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Abstract

After positioning a 1:20 scaled model of a three-bladed horizontal-axis turbine
in the wake of a wall-mounted cylinder, synchronized turbine performance and
flow measurements are carried out to investigate the relationship between the
incoming flow field and the turbine power fluctuations. The Linear Stochastic
Estimation (LSE) is used to predict the turbine output fluctuations from the
knowledge of the Large Scale flow Structures (LSS) embedded in the incoming
turbulent flow. LSS extraction by Fourier analysis or Proper Orthogonal De-
composition shows that LSS are responsible for the main unsteady variations
of the power fluctuations, especially their highest amplitudes. The RMS of tur-
bine output fluctuations are entirely due to the LSS. It is also demonstrated
that whatever the nature of the incoming turbulent flow is, the low frequency
filtering process coupled with the LSE method allows the recovering of at least
90% of the turbine power RMS. Furthermore, the low-frequency spectral content
of the turbine power fluctuations is very well predicted, especially the frequency
peaks. A preliminary LSE application is performed in order to predict the in-
stantaneous turbine output fluctuations at more than 85% confidence level, from
only three velocity signals measured in front of the turbine.

Keywords: turbine power fluctuations, Large Scale flow Structures, Stochastic
Estimation, Proper Orthogonal Decomposition, Fourier analysis

1. Introduction

To improve the energy extraction efficiency from tidal turbines and also the
prediction of energy production, it becomes essential to better assess the effect
of environmental flow conditions on the turbine response output. Indeed, to
limit the uncertainty in energy predictions, one has to identify how the nature5

of the incoming flow affects not only the turbine power generation, but also the
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blade structural fatigue and the operational life. Furthermore, the development
of mathematical tools to predict the energy power fluctuations is important to
future control the turbine parameters and then to reduce the fluctuating elec-
trical power feed into the grid.10

The effect of flow perturbations, due to small and large scale flow structures
(length scales) and to different turbulence intensity, has already been reported
and studied (Blackmore et al., 2016; Ouro and Stoesser, 2019; Gaurier et al.,
2020a; Allmark et al., 2020; Thiébaut et al., 2020). Tidal turbines in a farm
can be also submitted to wake effect, constituting an additional source of in-15

stability (Ebdon et al., 2020; Slama et al., 2021). Even if marine currents are
more predictable, tidal turbines meet the same problem as wind turbine but
it is accentuated by the proximity of the free surface and the seabed, both of
which present high variability due to the wave and bathymetry variations (Ad-
cock et al., 2020).20

Previous studies (Durán Medina et al., 2017; Gaurier et al., 2020a; Gao et al.,
2020) show that, when regarding the turbine output response under turbulent
flow conditions, the turbine power and thrust signals are well correlated to in-
flow conditions. Thus, the link between organized large scale flow structures
and turbine outputs has been assessed through statistical analyses based on25

temporal correlations (Gaurier et al., 2020b). Temporal correlation analyses
between incoming turbulence and blade structural responses also shown that
blade structural response varies as a function of the flow length-scales (Gao
et al., 2020). Recent work has also shown how the large dominant turbulent
scales of incoming flow affect the spectral characteristics of turbine power, i.e,30

determining the level and trend of the turbine power spectrum (Ahmadi and
Yang, 2021). From all those studies, it is now well admitted that in the spectral
domain the turbine power exhibit three main contributions: i) a low-frequency
large-scale flow structure signatures, ii) frequency peaks associated with the
turbine rotor frequency (fr) and with the blade passing frequency (3 × fr) iii)35

the small-scale background turbulence signature which leads to a −11/3 power
decay in the high frequency domain (Druault et al., 2022).
As recently outlined by Adcock et al. (2020), the characterization of the un-
steady turbulent flow loading of turbine blades and its prediction remain a key
problem. Even if the origin of the turbine power variability is generally due to40

the large scale flow structures present in turbulent flows, understanding the re-
lationship between incoming flow variations and turbine power ones is required.
Moreover, even if some methods exist to calculate the power production fluctu-
ations especially in wind industry (Pinson and Madsen, 2012; Lu et al., 2021),
the development of new mathematical post-processing tools for predicting the45

instantaneous turbine power fluctuations is of interest to improve the turbine
operation, especially for predicting the blade structural fatigue of the turbine.
The purpose of this study is to reconstruct (and to predict) the turbine output
fluctuations from the knowledge of the incoming velocity and to quantify how
the dynamic of large-scale dominant flow structures present in high Reynolds50

number turbulent flow are responsible for the turbine power fluctuations. To
this aim, we study how Large Scale flow Structures (LSS) generated in the wake
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of a wall-mounted cylinder (Ikhennicheu et al., 2019a) impact the behaviour of
a 1 : 20 scaled model of a three-bladed horizontal-axis turbine. Synchronous
measurements of the incoming velocity field and turbine thrust and torque are55

carried out at different turbine locations in the wake of the cylinder in order to
establish the link between the velocity fluctuations and the turbine behaviour.
From these results, we will propose a process to reconstruct both turbine thrust
and power signals with the aim of quantifying the effect of LSS onto i) the
instantaneous turbine output fluctuations, ii) the Root Mean Square of these60

fluctuations and iii) the spectral content of the turbine output fluctuations.
After detailing the experimental set-up, mathematical post-processing tools

implemented in this work are described in section 3. These tools rely on a
judicious coupling between Linear Stochastic Estimation and Fourier analysis
or Proper Orthogonal Decomposition. Both of these last methods are used to65

extract the large scale flow structure embedded in the turbulent flow. Then the
turbine thrust and power signals are reconstructed from the knowledge of the
large scale flow structures and the linkage between both quantities are discussed
in section 4. The last part is devoted to the reconstruction of turbine output
fluctuations from a very limited number of velocity signals allowing a new way70

for the control of the fluctuations of the energy generation process.

