
Error Characterization of Significant Wave Heights in Multidecadal Satellite

Altimeter Product, Model Hindcast, and In Situ Measurements Using

the Triple Collocation Technique

GUILLAUME DODET,a SALEH ABDALLA,b MATIAS ALDAY,a MICKAËL ACCENSI,a JEAN BIDLOT,b

AND FABRICE ARDHUINa
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ABSTRACT: Ocean wave measurements are of major importance for a number of applications including climate studies,
ship routing, marine engineering, safety at sea, and coastal risk management. Depending on the scales and regions of inter-
est, a variety of data sources may be considered (e.g., in situ data, Voluntary Observing Ship observations, altimeter
records, numerical wave models), each one with its own characteristics in terms of sampling frequency, spatial coverage,
accuracy, and cost. To combine multiple source of wave information (e.g., for data assimilation scheme in numerical
weather prediction models), the error characteristics of each measurement system need to be defined. In this study, we use
the triple collocation technique to estimate the random error variance of significant wave heights from a comprehensive
collection of collocated in situ, altimeter, and model data. The in situ dataset is a selection of 122 platforms provided by the
Copernicus Marine Service In Situ Thematic Center. The altimeter dataset is the ESA Sea State CCI version1 L2P prod-
uct. The model dataset is the WW3-LOPS hindcast forced with bias-corrected ERA5 winds and an adjusted T475 parame-
terization of wave generation and dissipation. Compared to previous similar analyses, the extensive (∼250 000 entries)
triple collocation dataset generated for this study provides some new insights on the error variability associated to differ-
ences in in situ platforms, satellite missions, sea state conditions, and seasonal variability.
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1. Introduction

Historical wave data are important for many scientific and
engineering applications (climate science, marine safety,
coastal and offshore structures, coastal risk management).
The sea state is observed by a variety of instrument networks,
including Voluntary Observing Ships, seismometers, moored
and drifting buoys, satellite altimeters, and satellite-borne
synthetic aperture radars (Ardhuin et al. 2019). In addition,
wave model hindcasts and reanalysis provide accurate gridded
wave information at global scale and over several decades,
information that gets better with every new reanalysis thanks
to constantly improving physics parameterization, resolution,
forcing accuracy, and numerical methods (e.g., Hersbach et al.
2020; Alday et al. 2021; Law-Chune et al. 2021). These differ-
ent sources complement each other but there is a need to
improve the standardization of data format, metadata, and
uncertainty characterization among these sources (Merchant
et al. 2017). In particular, an understanding of errors and
uncertainties is crucial in order to make the most effective and
appropriate use of a given dataset whether for analysis, calibra-
tion, validation, or assimilation purposes (Parker 2016). For

instance, numerical weather prediction models benefit from
wave data assimilation using both significant wave height (Hs)
from satellite altimeters (Abdalla and Janssen 2017) and wave
spectra partitions from other radar systems (Aouf et al. 2021)
the assimilation process is made most efficient when the prop-
erties of the measurement uncertainties are fully understood.

Triple collocation (TC) is a robust technique used to assess
random error variance in three independent measurement
systems. Initially introduced to oceanic and meteorological
communities by Stoffelen (1998) to estimate error characteris-
tics in surface wind speed from in situ anemometer, satellite
scatterometer, and model forecast, the technique has since
been applied to a wide range of geophysical parameters, such
as wind stress (Portabella and Stoffelen 2009), sea surface
temperature (O’Carroll et al. 2008), or soil moisture (Gruber
et al. 2016). Regarding ocean wave measurements, Caires and
Sterl (2003) compared ERA-40 model reanalysis, in situ meas-
urements and European Remote-Sensing Satellite 1 (ERS-1)
and TOPEX altimeter measurements and found the largest
errors in the model results and the lowest errors in the in situ
measurements. They also identified a strong negative bias in
ERS-1 measurements. Janssen et al. (2007) applied the TC
technique to several combinations of in situ buoys, ERS-1,
ERS-2, and Envisat altimeter data and ECMWF wave model
forecasting data (with and without altimeter data assimila-
tion), and demonstrated the importance of making use of an
independent dataset to obtain consistent error statistics. Con-
trary to Caires and Sterl (2003), they obtained the largest
errors in the in situ buoy data and the lowest errors in the

Supplemental information related to this paper is available
at the Journals Online website: https://doi.org/10.1175/JTECH-D-
21-0179.s1.

Corresponding author: Guillaume Dodet, guillaume.dodet@
ifremer.fr

DOI: 10.1175/JTECH-D-21-0179.1

Ó 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

D ODE T E T A L . 887JULY 2022

Brought to you by IFREMER/BILIOTHEQUE LA | Unauthenticated | Downloaded 06/27/22 01:52 PM UTC

https://doi.org/10.1175/JTECH-D-21-0179.s1
https://doi.org/10.1175/JTECH-D-21-0179.s1
mailto:guillaume.dodet@ifremer.fr
mailto:guillaume.dodet@ifremer.fr
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


