slope.LBD.jne Slope.Abund.Sm.Pel 1 1 0.053 0.819 -0.027 -459.76
Slope.LBD.ruz Slope.Fishing.Pressure 1.89 1.89 3.539 0.027 0.061 -400.659
Slope.LBD.ruz Slope.Temp.sd 1.748 1.748 5.037 0.054 0.098 -400.45
Slope.LBD.ruz Slope.SR.Sm.Pel 1.64 1.64 1.264 0.17 0.075 -397.737
Slope.LBD.ruz Slope.bottomT.mean 1.461 1.461 1.214 0.185 0.055 -397.361
Slope.LBD.ruz Slope.MLD.min 1.76 1.76 1.22 0.215 0.018 -396.861
Slope.LBD.ruz Slope.bottomT.min 1 1 0.794 0.376 0.018 -395.584
Slope.LBD.ruz Slope.MLD.mean 1 1 0.621 0.433 -0.001 -395.448
Slope.LBD.ruz Slope.Abund.Sm.Pel 1 1 0.583 0.448 0.012 -395.362
Slope.LBD.ruz Slope.bottomT.sd 1.371 1.371 0.562 0.639 0.006 -395.216
Slope.LBD.ruz Slope.Temp.min 1 1 0.362 0.549 0.005 -395.17
Slope.LBD.ruz Slope.nppv.mean 1 1 0.401 0.529 0.02 -395.142
Slope.LBD.ruz Slope.Temp.mean 1 1 0.278 0.6 0.008 -395.058
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Slope.LBD.ruz Slope.o2.min 1 1 0.207 0.651 -0.027 -395.017
Slope.LBD.ruz Slope.o2.sd 1 1 0.101 0.751 -0.006 -394.918
Slope.LBD.ruz Slope.Shannon.Fishing.Pressure 1 1 0 0.987 -0.014 -394.821
Slope.LBD.ruz.bal Slope.Temp.sd 1.834 1.834 6.093 0.025 0.119 -380.634
Slope.LBD.ruz.bal Slope.SR.Sm.Pel 1.594 1.594 3.275 0.031 0.148 -379.367
Slope.LBD.ruz.bal Slope.bottomT.mean 1.762 1.762 2.183 0.071 0.094 -378.337
Slope.LBD.ruz.bal Slope.MLD.mean 1.57 1.57 1.236 0.175 0.057 -376.27
Slope.LBD.ruz.bal Slope.nppv.mean 1 1 3.069 0.084 0.076 -376.138
Slope.LBD.ruz.bal Slope.Abund.Sm.Pel 1 1 1.353 0.249 0.031 -374.719
Slope.LBD.ruz.bal Slope.Fishing.Pressure 1.724 1.724 1.11 0.322 -0.009 -374.717
Slope.LBD.ruz.bal Slope.Temp.min 1.443 1.443 0.362 0.469 0.022 -374.344
Slope.LBD.ruz.bal Slope.bottomT.min 1.139 1.139 0.636 0.386 0.026 -374.318
Slope.LBD.ruz.bal Slope.Temp.mean 1 1 0.908 0.344 0.021 -374.308
Slope.LBD.ruz.bal Slope.o2.min 1 1 0.879 0.352 0.031 -374.198
Slope.LBD.ruz.bal Slope.o2.sd 1.533 1.533 0.525 0.607 0.013 -373.855
Slope.LBD.ruz.bal Slope.MLD.min 1.478 1.478 0.227 0.653 0.002 -373.79
Slope.LBD.ruz.bal Slope.bottomT.sd 1.071 1.071 0.017 0.876 -0.017 -373.498
Slope.LBD.ruz.bal Slope.Shannon.Fishing.Pressure 1 1 0.001 0.976 -0.015 -373.467
Slope.LBD.ruz.gra Slope.SR.Sm.Pel 1 1 16.953 0 0.196 -408.928
Slope.LBD.ruz.gra Slope.bottomT.mean 1.789 1.789 2.516 0.053 0.107 -404.43
Slope.LBD.ruz.gra Slope.Temp.sd 1.812 1.812 4.756 0.053 0.096 -404.399
Slope.LBD.ruz.gra Slope.MLD.mean 1.817 1.817 2.438 0.058 0.113 -403.613
Slope.LBD.ruz.gra Slope.nppv.mean 1 1 4.639 0.035 0.084 -403.257
Slope.LBD.ruz.gra Slope.o2.min 1.325 1.325 5.07 0.04 0.11 -403.203
Slope.LBD.ruz.gra Slope.Temp.min 1.688 1.688 0.873 0.272 0.047 -400.797
Slope.LBD.ruz.gra Slope.o2.sd 1.739 1.739 1.779 0.256 0.054 -400.579
Slope.LBD.ruz.gra Slope.Abund.Sm.Pel 1 1 1.636 0.205 0.031 -400.527
Slope.LBD.ruz.gra Slope.bottomT.min 1.57 1.57 0.664 0.322 0.046 -400.504
Slope.LBD.ruz.gra Slope.Temp.mean 1.415 1.415 0.619 0.342 0.032 -400.345
Slope.LBD.ruz.gra Slope.bottomT.sd 1 1 0.179 0.673 -0.022 -399.165
Slope.LBD.ruz.gra Slope.Fishing.Pressure 1 1 0.054 0.818 -0.018 -399.046



