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Abstract :   
 
French Mediterranean lagoons are frequently subject to shellfish contamination by Diarrheic Shellfish 
Toxins (DSTs) and Paralytic Shellfish Toxins (PSTs). To predict the effect of various environmental 
factors (temperature, salinity and turbidity) on the abundance of the major toxins producing genera, 
Dinophysis and Alexandrium, and the link with shellfish contamination, we analysed a 10-year dataset 
collected from 2010 to 2019 in two major shellfish farming lagoons, Thau and Leucate, using two 
methods: decision trees and Zero Inflated Negative Binomial (ZINB) linear regression models. Analysis 
of these decision trees revealed that the highest risk of Dinophysis bloom events occurred at 
temperature <16.3°C and salinity <27.8, and of Alexandrium at temperature ranging from 10.4 to 21.5°C 
and salinity >39.2. The highest risk of shellfish contaminations by DSTs and PSTs occurred during the 
set of conditions associated with high risk of bloom events. Linear regression prediction enables us to 
understand whether temperature and salinity influence the presence of Alexandrium and affect its 
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abundance. However, Dinophysis linear regression could not be validated due to overdispersion issues. 
This work demonstrates the tools which could help sanitary management of shellfish rearing areas. 
 
 

Highlights 

► Robust predictions of the risk of HAB in French Mediterranean lagoons are provided ► Decision 
trees and linear regressions are used as complementary tools ► Temperature and salinity ranges can 
promote Alexandrium and Dinophysis blooms ► HAB and shellfish contamination occurs for the same 
set of environmental conditions 
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I. Introduction 

The geographical expansion of harmful algae and their durable settlement in many marine 

ecosystems has become a major concern all over the world (Hallegraeff et al. 2003; Drake et 

al. 2005; Hallegraeff 2010; Casas-Monroy et al. 2015; Glibert 2020). Harmful algae (HA) 

proliferation or HABs (Harmful Algal Blooms) leads to observable negative effects on marine 

resources, economics and human health (Granéli and Turner, 2006). Many HA produce toxins 

that can contaminate marine resources and lead to human intoxication (Pulido 2016). For this 

reason, the proliferation of HAs in water is frequently monitored near shellfish farming areas 

(Anderson et al. 2001). Studies showed that blooms can be impacted by many environmental 

factors such as temperature and salinity (Anderson and Keafer, 1987; Laabir et al. 2011), light 

(Figueroa et al. 2018), oxygen concentration in sediment and nutrient availability (Collos et 

al. 2007, 2009; Xu et al. 2010; Ishikawa et al. 2014). Blooms are generally triggered by the 

synergic combination of several factors  (Accoroni et al. 2015; Raso et al. 2012) among which 

temperature and salinity play a key role as they can influence every phases of bloom 

dynamics, including initiation, growth and termination (Figueroa et al. 2018; Granéli and 

Turner 2006). Many dinoflagellates including Alexandrium show planktonic and benthic 

forms, and initiation of the blooms depends on the success of cysts germination which occurs 

after a dormancy period. The duration of this phase was shown to be influenced by 

temperature, and some HA cysts germinate only within specific ranges of temperature 

(Anderson and Keafer 1987; Genovesi et al. 2009). Moreover, germination can be linked with 

water agitation leading to sediment resuspension (Laanaia et al. 2013) which is generally 

associated with variations in water temperature and salinity. Growth corresponds to biomass 

increase which duration and maximum concentration can be influenced by temperature and 

salinity along with other factors such as nutrients  (Bill et al. 2016; Collos et al. 2007; Davis 

et al. 2015; Ishikawa et al. 2014; Laabir et al. 2011; Ralston et al. 2015; Raso et al. 2012; Xu 



2 
 

 

et al. 2010). Bloom termination happens when environmental conditions are no longer 

favourable, which can be attributed to nutrient depletion or inadequate temperature leading to 

mortality or encysment (Ralston et al. 2014; Verity et al. 1988).  

As a consequence of these various and contrasted impacts of environmental factors on HAB 

dynamic, efforts have been made  to develop early HABs warning systems based on 

environmental predictors. Conventionally, statistical numerical modelling has been used for 

HABs prediction (González Vilas et al. 2014). Through linear regression, these models can 

efficiently predict phytoplankton dynamics because they are capable of integrating many 

predictors and can be adapted to different data distributions (Davidson et al. 2016). Given the 

cyclic and seasonal pattern in HABs, they have mainly been investigated through time series 

modelling based on a range of variables measured over time (Cruz et al., 2021). For instance, 

several studies have applied linear regression to forecasting the blooms of Pseudo-nitzschia 

(Anderson et al. 2010; Lane et al. 2010; Seubert et al. 2013). The interest in alternatives like 

Machine Learning (ML) models has recently increased. ML methods consist of using 

computer systems that are able to learn and draw inference from data patterns without explicit 

instructions. One of the many advantages of ML methods is their ability to predict highly 

dynamic and complex phenomena and to handle big and non-linear data. A wide variety of 

machine learning approaches has been used over the past years to forecast HABs (Franks 

2018; Cruz et al. 2021). Among them, decision trees (DTs) seem to be highly relevant tools. 