model analysis. Later, Abdalla et al. (2011) applied the TC
technique to Jason-1, Jason-2, and Envisat altimeter data, in
situ buoy data, and a stand-alone version of the ECMWF
wave model forecast (with no altimeter data assimilation), in
order to ensure the independence criterion between model
and altimeter data. They obtained the lowest error for Jason-2
(5.4%), followed by Envisat (6.2%), Jason-1 (7.8%), buoys
(8.6%), and the stand-alone model hindcast (9.7%). They also
demonstrated that these error results were significantly
dependent on the selected distance criteria between altimeter
and in situ matchups, which controls the total number of col-
located measurements. Later, Abdalla and De Chiara (2017)
showed that TC wind speed error results were robust if at
least a few thousand matchups were considered. With the
available wave buoy network, this number can be achieved on
an annual basis using a 50-km distance criterion, although
relaxing the distance criterion to 200 km is advisable to qua-
druple the number of available matchups (Abdalla et al.
2011). More recently, Dodet et al. (2020) computed the error
statistics for 10 calibrated altimeter missions based on dual
comparisons with in situ measurements and found that ERS-1
was biased low (∼5%) while Envisat, Jason-2, CryoSat-2,
SARAL, and Jason-3 were biased high (5%–10%). Compari-
sons with an independent wave hindcast (no assimilation)
revealed normalized root-mean-squared error (NRMSE)
between 9% and 13% with largest errors for ERS-1 and ERS-2
and lowest errors for SARAL and CryoSat-2. All these results
tend to indicate that the error estimates of in situ, altimeter
and model Hs data and the relative performance between
these systems are not unequivocally defined yet and requires
further investigation. Moreover, the payloads of in situ plat-
forms and altimeter missions have been regularly evolving
over the last decades, together with their measuring capabili-
ties, which requires dedicated analysis of the temporal, inter-
platform, and intermission error measurement variability.
A major difficulty in performing error analysis with the TC
technique is the need to have a sufficiently high number of
collocated measurements between independent systems to
produce robust error estimates. In this study, we have devel-
oped an extensive triple collocation dataset (∼250 000 entries)
over the period 1993–2018, based on three recently delivered
datasets, namely,

• the multimission ESA Sea State CCI version 1 altimeter
dataset (Dodet et al. 2020);

• a selection of in situ wave platforms from the Copernicus
Marine Service In Situ Thematic Assembly Center (CMEMS
INSTAC) database (http://www.marineinsitu.eu/);

• and a WW3 wave model hindcast forced by ERA5 winds
implemented at Ifremer/LOPS (Alday et al. 2021).

The main objective of this study is to investigate the Hs
error characteristics in these three multidecadal datasets to
better constrain error variability associated with differences in
satellite missions, in situ platforms, sea state conditions, and
seasonal variability. A secondary objective is to perform an
assessment of systematic and random errors in the ESA Sea
State CCI version 1 dataset. The primary error assessment

method employed to accomplish the objectives is the triple
collocation technique.

The manuscript is organized as follows: the three datasets
are described in section 2, section 3 describes the methods
used to generate the triple collocation dataset and compute
error estimates using the TC technique, section 4 presents the
results of the triple collocation analysis, and section 5 dis-
cusses and summarizes the results.

2. Wave height data sources

In this section, we describe the three data sources we used
to derive the triple collocation dataset and estimate the mea-
surement errors.

a. Altimeter data from the Sea State CCI v1 dataset

The ESA Sea State CCI v1 dataset (Piollé et al. 2020) is a
multimission altimeter product that spans over the period
1992–2018, and covers the following missions (ranked by
date of launch): ERS-1, TOPEX, ERS-2, Geosat Follow-On
(GFO), Jason-1, Envisat, Jason-2, CryoSat-2 (low-resolution
mode acquisition only), SARAL, and Jason-3. The L2P prod-
uct contains three flavors of 1-Hz along-track significant wave
height records: (i) the raw significant wave height as provided
in the Geophysical Data Records (GDR), (ii) the calibrated
significant wave height that was calibrated using buoy match-
ups and mission crossovers, and (iii) the denoised significant
wave height after application of the EMD-based denoising
technique developed by Quilfen and Chapron (2021) on the
calibrated significant wave height. Further information on this
dataset can be found in Dodet et al. (2020). For this study, we
have considered the significant wave heights calibrated with
(ii), and, for specific analysis, denoised with (iii).

b. In situ wave platforms from CMEMS INSTAC

Several thousands of in situ platforms have been deployed
in oceans, seas, and lakes over the last 50 years in order to col-
lect information on wave and other met/ocean parameters.
These platforms are often operated by state agencies, follow-
ing different procedures, making the collection, analysis and
intercomparison of the recorded measurements particularly
challenging. The INSTAC is a component of the European
CMEMS and its role is to ensure consistent and reliable
access to a range of in situ data for service production and val-
idation. For this purpose, CMEMS INSTAC collect multi-
source/multiplatform data, and perform consistent quality
control before distributing the data in a common format to
the CMEMS Marine Forecasting Centres (MFC). The data
can be found at http://www.marineinsitu.eu/.

Two types of products are available: (i) near-real-time
(NRT) products are automatically quality controlled within
24 h from acquisition to feed MFC for their forecasting activi-
ties and (ii) reprocessed (REP) products are built for reanaly-
sis activities or climate research and provide integrated
products over the past 25–50 years. These latter are assessed
by scientific team and suspicious measurement are checked to
discriminate sensor anomaly from real ocean signal. For
this study, we have used the reprocessed CMEMS INSTAC
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products. Among the 1180 available in situ wave platforms,
only a subset of 122 platforms was selected, based on the fol-
lowing criteria: the platforms being located more than 100 km
offshore, in more than 50-m water depth, and deployed for at
least one year over the period 1992–2018. The distance to the
coast was estimated from the Open Street Map coastline poly-
gons (https://osmdata.openstreetmap.de/data/coastlines.html)
and the depth was computed from the IOC/IHO General
Bathymetric Chart of the Oceans (GEBCO) 2020 gridded
data (15 arc s) interpolated at the buoy location (https://www.
gebco.net/data_and_products/gridded_bathymetry_data/).
For most long-term operating platforms, the nominal location
changes during the lifetime of the platform, and a new posi-
tion is generally set after maintenance operations. While the
distance between subsequent positions is often small enough
(a few kilometers) to consider that the platform is measuring
similar sea state conditions, it may be much larger in some
cases (e.g., .500 km). Unfortunately, the mode of acquisition,
the accuracy, and the resolution of the position information,
when they are provided, strongly differ from one platform/
provider to the other. Using the latitude–longitude infor-
mation in the CMEMS INSTAC dataset, we found that 50%
of the 1180 wave platforms are given a single position for
the whole deployment period, including the 75 platforms
deployed over more than 10 years. Among the 591 platforms
for which time varying positions are provided, more than 15%
show position shifts exceeding 100 km. In some cases, the
position time series may show singularities that cannot corre-
spond to any realistic displacement. To reject outlier position

and make use of the time-varying position in the in situ plat-
form–altimeter matchup analysis, we computed for each plat-
form stepwise segments of constant position separated by a
minimum of 10 km and we rejected the wave measurements
for which the position was suspicious (singularity) or indi-
cated some drifting. Median position of the CMEMS
INSTAC wave platforms are shown in Fig. 1 and maximum
distance between real and median position for the
122 selected buoys are provided in Table 1 of the online
supplemental material.