2. Experimental database

In this section we briefly recall the experimental set-up as well as the avail-
able measurements. These have been extensively detailed in several previous
papers (Ikhennicheu et al., 2019b; Gaurier et al., 2020a,b; Druault et al., 2022).75

In the wave and current circulating flume tank of IFREMER with a test section
of 18 m long × 4 m wide × 2 m deep, an uniform steady incoming flow (U∞, V∞,
W∞) is generated with a low turbulence intensity of I∞ = 1.5%. This incoming
flow interacts with a wall bottom-mounted cylinder which is considered to re-
produce a specific bathymetry. The height of the square wall-mounted cylinder80

is of H = 0.25 m and its length is of 6H. It is scaled to real sea conditions of a
tidal site (Ikhennicheu et al., 2019b). The Froude similitude is respected with
F = U∞/(gD) = 0.23 with g the gravity and D the tank depth. In the wake
of this cylinder, a single 1/20 scaled tri-bladed horizontal axis tidal turbine is
successively positioned at four streamwise locations: x∗ = x/H = [4; 10; 16; 23]85

(figure 1). The instrumented scale turbine has a diameter D = 2R = 0.72 m
and is positioned at mid-depth in the tank. In each test case, the nominal Tip
Speed Ratio at TSR = ωR/U∞ = 4, with ω the rotational frequency, is imposed
(Magnier et al., 2020).
For each of the four turbine positions a same experiment is conducted where90

the velocity field and the turbine thrust and power are measured simultane-
ously. Thrust T and rotor torque Q experienced by the rotor are measured by
a torque and thrust transducer without friction effect (the instrumentation is
located upstream of the shaft seal) (Gaurier et al., 2015; Druault et al., 2022).
Recall that the turbine power is determined as follows: P = ωQ. Instanta-95

neous velocity vector fields in a vertical plane in front of the turbine are ob-
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tained thanks to Particle Image Velocimetry (PIV) (figure 1) measurements.
The three instantaneous velocity components are denoted (U, V,W ) along the
(x, y, z) directions respectively. Only one vertical PIV measurement plane lo-
cated just in front of the operating turbine is considered. For each location, the100

plane is centered vertically at the hub height and ends horizontally at the blade
root. It is discretized on 330 × 840 pixels2, corresponding to a physical mesh-
grid of (Nx ×Nz) = (30× 74) with a spatial discretization of 11.2mm. Velocity
and Thrust-Torque measurements are synchronized with a same time duration,
T = 180s with a sampling frequency of fPIV = 15Hz and fT = 120Hz respec-105

tively. Such time duration (Nt = 2700 instants) corresponds to 40 large eddy
turnover times, assuring the statistical convergence of the data (Ikhennicheu
et al., 2019b).

Due to shadowing effect in the measurement plane, the instantaneous ve-
locity field extracted along a vertical line (Nz points) at the x-centered plane110

position is only retained for the next analyses.
In this paper, the following fluctuating variables are used: u′, T ′ and P ′

corresponding to the streamwise velocity component, the turbine thrust and
the turbine power respectively. These fluctuating variables are directly deduced
from the classical Reynolds decomposition.115

3. Mathematical Post-Processing: Stochastic Estimation coupled with
FFT or POD filtering methods

After recalling the theoretical linkage between fluctuating velocity field and
the turbine variables, the Linear Stochastic Estimation (LSE) is presented.
Then, the LSE method is coupled with Fourier or Proper Orthogonal Decom-120

position (POD) demonstrating how the turbine thrust and power can be recon-
structed from the knowledge of large scale coherent structures.

3.1. Relationship between turbine thrust-power and inflow velocity fluctuations

Following previous developments Bossuyt et al. (2017); Bandi (2017); Dru-
ault et al. (2022), the instantaneous turbine performance-related parameters125

based on the disk average reference velocity field are linearly dependent on the
instantaneous velocity field. More precisely, assuming that the inflow velocity
fields is available in a grid mesh of N points, sweeping the rotor area, the instan-
taneous fluctuating performance-related parameters can be expressed as follows
(after neglecting high order terms (Bossuyt et al., 2017; Druault et al., 2022)):130

T ′(t) ' K1

N∑
i=1

u′(t, i) and P ′(t) ' K2

N∑
i=1

u′(t, i) (1)

where (K1,K2) are two real constants depending of (CT ,U
2
) and (CP ,U

3
) re-

spectively. CP and CT are the power and thrust coefficients respectively, which
are supposed to be constant, and U is the mean streamwise velocity compo-
nent over the rotor area. Note that only the streamwise velocity component is
retained as it usually dominates the other velocity components.135
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Figure 1: Top: Experimental set-up including the wall-mounted cylinder, the horizontal-axis
turbine model and the PIV laser sheet in front of the rotor (this picture corresponds to the
turbine position x∗ = 16). Middle: Turbine and PIV vertical measurement plane locations.
Bottom: Illustration of an instantaneous velocity vector measurement and the location of the
vertical line under consideration.

As a linear relationship exists between performance-related parameters and
incoming fluctuating velocity fields, the purpose of the following analysis is then
to propose a method allowing the reconstruction of these turbine parameters
thanks only to the knowledge of the fluctuating velocity field at few selected
locations.140

3.2. Linear Stochastic Estimation (LSE)

Mathematically, the Stochastic Estimation (SE) method provides an approx-
imation (or estimation) of a random variable in terms of some other random
variables which are known. Historically, the application of stochastic estimation
to turbulent flow relies on a reconstruction of the conditional average of the field145
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based on the knowledge of several measurements signals (Adrian, 1988). Briefly,
the estimation uses a specified conditional event about the flow at one or more
locations together with its statistical properties to estimate the information at
surrounding locations, allowing the reconstruction of the large scale flow struc-
tures embedded in a turbulent flow (Adrian, 1988; Druault et al., 2005; Murray150

and Ukeiley, 2007). Previous applications proposed to estimate a flow variable
from the knowledge of the same flow variable. However, SE can also be used
to estimate a flow variable from a conditional event which is associated with
another flow variable (Picard and Delville, 2000; Druault et al., 2010; Durgesh
and Naughton, 2010; Druault et al., 2011).155

In the present work, as fluctuating performance-related parameters are linearly
dependent on the fluctuating velocity field, stochastic estimation can be used
to reconstruct these parameters from the knowledge of the velocity field. The
mathematical development is detailed below for the turbine power reconstruc-
tion. A similar procedure for the turbine thrust reconstruction can be followed.160

Assuming that velocity measurements are available at Nz points, equation 1
leads to:

P ′rec(t) =

Nz∑
iz=1

A(iz)u′(t, iz) (2)

The time-independent coefficient A is determined by minimizing the quadratic
error

〈
|P ′rec − P ′|2

〉
. This yields the following system of equations:

u′(iz)u′(iz)A(iz) = u′(iz)P ′ (3)

An overbar indicates the time average operation. This system can be symboli-165

cally written in the matrix form, RuuA = RuP , where RuP is the matrix of the
velocity-turbine power correlation between u′(iz, t) and P ′(t) respectively and
Ruu is the matrix of auto-correlations. As this last matrix is inversible, matrix
coefficient A is thus solution of the matrix system:

A = R−1uuRuP (4)

The LSE implementation requires the knowledge of the covariance matrix be-170

tween the conditional events (here the fluctuating velocity field measured at
selected reference points) as well as the covariance matrix between the condi-
tional events and the turbine power, the variable to estimate.