A DT is a tree-like structure in which the leaves represent outcome labels and the branches 

represent conjunctions of the input features that resulted in those outcomes. Aside from 

overcoming the problems due to missing data, they are easy to interpret since they provide 

concrete thresholds that can be used by marine stakeholders. In South Korea, Shin (2017) 

used DTs to forecast cyanobacteria blooms and (Park et al. 2011) applied this method to 

predict red tide blooms. 
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French Mediterranean lagoons are special ecosystems as they are semi-enclosed marine 

systems, containing many shellfish farming areas, and they are frequently subject to HAB 

events and particularly proliferation of the dinoflagellates Alexandrium pacificum and 

Dinophysis acuminata complex responsible for intoxication events threatening human health 

and resulting in economic losses (Deslous-Paoli et al. 1998; Collos et al. 2009; Laabir et al. 

2011; Laanaia et al. 2013; Belin et al. 2021; Séchet et al. 2021). Until now, no machine 

learning approach has been developed to quantify and predict the risks of HABs proliferations 

and shellfish contamination in these ecosystems. Based on a ten-year dataset of parameters 

(temperature, salinity and turbidity) and of HA taxa, using both decision trees and a Zero-

Inflated Negative Binomial regression model, this study aimed at providing robust tools to 

predict the risk of bloom of the two major HA genera in French Mediterranean lagoons, 

Dinophysis and Alexandrium, and the subsequent shellfish contamination in exploited semi-

enclosed marine systems. 

2. Materials and methods 

2.1. Data recovery 

Data were collected from the framework of the REPHY and REPHYTOX monitoring net-

works (REPHY - French Observation and Monitoring program for Phytoplankton and Hydrol-

ogy in coastal waters 2019; REPHYTOX - French Monitoring program for Phytotoxins in 

marine organisms 2019).  

Briefly, the data comes from field surveys carried out by Ifremer in two exploited French 

Mediterranean lagoons, Thau (7000ha, mean depth 4m, water temperature range : 3.9-29.6°C; 

salinity range : 27.4-42.9) and Leucate (5400ha, mean depth 1.9m water temperature range 

0.9-29.3°C, salinity range: 8.4-42.3) (Fiandrino et al. 2017; Ladagnous and Le Bec 1997) 

from January 2010 to December 2020 (Fig 1). The concentration of phytoplankton species 
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was measured using the Utermöhl method (Utermöhl 1931) with a 10 mL Hydrobios cham-

ber. The limit of quantification (LQ) and the threshold limit of detection (LD) are both 100 

cell/L. Temperature, salinity, turbidity, total phytoplankton including the lipophilic toxins 

producer Dinophysis spp. and the paralytic shellfish toxins producer Alexandrium spp., were 

monitored twice a month at three stations in shellfish farming areas in the Thau lagoon (Mar-

seillan, Bouzigues and Crique de l’Angle), and two stations in the Leucate lagoon (Parc and 

Grau) (Fig 1). Mussels and oysters were sampled in these stations twice a month. At least 1 kg 

of shellfish, composed of a minimum of ten individuals, were sampled randomly and Lipo-

philic toxins (Okadaic Acid (OA), Dinophysistoxins (DTXs) and Pectenotoxins (PTXs)) were 

measured by Liquid Chromatography coupled to tandem Mass Spectrometry (LC-MS / MS) 

(ANSES LSA-INS-0147, Standards and Reference Material were provided by the NRC-

CNRC, Marine Analytical Chemistry Standards Program. Institute for Marine Biosciences). 

Each of the constitutive toxins was corrected by a TEF (Toxic Equivalent Factor) to account 

for its potential toxicity. The quantification of PSTs was carried out by mouse bioassay, cali-

brated and validated to give quantitative results (Anses PBM BM LSA-INS-0143). 

2.3. Data processing and analyses 

2.3.1. Preliminary processing 

All data analyses were performed using R software (R Core Team 2020). Since Alexandrium 

pacificum and Alexandrium tamarense are difficult to distinguish by light microscopy, 

abundances of both species were added to each other and were thereafter named Alexandrium 

tamarense/pacificum. As for Dinophysis, regulatory monitoring considers all species that can 

be identified in the lagoons because they are all likely to contaminate shellfish. Thus, even 

though the D. accuminata complex represents the vast majority of the species found in Thau 

and Leucate, we chose to consider data at the genus level. The value of toxin concentrations 
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below the detectable threshold was estimated to be the detectable threshold divided by 2 since 

a non-detectable value does not mean that there is no toxin in shellfish. When toxins were 

detectable but not quantifiable, the value was estimated by the means of the detectable and 

quantifiable thresholds. 