c. Model outputs from WW3-LOPS hindcast

The implemented WW3 model employs a global grid with
spatial resolution of 0.58 extending from latitudes 2788 to 838.
Spectral discretization considers 24 directions, equivalent to a
directional resolution of 158, and 36 frequencies exponentially
spaced with a 1.1 increment factor (ranging from 0.034 to
0.95 Hz).

The model was forced using hourly surface wind fields from
the ECMWF fifth-generation reanalyses ERA5 (Hersbach et al.
2020). Surface currents are included to take into account wave–
current interactions at global scale. The current fields, which
are the sum of geostrophic and Ekman components, were taken
from the CMEMS-Globcurrent product (MULTIOBS_GLO_
PHY_REP_015_004). These 3-hourly fields were generated
based on the method by Rio et al. (2014) with the updated
mean dynamic topography from CNES-CLS (Mulet et al.
2021). Finally, ice daily concentration considering a 1 m thick-
ness, and icebergs distribution are taken, respectively, from the

FIG. 1. Location of all available CMEMS INSTAC reprocessed in situ wave platforms (pink dots) and selected plat-
forms (colored symbols) located .100 km from the coast, in .50-m water depth, and deployed over at least one year
during the 1992–2018 period. The name of the main providers and the number of associated platforms are given in
the legend.
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Ifremer SSMI-derived product (Girard-Ardhuin and Ezraty
2012) and the Ifremer-Altiberg icebergs distribution database
(Tournadre et al. 2016).

Wave generation and swell dissipation parameterizations
correspond to the wind input and wave dissipation source
terms described in Ardhuin et al. (2010) and Leckler (2013),
including the parameters’ adjustments and wind input correc-
tions from test T475 detailed in Alday et al. (2021). Partial
blocking of wave energy by icebergs is considered with the
parameterizations from Ardhuin et al. (2011). Wave evolution
and nonlinear (wave to wave) interactions are described with
the discrete interaction approximation (DIA) (Hasselmann
and Hasselmann 1985; Hasselmann et al. 1985). The generated
hindcast covers a total of 28 years, from 1993 to 2020 with data
output each 3 h. No data assimilation was used in the genera-
tion of this dataset. This new model hindcast appears to be
generally more accurate than the previous versions of the
WW3-LOPS hindcast (e.g., Rascle and Ardhuin 2013), and
can be more accurate than the ERA5 Hs estimates, in particu-
lar in strong current regions and for Hs . 7 m. More details
on the parameterizations, numerical implementation, and val-
idation can be found in Alday et al. (2021) and in the WW3
user manual (WAVEWATCH III Development Group
2019).

3. Methods

a. Altimeter–in situ platform matchups

Matchups between altimeter and in situ platform measure-
ments were computed within 100-km distance and 1-h time
window. The along-track altimeter and in situ Hs observations
were smoothed with 50-km and 2-h running average, respec-
tively, in order to reduce high-frequency variability and match
the 0.58 model resolution. Indeed, assuming an average wave
group velocity of 7 m s21 (corresponding to ∼9-s wave period
in deep water), a 2-h in situ record will “see” wave energy
that has traveled over ∼50 km. Finally, the 3-hourly model
outputs were linearly interpolated in space at the buoy loca-
tion and at the time of the satellite–in situ matchup.

b. Error estimation from triple collocation

Following Vogelzang and Stoffelen (2012), we consider
three data sources X, Y, and Z giving collocated estimates (x,
y, z) of the true (unknown) quantity t with associated random
errors �i(i 5 x, y, z). We assume that X is a bias-free

calibrated reference system while Y and Z are subjected to
calibration errors, which are linearly related to t for the whole
range of values under consideration. The measurements can,
therefore, be written:

x 5 t 1 �x, (1)

y 5 ayt 1 by 1 �y, (2)

z 5 azt 1 bz 1 �z, (3)

where ai and bi (i 5 y, z) are the least squares slopes and
intercepts. We assume that the random errors �i are unbiased
(〈�i〉 5 0, with the angle brackets 〈·〉 representing the average
over all data), uncorrelated with the true signal (〈�it〉 5 0),
and uncorrelated with each other (〈�i�j〉 5 0 for i Þ j). Under
these assumptions, it is possible to estimate the variances of
the random error �2i

〈 〉
as a function of the variances Cii and

covariances Cij of the signals, as follows:

〈
�2x
〉
5 Cxx 2

CxyCxz

Cyz
, (4)

〈
�2y
〉
5 Cyy 2

CxyCyz

Cxz
, (5)

〈
�2z
〉
5 Czz 2

CxzCyz

Cxy
: (6)

Moreover, the calibration coefficients can be computed as

ay 5
Cyz
Cxz

, (7)

az 5
Cyz
Cxy

, (8)

by 5 〈y〉 2 ay〈x〉, (9)

bz 5 〈z〉 2 az〈x〉: (10)

Note that the uncorrelated errors (〈�i�j〉 5 0) assumption
does not always hold when the measurement systems provide
observations at different scales, for instance when one of the
measurement systems has a coarser resolution than the other
two systems (Vogelzang and Stoffelen 2012). In such a case,
the high-frequency variability measured by the two fine-scale

TABLE 1. Absolute and relative errors of each measurement system for different data processing: (single obs) single point in situ
and altimeter observations are used; (superobs) altimeter and in situ superobservations are used; (no EMD) EMD denoising is not
applied to altimeter observations; (EMD) EMD denoising is applied to altimeter observations.