3.3. Coherent structure extraction: Fourier or POD analysis

As an objective is to reconstruct the turbine performance parameters due to175

the large scale flow structures, one has to first consider a triple decomposition
of the instantaneous velocity field, u(z, t): the time averaged part (u(z)) and
the fluctuating contribution (u′(z, t)) which is decomposed into a coherent part
and an incoherent part:

u(z, t) = u(z) + u′(z, t) = u+ ũ(z, t) + u′′(z, t) (5)
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The coherent part ũ corresponds to the coherent flow structures (denoted LSS180

for Large Scale flow Structures) and the incoherent one u′′ is related to Back-
ground Turbulence (BT). There are multiple approaches for separating the large
scale organized flow structures and its background turbulent counterpart. In the
present study, to isolate the flow structures, two methods are implemented: the
Fourier analysis denoted FFT (Fast Fourier Transform) and the Proper Orthog-185

onal Decomposition (POD).

When dealing with FFT method, the aim of the decomposition is to extract
the periodic contributions associated with LSS. In this context, the Large Scale
flow Structures are parametrized by the frequency domain under interest and190

filtered thanks to FFT application. As turbulent flow structures are of low
frequency content, then a low-pass filter in frequency domain is applied. The
frequency cut-off is denoted fc. At each z location, the filtered fluctuating ve-
locity field is then obtained by following these steps: i) compute the FFT of
the fluctuating velocity field, ii) put to zero value the FFT result for frequen-195

cies higher than fc and iii) perform an inverse Fourier Transform to recover the
filtered velocity field, denoted ũFFT . To control the abruptness of the low-pass
window, an exponential-law decreasing is used without noticeable differences on
the filtered results presented below, compared to a Heaviside low-pass filter.

200

In the other hand, the purpose of POD application is to isolate the energetic
flow structures. POD is a mathematical post-processing tool leading to a linear
decomposition of the velocity field. As this POD technique is based on an op-
timal energetic decomposition, the first POD modes are associated with these
energetic flow structures. This contribution will be denoted ũPOD. Briefly, the205

POD method which is a powerful method of data analysis, has been introduced
in turbulence by Lumley (Lumley, 1967) to extract the large scale energetic flow
structures from turbulent flows. It consists in finding among a set of realizations
of the flow field, the realization which maximizes the mean square energy that
leads to resolve the Fredholm integral eigenvalue problem210 ∫

S

Ruu(z, z′)φ(n)(z′, t)dz
′

= λ(n)φ(n)(z, t), (6)

where Ruu(z, z′) is the time averaged two-point spatial correlation tensor, S is
the spatial domain and z denotes the spatial coordinate. φ(n) corresponds to the
nth eigenfunction (or mode) of the correlation tensor and λ(n) is the associated
eigenvalue and corresponds to the turbulent kinetic energy contained in mode
number n, if all the velocity components are considered. The eigenfunctions215

of this correlation tensor are mutually orthogonal by construction and they are
usually chosen to be orthonormal:∫

S

φ(n)(z)φ(m)(z)dz = δnm, (7)

with δ the Kronecker symbol. The projection of the velocity field (fluctuating
random function) onto φ(n) gives the projection coefficients, b(n)(t), which are
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uncorrelated: b(n)(t)b(m)(t) = δnmλ
(n). The velocity component u′ can be then220

exactly represented by a linear combination of deterministic mutually orthonor-
mal modes weighted by these random coefficients:

u′(z, t) =

Nmod∑
n=1

b(n)(t)φ(n)(z), (8)

where Nmod is the number of the total POD mode number. It corresponds to
the rank of the kernel, the correlation tensor. In the present study, the classic
POD is considered: Nmod = Nz as Nt > Nz.225

Using equation 8, the extraction of the LSS contribution is done by truncated
the first Nm modes and the background incoherent turbulence by the POD mode
remainder

ũPOD(z, t) =

Nm∑
n=1

b(n)(t)φ(n)(z) and u′′POD(z, t) =

Nmod∑
n=Nm+1

b(n)(t)φ(n)(z) (9)

The choice of Nm separating background turbulence to coherent flow structures
is still a debate in the turbulence community. In the following, the selection of230

Nm will be done from an energetic criterion.

3.4. Complementary technique: LSE coupled with Fourier or POD method

The purpose of the complementary technique is to extract the large-scale
flow contribution from the turbulent flow and to use it as conditional event to
reconstruct the variable to estimate. The LSE/POD complementary technique235

has been already applied to estimate and predict the behavior of energetic flow
structures (Bonnet et al., 1994; Durgesh and Naughton, 2010; Druault et al.,
2011). Based on previous developments (equations 2, 5), the instantaneous
turbine power fluctuations conditioned by the Large Scale flow Structures are
then estimated as follows:240

P̃ (t) =

Nz∑
iz=1

A(iz)ũmethod(z, t) with method=FFT or POD (10)

and the turbine power associated with Background Turbulence (BT):

P
′′
(t) =

Nz∑
iz=1

A(iz)u′′method(z, t) with method=FFT or POD (11)

By comparing with the power signals measured experimentally, it will be possi-
ble to quantify the flow field contribution which governs the main power varia-
tions.
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3.5. Remarks245

First, in previous sub-sections, the common LSE approach is derived where
a zero time lag is considered between both quantities: velocity field and turbine
power. To improve the reconstruction of the turbine power, the time-delay must
be taken into account (Durgesh and Naughton, 2010). Consequently, before
calculating the spatial correlation between u′ and P ′, the optimal time-lag (τ)250

between both quantities must be estimated. The time-independent coefficient
A will be then determined from the spatial correlation RuP computed from
u′(iz, t+ τ) and P ′(t) and the resulted LSE equation becomes:

P ′rec(t) =

Nz∑
iz=1

A(iz)u′(t+ τ, iz) (12)

When reconstructing the turbine power from only the Large Scale flow Struc-
tures (equation 10), the computation of the spatial correlation RuP can be done255

from two possibilities: either from reference velocity field u′(iz, t+ τ) and P ′(t)
or from Large Scale flow Structures velocity field ũmethod(iz, t + τ) and P ′(t).
In the following, the matrix A is always determined from the spatial correlation
RuP computed from the reference velocity field u′(iz, t + τ) and P ′(t). This
solution is more adapted for a future turbine control strategy. Indeed, one of260

the most attractive features of the stochastic estimation is that the majority
of the data processing is performed only once, independently of the conditions
being investigated.

4. Analysis of synchronous velocity and thrust-torque measurements

First the incoming turbulent wake-cylinder flow is analyzed with an em-265

phasis of the Large Scale flow Structure characterization. Second, the turbine
output measurements are commented as a function of the turbine location in
the cylinder wake. Then, preliminary statistical analyses between incoming flow
and turbine-performance parameters are presented.