2.3.1. Exploratory analysis 

Bivariate analyses were performed in order to identify which factors were mainly related to 

phytoplankton and toxin concentrations. Pairwise Spearman and Pearson coefficients were 

calculated between phytoplankton and environmental factors, and between toxins and 

environmental factors. 

2.3.2. Building decision trees 

Variable selection and encoding 

Decision trees (DT) were used to predict the risks of HABs and of bivalve contamination 

considering temperature, salinity and turbidity as predictors. Prior to the analysis, Dinophysis 

and A. tamarense/pacificum concentrations were converted to binary variables: the abundance 

of cells was encoded by 1 when the concentration exceeded 1000 cells/L for A. 

tamarense/pacificum (value inducing the sanitary warning protocol) and 500 cells/L for 

Dinophysis (estimated value indicating a bloom, the sanitary warning protocol being induced 

by a concentration of cells >= LD), and by 0 when the abundances were beyond these 

concentrations. Toxin concentrations were converted to categorical variables based on the 

regulatory thresholds: they were encoded by 0 when concentrations were below 80 µg per kg 

of shellfish flesh) for lipophilic toxins and below 340 µg/kg  for PSTs, by 1 when they were 

between 80 µg/kg-1 and 160 µg/kg for lipophilic toxins, and between 340 µg/kg and 800 

µg/kg for PSTs, and by 2 when they were above 160 µg/kg for lipophilic toxins and above 

800 µg/kg for PSTs. 
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Decision tree analysis 

The DTs building process is described in Fig 2. DTs were set up with the rpart package  

(Therneau and Atkinson 2019) using the CART algorithm (Breiman et al. 1984). As a 

supplementary constraint, a minimum of 10 observations was imposed for a branch to become 

a branch node and there had to be at least 5 observations per leaf node. A maximum of 10 

nodes per tree was imposed. In order to set up a robust tool: for each predicted variable, the 

experiment with DT was repeated 100 times; each time, the data set was split into two sets, 80 

% made up the training set and 20% the testing set. The split algorithm allowed all the 

different pairs of training and testing sets to have approximately the same proportion of 0, 1 

(and 2 for the toxins) in the predicted variables. The structures of the 100 trees were then 

compared in order to find the most common one. For each node the process consisted of: 

- Finding the most frequent variable 

- Finding the most frequent threshold for this variable 

- Selecting the trees with this variable and threshold 

- Repeating the process at the next children nodes for the selected trees only. 

Secondly, the most common structure was determined and an average of the trees presenting 

this structure was then calculated. To this end, the mean of the number of observations for 

each node and the average proportions of 0, 1 or 2 were calculated. In order to test the trees’ 

performance outside the training data sets, the selected structures were tested on the testing 

data sets. The average testing trees were then processed in the same way as for the average 

learning trees. 

Finally, pruning analysis was applied in order to prevent overfitting by reducing the size of 

the trees and to prevent overtraining. Pruning a tree consists in removing the redundant and/or 
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less important nodes to improve its predictive accuracy. The pruning process followed these 

rules: 

- The proportion of 1 or 2 in at least one of the nodes of the testing trees should be above 20% 

- The number of observations in each node of the testing trees should be above 3 

2.3.3. Linear models 

Type of regression  

Mixed linear models were set up to predict phytoplankton concentrations in the Thau and 

Leucate lagoons based on hydrological factors. The distributions of HA abundance were 

characterized with a very high frequency of 0, meaning that HA were not detected most of the 

time. In addition, abundances are discrete variables, hence the Zero Inflated Negative 

Binomial (ZINB) model (Greene 1994) appeared to be the most suitable regression for this 

dataset. ZINB regression is used for data that exhibits excess zeros and over dispersion. In 

Zero Inflated (ZI) models (Lambert 1992), theory suggests that the excess zeros are generated 

by a separate process from the count values and that the excess zeros can be modelled 

independently. Thus, the ZINB model has two parts, the negative binomial count model and 

the logit model for predicting excess zeros. The process explaining the excess zeros could 

correspond to an absence of HA cyst germination, when count values would represent the 

proliferation of vegetative cells once germination had occurred. Type 2 ZINB were used for 

the models because the Akaike Information Criteria (AIC) (Akaike 1974) were lower than 

type 1 ZINB. As the variables were time series data sampled in different stations, it was 

necessary to check the influence of the stations, and to check that the relationships between 

the variables would still be significant without this influence. Mixed models were thus 

performed, using the stations as grouping factors. Only random-intercept models were 

performed because random-slope models did not converge. The significance of Random 

effects was tested by performing an Anova between the models with and without random 



8 
 

 

effects. Random effects were kept for the logistic and/or the negative binomial part only when 

it was significant it when it allowed the model to fit the data better;  this was shown on the 

residuals graphs.     