System

Absolute error (m) Normalized error (%)

Single
obs, no
EMD

Superobs,
no

EMD

Single
obs,
EMD

Superobs,
EMD

Single
obs, no
EMD

Superobs,
no

EMD

Single
obs,
EMD

Superobs,
EMD

In situ 0.17 0.14 0.17 0.15 7.5 6.5 7.3 6.5
Altimeter 0.22 0.16 0.16 0.15 9.8 7.3 7.0 6.6
Model 0.23 0.23 0.23 0.23 10.2 10.2 10.1 10.0
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measurements systems will not be detectable for the coarse-
resolution system and therefore be regarded as error. If one
wants to compare error variance at the scale of the coarse-
resolution system, a priori knowledge on the so-called repre-
sentation (or “representativeness”) error is required in order
to subtract it from (add to) the coarse (fine)-resolution system
error estimates. For instance, Vogelzang and Stoffelen (2012)
used the wind variance density spectra from numerical models
and scatterometer observations to estimate the representation
errors between satellite observations and model results.
Another widely used method is to filter high-resolution obser-
vations in order to match the spatial scales of the coarser-
resolution measurement system (e.g., Janssen et al. 2007;
Abdalla et al. 2011; Caires and Sterl 2003). In our study, the
selected model implementation uses a 50-km grid spacing,
and the buoy and along-track altimeter data have been
smoothed with 2-h and 50-km moving windows, respectively,
in order to filter out high-resolution variability and match the
model resolution. We therefore consider that the representa-
tiveness error is negligible. However, in order to estimate the
impact of the in situ and altimeter data filtering, the triple
collocation analysis has also been applied to the single
point measurements and compared to the 50-km averaged
“superobservations.”

Since error estimates are highly sensitive to outliers, an out-
lier detection method has been implemented based on the
iteratively reweighted least squares robust regression method,
which assign a weight between 0 and 1 to each data pair dur-
ing the regression iterative process. In our case, we apply the
robust regression method successively to the altimeter–in situ,
altimeter–model, and in situ–model data pairs, and reject the
data triplet if the weight is below 0.1 in at least one of the
three dual comparisons.

In the remainder of the study, two error estimates are

given: the standard deviation of the random error
������〈
�2i
〉√

(named absolute error) and the normalized standard devia-

tion of the random error
������〈
�2i
〉√
=
〈
Hsi

〉
(named the relative

error), where Hsi refers to the mean Hs of the considered
measuring system.

4. Results

Considering the entire triple collocation dataset and assum-
ing that in situ platform and altimeter missions share identical
error characteristics, we obtain the error statistics given in
Table 1. Although these results are presented for different
types of data processing (single or superobservations, with
and without EMD denoising applied on altimeter data), we
will first focus on the results obtained for the buoy and altime-
ter superobservations and no EMD denoising applied on
altimeter data (second and sixth columns). We see that the Hs
error is the lowest for in situ data (6.5%), followed by altime-
ter data (7.3%) and model data (10.2%). As far as altimeter
data are concerned, these results are in line with the ones of
Janssen et al. (2007) and Abdalla et al. (2011), who obtained
normalized errors comprised between 5% and 10% for ERS-2,

Envisat, Jason-1, and Jason-2. However, they significantly dif-
fer for what concerns the in situ measurement errors. Indeed,
Abdalla et al. (2011) obtained larger errors for in situ meas-
urements (8.6%) than for altimeter data and Janssen et al.
(2007) found the largest error in in situ measurements com-
pared to altimeter and model data, with values comprised
between 8% and 13%. The potential reasons of these discrep-
ancies will be discussed in section 5.

To investigate error characteristic of the three measure-
ments systems, the triple collocation analysis is then per-
formed over different samples, corresponding to distinct wave
platforms, satellite missions or Hs range. Since the results of
triple collocation analysis depends on the sample size, we first
perform a sensitivity analysis by randomly sampling the triple
collocation dataset for sample sizes varying from 50 to 6000.
For each sample size, 100 realizations are performed and the
mean standard deviation of the errors are computed. Figure 2
shows the mean and standard deviation of the normalized
error for each sample size and each measurement system. We
can see that the standard deviation of the normalized error
computed for 100 random sampling realizations is rapidly
increasing for sample size lower than 500. For a sample size of
1000, the 95% prediction intervals of the mean normalized
error are 6.5% 6 1.0% for in situ platform measurements,
7.3% 6 0.9% for altimeter measurements and 10.2% 6 0.8%
for model outputs. These prediction intervals can be reduced
by ∼60% with 6000 samples. However, in order to analyze
buoy errors individually and altimeter error at a yearly reso-
lution, we have used a minimum sample size of 1000. The
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FIG. 2. Normalized error as a function of sample size. Error bars
and red line represents the standard deviation estimated from
100 random realizations of each sample size.
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number of matchups obtained for each altimeter mission is
provided in Table 2.

a. In situ platform Hs errors

In situ measurements are often considered as the gold
standards for the calibration and validation of remote sensing
instruments (e.g., radar altimeter) and numerical models. In
that case, in situ measurements are assumed to represent the
true quantity, and the errors or calibration coefficient of the
other measurement systems are estimated with respect to
these true measurements. However, no measuring device is
perfect and ignoring measurement error characteristics dur-
ing calibration or validation may severely impact the results
(Stoffelen 1998). Moreover, in situ platforms involve a great
number of measurement settings, such as offshore platforms,
lightships, and moored buoys, and while buoys are the most
common they can have a great diversity of hull shape and pay-
load, which affect the accuracy of the measurement. In addi-
tion, long-term monitoring platforms are regularly replaced
by more advanced (or cheaper) devices which may have dif-
ferent measurement error characteristic (Ardhuin et al. 2019).