4.1. Characterization of the incoming velocity field270

Figure 2 displays the mean streamwise velocity component obtained from
previous PIV measurements (Ikhennicheu et al., 2019a; Druault et al., 2022).
This picture shows the horizontal and vertical spatial development of the cylin-
der wake. Purple lines indicate the 4 turbine locations (x∗ = x/H = [4; 10; 16; 23])
in the experiments detailed above. The black line shows the position of the275

U = 0.9U∞ border. It is then observed that the first turbine position (x∗ = 4) is
located in a uniform flow field with a slight flow acceleration area at the bottom
of the turbine. Conversely, the three other turbine positions, x∗ = [10; 16; 23]
are in the cylinder wake flow where a vertical shear velocity profile is present.
Figure 3 presents the mean streamwise velocity component and its associated280

Root Mean Square (RMS)
√
u′2, along the vertical line in front of each turbine

location. The induction mechanism is clearly highlighted. The shear velocity
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profiles are noticeably modified by the presence of the turbine at its nominal
functioning point. The blockage effect due to the hub is also clearly visible,
especially at x∗ = 4 when the incoming flow is quasi uniform along the vertical285

direction, in absence of the turbine. The most important shear flow modifica-
tions are observed in the lower part of the turbine (z∗ < 4) due to the presence
of different velocity shear profiles along the x direction (figure 2). The turbu-
lence activity, u′2 is also mainly concentrated in this lower part as the flow is
more uniform in the upper part of the turbine (figure 3-right).290

Figure 2: Mean streamwise velocity component in the symmetrical y = 0 plane. Black line
indicates the location where U = 0.9U∞. Purple lines indicate the locations of the turbine:
x∗ = 4, 10, 16 and 23.

Figure 3: Mean streamwise velocity component (left hand side) and associated Root Mean
Square (right hand side) along the z vertical direction in front of the turbine for the 4 config-
urations: x∗ = 4, 10, 16 and 23.

The velocity spectral content is presented in figure 4. The velocity signal
is extracted at three selected locations: (z∗1 , z

∗
2 , z
∗
3) = (3, 4, 5) for each of the

four configurations. The spectral content differs as a function of the streamwise
positions. The amplitude of the velocity spectra in the x∗ = 4 section is quite
smaller than the one in the other streamwise sections, especially in the lower295

part of the rotor swept area, (z∗1 , z
∗
2). Furthermore, at x∗ = 4, the velocity

field does not exhibit any frequency peak whatever the z location is, as the flow
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is mainly uniform in this area and no large scale flow structures emerge. Far
downstream, the frequency signature of the large scale energetic flow structures
is clearly indicated in the lower part of the rotor swept area while at z∗3 the300

frequency peak is less pronounced. This confirms previous analyses in similar
flow configurations (Ikhennicheu et al., 2019a; Druault et al., 2022) where low-
frequency large-scale structures are rising in the far wake. An interesting feature
is the small frequency peak observed around f = 5.4Hz corresponding to the
blade passing frequency (3× fr).305

To extract periodic flow structures a low pass filter can be applied in the spectral
domain by cancelling spectral for frequencies higher than fc. In the following,
fc = 1Hz is chosen. This value is retained because it is at least twice smaller than
the integral time-scales which are superior to 2Hz in each streamwise section
(Druault et al., 2022).310

Section x∗ = 4 Section x∗ = 10

Section x∗ = 16 Section x∗ = 23

Figure 4: Velocity spectra û(f, z∗i ) with z∗1 = 3, z∗2 = 4 and z∗3 = 5 computed in front of the
turbine for the 4 configurations. Vertical dotted-line indicates the cut-off frequency choices:
fc = 1Hz.

Moreover, to extract energetic dominant large scale flow structures from PIV
measurements, the POD is used to decompose instantaneous streamwise velocity
fluctuating component available along vertical z-line for each available velocity
database: u′(z, t) =

∑Nmod

n=1 b(n)(t)φ(n)(z) with Nmod = 74. Figure 5 represents
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the energy distribution
∑N

n=1 λ
(n)/

∑Nmod

i=1 λ(i) as well as the cumulative sum315

λ(N)/
∑Nmod

i=1 , computed in each of the four velocity database. As expected,
the POD energy content of the velocity field measured in front of the turbine
located at x∗ = 4 is seen to be very distributed over a wide range of POD
modes. This confirms that no energetic flow structures emerge in this section
as the flow is mainly uniform with a low energy content (see figure 3). In the320

three other streamwise sections, the first POD mode contains more than 60% of
the total energy emphasizing that large scale energetic structures are present.
Thus, in sections x∗ = 10 and x∗ = 16, 8 POD modes represent more than 90%
of the total energy while in section x∗ = 23, 11 POD modes are necessary to
recover at least 90%. This last result shows that far upstream, the wake flow is325

less organized with more background turbulence.∑N

n=1
λ(n)/

∑Nmod

i=1
λ(i) λ(N)/

∑Nmod

i=1

∑N

n=1
λ(n)/

∑Nmod

i=1
λ(i) λ(N)/

∑Nmod

i=1

Section x∗ = 4 Section x∗ = 10

Section x∗ = 16 Section x∗ = 23

Figure 5: POD energy distribution and the cumulative sum of the first 50 modes out of the
Nz = 74 modes for the 4 test configurations: x∗ = 4 (Top-left), x∗ = 10 (Top-right), x∗ = 16
(bottom-left), x∗ = 23 (bottom-right).

An illustration of the extraction of the large scale structures is provided in
figure 6, for the streamwise location, at x∗ = 16. The instantaneous fluctuating
reference streamwise velocity component is projected onto the first 8 POD modes
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corresponding to 90% of the total energy (Nm90):330

ũPOD(z, t) =

Nm%∑
n=1

b(n)(t)φ(n)(z) (13)

The same reference velocity field filtered with FFT analysis using fc = 1Hz is
also represented for comparison. To better understand where the small discrep-
ancies arise, the difference of both filtered velocity fields relative to the reference
case is also represented in figure 6. The dominant flow structures identified with
the vertical sign change in the fluctuating streamwise velocity component, are335

clearly extracted from each method, mainly in the lower part of the z domain,
z∗ < 4.

Figure 6: x∗ = 16 location. Top to bottom: a) reference fluctuating streamwise velocity
component, b) and c) projection onto the first Nm90 POD modes and its difference from the
reference velocity field, d) and e) FFT filtered velocity field using fc = 1Hz and its difference
from the reference velocity field. X-axis is limited to 100s to better observe the differences.