Variable selection and encoding 

The model building process is described in Fig 3. A model was set up to predict HA 

concentrations using the hydrological factors as predictors (i.e the predictive variables) and 

showing a Spearman or a Pearson coefficient with a p-value lower than 20%. The linearities 

of the relationships were tested by performing maximum likelihood tests between models 

before and after having transformed the factors to categorical variables. When non-linear 

relationships were found, the variables were encoded as categorical variables, the levels being 

determined by the ranges depicted by the DT and by visual examination of the distribution 

graphics. Several combinations of variables and of levels were tested and the AIC was used to 

select the best fitting model. The Incident Risk Ratio (IRR) was calculated for the negative 

binomial part (IRR = exp (coefficient)). An IRR >1 means an increase of the average 

microalgae’s abundance. As for the logit part, a particularity in the ZI model is that the 

coefficient and the Odds Ratio (OR = exp(coefficient)) characterize the probability of zero, in 

this case the probability of absence of the HABs. To make it easier to understand, we choose 

to depict the Odds Ratio of the presence of the algae: OR (Presence) = 1/OR. An OR 

(presence) >1 means an increase of the probability of presence of the alga. 

Validation 

The validation of the model was based on the standardized residuals simulated with the 

DHARMa package (Hartig 2020). The resulting simulated residuals graphics obtained with 

this package are interpretable the same way as the residuals graphics for simple linear models 

(Hartig 2020). Specialized goodness-of-fit tests were performed on the simulated residuals 
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with the DHARMa package: the Kolmogorov-Smirmnov test, a non-parametric dispersion test 

based on the standard deviation of the simulated residuals, testing whether the simulated 

dispersion is equal to the observed dispersion, and an outlier test that tests whether there are 

more simulation outliers than expected. Finally, Nakagawa’s conditional and marginal R² 

were calculated to show how much of the variability was explained by the global model and 

by random effects. 

3. Results 

3.1. Exploratory data analysis 

Correlation coefficients between phytoplankton abundance, abiotic factors and toxins in Thau 

and Leucate lagoons were calculated as shown in Tab 1A and 1B respectively. In both 

lagoons, the coefficients showed significant correlations between phytoplankton and abiotic 

factors: In Thau, the Spearman coefficient showed a positive correlation (p.val<0.001) 

between A. tamarense/pacificum and salinity (Sal.). In Leucate, Dinophysis was negatively 

correlated to temperature (Temp.) and Sal. (p.val<0.001), whereas it was positively correlated 

to Temp. in Thau (p.val<0.001) (Tab. 1). Dinophysis was also positively correlated to 

turbidity (Turb.) (Spearman coefficient 0.15, p.val <0.001) (Tab. 1). When significant, the 

correlations between A. tamarense/pacificum, Dinophysis and abiotic factors were quite low, 

absolute values ranged from 0.15 to 0.31 (Tab. 1). In both lagoons, whenever significant, the 

Spearman coefficients between the environment and toxic phytoplankton species were always 

stronger than the Pearson coefficients, suggesting non-linear relationships. Furthermore, 

toxins were highly correlated to the abundance of the microalgae which produce them. The 

significant correlations between A. tamarense/pacificum and PSTs in Thau ranged from 0.41 

to 0.58 and the Pearson coefficients were stronger than the Spearman coefficients, with 

p.val<0.001, suggesting a linear relationship (Tab. 1). The lipophilic toxins (OA, PTX, DTX) 
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were positively correlated with the abundance of Dinophysis, the significant coefficients 

ranged from 0.45 to 0.69 (p.val<0.00) (Tab 1). Furthermore, abiotic factors seemed to have 

similar impact on the toxins as on the microalgae producing them. In Thau, PSTs were 

positively correlated to Sal. (significant correlation coefficients ranged from 0.3 to 0.41, 

p.val<0.05) (Tab. 1). In Leucate, lipophilic toxins were negatively correlated to both Temp. 

(coefficients ranging from -0.38 to -0.57) and Sal. (significant coefficients ranging from -0.14 

to -0.35) and positively correlated to Turb. (significant coefficient ranging from 0.27 to 0.28, 

p.val<0.001) (Tab. 1). The Spearman coefficients showed that A. tamarense.pacificum and 

Dinophysis abundances were non-linearly but positively correlated with the abundance of 

dinoflagellates and diatoms, and that these correlations were stronger for A. 

tamarense/pacificum (coefficients ranging from 0.18 to 0.29, p.val<0.001) than for 

Dinophysis (coefficients ranging from 0.08 to 0.09, p.val<0.05) (Tab. 1). 