Here we attempt to quantify and compare the measure-
ment errors of in situ platforms regularly used for altimeter
calibration and model validation. The top panel of Fig. 3
shows the normalized error of 72 platforms. Compared to the
122 platforms presented in Fig. 1, 50 platforms were removed
from the analysis because (i) the number of matchups was
lower than 1000 and/or (ii) the resolution of the measure-
ments was too coarse (0.5 m). This latter criteria rejected all
buoys located in the Bay of Bengal and Arabian Sea (see
Table 1 in the supplementary material). For the remaining
platforms, the main resolution was either 0.1 or 0.01 m, and
the time periods for which the Hs records were given with a
resolution$ 0.5 were removed from the analysis.

The Hs random errors of in situ platforms vary between
0.06 and 0.62 m, which corresponds to 3%–10% of the mean
Hs at each platform location (Fig. 3, top panel). The lowest
normalized error (3.4%), which correspond to a 0.1 m abso-
lute error for a mean Hs of 2.9 m, is obtained for platform
46246 (Ocean Weather Station Papa) located at 508N, 1458W
(in 4250-m depth), and recording ocean weather parameters
since 2010. The highest normalized error (9.7%), which

correspond to a 0.2-m absolute error for a mean Hs of 1.9 m,
is obtained for platform 44024 located at 42.3258N, 65.9098W
(in 225-m depth), and recording ocean weather parameters
from 2004 until 2017. Note that the resolution of platform
46246 is 0.01 m while the resolution of platform 44024 is
0.1 m, which could partly explain these differences. To evaluate
the impact of the instrument resolution on the error values pre-
sented in Fig. 3, the same analysis is performed after rounding all
buoy measurements to the first decimal, hence mimicking a com-
mon 0.1-m resolution for all platforms. On average the error of
the platform with an original resolution lower than 0.1 m shows a
limited increase of 4.5%, and the overall ranking remains mostly
unchanged. Moreover, no significant correlation was obtained
between original platform resolutions and Hs errors.

Looking at the random errors characteristics of the plat-
forms operated by the NDBC, MEDS, and Met Office, there is
no systematic random error differences between these datasets.
However, the bias between the in situ platforms and the altime-
ter data on one hand (Fig. 3, middle panel) and between the in
situ platforms and the model on the other hand (Fig. 3, bottom
panel) indicate that almost all MEDS platforms underestimate
Hs measurements in comparison to altimeter records and model
results. Considering all MEDS platforms, the average bias is
20.08 m with respect to altimeter data and20.14 m with respect
to the model results. Such underestimation was already evi-
denced by Durrant et al. (2009), who found bias difference
around 0.25 m when comparing Envisat and Jason-1 altimeter
data with NDBC andMEDS buoys separately.

b. Altimeter errors

Satellite altimeter records represent the largest database of
Hs measurements, and allow for the reconstruction of contin-
uous time series from 1992 onward with a quasi-global cover-
age. However, radar altimeter systems, including sensor
technology, onboard and ground processing techniques, have
drastically evolved over the past 30 years. It is therefore
expected to obtain different error characteristics for each con-
sidered mission. Moreover, over its lifetime, a satellite mission
encounter a number of issues that may impair its measuring
capabilities [as an example, see Abdalla (2021) for a list of
Jason-2 issues], which also require particular attention. Here,
we use the triple collocation technique in order to estimate

TABLE 2. Number of years of observation, number of in situ–altimeter matchups, and average absolute and normalized errors and
standard deviation of yearly errors per altimeter mission.

Mission No. of years No. of matchups Absolute error (m) Normalized error (%) Std dev(%)

ERS-1 4 4628 0.20 9.29 0.42
TOPEX 13 25 311 0.16 6.90 0.32
ERS-2 17 30 975 0.20 8.90 0.65
GFO 9 21 206 0.16 6.97 0.30
Envisat 11 28 889 0.16 6.69 0.26
Jason-1 12 36 637 0.16 6.70 0.26
Jason-2 11 40 025 0.15 6.84 0.30
CryoSat-2 10 25 577 0.15 7.12 0.39
SARAL 6 24 138 0.12 5.72 0.23
Jason-3 3 12 528 0.16 7.18 0.43
All missions 27 249 914 0.16 7.23 0.36

J OURNAL OF ATMOS PHER I C AND OCEAN I C TECHNOLOGY VOLUME 39892

Brought to you by IFREMER/BILIOTHEQUE LA | Unauthenticated | Downloaded 06/27/22 01:52 PM UTC



the error in altimeter, in situ, and model data, for each mis-
sion on a yearly time scale. Figure 4 shows the time series of
the normalized errors for the three measurement systems
over the acquisition period of each altimeter mission of the
ESA Sea State CCI dataset. The gray bars indicate the number
of in situ–altimeter matchups found every year. We can see that
this number varies between 716 (ERS-1, 1996) and 4845 (Jason-2,
2016), with an average of 2600. The temporal trends in the
number of matchups can be attributed to the increasing number
of in situ platform measurements. Other differences may be
related to the different satellite orbits, and in particular their
inclination, ranging from 668 for the TOPEX/Jason orbits to
above 908 for the ERS/Envisat/SARAL and CryoSat-2 orbits,
which directly affect the duration a satellite is passing over dense
in situ network area, mostly located within 108–608N.

