
����������
�������

Citation: Thouvenin-Masson, C.;

Boutin, J.; Vergely, J.-L.; Reverdin, G.;

Martin, A.C.H.; Guimbard, S.;

Reul, N.; Sabia, R.; Catany, R.;

Hembise Fanton-d’Andon, O.

Satellite and In Situ Sampling

Mismatches: Consequences for the

Estimation of Satellite Sea Surface

Salinity Uncertainties. Remote Sens.

2022, 14, 1878. https://doi.org/

10.3390/rs14081878

Academic Editors:

Philippe Waldteufel, Yann H. Kerr

and Christine Gommenginger

Received: 14 February 2022

Accepted: 28 March 2022

Published: 13 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Satellite and In Situ Sampling Mismatches: Consequences for
the Estimation of Satellite Sea Surface Salinity Uncertainties
Clovis Thouvenin-Masson 1,2,3,*, Jacqueline Boutin 1 , Jean-Luc Vergely 2, Gilles Reverdin 1,
Adrien C. H. Martin 4, Sébastien Guimbard 5 , Nicolas Reul 6, Roberto Sabia 7, Rafael Catany 8

and Odile Hembise Fanton-d’Andon 2

1 LOCEAN/IPSL Laboratory, Sorbonne University, SU-CNRS–IRD–MNHN, 75005 Paris, France;
jacqueline.boutin@locean.ipsl.fr (J.B.); gilles.reverdin@locean.ipsl.fr (G.R.)

2 ACRI-st, 06904 Sophia-Antipolis, France; jean-luc.vergely@acri-st.fr (J.-L.V.); oha@acri-st.fr (O.H.F.-d.)
3 CNES (Centre National des Études Spatiales), 31401 Toulouse, France
4 National Oceanography Centre, Southampton SO14 3ZH, UK; admartin@noc.ac.uk
5 Ocean Scope, 29200 Brest, France; sebastien.guimbard@ocean-scope.com
6 IFREMER (Institut Français de Recherche Pour l’Exploitation de la Mer), 29280 Plouzané, France;

nicolas.reul@ifremer.fr
7 Telespazio-UK for ESA, ESRIN, 00044 Frascati, Italy; roberto.sabia@esa.int
8 ARGANS Ltd., Plymouth PL6 8BU, UK; rcatany@argans.co.uk
* Correspondence: clovis.thouvenin-masson@locean.ipsl.fr

Abstract: Validation of satellite sea surface salinity (SSS) products is typically based on comparisons
with in-situ measurements at a few meters’ depth, which are mostly done at a single location and
time. The difference in term of spatio-temporal resolution between the in-situ near-surface salinity
and the two-dimensional satellite SSS results in a sampling mismatch uncertainty. The Climate
Change Initiative (CCI) project has merged SSS from three satellite missions. Using an optimal
interpolation, weekly and monthly SSS and their uncertainties are estimated at a 50 km spatial
resolution over the global ocean. Over the 2016–2018 period, the mean uncertainty on weekly CCI
SSS is 0.13, whereas the standard deviation of weekly CCI minus in-situ Argo salinities is 0.24. Using
SSS from a high-resolution model reanalysis, we estimate the expected uncertainty due to the CCI
versus Argo sampling mismatch. Most of the largest spatial variability of the satellite minus Argo
salinity is observed in regions with large estimated sampling mismatch. A quantitative validation is
performed by considering the statistical distribution of the CCI minus Argo salinity normalized by
the sampling and retrieval uncertainties. This quantity should follow a Gaussian distribution with
a standard deviation of 1, if all uncertainty contributions are properly taken into account. We find
that (1) the observed differences between Argo and CCI data in dynamical regions (river plumes,
fronts) are mainly due to the sampling mismatch; (2) overall, the uncertainties are well estimated in
CCI version 3, much improved compared to CCI version 2. There are a few dynamical regions where
discrepancies remain and where the satellite SSS, their associated uncertainties and the sampling
mismatch estimates should be further validated.

Keywords: sea surface salinity; sampling mismatch; sub footprint variability; uncertainty; validation

1. Introduction

Knowledge of salinity is crucial for understanding the thermohaline circulation of the
ocean as salinity makes a large contribution to water density. As an advected property, it
is an interesting tracer of oceanic phenomena. Salinity also conditions the stratification of
the surface layer and thus influences the ability of the ocean surface to mix [1]. Salinity is
a key indicator for monitoring the water cycle as it integrates the freshwater input to the
ocean, through interactions with the atmosphere (precipitation and evaporation), with the
continents (river discharges) or with ice [2].
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Sea Surface Salinity (SSS) has been measured by satellite for more than 12 years,
thanks to three satellite missions: the Soil Moisture and Ocean Salinity (SMOS), the first SSS
observing satellite mission launched in 2009 and still operating today; the Aquarius mission,
which operated from 2011 to 2015; and the Soil Moisture Active Passive (SMAP) mission
launched in 2015 and still operating today. These three satellite missions measure brightness
temperature at 1.4 GHz, allowing for the retrieval of SSS, with unprecedented spatio-
temporal coverage (see reviews in [3,4]). Although they operate in the same frequency
band, they have their own characteristics in terms of spatial resolution: the spatial resolution
of SMOS and SMAP-retrieved SSS (~40 to 50 km) is about a factor 2 to 3 higher than that of
the Aquarius SSS (see more details in [3]).

The recent ESA Climate Change Initiative project (CCI+SSS) combines measurements
of these three satellite missions, resulting in a decrease of the differences between satellite
salinity fields and Argo float surface salinities (standard deviation (robust standard devia-
tion) of the monthly CCI SSS minus the Argo float surface salinities over the whole period
equal to 0.27 (0.16) globally) [5,6]. However, the interpretation of such comparisons in
terms of satellite field uncertainties is tricky as it involves not only uncertainties in satellite
estimates but also uncertainties in in-situ estimates and sampling mismatches [7]. In this
paper, we focus on better understanding these differences by estimating the contribution of
the sampling mismatch between in-situ salinity and the CCI+SSS fields as produced with
the last CCI+SSS version (version 3).