101

Slope.LBD.ruz.gra Slope.MLD.min 1 1 0.039 0.844 -0.011 -399.032
Slope.LBD.ruz.gra Slope.Shannon.Fishing.Pressure 1 1 0.002 0.966 -0.015 -398.996

Table S24: Estimate and significance of the multi-model inference approach between the temporal evolution of the biodiversity metric and the best set 
of explanatory variables (temporal evolution). The selection procedure was performed using generalised least square models (GLS) taking into account 
spatial autocorrelation using an exponential structure in the residuals. We presented only the results of the multi-model averaging performed on the best 
set of models with a delta AICc lower than 2 with the best model. var.Weight: sum of AICc weights of models in which the predictor occurred (it provides 
the relative importance of the predictor). Highlighted in bold were the predictors with a significant p.value and AICc weight of 1 (retained in all the best 
models).

Metric Variables Estimate Std.Error Adjusted.SE z.value P.value var.Weight
Slope.SR Intercept 0.013 0.025 0.025 0.501 0.617 NA
Slope.SR Slope.o2.min^2 -7.681 41.828 42.585 0.18 0.857 1
Slope.SR Slope.o2.min -2.736 1.285 1.308 2.091 0.036 1
Slope.Abundance Intercept -0.011 0.004 0.004 2.432 0.015 NA
Slope.Abundance Slope.MLD.mean^2 18.203 10.377 10.567 1.723 0.085 1
Slope.Abundance Slope.nppv.mean^2 -138.491 46.215 46.989 2.947 0.003 1
Slope.Abundance Slope.o2.min^2 15.137 6.125 6.239 2.426 0.015 1
Slope.Abundance Slope.SR.Sm.Pel^2 -0.507 0.43 0.438 1.159 0.246 0.309
Slope.Abundance Slope.Temp.min^2 -6.415 12.594 12.801 0.501 0.616 1
Slope.Abundance Slope.nppv.mean -0.634 0.468 0.477 1.329 0.184 0.372
Slope.Abundance Slope.Temp.min -0.334 0.194 0.197 1.694 0.09 0.167
SlopeLBD.jtu Intercept -0.005 0.004 0.004 1.086 0.277 NA
Slope.LBD.jtu Slope.Temp.sd^2 41.627 15.444 15.701 2.651 0.008 1
Slope.LBD.jtu Slope.Temp.sd -0.662 0.338 0.344 1.926 0.054 0.599
Slope.LBD.ruz Intercept 0.003 0.003 0.003 1.126 0.26 NA
Slope.LBD.ruz Slope.Fishing.Pressure^2 0.766 0.528 0.533 1.438 0.15 0.523
Slope.LBD.ruz Slope.Fishing.Pressure -0.13 0.051 0.052 2.487 0.013 0.237
Slope.LBD.ruz.bal Intercept 0.004 0.004 0.004 1.087 0.277 NA
Slope.LBD.ruz.bal Slope.SR.Sm.Pel^2 0.645 0.423 0.43 1.499 0.134 0.561
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Slope.LBD.ruz.bal Slope.Temp.sd^2 26.714 13.912 14.12 1.892 0.059 1
Slope.LBD.ruz.bal Slope.Temp.sd -0.606 0.308 0.314 1.932 0.053 0.687
Slope.LBD.ruz.gra Intercept -0.008 0.002 0.002 3.594 0 NA
Slope.LBD.ruz.gra Slope.nppv.mean^2 28.865 27.602 28.11 1.027 0.304 1
Slope.LBD.ruz.gra Slope.o2.min^2 6.294 3.485 3.549 1.773 0.076 1
Slope.LBD.ruz.gra Slope.SR.Sm.Pel -0.101 0.025 0.026 3.883 0 1
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Table S25: For the 147 species where we could evaluate the temporal trend of abundance over more 
than 5 years, we classified the species as increasing, decreasing or stable based on the slope and 
p.value of linear models. Slope.lm.Log10Abund : slope of the linear model, P.val.slope: p.value of 
the slope of the linear model, we considered significant trends for p.values >=0.1.