3.2. Decision trees  

Decision trees were able to predict when blooms of A. tamarense/pacificum and Dinophysis 

could occur (Fig 4). Turb. was never kept in pruned DTs and appeared thus to be a non-

determinant risk factor in Dinophysis and A. tamarense/pacificum blooms. Results showed 

that, for Temp. between 10.4°C and 21.5 °C and Sal. >39.2, the mean risk of a bloom of A. 

tamarense/pacificum occurrence was over 50% (Fig 4A). The mean risk was less than 12% 

when Sal. is <39.2 and, even with a high salinity, it was near 0% when Temp. was <10.4 °C. 

The decision tree for Dinophysis (Fig 4B) indicated that Sal. <27.8 and Temp <16.3°C led to 

a mean risk of bloom over 50%. This situation was however quite rare (only 21 observations 

over the 10 years monitoring). Sal. >32.0 along with Temp.  <16.3°C also led to a high 

probability of bloom (in average 26% of the testing datasets). Temp. >16.3 °C led to a low 

risk (on average 4.2% of the testing data sets). No low threshold of temperature was found for 

Dinophysis.   
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Decision trees were able to predict when shellfish contaminations could occur (Fig 5). The 

trees showed that toxins were usually found in animals in the conditions promoting a bloom 

event (Fig 5). Again, Turb. was never kept in the pruned DTS. In Thau, the risk of 

contamination of mussels and oysters by PSTs was significant for seawater Sal. > 37.7 and 

39.9, respectively (Fig 5 A/B). Low Temp. also promoted risks of shellfish contamination. 

For mussels, Temp. <18.5°C combined with Sal. >37.7 yielded a total mean risk of 

contamination of 92% (44.9% between 340 µg/kg and 800 µg/kg (labelled 1 on the figure) 

and 47.1% exceeding 800 µg/kg (labelled 2 on the testing data sets). For oysters, Temp. 

<16°C combined with Sal. >39.9 led to a 57% mean risks of contamination, the latter being 

mainly comprised between 340 µg/kg and 800 µg/kg (52.3% of the observations in the testing 

dataset). It is possible that the contaminations were rare below a low Temp. threshold, but 

were not represented on the decision trees because of a low number of observations. In 

Leucate, the risks of mussel and oyster lipophilic contamination was higher when Temp. is 

<16.3 °C and <13.5 °C, respectively (Fig 5 C/D). The 16.3°C threshold showed that mussels 

would become contaminated as soon as Temp. allowed Dinophysis blooms. Under this Temp., 

the risk of contamination was high independently of the Sal. (56.7% and 31.1% risk of a 

contamination over 160µg/kg (labelled 2 on the figure) for a Sal. respectively > and <33.5). In 

oysters, contamination by lipophilic toxins happened at Temp. <13.5°C and Sal. < 27.8 that 

led to 30.7% mean risk of contamination (over 160 µg/kg) in the testing data sets. In all, these 

trees showed that the conditions in which oysters were contaminated were more restrictive 

than for mussels: the Temp. and Sal. ranges were systematically narrower for oysters. 

3.3. Linear regression 

In order to predict A. tamarense/pacificum abundance in Thau, a ZINB model was set up 

using two categorical predictors (temperature, split into four levels, and salinity, split into 

three levels) and one continuous predictor, turbidity (Tab 2). The splits have been selected 
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thanks to the results of decision trees and from visual examination of data distribution. The 

negative binomial part of the model, which depicted how predictors impact cell abundance, 

showed that the reference Temp. level, 14.6 to 21.5 °C, was associated with the highest 

average microalgal abundance. The IRR revealed that the average abundance was multiplied 

by 0.15 when Temp. was >25°C (p.val 4.38e-3), and by 0.010 when Temp. was <10.4°C 

(p.val <7.73e-5). A Sal. >36 was associated with the highest average abundance of A. 

tamarense/pacificum: the average abundance was multiplied by 0.25 when Sal. was <36 

compared with a Sal. >39.2, but no difference was shown when Sal. was comprised between 

36 and 39.2. Turb. did not significantly impact A. tamarense/pacificum abundance. It should 

be noted, before interpreting the logit part of the model, the coefficients were conversely 

related to the presence of the alga. In order to depict how the predictors affect the probability 

of presence of the alga, we choose to calculate OR (presence) = 1/(exp(coefficient)). This part 

of the model showed that the reference Temp. level was associated with the highest 

probability of presence of A. tamarense/pacificum. For instance, the odds of its presence were 

multiplied by 0.14 when the temperature was <10.4°C and by 0.15 when it was >25. The 

reference Sal. (over 39.2) led to the highest likelihood of the presence of A. 

tamarense/pacificum: the odds of the presence were multiplied by 0.21 when Sal. was <36 

and by 0.44 when it was between 36 and 39.2. Turb. was not associated with the presence of 

this alga. Overall, what emerged from the two parts of the models was that the conditions in 

which A. tamarense/pacificum usually reached higher abundances were generally the same as 

those in which the probability of finding it were the highest.  