Satellite SSS is typically compared to in-situ measurements for validation. The in-situ
data used are of several types: either at fixed point (moorings) or from moving platforms
(ships; floats). A major problem with these comparisons is the difference in sampling
between satellite and in-situ datasets [8]: satellite data are integrated over a surface, of
nearly 50 km in diameter for the CCI products, and are either for a single time or over a
weekly or monthly period, in the case a temporal optimal interpolation is applied, as is
done for the CCI fields. In-situ data are generally at a single point in space and time, as
is the case for ships, Argo floats and mooring measurements. Moreover, satellite salinity
represents the upper 1 cm depth, whereas in situ salinity is mostly measured at a few
meters’ depth.

This difference in sampling necessarily implies a different sensitivity of both types
of measurements to small-scale variability and distorts the uncertainty estimate of the
satellite data if the in-situ data is used as a reference without taking into account the
uncertainty due to the sampling mismatch. This issue is particularly important in regions
of high SSS variability such as river plumes (e.g., Amazon plume), meanders of large
currents (e.g., Gulf Stream) or rainy regions, as illustrated on Figure 1. The variability of
salinity is of three kinds: spatial, temporal and vertical [8]. We mainly focus on spatial and
temporal variability in this paper.

Thus, to get a valid estimate of the uncertainties of satellite products obtained by
comparison with in-situ data, it is important to complement the satellite SSS uncertainty
with the uncertainty due to the sampling mismatch [7]. In case of satellite salinities,
Vinogradova et al. [9] found that, in several ocean regions, including the tropics and
western boundary current regions, small-scale variability, simulated with a 1/12◦ HYCOM
model, is an important source of sampling mismatch in comparisons between 1◦ (~Aquarius
footprint) satellite SSS and in situ salinities. More recent studies (see [10]) used in situ
measurements and high-resolution models (1/48◦) to estimate the sub-footprint variability
(SFV) at level 2 and simulate spatial integration for Aquarius at footprint size of 100 km and
for SMAP at 40 km. Strong dependencies of SFV on region, season and footprint size have
been found. SFV is particularly high in rainy regions [11], along the continental shelves
where strong river outflow is present [12], and near frontal zones such as the western
boundary currents [13]. The variabilities obtained range from less than 0.1 to 1 pss. To
simulate expected RMS between satellite and Argo salinities, Bingham et al. [13] derives
Representation Errors (RE) between a footprint integrated satellite SSS and a local SSS using
one year of high-resolution simulations; Bingham et al. [13] reports that the distribution
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of RE for a 40 km footprint peaks at 0.06 pss, with typical values of 0.01–0.15 pss but also
some high values reaching 0.4 pss or even larger (see Figure 9b in [13]).
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The objective of this paper is, for the first time, to demonstrate the applicability of using
uncertainties related to sampling mismatch, to validate satellite SSS and its uncertainties.
Indeed, until now, the uncertainty related to sampling mismatch has been neglected in satel-
lite SSS validations, and the satellite SSS uncertainties provided by satellite retrieval systems
are very rarely evaluated. This demonstration study is used to interpret the differences
observed between the weekly (monthly) satellite CCI+SSS fields and Argo salinities, given
the uncertainties attributed to the CCI+SSS fields and the sampling mismatches between
both types of measurements. We will then focus on validating the CCI+SSS and associated
uncertainties. The sampling mismatch uncertainty is estimated using SSS simulated with
a 1/12◦ resolution model, and small-scale variability not resolved by the model will be
estimated following a spectral method similar to that proposed by [12]. We conduct our
study using three years (2016–2018) of SSS simulation contemporary to CCI+SSS fields. We
consider both the spatial variability within a satellite footprint and the temporal variability
within one week (month).

We report results obtained with the weekly products in the main paper; results ob-
tained with the monthly products are reported in the Supplementary Material. A similar
study was conducted on CCI v2 in order to compare the two versions, and the results
obtained with CCI v2 are also in Supplementary Materials.

The datasets and methods are described in Section 2. Results are presented in Section 3,
followed by a discussion (Section 4) and conclusions (Section 5).
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2. Materials and Methods
2.1. Materials

The study is performed from 2016 to 2018, a period during which SMOS and SMAP
data are available, and focuses on the interpretation of the comparisons between CCI+SSS
and Argo salinities. We use three data sources:

- Satellite product: CCI v3.2.

We use version 3.2 of the SSS products generated in the framework of the ESA CCI
project [14]. They have been generated following a methodology very similar to the one
described in [5] with main modifications described in [15,16]. They are summarized below.

These Level 4 (L4) SSS products are derived using a temporal optimal interpolation
of SSS retrieved from the three L-band radiometric satellite missions launched since 2010:
SMOS (2010–present), SMAP (2015–present), and Aquarius (2012–2015). The SSS fields
span a period from 2010 to 2020 and are available on a 25 km Equal-Area Scalable Earth
(EASE 2) Grid [17] and at weekly and monthly temporal resolutions. During the period
studied here (2016–2018), both SMOS and SMAP data are available.

The CCI v3.2 SSS fields have been generated following an optimal interpolation
similar to CCI v2 [5]. Compared to the CCI v2 processing, the CCI v3 processing has been
updated to improve the long-term stability of the SMOS SSS entering in the CCI L4 optimal
interpolation and to improve the L4 SSS uncertainty estimates. In particular:

- Instead of using SMOS SSS produced by the Centre Aval de Traitement des Données
SMOS (CATDS) operational chain, the SMOS SSS were reprocessed with a modified
ESA v662 processor [15].