A number of error characteristics can be observed. First,
we note some interannual variability in the altimeter mea-
surement errors, with variations up to 2.4% for ERS-2
between 1995 and 1999. This variability may be attributed to
several factors: the varying number of available matchups
from year to year (see also Fig. 2), temporary issues with the
radar altimeter system affecting the quality of the measure-
ments, or the interannual variability of the wave climate. Sec-
ond, if we compare the mean altimeter measurement errors
between each mission (Table 2), we see that ERS-1 and ERS-2
show the largest normalized errors (9.29% and 8.90%, respec-
tively), while SARAL show the lowest normalized error
(5.75%) and also the lowest interannual variability, with a stan-
dard deviation of the yearly error equal to 0.23%. The second
lowest mean normalized error (6.69%) and standard deviation

FIG. 3. (top) Normalized error and number of matchups for 72 in situ wave platforms. (middle) Bias between in situ
and altimeter data. (bottom) Bias between in situ and model data. The colors of the bar indicate the platforms oper-
ated by NDBC (green), MEDS (orange), Met Office (purple), and other institutions (white).
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(0.26%) is obtained for the Envisat mission, launched in 2002 to
service continuity of the ERS and operated until 2012. Compar-
ing the error between the different measurement systems, we see
that Hs measurements from Envisat, Jason-1, and SARAL pre-
sent similar error levels than in situ observations, illustrating the

excellent behavior of the radar systems on board these missions.
Finally, looking at the averaged in situ and model errors for each
altimeter mission (black and red dashed lines in Fig. 4), we note
a very good consistency across all missions, which confirms the
robustness of the triple collocation approach.
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FIG. 4. Normalized error for in situ (black circles), altimeter (blue squares), and model (red diamonds) data, com-
puted at yearly interval for each altimeter mission of the Sea CCI dataset. Gray bars indicate the number of matchups
used to compute the error from the triple collocation technique. Dashed color lines represent the mean error values
of each measurement system.
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c. Hs dependence of measurement errors

Errors in Hs measurement systems are known to depend on
the sea state conditions, and error models for wave measure-
ment systems are often assumed to be linear over the whole
range of measurements. However, all measurement systems
are affected by technological constraints, in particular for very
low and high sea states, and linear error models may not be
valid in such conditions. Here, we use the results of the triple
collocation analysis to investigate the relationships between
Hs random errors and sea state conditions for in situ, altime-
ter, and model data. For this purpose, we look at the errors of
the three measurement system as a function of Hs by comput-
ing triple collocation results for bins of 0.5-m width, from 0 to
8 m. To gather a sufficient number of matchups (.1000) for
each bin, we assume that all altimeter and all in situ platform
share similar error characteristics and we merge them all
together. This way, we obtained robust statistics up to ∼8 m.
Figure 5 illustrates the relationship between measurements
errors and Hs value for the three considered measurement
systems.

The most striking feature is the quasi-linear relationship
between the absolute error and Hs (Fig. 5, left panel). This
relationship holds for Hs between 0.5 and 8 m for in situ
measurements, 1.5–8 m for altimeter measurements, and
0–8 m for model data. Below 1.5 m, we note that altimeter
error strongly deviates from the linear function. Moreover,
the relative performance of each measurement system is given
by the slopes of the linear error function, which is maximum
for model data (0.07) and twice as high for altimeter (0.06) as
for in situ measurements (0.03). Because the intercept of the
linear function is different from 0 for each measurement

system, the error function of the normalized errors is modeled
by the slope of the linear function plus an inverse function. At
low Hs (,1 m), altimeter errors are the highest (0.15 m,
28.2%) and in situ errors are the lowest (0.03 m, 9.2%). For
Hs comprised between 0.5 and 8 m, measurements errors are
systematically lower for in situ measurements, followed by
altimeters and model data.

d. Seasonal variability of Hs errors

Using 4 years of data, Janssen et al. (2007) put in evidence
a strong seasonal variability of buoy and altimeter Hs errors.
Here, we take advantage of our multidecadal triple colloca-
tion dataset to further investigate this topic. Figure 6 shows
the climatology of the absolute and normalized errors for in
situ, altimeter, and model data, estimated from the 27-yr TC
dataset. The absolute error of each of the three systems shows
a clear decrease during the summer period, associated with a
decrease of the mean Hs. The Hs seasonality obviously results
from the distribution of the in situ platforms, mostly localized
in the Northern Hemisphere, where the sea state seasonality
is well pronounced. In terms of normalized errors, the oppo-
site behavior is observed, with significantly larger errors
during the summer period, peaking in July/August, and cor-
roborating Janssen et al.’s (2007) results. It is also clear from
this figure that the error seasonality is significantly stronger
(3% error difference between summer and winter) for altime-
ter data, than for model (1.4% difference) and buoy data
(0.8% difference). From the normalized error/Hs relationship
presented in Fig. 5, it is straightforward to relate these differ-
ences to the relative errors at low sea state obtained for each
measurement system.
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FIG. 5. (left) Absolute and (right) normalized errors for in situ (black circles), altimeter (blue squares), and model
(red diamonds) data as a function of Hs. Gray bars indicate the number of matchups used to compute the error from
the triple collocation technique.
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e. Impact of data filtering on Hs errors

The three measurement systems that we consider in this
study provide Hs measurements at different scales. In particu-
lar, the in situ and altimeter observations contain some high-
frequency signal that cannot be detected by the coarse-scale
model. If part of the buoy and altimeter high-frequency sig-
nals were correlated, the triple collocation analysis would
translate it into an increased model error making the error
comparisons more subtle to interpret. To overcome this issue
and estimate errors in the three measurement systems at the
same spatial scale (the one of the model), altimeter and in situ
observations are averaged to match the 50-km model resolu-
tion. We should therefore expect a reduced model error if the
high-frequency signal, common to the fine-scale systems but
invisible to the model, is filtered out. To test this assumption,
we carried out the triple collocation analysis on single point in
situ and altimeter measurements (first and fifth columns in
Table 1), and compared the results to the ones obtained with
the averaged superobservations (second and sixth columns in
Table 1). We see that both in situ and altimeter errors are sig-
nificantly reduced, while model error remains unchanged. As
a consequence, we can assume that the high-resolution signal
contained in the altimeter and in situ measurements are
(mostly) uncorrelated, and is considered as noise within the
triple collocation analysis. Therefore, a meaningful compari-
son of altimeter, in situ and model errors can only be done
after filtering the high-frequency signals, and hold with
respect to the resolution of the model. For the Sea State CCI
dataset, a particular effort has been devoted to filter the high-
frequency noise that interfere with the altimeter signal at
scales lower than 100 km. The novel approach based on

empirical mode decomposition (EMD) and wavelet thresh-
olding, and described by Quilfen and Chapron (2021) is
applied to 1-Hz along track Hs records in order to conserve
nonlinear features, such as strong gradients, and extreme val-
ues, without significant smoothing. To estimate the impact of
the EMD-denoising method on the altimeter Hs errors, the
triple collocation analysis was carried out considering EMD-
denoised single and superobservations (columns 3, 4, 7, and
8 in Table 1). We see a clear reduction of the altimeter error
with EMD denoising when the single observations are consid-
ered. In this case the altimeter error is even lower than the in
situ measurement error. When superobservations are used,
we see that altimeter and in situ error levels are comparable,
which confirms the improved accuracy of the denoised Hs
altimeter data provided in the Sea State CCI product.