The energetic content of the reconstructed velocity fields is provided in figure
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7 (right). Whatever the z-locations a similar energy deficit is observed for
ũPOD(z, t) using Nm90 .340

The associated spectral content is displayed in figure 7 (left). The spectra of
ũFFT is exactly similar to the reference one until the cut-off frequency (not
represented). Similarly, the spectra of ũPOD is in a very good agreement with
the reference one in the low frequency domain, especially in presence of LSS
(z = z1). It is interesting to observe that the low frequency peaks of ũPOD are345

more pronounced than the ones of reference data and blade passage frequency
peak (f = 5.4Hz) is also more present compared to the reference velocity field.
The low energetic content for z∗ > 4.5 is confirmed even if the low frequency
peak is more pronounced.

Figure 7: Left: Reference velocity spectra û(f, z∗i ) with z∗1 = 3, z∗2 = 4 and z∗3 = 5 computed
at x∗ = 16 superimposed onto spectra computed from ũPOD(z, t) using Nm90 . Vertical
dotted-line indicates the cut-off frequency, fc = 1Hz. Right: Root Mean Square along the z
vertical direction at x∗ = 16 superimposed onto the RMS computed from ũPOD(z, t) using
Nm = 8 and from ũFFT (z, t) using fc = 1Hz.

4.2. Turbine thrust and power measurements350

The mean turbine-performance parameters (thrust and power) are indicated
in table 1. The thrust and power mean values are directly linked to the mean
streamwise velocity values (Bossuyt et al., 2017; Bandi, 2017; Druault et al.,
2022). Indeed, the maximum values are obtained when the turbine is positioned
in section x∗ = 4 when the mean values are around 20% higher than those in355

the far wake streamwise sections where the speed of the flow is reduced leading
to smaller turbine-performance parameters mean values. The highest values
of turbine thrust and power variations are observed in the far wake positions
(x∗ = 16 and x∗ = 22) where the turbulent velocity intensity increases (see
figure 3). This confirms that high levels of incoming turbulence intensity lead360

to an increase of the turbine-performance variations (Ebdon et al., 2020). These
preliminary measurements emphasize that the nature of the flow impacting a
single turbine can greatly modifies the turbine power fluctuations. Thus, by just
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x∗ T (N) σT (N) σT /T P (W) σP (W) σP /P
4 211.7 4.3 0.02 105.86 4.42 0.04
10 194.1 9.5 0.05 89.60 8.05 0.09
16 178.0 19.1 0.11 77.20 13.05 0.17
23 174.1 18.8 0.11 73.45 13.48 0.18

Table 1: Mean and Root Mean Square, σT of the turbine thrust and power.

modifying the turbine position in the wall-mounted cylinder wake, the mean and
RMS turbine performances vary notably from 4% to 18%.365

Figure 11 represents the thrust spectra (black line) for each flow configuration.
When comparing these spectra to those of incoming velocity field (figure 4)
similar characteristics are seen for frequencies f < 1Hz. Above these frequencies,
the frequency peak associated with the blade frequency passage 3× fp = 5.4Hz370

is well exhibited in the thrust spectra like in previous works (Chamorro et al.,
2015). In the inertial frequency range, the spectra follows a power law decay of
−11/3, as discussed previously (Druault et al., 2022).

4.3. Temporal correlation between incoming velocity and turbine performance

To study the coupling between turbine-parameters and incoming turbulent375

flow, a direct temporal-correlation between instantaneous fluctuating stream-
wise velocity component u′(z, t) and instantaneous turbine thrust force T ′(t)
(or turbine power P ′(t)) is computed:

RuT (z, τ) =
u′(z, t)T ′(t+ τ)

σ(u′)σ(T ′)
and RuP (z, τ) =

u′(z, t)P ′(t+ τ)

σ(u′)σ(P ′)
(14)

where τ is the time lag and σ the RMS value. Figure 8 shows the resulted
RuT (z, τ) for the four configurations. Quasi-similar results (not shown) are380

obtained for RuP (z, τ).
Higher levels of temporal correlation are observed for z∗ < 4 that corresponds

to the area where large scale flow structures impact the turbine. At x∗ = 4, no
clear correlations between PIV measurements and turbine thrust are present. It
is directly related to the low energetic uniform flow in this streamwise section.385

The other temporal correlation isosurfaces (x∗ ≥ 10) show that large scale flow
structures detected along the vertical line are of 2D nature and are very well
correlated to the turbine performance parameters, even if only vertical line-
measurements are available.

In each flow configuration, the maximum temporal correlation is obtained390

for τ = 0.27s, corresponding to the flow convection effect.

5. Stochastic estimation of turbine performance fluctuations

Based on previous developments, LSE is implemented to reconstruct the
turbine-performance parameters for each of the four experimental configura-
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Section x∗ = 4 Section x∗ = 10
z∗ z∗

Section x∗ = 16 Section x∗ = 23
z∗ z∗

Figure 8: Time delay (τ (s) x-axis) of the normalized correlation of the incoming streamwise
velocity component with the turbine thrust, for the 4 configurations.

tions. First, instantaneous raw PIV velocity field measured at Nz = 74 po-395

sitions are used as conditional events to reconstruct the turbine parameters.
Second, the turbine thrust and power are reconstructed using as conditional
event, the Large Scale flow Structures (LSS) extracted thanks to FFT or POD
method. At last, three comparative analyses are successively done to investigate
the reconstructed parameters: instantaneous, energetic and spectral analyses.400

5.1. LSE reconstruction from instantaneous raw PIV database

In each flow configuration, the following procedure is done:

1. Temporal correlation between simultaneous PIV velocity field and turbine
measurements are first estimated by considering the optimal time delay,
τ = 0.27s (convection effect),405