- Instead of using European Center for Medium Weather Forecast (ECMWF) Integrated
Forecast System (IFS) fields as auxiliary parameters, the processing used ECMWF
ERA5 fields.

- The SMOS vicarious calibration, the so-called Ocean Target Transformation, is esti-
mated using in situ interpolated SSS fields produced by the In Situ Analysis System
(ISAS) [18] instead of using a salinity climatology.

- The dielectric constant model is updated as proposed by [5].
- The SMOS SSS affected by instantaneous rain rate are adjusted for RR up to 10 mm h−1

[19] and are sorted out in case of stronger RR. SMAP SSS retrieved with RR larger
than 0.5 mm h−1 are filtered out. Therefore, in rainy regions the CCI v3 fields are close
to bulk salinities.

- In the CCI v3 L4 optimal interpolation, a full least square propagation of the errors is
implemented, instead of a simplified propagation.

- Representativity uncertainties between the swath measurements of the SMOS and
SMAP level 2 SSS and that of the L4 estimated SSS (weekly or monthly fields), cor-
responding to the temporal variability of the SSS at the SMOS and SMAP resolution
(~50 km), within one week or one month, are taken into account as described in [5] and
in its Supplementary Information (S3). The equations are the same for CCI version 2
and version 3, but the numerical implementation differs: a full error propagation
scheme has been implemented in version 3.

The original footprint sizes of level 2 SMOS and SMAP SSS entering in the CCI
v3.2 processing are slightly less than 50 km (close to 45 km for SMOS (depending on the
across swath location) and to 43 km for SMAP). SMOS original SSS are provided on an
icosahedral Snyder equal area (ISEA) grid at 12 km resolution. SMAP original SSS are
on a regular 0.25◦ grid. In a first CCI+SSS processing step, SMOS and SMAP SSS are
reprojected on the 25 km EASE 2 grid using nearest neighbors method. In the later stages
of the CCI+SSS processing, no spatial smoothing is applied, with each grid point being
treated independently. Based on that, we consider in the following that each grid point is
representative of SSS obtained with a simple average within 50 km grid cell. In order not to
add too much complexity to the processing and the computing time, we consider that the
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weekly and monthly temporal OI is equivalent to a simple average of SSS over one week
and one month.

- In-situ products: Argo floats

The Argo [20] project is a set of ~3000 floats moving in the upper 2000 m of the global
ocean. These floats give access to about 100,000 measurements of salinity and temperature
per year with a global coverage, and an average spacing of 3◦ between measurements.
These data are collected and made freely available by the international Argo project and
the national programs that contribute to it.

We use the collocations provided by the SMOS Pilot-Mission Exploitation Platform
(Pi-MEP) [21] between the CCI fields and Argo floats. The colocation methodology will be
described in Section 2.2.

The Pi-MEP collocations are made from Argo data with a quality index of 1 or 2. Argo
upper measurements between 10 m depth and 0 m depth are considered as surface data
and are used as a comparison to satellite data. Most of the Argo data resulting from this
selection are taken at a depth of about 5 m. More details about this method are available in
the Pi-MEP reports.

- Mercator GLORYS reanalysis

We use the daily high-resolution (1/12◦) Mercator GLORYS reanalyzed SSS. We
consider that it resolves variability above the Nyquist wavelength (1/6◦). These SSS
simulated fields have a slightly reduced spatial resolution compared to studies [12,13] to
allow global ocean coverage, while keeping the small scales that contribute much to SSS
variability in a satellite pixel [22].

The GLORYS12V1 product is a CMEMS global ocean eddy-resolving (50 vertical
levels) reanalysis. These data are available from 1993 to today. These reanalyses are
based on the NEMO ocean model, forced, at the surface by ECMWF ERA5 data, and by
climatological runoffs. Satellite sea level anomalies, SST, sea ice concentration, in-situ
temperature and salinity vertical profiles (but not satellite SSS) are assimilated using a
reduced-order Kalman filter derived from a singular evolutive extended Kalman (SEEK)
filter with a three-dimensional multivariate background error covariance matrix and a
7 day assimilation cycle [23].

Data are available at daily temporal resolution, and on a regular 1/12◦ grid, for
50 levels, starting from the sea surface with levels at 0.5 m, 1.5 m, 2.6 m, 3.8 m and 5 m.
We use the level at 5 m depth as a proxy for Argo upper salinity. See [24] for a complete
description of the model.

An example of the estimation of GLORYS SSS variability within satellite grid cells (the
calculation method is described in Section 2.2) is shown on Figure 2. This map shows the
standard deviation of the GLORYS salinities accumulated in boxes of 50 km × 50 km and
during a 7-day period, corresponding to the spatiotemporal resolution of the weekly CCI
data for the day of 15 February 2017. This estimation has been computed for every day
over the entire period from 2016 to the end of 2018. As described in the methods section,
this represents the variability of salinity at 5 m depth. The same maps were generated
with surface salinities for a better understanding of the vertical variability of near-surface
salinity (see discussion below). As expected from previous studies [12,25], high standard
deviation values are observed in areas of high natural variability, such as river plumes
(e.g., Amazon, Congo) and regions with strong salinity gradients (e.g., Gulf Stream). The
30-day variability is similar to the 7-day variability with stronger values (the map is
available in the Supplementary Materials).
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Table 1. Definition of regions shown on Figure 2.