Trends Species.names Slope.lm.Log10Abund P.val.slope
Increasing Aphanopus carbo 0.0053 0.0196
Increasing Arctozenus risso 0.0301 0.0024
Increasing Belone belone 0.0113 5e-04
Increasing Buenia jeffreysii 0.0073 0.0022
Increasing Callionymus reticulatus 0.0443 0.0018
Increasing Chelidonichthys lucerna 0.0167 0.024
Increasing Chelon labrosus 0.0127 0.0218
Increasing Eutrigla gurnardus 0.0285 0.0201
Increasing Lampanyctus crocodilus 0.0261 0.0312
Increasing Macroramphosus scolopax 0.0185 0.0272
Increasing Microstomus kitt 0.0125 0.0186
Increasing Myctophum punctatum 0.0207 0.0768
Increasing Notacanthus bonaparte 0.0161 0.0069
Increasing Pagellus erythrinus 0.0141 0.048
Increasing Pleuronectes platessa 0.0647 2e-04
Increasing Pollachius virens 0.0091 0.0225
Increasing Solea senegalensis 0.009 0.0674
Increasing Trigla lyra 0.0122 0.0084
Increasing Trisopterus esmarkii 0.0396 0.0143
Increasing Umbrina canariensis 0.0387 0.0024
Increasing Zeugopterus punctatus 0.0141 0.0132
Decreasing Arnoglossus -0.0184 0.0012
Decreasing Atherina boyeri -0.0014 0.0493
Decreasing Beryx decadactylus -0.0092 0.0011
Decreasing Callionymus maculatus -0.0133 0.0303
Decreasing Crystallogobius linearis -0.0551 0.0939
Decreasing Cyttopsis rosea -0.0039 0.0571
Decreasing Echiichthys vipera -0.0211 0.0121
Decreasing Lophius piscatorius -0.0134 0.0087
Decreasing Macrourus berglax -0.0351 0.0519
Decreasing Microchirus variegatus -0.008 0.0245
Decreasing Mola mola -0.0106 0.0649
Decreasing Mullus surmuletus -0.0247 0.0196
Decreasing Neoscopelus macrolepidotus -0.0012 0.0237
Decreasing Pollachius pollachius -0.0064 0.0901
Decreasing Polymetme thaeocoryla -0.0285 0.0403
Decreasing Polyprion americanus -3e-04 0.0867
Decreasing Scorpaena scrofa -0.0158 0.0129
Decreasing Serranus cabrilla -0.0046 0.0289
Decreasing Stomias boa boa -0.0499 0.0396
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Decreasing Trisopterus luscus -0.0169 0.0253
Stable Acantholabrus palloni -0.0012 0.8233
Stable Agonus cataphractus 0.0028 0.3026
Stable Anguilla anguilla -0.0013 0.104
Stable Aphia minuta -0.0069 0.7419
Stable Argentina -0.0045 0.4345
Stable Argyropelecus 0.0054 0.3413
Stable Argyrosomus regius 0.0021 0.8866
Stable Balistes 0.0034 0.7128
Stable Bathysolea profundicola -0.0064 0.2554
Stable Beryx splendens 0.0109 0.1804
Stable Blennius ocellaris 0.0026 0.643
Stable Boops boops 0.0131 0.2637
Stable Brama brama 0.001 0.9052
Stable Buglossidium luteum 0.0134 0.3154
Stable Coelorinchus caelorhincus -0.0224 0.2074
Stable Callionymus lyra -0.0052 0.2951
Stable Capros aper 0.0017 0.8705
Stable Cepola macrophthalma -0.0118 0.212
Stable Ceratoscopelus maderensis 0.0065 0.2589
Stable Chelidonichthys cuculus -0.0054 0.2171
Stable Chelidonichthys obscurus 0.003 0.5776
Stable Chirolophis ascanii -7e-04 0.156
Stable Ciliata mustela 0.0036 0.755
Stable Chlorophthalmus agassizi -9e-04 0.167
Stable Clupea harengus -0.0018 0.9434
Stable Conger conger 0.0015 0.7384
Stable Coryphaenoides rupestris 0.0288 0.3147
Stable Ctenolabrus rupestris -0.0018 0.4216
Stable Dicentrarchus labrax 4e-04 0.9605
Stable Dicentrarchus punctatus -0.0034 0.3776
Stable Dicologlossa cuneata -0.0044 0.6787
Stable Diplodus sargus 0.0095 0.2203
Stable Diplodus vulgaris 0.007 0.4811
Stable Echiodon drummondii -8e-04 0.787
Stable Enchelyopus cimbrius -0.0108 0.2613
Stable Entelurus aequoreus -6e-04 0.9739
Stable Ammodytidae -0.009 0.5872
Stable Gadiculus argenteus -0.0103 0.1608
Stable Gadus morhua 0.0123 0.1573
Stable Gaidropsarus -0.0061 0.3846
Stable Glyptocephalus cynoglossus 0.0159 0.1729
Stable Gobius paganellus -0.0509 0.1858
Stable Gymnammodytes semisquamatus 0.0215 0.3088
Stable Halargyreus johnsonii 0.0156 0.1976
Stable Helicolenus dactylopterus 0.0089 0.3176
Stable Hippoglossoides platessoides 0.0097 0.3589
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Stable Hippocampus 0.0051 0.2801
Stable Hoplostethus mediterraneus 