Random effects were significant for both parts of the model (p.val of the Anovas describing 

random effects for the log and negative binomial parts were respectively 1.82e-7 and 4.88e-3) 

which indicated that a part of the variability in A. tamarense/pacificum’s presence and 

abundance was due to the location. The conditional Nakagawa R² was 0.402 whereas the 
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marginal Nakagawa R² was 0.206. The model thus described almost 40.2% of the data 

variability, with 19.6% (0.402-0.206) being explained by random effects. 

The study of residuals (Fig 6) showed no significant problem: the QQplot curve was straight, 

the Kolmogorov-Smirnov and Dispersion tests were not significant (respectively p.val: 0.36 

and 0.056). The graph of residuals against predicted values showed that residuals followed a 

uniform law (no particular shape was revealed) and the predicted quantile curves were aligned 

with the observed quantile curves. Five outliers were revealed by this graph, but did not 

invalidate the model (p.val of the outlier test: 0.088). No significant problems were detected 

through these graphics. 

4. Discussion and conclusion 

4.1. Discussion 

In this work, we developed an innovative approach to forecast the risk of HABs and shellfish 

contamination occurring in the marine environment. Our study was based on a solid long-term 

database integrating ten years of sanitary monitoring results. After having explored the data 

through exploratory bivariate analyses, we used two complementary methods, DTs and 

statistical ZINB models, in order to reveal the relationships between environmental 

parameters such as temperature and salinity, HABs and shellfish contamination. 

First, the exploratory bivariate analyses indicated an impact of temperature and salinity on 

HABs. These results were in accordance with several studies showing that temperature and 

salinity influence the occurrence of Alexandrium and Dinophysis blooms (Abdenadher et al. 

2012; Anderson and Keafer 1987; Gomis et al. 1996; Itakura et al. 2002; Ninčević Gladan et 

al. 2008; Swan et al. 2018). The correlation coefficients were medium to low, but were not 

expected to be much higher as they depicted the influence of only one variable on the HA 
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abundances variability. The exploratory analyses showed thus that temperature and salinity 

were to be adequate predictors in following multivariate analyses. 

By using decision trees, we determined the range of optimum temperature and salinity 

associated with high risks of blooms. The proportion of blooms with a salinity above 39.2 and 

temperature ranging between 10.4 and 21.5 for A. tamarense/pacificum, and when salinity 

was below 27.8 for Dinophysis spp. exceeded 50%, which could trigger safeguard measures 

of the reared shellfish. If the optimal ranges of temperature and salinity may appear wide, they 

only represent 9.7% and 3.1% of the data in Thau and Leucate, respectively, which has to do 

with the broad ranges of temperature and salinity in Mediterranean lagoons. The temperatures 

were congruent with previous observations showing that A. tamarense/pacificum blooms 

mainly occur from October to December and April to June but were rarely observed in 

summer and winter (Laabir et al. 2011, 2012). Laanaia (2013) highlighted that Alexandrium 

blooms occurred mainly during periods when salinity was below 39.3 from 2002 to 2006. 

Even though substantial risks could subsist outside the optimum ranges depicted by the DTs 

(11.9% risk of A. tamarense/pacificum bloom below 39.2), this study could thus reveal a 

change in  A. tamarense populations composition together with a variation in intra-species 

physiological constants in Thau over the past few years. Our work also showed positive 

correlations between toxins in bivalves and the HAs producing them, as well as with the 

environmental factors that impact these algae. The optimal temperature and salinity ranges 

associated with high risks of shellfish contamination by phycotoxins were congruent with the 

ranges increasing the risks of blooms. In Mediterranean lagoons, all referenced Dinophysis 

species were potentially toxic. Recently, qPCR analyses the Alexandrium species in Thau 

lagoon showed that the proportion of non-toxic Alexandrium species during a bloom were 

very low (Sectox project, Eric Abadie, unpublished data). This could explain the high 

correlations between algae and toxins. The correlation coefficients and the DTs showed that 
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relationships between phytoplankton and toxins were stronger in mussels than in oysters. 

Mussels are considered as sentinel organisms for lipophilic toxins as they are known to be 

contaminated more easily than the other bivalves (Levinton et al. 2002). However, a strong 

inter-individual variability in the accumulation of toxins has been documented in oysters 

(Pousse et al. 2018), meaning that sanitary risks remain substantial even in shellfish other than 

mussels. Together, our results suggested that the DT is a tool which can provide relevant 

information that will be useful in sanitary monitoring. 