Region Latitude (◦) Longitude (◦) Very Variable Area

Gulf Stream 30.52 57.64 −74.83 −29.70 X
Amazon plume −3.43 14.37 −59.27 −34.89 X

Agulhas return current −54.84 −31.43 5.84 91.43 X
South Pacific Ocean −60.27 −40.10 −172.35 −81.57
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2.2. Methods

- Uncertainties balance

We follow the methodology proposed by [7] to validate the uncertainties of the satellite
products, by considering the total uncertainty composed of three terms:

Usat is the uncertainty of each satellite estimate.
Umis is the uncertainty due to sampling mismatch between satellite data and in-situ data.
Uref corresponds to the uncertainties of the reference in-situ data.
According to [7], uncertainties of satellite measurements are well represented when

the observed differences between satellite and reference in-situ measurements, normalized
by the quadratic sum of these uncertainties, follow a Gaussian distribution with a standard
deviation of 1.

STD

(
xsat − xref√

Usat2 + Umis
2 + Uref

2

)
= 1 (1)

In Equation (1), STD stands for the standard deviation, xsat represents the satellite
measurements and xref represents the reference in-situ data. We now detail how the various
terms of Equation (1) are obtained.

- xsat − xref

The colocations between CCI+SSS and Argo floats measurements are performed by
the Pi-MEP, as described in [5,21], and summarized below.

CCI products are sampled on a Rsat spatial grid (corresponding to the 25 km EASE grid)
and with RT time sampling: RT is one day for weekly products and 15 days for monthly prod-
ucts. Given CCI products centered at T0, each Argo data sampled within [T0−RT/2 T0+RT/2]
is colocated with the CCI SSS at grid nodes located within a radius of Rsat/2 from the Argo
data location. If several CCI SSS product samples are found to meet these criteria, the final
CCI SSS match-up point is chosen to be the CCI SSS with central time, which is the closest in
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time to the in situ data measurement date. Hence, there is a unique matchup corresponding
to each Argo measurement.

The locations of xref corresponding to the Argo measurement points made available
in the Pi-MEP database are used as the basis for calculating the normalized differences
described in Equation (1). The terms Usat and Umis are thus collocated at these locations as
described below.

- Usat

The uncertainty of each CCI+SSS gridpoint is estimated in the course of the CCI+SSS
temporal OI using the formalism described in the Supplementary Information (S3) of [5]. It
takes into account uncertainties of SMOS and SMAP individual SSS, their representativity
uncertainties with respect to a weekly (or monthly) integrated field, and uncertainties
on the bias corrected by the CCI processing. In the CCI+SSS v3 processing, while the
formalism remains the same as the one of version 2, the numerical implementation differs:
a full least square propagation of the uncertainties is implemented, instead of a simplified
propagation involving matrix inversion over limited time period as in version 2. This
quantity is described in Figure 3b.
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weekly CCI and Argo salinity; (b) quadratic mean of Usat; (c) the difference of squared terms shown in
(a,b), STD2 (CCI7-Argo)—mean (Usat

2); and (d) quadratic mean of Umis. The statistics are reported in
1◦ boxes containing at least 3 Argo measurements (boxes in Figure 3a,b with less than 3 measurements
are in white).

- Uref

In our case, Uref corresponds to the uncertainty of the Argo salinity. As we only use
Argo data with a quality index of 1 or 2, these uncertainties are small, in the order of 0.01 or
less [26]. They are expected to be much smaller than the other uncertainties in Equation (1)
and are neglected in the following.
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- Umis

To estimate the uncertainties due to sampling mismatch, we first compute the variabil-
ity of SSS from Mercator GLORYS reanalysis at a resolution of 1/12◦ (Umis_glo).

We approximate the sampling mismatch as the standard deviation of GLORYS SSS
within a radius of R km (R = 25 km) and a temporal range of dt/2, corresponding to the
spatio-temporal integration of CCI products of 50 km and of 3.5 days for weekly fields and
15 days for monthly fields. Since the Pi-MEP matchups consider only the closest matchups,
this sub-pixel variability slightly overestimates the variability. We performed tests consid-
ering various spatio-temporal R, and dt radii, and we concluded that the overestimate is
less than 5%, with the major effect arising from the spatio-temporal smoothing of the CCI
products relatively to non-averaged SSS; the spatio-temporal distance between the center
of the CCI product and the individual in-situ measurements is a second order effect.

As our study focuses on the comparison between in-situ data taken at 5 m depth, we
compute the standard deviation of the GLORYS model data at 5 m depth. CCI+SSS v3.21
fields are adjusted from the instantaneous rain effect, based on earlier comparisons between
SMOS SSS in rainy conditions and Argo salinities [19], hence reducing the difference
expected between satellite SSS in the upper 1cm depth and the Argo salinity at ~5 m depth.

We calculate the sampling mismatch for each day over three years (2016–2018).
The above estimate of Umis_glo is limited, however, by the resolution of the GLORYS

reanalysis (1/12◦). This means that the variability at scales smaller than 1/6◦ present in
the point measurements will not be well represented in GLORYS simulations. We take
this limitation into account by estimating the variability missed by the GLORYS reanalysis
following a wavenumber spectral analysis [12], as summarized below and described with
more details in Appendix A.

The variance of a signal between a chosen wavelength and the Nyquist wavelength
can be inferred assuming that the slope of the spectrum between the two wavelengths is
reasonably known. This variance is given by the following formula, which follows from
the integration of the power spectral density (PSD):

σλ =

√
2πb

m − 2
(λm−2 − λnm−2) (2)

where m corresponds to the slope of the PSD when viewed as a log-log plot, b is the
y-intercept of the PSD, λ is the wavelength below which we calculate the variance and λn
is the Nyquist wavelength.

What we want to estimate is the influence of a change in Nyquist wavelength on
the variance of salinity below a wavenumber of 50 km. We therefore calculate σ50 for
λn = 20 km, which corresponds to the STD actually measured by GLORYS, and σ50 for
λn = 0 km, which corresponds to a perfect case where all the signal power is considered.