f. Altimeter calibration

While this work focuses on the estimation of the random
errors in each of the measurement systems, the results of the
altimeter calibration performed during the triple collocation
analysis are worth mentioning. Indeed the triple collocation
is a powerful technique to calibrate a measurement system
against another by taking into account random measurement
errors in both systems. Moreover the calibration of altimeter
wave measurements is critical for merging historical missions
with recent ones and producing consistent long-term multi-
mission records, necessary for climate trends studies (Young
and Ribal 2019) or extreme wave analysis (Izaguirre et al.
2011). In Fig. 7, the altimeter calibration coefficients ay and
by of Eqs. (7)–(9) are plotted for each mission at yearly time
scale (blue symbols) and averaged over the whole period of
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measurements (dashed lines). For comparisons, the slopes
and offsets of the linear corrections estimated from ordinary
least squares (OLS) and reduced major axis (RMA) regres-
sions are also shown (gray and red symbols and lines).

First of all, we can observe for all missions a significant
interannual variability in the slope and offset values (see
Table 3). This variability is maximum for ERS-2 and mini-
mum for SARAL, and may result from nonnominal functioning
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FIG. 7. Slopes (circles) and offsets (triangles) of the linear corrections estimated from ordinary least squares regres-
sion (OLS; red), reduced major axis regression (RMA; green), or triple collocation technique (TC; blue), computed
at yearly interval for each altimeter mission of the Sea CCI dataset. Dashed colored lines represent the mean value
computed over the time period covered by each altimeter mission. For OLS and RMA methods, dual comparisons
between altimeter and in situ platform records were used.
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of the radar instrument, changes in the in situ platform net-
works or interannual wave climate variability. Moreover, sig-
nificant differences in the slopes and offsets are observed
from one mission to another. Considering the TC analysis,
mean slopes vary from 0.97 (Jason-3) to 1.02 (GFO) and
mean offsets vary from -0.05 m (GFO) to 0.15 m (Jason-3).
In particular, we note that for Envisat, Jason-1, Jason-2,
CryoSat-2, SARAL, and Jason-3, the offset is significantly
larger (0.05–0.15 m) than for the prior missions (20.05 to
0.03 m). This result is in close agreement with the validation
results presented by Dodet et al. (2020, their Fig. 10) who
obtained positive biases of similar magnitudes for these mis-
sions. The slopes and offsets presented in Dodet et al. (2020,
their Table 3) are between 0.99 and 1.13 and 20.05 and
0.18 m, respectively. These values were used to calibrate the
Geophysical Data Record products of each altimeter mission
included in the Sea State CCI dataset. However, comparisons
of the calibrated dataset against buoy data showed that some
of the missions (Jason-2, Jason-3, CryoSat-2, and SARAL)
were high biased, indicating potential issues in the calibration
methodology. In the present manuscript, the slopes and off-
sets estimated from the TC analysis of the Sea State CCI cali-
brated altimeter missions are between 0.97 and 1.02 and
20.05 and 0.15 m. These values are on the same order as
for the original calibration formula, which confirms the need
for an additional calibration step to reduce the bias in some of
the altimeter missions. After applying the TC calibration for-
mula to the Sea State CCI dataset, the ranges of slopes and off-
sets are reduced by an order of magnitude (0.998–1.001 and
20.001 to 0.004 m, respectively). It is therefore particularly
relevant to apply these new corrections to the Sea State CCI
dataset v1 before investigating long-term statistics. Finally, we
see that the TC and RMA are in very close agreement, indi-
cating that in the absence of a triple collocation dataset, the
reduced major axis regression is a robust alternative to TC
analysis for accounting errors in the reference measurements
during the calibration process.

5. Summary and discussion

In this study, we have used collocated data from three inde-
pendent wave measurement systems, namely, the altimeter

data from the ESA Sea State CCI v1 dataset, a selection of
122 mooring platforms within the CMEMS INSTAC dataset,
and the WW3-LOPS model hindcast, in order to derive error
characteristics for each of these systems. A first analysis based
on the entire triple collocation dataset (250 000 entries)
revealed that in situ measurements presented the lowest nor-
malized errors (6.5%), followed by altimeter (7.3%) and
model (10.2%) data, when altimeter and in situ observations
were filtered to match the 50-km resolution of the model.
These results contrast with the ones from Janssen et al.
(2007), who obtained systematically larger errors (∼8%) for
in situ measurements than for altimeter data (∼6%). As
explained by these authors, a potential reason for these large
buoy errors is that buoy data of questionable quality might
have infiltrated their dataset. Regarding the relatively low
errors they obtained for ERS-2 (6.4%) in comparison to our
results (8.9%), we have not found any clear explanation. It is
particularly puzzling that these authors obtained a similar
level of errors between ERS-2 and Envisat, while we obtained
systematic higher errors for ERS-1 and ERS-2 than for
Envisat and the other missions. This intermission variability
in measurement errors will therefore require further research.