Through linear regression, the model confirmed the DT results obtained with A. 

tamarense/pacificum and showed how abiotic factors influence either its presence or its cell 

abundance when present. The optimal set of parameters chosen by the CART algorithm was 

significantly associated with the maximum average abundance and odds of presence of the 

algae. Moreover, this model specified the sets of parameters more accurately by 

distinguishing significantly more levels of temperature and salinity than the DT. It also 

revealed that the optimal sets of parameters are similar for the presence of the microalgae and 

for their abundance when they were present: this could indicate that germination and 

proliferation occured in the same conditions (Temperature from 14.6 to 21.5°C and Salinity 

>39.2). Actually, from 2010 to 2020, most of the substantial blooms occurred within these 

conditions, as the bloom of October 2015 (820000 cells/mL) and October 2017 (35000 

cells/mL). Few other blooms occurred for slightly lower salinities, as in June 2011 (250000 

cells/mL; Salinity 36.6). This is however not in total contradiction with the model since the 

latter shows that, even though a salinity over 39.2 increases the risk of Alexandrium presence, 

its abundance when it’s present could be increased by a salinity over 36. This brings to light 

that, if this model shows conditions where risks are very important, it does not mean that 

blooms cannot occur outside them. The model predicting Dinophysis spp. abundance could 

not be validated due to overdispersion issues. In contrast to Alexandrium, Dinophysis feeds on 
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living preys and acquires its kleptochloroplasts originating from a cryptophyte through 

predation on the ciliate Mesodinium rubrum (Park et al. 2006; Reguera et al. 2012). Hence, its 

growth depends on the presence of cryptophyte preys and ciliates, which themselves depend 

on environmental factors like light intensity (Kim et al. 2008; González-Gil et al. 2010). The 

mixotrophic status of Dinophysis spp. and the influence of its predator make its dynamics 

more complex and difficult to integrate in a linear regression model. Further studies 

integrating more variables, abiotic as well as biotic, may allow to validate a model for 

Dinophysis spp. 

Several other environmental factors could have been integrated to increase the model’s 

performances regarding the mechanisms of blooms. Indeed, temperature and salinity changes 

may occur along with variations in other factors such as nutrients, water column conditions 

and residence time which can trigger or deplete blooms. In addition to the direct impact of 

temperature toward Alexandrium cyst germination (Anderson and Keafer 1987; Genovesi et 

al. 2009), this factor is likely to be related with water stability or turbulence. In this regard, 

winds seem to be a critical factor in lagoons by promoting turbulence and resuspension and 

decreasing temperature (Laanaia et al. 2013). As instance, an important bloom of 

Alexandrium occurred in 2004 for a salinity of 36.5 (outside the optimal salinities depicted by 

the DTs): this bloom was triggered by cysts germination resulting from water column 

agitation by strong winds, also inducing a drop in temperature (Laanaia et al. 2013). 

Moreover, salinity and temperature may be associated with nutrient availability as they can be 

linked with nitrogenous and phosphorous fluxes between compartments (organic and 

inorganic nutrients in water column, organisms and sediments) (Bougis 1974; Boynton and 

Kemp 1985; Grenz et al. 1992). Many studies showed that nutrient availability is positively 

associated with Dinophysis (Ajani et al., 2016) and Alexandrium growth (Collos et al., 2007; 

2009; Natsuike et al., 2018) and that a lack of nutrients could lead to sexuality, and thus to the 
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decline of blooms (Anderson and Lindquist 1985). Unfortunately, nutrient measurements by 

the REPHY network were not performed at the same time and stations than those of this 

work. Further studies including nutrient availability in water would allow to understand if 

temperature and salinity have an indirect impact on cells abundance as their variation occur 

along nutrients fluxes. Oxygen and light intensity are also known to influence Alexandrium 

proliferations (Anderson and Keafer 1987; Keafer et al. 1992; Ajani et al. 2016; Valbi et al. 

2019) and light increases toxin production by HA (Ogata et al. 1987). As nutrients, these 

factors were not measured during the period or sites considered here but could be integrated in 

further studies. We tried to integrate turbidity, although the linear regression showed no 

significant impact and it never ended up as a remaining variable in the pruned DTs. In the 

Mediterranean lagoons as in all aquatic ecosystems, turbidity can result from a large panel of 

environmental variations such as water turbulence (Baas et al. 2005) and surface winds (Arfi 

et al. 1993). These different factors could have various impacts on Alexandrium and 

Dinophysis distribution, which may explain why turbidity appears to be a bad predictor of the 

concentration of these species.  

The approach developed here provided robust, easily interpretable, reliable results. At first, 

the DTs highlighted the set of parameters in which blooms and shellfish contamination were 

the most likely to happen, and provided an estimation of the risk within these sets. The 

models statistically confirmed the set for A. tamarense/pacificum, specified it by providing 

narrower ranges, and linked them to the mechanisms of blooms. The robustness of the DTs 

was ensured by repeating each experiment 100 times and calculating average DTs on both 

learning and testing datasets, thus providing a very robust tool. The number of observations 

used for toxins DTs was quite low, but the sets of parameters for phytoplankton and toxins 

DTs were congruent which tends to validate the results. By validating the model’s predictions 

thanks to residuals graphs and to adequation, dispersion and outlier tests, this work confirmed 
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that temperature and salinity did have an impact on A. tamarense/pacificum’s presence and 

abundance. Moreover, including random effects in the model by grouping on the sampling 

sites allowed us to exclude the variability due to location, thus increasing its reliability.  