2. Calculation of the time-independent temporal coefficients (equation 4),
3. Reconstruction of the fluctuating turbine thrust and power by using avail-

able instantaneous PIV streamwise velocity components at the Nz = 74
points, taking into account the convection effect (equation 12).
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Figures 9 and 10 represent the instantaneous turbine thrust and power tem-410

poral signals reconstructed for each turbine location. These signals are superim-
posed onto the associated reference measured signals. First, these plots reveal
the effect of the flow nature on the performance of the turbine. As stated pre-
viously (see table 1), the variabilities of turbine thrust and power generation
increase as the flow variations increase. The Large Scale Structure passage is415

clearly indicated thanks to a great increase of the turbine thrust and power fluc-
tuations. Based on these graphs, it is observed that LSE reconstructed signals
are quite very well correlated to the reference signal even if only 74 instanta-
neous velocity fields along a vertical line are used as conditional event. This
result remains true whatever the level of the flow variations. Indeed, the small420

instantaneous variations due to the low flow energy content at x∗ = 4 as well
as the highly ones due to the large scale flow structure passage are very well
reproduced thanks to the LSE reconstruction procedure. This emphasizes that
the turbulent flow in front of the rotor area, impacting the turbine is very cor-
related to the PIV turbulent field measurements along the vertical centered line425

only.
The correlations calculated between the measured turbine thrust signal and the
LSE reconstructed one are the following ones: 0.81, 0.78, 0.91, 0.92 for the
turbine location x∗ = 4, 10, 16 and 23 respectively. This correlation is higher
at the two last locations due to the presence of 2D organized large scale flow430

structures that have been very well captured by PIV measurements.
Note that turbine thrust and power have a very similar temporal correla-

tion with incoming streamwise velocity component (see §4.3) and also a similar
expression (see equation 1). Only results from reconstructed thrust are then
presented in the following and similar conclusions are obtained for the power435

generation fluctuations.
The spectral content of the LSE reconstructed force signals, T̂rec, from a FFT

analysis is presented in figure 11 (red lines). The low frequency content of the
thrust spectra is very well predicted in the reconstructed signals, especially when
this low frequency content is directly linked to the Large Scale flow Structures440

(at x∗ = 16 and x∗ = 23). The frequency peak arising from the blade passage
(f = 5.4Hz) is not marked in the reconstructed signal as it was very poorly
marked in velocity spectra (see figure 4).

Table 2 indicates the root mean square ratio between reconstructed signals
and reference ones, σT̃rec

/σTref
. At sections x∗ = 4 and x∗ = 10, around 80%445

of the RMS is recovered while upstream (at x∗ = 16 and x∗ = 23) more than
90% is recovered. These differences are directly related to the nature of the flow
where more 2D organized flow structures are present in the far cylinder wake.

Previous analyses demonstrate that from selected velocity measurements
points (here Nz = 74), Linear Stochastic Estimation allows the reconstruction450

of the turbine thrust and power signals having very similar properties with the
reference measured ones, not only from a statistical point of view (RMS and
spectral content) but also instantaneously. These preliminary results allow then
the analysis of the contribution of the flow that mainly contributes to the turbine
performance fluctuations.455
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T ′(t)

T ′(t)

T ′(t)

Figure 9: Time evolution of the instantaneous LSE reconstructed turbine thrust signals su-
perimposed onto the reference power and thrust measurements (black line) for the 4 configu-
rations: from top to bottom: x∗ = 4, 10, 16 and 23. X-axis is voluntary limited to [10 : 100]s.

5.2. Reconstruction of the turbine performance from filtered velocity field

As detailed above, instantaneous streamwise velocity field is filtered in the
spectral domain using the cut-off frequency fc = 1Hz. The low frequency filtered
part of the flow field, ũFFT (z, t) corresponds to the low-frequency periodical
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P ′(t)

P ′(t)

P ′(t)

P ′(t)

Figure 10: Time evolution of the instantaneous LSE reconstructed turbine power signals
superimposed onto the reference power and thrust measurements (black line) for the 4 config-
urations: from top to bottom: x∗ = 4, 10, 16 and 23. X-axis is voluntary limited to [10 : 100]s.

LSS. In a similar way, energetic LSS are extracted thanks to POD application460

using Nm = 8 (Nm = 11 at x∗ = 23) representing 90% of the kinetic energy.
Then, Linear Stochastic Estimation is now implemented to reconstruct the tur-
bine performance parameters from the knowledge of Large Scale flow Structures
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Section x∗ = 4 Section x∗ = 10

T̂ (f) T̂ (f)

Section x∗ = 16 Section x∗ = 23

T̂ (f) T̂ (f)

Figure 11: Spectra of the LSE reconstructed turbine thrust (red line) superimposed on the
reference thrust spectra (black line), for the 4 configurations.

(LSS) extracted from FFT or POD, ũFFT (z, t) or ũPOD(z, t). The associated
incoherent counterpart (denoted BT-Background Turbulence, u

′′
) of the turbu-465

lent flow field is also used as conditional event to reconstruct these parameters.
By comparing these results to those presented in the previous section taking
into account the whole available velocity information in the LSE reconstruction
process, it is then possible to quantify the effect of the filtered velocity field
(LSS) on the properties of the turbine power fluctuations.470

Figure 12 and 13 display the time evolution of the reconstructed turbine thrust
superimposed onto the reference one (black line), for each of the 4 turbine x-
positions. The signals reconstructed from the LSS and BT contributions are
represented by red and blue lines respectively. When LSS part is used as con-475

ditional event, the thrust signal is very well predicted, especially the highest
amplitudes. Indeed, the instantaneous variations of turbine output signal are
always retrieved in each case. This confirms that the highest load variations are
due to the LSS events, whatever the LSS extraction method (Fourier or POD).
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Filter x∗ = 4 x∗ = 10 x∗ = 16 x∗ = 22
No σTrec/σTref

0.80 0.79 0.91 0.92

FFT: f < fc = 1Hz LSS σT̃rec
/σTref

0.73 0.73 0.89 0.90
FFT: f > fc = 1Hz BT σT ′′

rec
/σTref

0.32 0.28 0.20 0.21

POD: N < Nm = 8 (90%) LSS σT̃rec
/σTref

0.80 0.77 0.91 0.92
POD: N > Nm = 8 (10%) BT σT ′′

rec
/σTref

0.06 0.16 0.10 0.08

Table 2: RMS ratio σT̃rec
/σTref

of the reconstructed the turbine thrust, by considering the

entire velocity signals (top line) LSS: Large Scale flow Structures, BT: Background Turbulence.
fc is the cut-off frequency separating both LSS and BT contributions. Nm is the POD mode
number separating both LSS and BT contributions and the indicated percentage corresponds
to the energy content.

In each case, the reconstructed thrust signal based on BT fluctuations is of very480

low amplitude, confirming that BT does not impact the most important turbine
output fluctuations.

Table 2 indicates the RMS ratio of the reconstructed thrust signals. It is quite
interesting to observe that in presence of LSS (x∗ = 16 and x∗ = 23), quasi-485

similar values are obtained by comparison of the reconstructed signal based on
the reference non-filtered velocity field (top line in table 2). This emphasizes
that when a turbulent flow presents some persistent 2D low frequency energetic
structures, they are entirely responsible of the RMS of the turbine-performance
parameters. Some slightly smaller values (∼ 0.73 versus ∼ 0.80) are obtained for490

the other turbine locations (x∗ = 4 and x∗ = 10), where low frequency energetic
flow structures are not present or less marked or do not pass through the entire
rotor swept area. This demonstrates that the low frequency filtering process
applied to incoming turbulent flow permits to recover 90% of the turbine power
RMS. Globally, whatever the nature of the turbulent flow is (presence or not of495

large scale flow structures), a low frequency FFT filtering process coupled with
LSE method allows the recovering of at least 90% of the turbine power RMS.
When using POD as an energetic filtering, the RMS of the turbine output
is always entirely found, meaning that the RMS of the turbine performance
fluctuations can be entirely retrieved from the incoming POD filtered velocity500

field containing 90% of the kinetic energy.