Spectral studies in the Arabian Sea and in the western Pacific [12], as well as in the
tropical and subtropical Atlantic Ocean [22], suggest that at the scale of interest, for a
wavelength below 50 km, the salinity PSD has a slope close to m = 3.3. This is quite close to
a k−3 power law expected for a passive tracer under the influence of advection, with the
slightly steeper slope being likely attributable to atmospheric processes [12]. Even though
this slope is likely to vary slightly from time to time and place to place, we use it to infer
an order of magnitude of the ratio between the variability expected in the case where all
wavelengths below 50 km are considered, Umis, and the variability estimated with GLORYS
reanalysis resolution, Umis_glo, using Equation (2). We find the following relation:

Umis = 1.1985Umis_glo (3)

The results are given thereafter with and without this adjustment.
We evaluate the Gaussian shape of the normalized differences distributions Equation

(1) following two methods:
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- When considering large regions (global ocean or in boxes represented on Figure 2
and defined in Table 1), we approximate the statistical distributions of the normalized
differences with a Gaussian fit and we compare the fitted STD with the expected
value of 1.

- In order to make local analysis, we also compute STD of normalized differences in
2◦ boxes. However, due to the reduced number of colocations in 2◦ boxes (as will
be seen in Section 3.2.2), they are noisy and it is not possible to estimate a reliable fit
of the normalized differences distribution in each box. Nevertheless, we look at to
which extent the statistical distribution of STD estimated in 2◦ boxes is consistent with
Gaussian distributions of the normalized differences in each box. This is performed
by considering the histograms of the variances, STD2, multiplied by the number
of measurements. Indeed, given X1, · · · , Xn a random sample from a Gaussian
distribution (with a µ average and a σ standard deviation) N(µ,σ2), in any of the 2◦

boxes, with S2 = 1
n−1 ∑n

1
(
Xi − X

)
, the random variable Y = (n−1)S2/σ2 = n Var(X)/σ2

follows a χ2
n−1 distribution (See p. 211 of [27]). This choice of representation allows

us to compare the histograms obtained to a theoretical curve that Y should follow if
the normalized differences distributions in each box followed a N(0,1) distribution,
as is expected if the uncertainties are correctly estimated. The theoretical curve is
deduced by cumulating the distributions of the Y term expected for each of the 2◦

boxes, considering σ = 1.

The reliability of the salinity variability derived from GLORYS reanalysis will be
discussed, based on comparisons with the salinity variabilities measured in-situ by sensors
onboard ships.

Actually, Ship ThermoSalinoGraph (TSG) measurements are sampled at a few kilo-
meters resolution along ship transects, hence allowing for an estimate of the variability
at a higher resolution than GLORYS. We use the TSG-LEGOS-DM delayed mode data set
derived from voluntarily observing ships collected, validated, archived and made freely
available by the French Sea Surface Salinity Observation Service [28]. For that, we select
adjusted values when available and only TSG data with quality flags = 1 and 2 (‘good’ or
‘probably good’).

As the SSS variability along a line is different from the SSS variability over a surface,
for this exercise, a one-dimensional GLORYS variability is computed along ship lines: the
standard deviation of salinity values from GLORYS reanalysis along 50 km-long lines, with
a direction close to ship transects (with a precision of ±22.5◦). Fitting the variability to the
direction of the ship transect allows for the possible anisotropy of the SSS field.

3. Results

We first consider global maps of the main terms in the uncertainties balance Equation
(1) after integrating them over the 2016–2018 period by taking their quadratic mean. After
this qualitative and raw analysis (temporal correlations between the various terms are
neglected in that analysis), a thorough analysis is presented based on an exact computation
of Equation (1).

3.1. The Different Contributions to the Uncertainty Balance

Before analyzing the observed differences between CCI+SSS and Argo salinities nor-
malized by the uncertainties for each collocated matchup, we focus on the main contributors
to Equation (1), temporally integrated over the 2016–2018 period (Figure 3). Qualitatively,
the STD differences between Argo and CCI salinities (STD (CCI7-Argo), Figure 3a) and the
quadratic mean of Usat from CCI data (Figure 3b) are similar in most open ocean regions,
where the natural variability of salinity is expected to be low (below 0.2). The STD of CCI7-
Argo SSS seems therefore bounded by the value of the satellite uncertainty Usat in regions
of low variability. High values of STD (CCI7-Argo) (>0.5, going up to 1) are observed in
Figure 3a in regions where natural variability is important, for example, in river plumes
(notably the Amazon, Congo, Malvinas, Ganga Brahmaputra and Mississippi) and in areas
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of important fronts (Gulf Stream region, Agulhas return current and Kurushio). In these
regions, Usat is also higher than in low variability regions due to an increased uncertainty
in the CCI weekly SSS field related to the temporal undersampling of SMOS and SMAP,
but Usat remains, in these regions, lower than the STD(CCI7-Argo). The difference between
the squared terms (STD2(CCI7-Argo)—mean (Usat

2), Figure 3c) and Umis
2 (Figure 3d) agree

qualitatively well, even though Umis appears higher in river plumes between 20◦N and
20◦S. In a few regions, notably near Japan and in the Labrador Current region, we observe
large values of STD(CCI7-Argo) that are stronger than Usat and Umis. These differences are
likely due to the frequent presence of RFIs in these regions [26].

3.2. Detailed Analysis of Uncertainties Balance
3.2.1. Distribution of Reduced Differences

We first analyze the distribution of all differences taken between 2016 and 2018.
Figure 4 shows the distribution obtained over the global ocean, and Figure 5 shows the
distributions obtained in the various areas indicated on Figure 2 and Table 1. The corre-
sponding STD of the distributions are in Table 2.