4.2. Conclusion 

This study is a first step in forecasting the risks due to HABs in French Mediterranean 

lagoons. Few variables were used, as they came from a network thought to trigger sanitary 

alerts based on few parameters. Models were set up for two lagoons, including Thau which is 

the fourth oyster farming area in France. They provided ranges of temperature and salinity 

triggering blooms, and these ranges could be linked to the mechanisms of blooms. The robust 

results could help stakeholders to manage the sanitary regulation of these lagoons in the future 

according to network measurements. The methods developed in this study could be used to 

investigate other data sets describing different ecosystems and integrating more biotic and 

abiotic variables, which could allow to increase the model’s performance. 
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Table 1 : Correlation coefficients between A. tamarense/pacificum, Dinophysis, diatoms, other dinoflagellates, 

abiotic factors (temperature, salinity and turbidity) and toxins in Thau and Leucate lagoons from 2010 to 2019.  

 

Temp.: Temperature; Sal.: Salinity; Turb.: Turbidity. Non-italics: Pearson coefficients. Italics: Spearman 

coefficients. Bold: p.val <0.05. Underlined: p.val < 0.01. Bold and underlined: p.val <0.001. Colorized in blue: 

Significant positive correlation coefficients. Colorized in red: Significant negative correlation coefficients. 

Paralytic Shellfish Toxins (PST); Okadaic acid (OA); Pectenotoxins (PTX); Dinophysis toxins (DTX); Toxins in 

the mussels (m); Toxins in the oysters (o). 

  

Thau lagoon 

 A. tamarense/ 

pacificum 

Diatoms Dinoflagellates Sal. Temp. Turb. 

A. tamarense/ 

pacificum 

 -0.01 

0.18 

0.05 

0.29 

0.04 

0.17 

0.02 

0.02 

0.04 

0.05 

PST 

(m) 
0.41 

0.17 

-0.11 

-0.23 

-0.2 

-0.05 
0.3 

0.33 

-0.18 

-0.38 

-0.14 

-0.31 

PST 

(o) 
0.58 

0.44 

-0.18 

-0.19 

-0.12 

-0.06 

0.27 

0.41 

0.04 

-0.04 

0.15 

-0.16 

Leucate lagoon 

 Dinophysis Diatoms Dinoflagellates Sal. Temp. Turb. 

Dinophysis  -0.01 

0.09 

-0.04 

0.08 

-0.21 

-0.22 

-0.23 

-0.31 

0.03 

0.15 

OA 

(m) 
0.45 

0.67 

-0.06 

-0.15 

-0.06 

-0.07 
-0.28 

-0.34 

-0.38 

-0.51 

0.08 

0.27 

OA+PTX+DTX 

(m) 
0.46 

0.66 

-0.06 

-0.15 

-0.06 

-0.08 
-0.28 

-0.35 

-0.39 

-0.51 

0.08 

0.27 

OA 

(o) 
0.5 

0.69 

-0.08 

-0.2 

-0.05 

-0.1 
-0.14 

-0.19 
-0.39 

-0.56 

0.13 

0.28 

OA+PTX+DTX 

(o) 
0.52 

0.69 

-0.08 

-0.22 

-0.06 

-0.13 

-0.12 

-0.17 
-0.38 

-0.56 

0.12 

0.28 



Table 2 : Zero inflated negative binomial model predicting A. tamarense/pacificum concentrations in Thau 

 Negative Binomial regression Logistic regression 

Term Coefficient IRR p.val Coefficient OR(presence) p.val 

Intercept 8.72 6.11e3 <2e-16 *** -0.65 1.92 0.060 

Temp. <10.4 -2.28 0.010 <7.73e-5 *** 1.93 0.14 1.60e-7 *** 

Temp. ϵ[10.4; 14.6[ -0.78 0.45 0.030 * 0.76 0.46 6.02e-3 ** 

Temp. ϵ[21.5; 25[ -1.76 0.17 3.45e-7 *** 1.15 0.31 2.03e-5 *** 

Temp. > 25 -1.92 0.15 4.38e-3 ** 1.90 0.15 2.66e-5 *** 

Sal. < 36 -1.38 0.25 4.85e-4 *** 1.53 0.21 7.45e-7 *** 

Sal. є [36; 39.2[ 0.22 0.81 0.49  0.81 0.44 1.47e-3 ** 

Turb. 0.13 1.13 0.13 -0.094 1.09 0.051 

 

The sampling site nested are as random effects. IRR: Incident Risk Ratio. OR: Odds Ratio. Temp.: Temperature. 

Sal.: Salinity. Turb.: Turbidity. 
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