The spectral content of the reconstructed thrust signals conditioned by LSS
events is displayed in figure 14. The low frequency part of the spectrum of the
turbine thrust fluctuations is very well reconstructed from the knowledge of the505

LSS, especially the frequency peaks. Whatever the LSS extraction method is
(low frequency filtering or energetic filtering), it is observed that the LSS are
responsible of the low frequency energetic content part of the turbine power
fluctuations, especially when the turbulent flow is organized (at x∗ = 16 and
x∗ = 23). When dealing with the FFT filtering process, as LSS counterpart510

is only of a low frequency content, the reconstructed thrust signal presents a
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roll-off values for f > fc: the low frequency LSS can not permit to recover the
high frequency content of the spectrum of the turbine thrust fluctuations. Note
that this may be not problematic in the sense that the energy content of the
high frequency turbine power signal is at least 100 times smaller than the one515

of the low frequency turbine power signal. In the other hand, the POD decom-
position technique is a global method extracting the kinetic energy in the flow
which is mainly contained in the LSS but also in smaller flow-scale structures.
Consequently, when using POD to extract energetic LSS, the associated ener-
getic LSS permits a better reconstruction of the turbine power spectrum in the520

whole frequency domain. If one has to focus on the high frequency behavior of
the turbine thrust spectrum, POD would be preferentially best suited for the
LSS filtering process. However, the effectiveness of the POD filtering applica-
tion is directly related to the number of available velocity signals. Consequently
in presence of a reduced number of incoming velocity signals, FFT procedure525

would be more appropriated.

6. Use of LSE to predict the turbine power fluctuations

As state in the introduction part, a future key challenge in the turbine
operation is the real-time prediction of the turbine power fluctuations. This
is of significant interest to make control of the turbine power fluctuations to530

reduce the fluctuations of the generated electrical power into the grid and to
limit the structural fatigue of the turbine. Even if some mathematical methods
have been previously developed in wind energy (Pinson and Madsen, 2012; Lu
et al., 2021), one proposes a new way for predicting the instantaneous turbine
output fluctuations.535

In previous sections, some mathematical tools are implemented to quantify the
effect of LSS onto the turbine output fluctuations, and more specifically we
demonstrate that in presence of organized LSS in a turbulent flow, LSE allows
a very good estimation of the unsteady turbine-performance parameters from540

instantaneous velocity field measured in front of the turbine (along a vertical
line). In practice, the number of simultaneous measurements of incoming veloc-
ity signals in front of the turbine is very small and these velocity measurements
as well as the turbine performance measurements are rarely obtained simulta-
neously at a sufficiently high frequency. Taken into account these remarks, as a545

future work, a preliminary analysis is presented in this section with the objec-
tive in showing the potential and effectiveness of the LSE to predict the turbine
thrust (or power) fluctuations for the present scaled tidal turbine.

A preliminary LSE reconstruction is done by taking as conditional signal only550

one velocity signal.
The flow configuration for which the turbine is positioned at x∗ = 16 is retained
for this test. The following locations for the conditional velocity signals are
successively retained: z∗1 = 4.7, z∗2 = 3.3 and z∗3 = 4, which correspond to plus
and minus the mid-height of the blade and the center of the rotor, respectively.555
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Figure 12: Instantaneous LSE reconstructed turbine thrust signal from ũFFT (z, t) using fc =
1Hz (red line) and from the background high frequency remainder (blue line), superimposed
onto the reference measured thrust signal (black line), for the 4 configurations: from top to
bottom: x∗ = 4, 10, 16 and 23. X-axis is voluntary limited to [80 : 180]s.
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Figure 13: Instantaneous LSE reconstructed turbine thrust force signal from ũPOD(z, t) using
Nm = 8 (red line) and from the POD remainder (blue line), superimposed onto the reference
thrust measurements (black line), for the 4 configurations: from top to bottom: x∗ = 4, 10,
16 and 23.
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Figure 14: Spectral representation of the turbine thrust force signal reconstructed using LSS
(red line) and BT (blue line) as conditional event, superimposed on the reference measured
force spectra (black line). Left column: LSS is extracted from FFT analysis using fc = 1Hz.
Right column: LSS is extracted from POD method using Nm = 8. For the 4 configurations:
top to bottom: x∗ = 4, 10, 16 and 23.

The raw (without any filtering) streamwise velocity signal measured at each of
these 3 positions is then used as conditional event for the reconstruction of the
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turbine thrust fluctuating signal:

T
′zi
rec(t) = A(zi)u

′(t+ τ, zi) with i = 1, 2 or 3 (15)

where the coefficient A(zi) is determined thanks to equation 4 based on the
covariance matrix between the conditional events (here it is the fluctuating ve-560

locity field measured at only reference point) as well as the covariance matrix
between the conditional events and the turbine thrust. The unsteady turbine
thrust fluctuations are successively estimated from one velocity signal. Figure
15 displays the three instantaneous estimated turbine thrust signals. The as-
sociated spectra are represented in figure 16. Furthermore, The RMS ratios,565

σT zi
rec
/σTref

are equal to 0.02, 0.48 and 0.47 for z1, z2 and z3 respectively. These
results indicate first that the reconstruction based on the velocity signal ex-
tracted at z1 (top mid-height of the blade) is not satisfactory. This is directly
related to the poor correlation that exists between this velocity signal and the
thrust signal (see figure 8). Conversely, when using the other velocity signal570

(either at z2 or z3) as conditional event, the reconstructed thrust fluctuations
are partly recovered, with near 47% of the thrust RMS is obtained in each case.
The main difference between these both last reconstructions concern the asso-
ciated spectral representation of T̂ where the main frequency peaks in the low
frequency domain are not always well recovered. In fact, as a function of the575

location of the reference velocity signal, it is observed that the thrust recon-
structions can be quite similar or very distinct. This result is linked to the flow
coherence and its spatial extent over the turbine rotor area, as figure 8 shows it.
In presence of large scale flow structures which are very well correlated to the
turbine thrust signal, one-point velocity signal containing the large scale flow580

passage information (spectral content as well as energetic one) can permit to
reconstruct near half the thrust fluctuations content. However, some precau-
tions have to be taken with respect to these results because they are very flow
dependent.