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 21 
 

 

3.1. The Different Contributions to the Uncertainty Balance 
Before analyzing the observed differences between CCI+SSS and Argo salinities 

normalized by the uncertainties for each collocated matchup, we focus on the main 
contributors to Equation (1), temporally integrated over the 2016–2018 period (Figure 3). 
Qualitatively, the STD differences between Argo and CCI salinities (STD (CCI7-Argo), 
Figure 3a) and the quadratic mean of Usat from CCI data (Figure 3b) are similar in most 
open ocean regions, where the natural variability of salinity is expected to be low (below 
0.2). The STD of CCI7-Argo SSS seems therefore bounded by the value of the satellite 
uncertainty Usat in regions of low variability. High values of STD (CCI7-Argo) (>0.5, going 
up to 1) are observed in Figure 3a in regions where natural variability is important, for 
example, in river plumes (notably the Amazon, Congo, Malvinas, Ganga Brahmaputra 
and Mississippi) and in areas of important fronts (Gulf Stream region, Agulhas return 
current and Kurushio). In these regions, Usat is also higher than in low variability regions 
due to an increased uncertainty in the CCI weekly SSS field related to the temporal 
undersampling of SMOS and SMAP, but Usat remains, in these regions, lower than the 
STD(CCI7-Argo). The difference between the squared terms (STD2(CCI7-Argo)—mean 
(Usat2), Figure 3c) and Umis2 (Figure 3d) agree qualitatively well, even though Umis appears 
higher in river plumes between 20°N and 20°S. In a few regions, notably near Japan and 
in the Labrador Current region, we observe large values of STD(CCI7-Argo) that are 
stronger than Usat and Umis. These differences are likely due to the frequent presence of 
RFIs in these regions [26]. 

3.2. Detailed Analysis of Uncertainties Balance 
3.2.1. Distribution of Reduced Differences 

We first analyze the distribution of all differences taken between 2016 and 2018. 
Figure 4 shows the distribution obtained over the global ocean, and Figure 5 shows the 
distributions obtained in the various areas indicated on Figure 2 and Table 1. The 
corresponding STD of the distributions are in Table 2. 

 
Figure 4. Distribution of differences between Argo floats and CCI data normalized with Usat 
(orange), with Usat and Umis_glo (red) and with Usat and Umis (blue), and corresponding Gaussian fits, 
over the global ocean. The black line corresponds to a theoretical Gaussian distribution with a 
standard deviation of 1. Corresponding STD are reported in Table 2. 

Figure 4. Distribution of differences between Argo floats and CCI data normalized with Usat (orange),
with Usat and Umis_glo (red) and with Usat and Umis (blue), and corresponding Gaussian fits, over
the global ocean. The black line corresponds to a theoretical Gaussian distribution with a standard
deviation of 1. Corresponding STD are reported in Table 2.

Table 2. STD of the distributions of the normalized differences between Argo and CCI v3.2 weekly
products, in the regions defined in Table 1.

Region Usat Usat + Umis_glo Usat + Umis

Global 1.158 1.029 0.988
Gulf Stream 1.424 0.904 1.138

Amazon plume 1.050 1.202 0.859
Agulhas return current 1.163 1.059 1.022

South Pacific Ocean 1.017 0.978 0.964
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In order to estimate the impact of the uncertainty mismatch Umis_glo on the compar-
isons between in-situ Argo values and CCI products, we analyze the STD of the differences
normalized by:

(a) The satellite uncertainty Usat only (orange curves);
(b) The quadratic mean of Usat and Umis_glo (red curves); and
(c) The quadratic mean of Usat and Umis (blue curves).

We then test the closeness of the distribution of the error-reduced salinity differences
to a Gaussian distribution with a STD equal to 1 as proposed by [6].

A Gaussian fit (mean and STD estimated using Matlab Non-Linear Least Squares
fitting method) is superimposed on the different histograms, and we consider the standard
deviation of this fit in each case. If the uncertainties are correctly estimated, we expect
the normalized difference to follow a Gaussian distribution with a standard deviation
of 1 and mean of 0; such a distribution is represented in the black dotted lines. This
Gaussian distribution is calculated by considering the same number of measurements as
the populations studied, i.e., the distributions have the same integral value. The outliers at
the ends of the histograms have been gathered into a single class.

These figures show a clear improvement of the distributions when the sampling
mismatch uncertainty is taken into account: over the global ocean, the standard deviation
goes from a value of 1.16 with Usat only (orange curve), which is too large, to a value of
1.03 much closer to unity with the quadratic sum of Usat and Umis_glo (red curve). Using
Umis (blue curve) results in a STD of 0.99, very close to the value of 1 we are looking for.

In addition, taking into account Umis_glo considerably reduces the distribution tails:
the values higher than 3.9 are reduced by about one half, and even more with Umis.

More relevant comparisons can be made by focusing on regions of particularly high or
low variability. First, in the low variability region of the eastern South Pacific, we observe
that the uncertainty that plays a major role is Usat, and that the addition of Umis_glo has
little impact on the distribution of differences. On Figure 5a, the STD of the red and blue
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curves taking into account Umis_glo are slightly too low, which means that Umis_glo or Usat
is slightly overestimated in this region.

In the variable regions, the improvement is not homogeneous. In the region of the
Agulhas current retroflection (Figure 5b), we obtain good results, taking into account
Umis_glo and Umis allows one to obtain a STD of 1.05 and 1.02, respectively.

In the Gulf Stream region, Figure 5d, the histograms are under the black curve meaning
that Umis_glo or Usat are too low. Taking into account Umis_glo or Umis allows one to get
closer to a Gaussian of standard deviation of 1, going from a STD = 1.42 for the orange curve
to a STD = 1.20 or STD = 1.13 with Umis_glo and with Umis, respectively. This corresponds
to an improvement of about 30% but remains imperfect. This may be related to remaining
seasonal biases observed in this region in the CCI data whose origin remains under study.

In the Amazon plume (Figure 5c), on the other hand, the orange curve is already close
to a Gaussian distribution with STD = 1, and adding Umis_glo and Umis has a too strong
impact. This could be related to uncertainty in GLORYS derived variability, as discussed in
next section.