For the first time, the Hs random errors of in situ measure-
ments estimated from triple collocation analysis are intercom-
pared between a set of platforms operated by different state
agencies. These results show that the normalized errors are
relatively low (3%–10%) for all the platforms considered
herein, provided that the number of matchups is sufficient to
derive robust statistics. In our case, 1000 matchups were
found to give sufficiently accurate results (see Fig. 2) while
preserving the possibility to carry out detailed analysis (such
as interplatform comparisons). Moreover, the consistent error
levels for model and in situ data across all altimeter missions
confirm the robustness of our approach. The random errors
present significant interplatform variability but they do not
present systematic trends between the three major data pro-
viders: NDBC, MEDS, and Met Office. However, the biases
between in situ data and altimeter data, and between in situ
data and model data, confirmed a systematic error (negative
bias of ∼0.10 m) of the MEDS in situ measurements in com-
parison to the other platform networks (see Fig. 3), as

TABLE 3. Mean, minimum, maximum, and standard deviation of the slopes and offsets of the linear corrections for each mission
based on annual triple collocation analysis.

Mission

Slope Offset (m)

Mean Min Max Std dev Mean Min Max Std dev

ERS-1 0.979 0.978 0.979 0.001 0.023 0.019 0.028 0.007
TOPEX 1.003 0.990 1.034 0.013 20.014 20.065 0.019 0.025
ERS-2 0.992 0.970 1.015 0.014 0.033 20.019 0.076 0.028
GFO 1.022 1.004 1.040 0.012 20.052 20.091 20.021 0.021
Envisat 0.990 0.977 1.005 0.008 0.052 0.032 0.069 0.013
Jason-1 0.983 0.971 0.993 0.006 0.083 0.060 0.115 0.017
Jason-2 0.979 0.973 0.991 0.005 0.109 0.082 0.142 0.018
CryoSat-2 0.985 0.971 0.998 0.008 0.105 0.080 0.135 0.018
SARAL 0.984 0.980 0.988 0.004 0.114 0.107 0.123 0.007
Jason-3 0.970 0.963 0.980 0.009 0.147 0.133 0.165 0.016
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previously found by Durrant et al. (2009). To further examine
the impact of the different hulls and payloads of the in situ
platforms on the random errors, it would be very valuable to
have access to more detailed information on the instrument
and platform characteristics in the CMEMS INSTAC
database.

Another key results of this triple collocation analysis is the
intercomparison of the Hs random errors at yearly time scale
for the 10 altimeter missions included in the ESA Sea State
CCI dataset v1 (Fig. 4 and Table 2). We note a significant
intermission variability of the mean and standard deviation of
the annual errors, with SARAL showing the lowest error, as
evidenced by previous authors (e.g., Sepulveda et al. 2015),
and ERS-1 and ERS-2 showing the largest errors. The good
performance of the SARAL mission can be attributed to the
larger bandwidth and higher pulse repetition frequency
(PRF) of the Ka-band AltiKa instrument on board SARAL,
which result in a smaller effective footprint and a higher resolu-
tion than conventional Ku-band instrument (Verron et al.
2015). Regarding the lower performance of ERS-1 and ERS-2,
it could be attributed to the reduced number of range gates
(64) used to sample the radar waveforms in comparison to the
more recent missions (128). Indeed, although the extension to
128 bins was principally used for the estimation of antenna
mispointing from the waveform data and is not directly used
in the calculation of Hs (Quartly et al. 2001), these extended
waveforms allows for a better characterization of rain
cells and improved rain flagging (Tournadre 1998, 2004).
Noteworthy are the Envisat and Jason-1 missions showing the
second and third lowest normalized errors, respectively, with
very stable error characteristics over their more-than-10-yr-
long measurement time period.

Since we used calibrated altimeter data for the triple collo-
cation analysis and since the calibration involved in situ plat-
form data that have also been used in this TC analysis, the
assumption of independence between these measurement sys-
tems may be called into question. To investigate this point, we
compared the random errors for the three measurements sys-
tems, using either the raw or the calibrated Hs altimeter data.
We found a 17% increase of the altimeter error, a 5%
increase of the in situ error, and a 1% decrease of the model
error when using the raw Hs altimeter data in comparison to
the calibrated altimeter data. These changes in in situ and
model errors indicate that the altimeter calibration introduces
some (artificial) correlation between altimeter and in situ errors.
However, the impact of this correlation is relatively small.

Assuming that altimeter missions share similar error char-
acteristics, it was also possible to investigate the Hs depen-
dence of the random errors and compare this relationship
between altimeter, in situ and model data (Fig. 5). It is shown
that the absolute random error in each measurement system
can be modeled by a linear relationship over the ranges 0.5–8,
1.5–8, and 0–8 m, for the in situ, altimeter, and model systems,
respectively, with the largest slope (7%) obtained for the
model data and the lowest slope (3%) obtained for the in situ
data. For Hs below 1 m the altimeter errors are found to be
the highest and in situ errors to be the lowest. This increased
error of altimeter measurement at low sea state can be

directly linked to the limited range resolution of the instru-
ments (∼0.5 m for Ku-band radar), which is insufficient to
adequately sample the steep leading edge of radar waveforms
backscattered from calm seas, resulting in a noisy estimate of
Hs below 2 m (Smith and Scharroo 2015).

Finally, linear calibration coefficients were deduced from
TC analysis for each altimeter mission at annual time scale,
using the in situ data as reference. First, the errors show sig-
nificant interannual variability, which is likely to increase the
uncertainty in the estimate of calibration coefficients and may
partly explain some differences in the altimeter corrections
computed by different authors for different time periods (e.g.,
Queffeulou 2004; Zieger et al. 2009; Ribal and Young 2019).
Regarding the altimeter measurements considered in this
study, we note that the calibration slopes are close to 1 for all
missions but the offsets show significant deviation from 0.
Taking these new corrections into account is likely to improve
intermission consistency. Also, since the most recent missions
present larger calibration offsets than the early ones, it is pos-
sible that the long-term trends are impacted (Timmermans
et al. 2020).
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