In this sense, to reveal the main flow dynamics of the flow sweeping the585

rotor-area, it is expected that one-point velocity measurement is not sufficient
to establish a good linkage between incoming velocity and turbine power and at
least to make control of the turbine power fluctuations, whatever the turbulent
flow under consideration. In this sense and based on our experience it seems
that at least 3 measurement points would be necessary to recover the main LSS590

dynamics of a turbulent flow which are responsible of the main turbine output
fluctuations.

The flow configuration for which the turbine is positioned at x∗ = 16 is
kept for this test. The following locations for the conditional velocity signals
are retained: z∗1 = 4.7, z∗2 = 3.3 and z∗3 = 4. The raw (without any filter-595

ing) streamwise velocity signals measured at these 3 positions are then used as
conditional event for the reconstruction of the turbine thrust fluctuating signal:

T
′3
rec(t) = A(z1, z2, z3)U(t+ τ) (16)

where U corresponds to the three velocity signals extracted at (z1, z2, z3). Such
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T ′(t)
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Figure 15: Instantaneous turbine thrust signal reconstructed from one velocity signal extracted
at zi (green line) superimposed onto the reference measured one (black line) and onto the
reconstructed one from all available velocity signals (Nz points). Top: z1, Center: z2, Bottom:
z3.

an application allows then the prediction of the unsteady turbine thrust fluctu-
ations from the knowledge of these three velocity signals.600

Figures 17 and 18 represent the instantaneous estimated turbine thrust signal
and its associated spectrum (green line in these figures), respectively. It is
observed that even with only 3 velocity signals as conditional event, the main
thrust fluctuations are very well predicted as well as its spectral content. By
comparison with the reconstructed thrust signal using the Nz = 74 available605

velocity measurements (red line in these figures), only a slight energy content
decay is observed. The RMS ratio, σT 3

rec
/σTref

is equal to 0.86 meaning that
86% of the total turbine thrust RMS is predicted with only 3 velocity signals.
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T̂ (f)

Figure 16: Superimposition of the reconstructed thrust spectra, T̂ zi (f) (with zi = z1, z2 and

z3) and of the reference one T̂ref (f). Each spectrum T̂ zi is computed from the reconstructed
thrust signal deduced from the knowledge of one-point velocity signal extracted at the zi
location.

T ′(t)

Figure 17: Instantaneous turbine thrust signal reconstructed from the three raw velocity
signals (green line) superimposed onto the reference measured one (black line) and onto the
reconstructed one from all available velocity signals (Nz points).

These last results demonstrate that the use of only three velocity sensors in
combination with the stochastic estimation and covariance statistical informa-610

tion allows the instantaneous prediction of the fluctuating parts of the turbine
thrust and power, in a very good agreement. For in-situ conditions, if a mea-
surement system is implemented to access to the incoming turbulent velocity
field at least at three locations, a good prediction of the power generation fluc-
tuations could be achieved. Future turbine operation strategies could then be615

implemented to reduce the turbine fluctuations that permits to reduce the asso-
ciated fluctuations of the generated electrical power into the grid and to better
limit the blade structural fatigue.
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Figure 18: Spectral representation of the thrust signal reconstructed from 3 velocity signals
(green line), superimposed onto the reference case (black line) and the one reconstructed from
the Nz = 74 available velocity measurements (red line).

7. Conclusion

A lot of previous studies have underlined the effect of the incoming turbulent620

flow on the turbine power generation and the need to better understand the re-
lationship between incoming turbulent flow and turbine performance. Previous
works have also emphasized the need to develop robust mathematical methods
for the prediction of the turbine power fluctuations. In this sense, by measur-
ing simultaneously turbine-performance parameters and velocity field in front625

of a 1:20 scaled turbine, some mathematical tools are implemented to answer
to these questions.

As turbine-performance parameters are linearly dependent of velocity field,
the Linear Stochastic Estimation has been applied to predict these parameters
from the measured incoming velocity fields. First, by using the whole avail-630

able measured velocity signals, whatever the nature of the incoming turbulent
flow, the predicted turbine-performances parameters are in very good agreement
with the reference measured ones. That confirms the great relationship between
both variables and the interest in using LSE method. Second, by isolating the
Large Scale flow Structure contribution from the incoming turbulent flow, ei-635

ther from a frequency analysis (Fourier Transform) or from an energetic point
of view (Proper Orthogonal Decomposition), the turbine performances are pre-
dicted using this LSS part as conditional event. It is then demonstrated that
the instantaneous turbine thrust fluctuations are very well predicted from the
knowledge of the LSS, especially their highest amplitudes. This result is inde-640

pendent of the LSS extraction method (low frequency content or energetic point
of view). Even in presence of only smaller flow structures, it is demonstrated
that the low frequency filtering process applied to incoming turbulent flow is re-
sponsible of near 90% of the turbine power RMS. The low frequency part of the
spectrum of the turbine thrust fluctuations is very well predicted from the knowl-645

edge of the LLS, especially the frequency peaks. Whatever the LSS extraction
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method, LSS are entirely responsible of the low frequency energetic content part
of the turbine power fluctuations. Even if POD and FFT differ from the nature
of the filtering, both filtering procedures lead to similar predicted parameters,
apart in the high frequency domain where turbine-performances reconstructed650

from POD energetic structures are in a better agreement with reference mea-
surements. As a matter of fact, POD is a global method based on the whole
available velocity time and space information while FFT analysis extracts only
localized data information, in the low frequency domain: the FFT filtering pro-
cess applied individually to each measurement velocity signal always filters out655

the high frequency part of the signal, for frequencies superior to the cut-off fre-
quency. When dealing with the FFT filtering, no high frequency information is
available in the LSE estimation process, leading to a turbine power’s response
with only a signature in the low frequency domain.

660

Finally, a preliminary application is performed to demonstrate the potential
and the effectiveness of the LSE method to predict the turbine output fluctu-
ation from a very limited number of incoming velocity signals. By taking into
account only three velocity signals (located at plus and minus the mid-height
of the blade and the center of the rotor), LSE application permits to predict665

the RMS of the turbine-performance parameters at more than 85% confidence
level. Furthermore, a very good prediction of the spectrum of turbine thrust
(and power) is observed.

As a future analysis, other turbulent flows have to be considered, with more670

three dimensional complex organization. Moreover, the effect of Tip Speed
Ratio on the induced variations of the turbine-performance parameters have to
be studied in the hope to future implement control strategies for reducing the
amplitude of the turbine output fluctuations. Control strategies could therefore
be used to adjust the optimal TSR by reducing the loading fluctuations and675

then limiting the fluctuations in the energy production process.
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