To highlight the potential of the method to validate Usat, we compare the standard
deviation values to the distributions obtained with the previous version of the CCI products
(v2.3), for the global ocean, in which Usat was estimated with a simplified approach.

With version 2.3 at global scale, the STD obtained was less than 1 (standard deviation of
0.93 with Umis_glo and 0.89 with Umis). In version 2.3, the errors were therefore overestimated
by about 12% and particularly too high in regions of low variability. This has been corrected
in version 3.2. Histograms for version 2.3 are available in Supplementary Materials.

For monthly products (figures available in Supplementary Materials), the superposi-
tion of histograms shows a clear improvement in the distribution of reduced differences
when mismatch uncertainty is taken into account, both at the global level and in the variable
regions. Indeed, this shifts from a STD always higher than 1 (1.55 at the global scale) to
a STD close to 1 (1.1 with Umis_glo, 1.003 with Umis). In the Pacific region, the importance
of mismatch uncertainty is less, but taking it into account also allows one to approach the
STD = 1 curve. The histograms on the variable regions yield the same conclusions as with
the weekly products.

3.2.2. Global Distributions

We now investigate further the spatial distribution of STD computed in 2◦ boxes.
In this section, we focus on the validation of the CCI v3.2 weekly SSS and associated
uncertainties, taking into account, step by step, the different sources of uncertainties
involved in Equation (1) (Figure 6) and in 2◦ boxes to provide a better understanding of the
geographical variations of the different sources of uncertainty. As in the previous section,
the three normalization methods are evaluated here.

Figure 7 shows histograms of the variances multiplied by the number of measurements
in the 2◦ boxes shown in Figure 6a,c,d. The black dashed curve represents the theoretical
curve that these histograms should follow if the normalized differences distributions in each
box follow a N(0,1) distribution, as we expect when the uncertainties are correctly estimated.

The introduction of Umis_glo (Figure 6c) reduces the very large STD in highly variable
regions such as the Gulf Stream or the Agulhas Current retroflection. This reduction is
even stronger with Umis (Figure 6d). This can be seen in the histograms (Figure 7), where
the red and blue histograms, which take into account Umis_glo and Umis, respectively, are
much closer to the black theoretical curve for high values (above 50) corresponding to
high variances than the orange histogram, where the differences are normalized by Usat
only. Quantitatively, the correlation coefficient between the χ2 theoretical distribution and
the one obtained with Usat only is 0.95, and, respectively, 0.97 and 0.98 when taking into
account Umis_glo or Umis.
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This result is similar and more pronounced for monthly products (see maps in Supple-
mentary Materials). By normalizing the differences by Usat only, the STD obtained is clearly
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greater than 1 and often even greater than 2 in a large majority of the 2◦ boxes. Taking
into account Umis_glo or Umis gives quite similar maps (Figure 6c,d), which again shows the
importance of mismatch uncertainties in the validations, especially for monthly products.
The histograms obtained for the monthly products also show this clear improvement,
which is strengthened with Umis. The correlation coefficient between the χ2 theoretical
distribution and the one obtained with Usat only is 0.81, and, respectively, 0.97 and 0.98
when taking into account Umis_glo or Umis.

When the same study was conducted on the CCI version 2 weekly products, the results
were further from the calculated theoretical χ2 curve, with a very large number of points
at low values of n Var(X) indicating that the Usat of version 2 was overestimated, mostly
because of the simplified propagation of errors in version 2 instead of the full least square
propagation of the errors implemented in version 3. The correlation coefficient between
the χ2 theoretical distribution and the one obtained with Usat only is 0.71 and, respectively,
0.75 and 0.76 when taking into account Umis_glo or Umis for CCI v2.

4. Discussion
4.1. Estimation of the Sampling Mismatch Uncertainty

The issue of quantitative comparison between datasets with different spatio-temporal
resolution is common to other research areas, such as the ocean model community, and
methodologies of different complexities have been proposed to address it (e.g., [9]). In
this study, we estimate the sampling mismatch uncertainty with a classical methodology,
with our focus being not on the development of original methods for estimating sub-
pixel SSS heterogeneity but rather on demonstrating possible improvements in satellite
SSS validation by including a quantification of sampling mismatch effects in routine SSS
validation exercises. In particular, the Pi-MEP validation platform does not yet include
representativity uncertainties between satellite and in situ SSS, but it is planned to include
different ways of taking them into account in the coming years.

One can question the legitimacy to use the GLORYS reanalysis to represent the in-situ
point measurement. This product has several limitations.

The first limitation is the spatial resolution of the model, 1/12◦, which corresponds
to about 10 km near the equator, which is a higher resolution than the satellite salinity
data but is still far from a point data. Nominally, this grid resolution corresponds to a
Nyquist cutoff wavelength of about 20 km. It was not feasible in this study to use higher
resolution simulations due to numerical computation limitations. It would nevertheless be
of importance in further studies to look at the spectral information content of both GLORYS
and CCI SSS products to confirm the nominal product resolutions considered in our study.

To counter this limitation, we have multiplied our uncertainties mismatch estimates
by a coefficient, in order to adjust these values by taking into account the finer scales. This
coefficient is calculated by assuming a PSD slope in k−3.3 constant in time and space, but
this slope could vary slightly according to regions and time. We note, however, a weak
variation of the coefficient according to the slope of the spectrum: +(−)2% for a spectrum
of slope of k−3.2 (k−3.4), compared to the used spectrum of slope k−3.3.

To validate the sampling mismatch derived from GLORYS simulations, we have com-
pared model variability to in-situ variability derived along ship tracks available between
2016 and 2018.