mediterraneus
-0.0073 0.6741

Stable Labrus 2e-04 0.9668
Stable Lampanyctus intricarius -3e-04 0.2302
Stable Lepidion eques 0.0015 0.5432
Stable Lepidorhombus boscii -1e-04 0.9743
Stable Lepidorhombus whiffiagonis 0.0035 0.2189
Stable Lepidopus caudatus 0.0038 0.2394
Stable Lepidotrigla dieuzeidei -0.1994 0.1265
Stable Lesueurigobius friesii -0.0149 0.2207
Stable Limanda limanda 0.0105 0.4067
Stable Lithognathus mormyrus 0.0145 0.373
Stable Liza aurata 0.0102 0.4793
Stable Liza ramada 0.0206 0.1068
Stable Lophius budegassa 0.0043 0.4977
Stable Malacocephalus laevis -0.0072 0.371
Stable Maurolicus muelleri 0.0224 0.1674
Stable Melanogrammus aeglefinus 0.0098 0.3866
Stable Merluccius merluccius 9e-04 0.8903
Stable Merlangius merlangus 0.0085 0.3383
Stable Micromesistius poutassou -0.0135 0.1997
Stable Molva macrophthalma -0.014 0.232
Stable Molva molva 0.0026 0.5744
Stable Mora moro -0.0048 0.5525
Stable Nerophis lumbriciformis -2e-04 0.1232
Stable Notoscopelus -5e-04 0.959
Stable Pagellus acarne 0.0246 0.1337
Stable Pagellus bogaraveo 0.0098 0.5869
Stable Pagrus pagrus -0.0036 0.413
Stable Pegusa lascaris 0.0014 0.811
Stable Phrynorhombus norvegicus -4e-04 0.9577
Stable Phycis blennoides 0.0082 0.1454
Stable Platichthys flesus 3e-04 0.6768
Stable Polymetme corythaeola -0.0114 0.168
Stable Pomatoschistus 0.0279 0.1545
Stable Raniceps raninus -0.0018 0.6055
Stable Sarda sarda -0.0202 0.1664
Stable Scomberesox saurus saurus -2e-04 0.1456
Stable Scomber colias -0.0207 0.3758
Stable Scophthalmus maximus 0.0037 0.3252
Stable Scophthalmus rhombus 0.0033 0.4336
Stable Scorpaena loppei -0.0121 0.1215
Stable Scorpaena notata 0.0115 0.1733
Stable Scorpaena porcus 0 0.9972
Stable Serranus scriba -5e-04 0.152
Stable Solea solea -0.0011 0.8769
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Stable Sparus aurata 0.0049 0.438
Stable Spondyliosoma cantharus -0.0063 0.5712
Stable Symphodus bailloni 2e-04 0.1756
Stable Symphodus roissali -6e-04 0.1514
Stable Synaphobranchus kaupii 0.0096 0.2107
Stable Syngnathus -0.0073 0.3408
Stable Trachinus draco -0.0029 0.7831
Stable Trachyrincus scabrus -0.0013 0.1117
Stable Trachyscorpia cristulata echinata -0.0036 0.1299
Stable Trigloporus lastoviza 1e-04 0.981
Stable Trisopterus minutus -0.0033 0.4707
Stable Xenodermichthys copei 0.0107 0.292
Stable Xiphias gladius 0.0022 0.6069
Stable Zeus faber 0.0061 0.1351
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HIGHLIGHTS

1) The spatiotemporal dynamics of demersal fish communities were investigated in the Bay of 

Biscay (BoB) and Celtic Sea (CS).

2) The role of two decades of changes in temperature, trophic resources, habitat and fishing 

pressure on community dynamics were assessed.

3) Diversity patterns showed greater variability in space than in time and species richness and 

abundance weakly changed overall.

4) Communities are becoming more spatially similar (homogeneous) in the CS and differentiated 

in the BoB.

5) Such patterns are best explained by the dynamics of trophic resources mediated by small 

pelagic species rather than changes in temperature or fishing.