The GLORYS variability compared to TSG variability derived along merchant ships
lines (Figure 8a,b) indicates that the differences are small, less than 0.02 for most mea-
surements, with the GLORYS variability being generally slightly higher than the in-situ
variability. The difference is greater in regions of high variability such as fronts or river
flows but remains below ~20%, as shown in the histogram in Figure 8c. This result seems
counter-intuitive as one would expect the GLORYS salinity variability to be lower since
the resolution of the reanalysis is lower than the resolution of the ships measurements
and since we did not add contribution for the small scales not resolved by GLORYS in
these comparisons.
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The observed discrepancies near river plumes may be due to a limitation of the
GLORYS reanalysis, which uses climatological river run-offs as a forcing [29] (as explained
in [23]) and thus does not take into account interannual variability in river discharge. The
study [30] shows that the RMSD of the GLORYS model relative to Argo data decreases
near the Amazon and Congo estuaries when assimilated with SMOS satellite data. This
suggests that the spatial variability of the model is overestimated in the river plume regions,
confirming the biases observed in the comparisons to merchant ships in these regions.

Another study [31] shows that sub-mesoscale structures are poorly represented in the
GLORYS model, due to the too coarse spatial resolution. This could explain the differences
observed in the Gulf Stream.

Overall, however, the observed differences between the TSG and GLORYS model
variabilities are relatively small. We consider the GLORYS reanalysis variability to be a
sufficiently good representation of the natural variability on a global scale, although we
note that the differences are greater in regions of high variability.

The way we estimate Umis_glo is close to the one used by [13] to estimate the Repre-
sentation Error (RE), except that [13] uses higher resolution (1/48◦) simulations. We have
compared both estimates, made within an area of 50 km radius for Umis_glo and within
40 km for RE. Maps of the median of Umis_glo over the 3 years of our study (available in Sup-
plementary Materials) are qualitatively in agreement with the 40 km RE (Table S5 of [13]).
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4.2. Sampling Mismatch Uncertainty and Representativity Uncertainty Included in Usat

Usat quantifies the uncertainty on the weekly-50 km smoothed SSS related to the tem-
poral undersampling of SMOS and SMAP. This temporal variability, taken into account in
the CCI temporal optimal interpolation, is deduced from the GLORYS SSS fields smoothed
to 50 km. Therefore, Usat does not include information on the spatial variability at scales
smaller than 50 km nor on the expected variability between a point in time measurement
and a weekly field, contrary to Umis. Nevertheless, a flaw in GLORYS SSS fields that would
affect SSS fields at scales both larger and smaller than 50 km would lead to correlated errors
in Usat and Umis. We cannot rule out this kind of error near river plumes between 20◦N
and 20◦S.

4.3. Vertical Near-Surface Variability

As indicated in the methods section, we used the 5 m depth layer of the GLORYS model
to take into account the fact that the majority of the ARGO data are taken at 5 m depth, and
that the CCI data are corrected for a ‘nearly-instantaneous’ effect of rain. However, rain
is not the only element generating a salinity gradient in the surface layer. To quantify the
vertical variability of salinity and its influence on comparisons between Argo at 5 m and
satellite surface salinity, we have calculated the GLORYS sub-footprint variability at the
surface as well. Figure 9 shows the GLORYS STD at the surface minus the GLORYS STD at
5 m, averaged over 3 years.
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The differences obtained can reach 0.1, in regions where salinity is highly variable.
We can distinguish three types of regions in Figure 9. In regions strongly impacted by
rainfall, the variability of measurements at 5 m depth is lower than the surface variability.
The observed differences are indeed very close to the impact of rain on salinity calculated
by [32], from SMOS data, and this effect is corrected in the CCI products. Large differences
between SSS and a few meters depth salinity are also expected in river plumes characterized
by strong vertical stratification (e.g., [33]). However, in areas off the mouth of the river, the
variability calculated at 5 m is often higher than the surface variability. The origin of these
patterns is not well known; 5 m depth could be close to the halocline depth and surface fresh
waters could be isolated from the variability of the layers below, but the assimilation of in
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situ data often performed close 5 m depth could also generate some additional variability.
Finally, in regions of low variability, the difference between the variability at 5 m and the
surface variability is close to zero.

As the CCI version 3.2 product contains a correction for rainfall effects, it is wise
to calculate a STD at 5 m depth in rainy regions. On the other hand, to be completely
consistent, it would be necessary to use an STD based on a comparison of individual points
at 5 m against a surface average value in regions where a large difference in variability
between the surface and 5 m is observed but not affected by rain, such as close to fronts or
river plumes. However, since the variability derived from GLORYS at 5 m depth is most of
the time higher than the one obtained with in situ measurements (Figure 8), this effect is
likely within the uncertainty of the STD derived from GLORYS simulations.

5. Conclusions

We find a remarkable agreement between CCI version 3.21 products (SSS and SSS
uncertainties) and Argo upper salinities once the uncertainty due to sampling mismatch
between CCI+SSS satellite products and in-situ Argo measurements is taken into account.
This is particularly striking for the distributions of the differences between satellite and in
situ salinities normalized by the sum of the uncertainties associated with each satellite-in
situ colocation (Equation (1)): at global scale, when mismatch uncertainties are taken into
account, the normalized distribution is very close to a Gaussian distribution with a unit
sigma contrary to the one normalized with the satellite salinity uncertainty only (Figure 4).
The role of the sampling mismatch is particularly important in regions with high variability,
as shown in Figure 6. In regions with low variability, on the other hand, the contribution
of the sampling mismatch uncertainty is very small compared to the satellite uncertainty.
Taking into account Umis_glo or Umis in the validation allows the STD of the normalized
differences to get very close to a χ2 theoretical distribution (Figure 7; correlation coefficient
of 0.95 with Usat only and of 0.98 when taking into account sampling mismatches).

Even though the spatial resolution of the GLORYS reanalysis does not resolve very
fine scale phenomena (<20 km), we find that they should also be taken into consideration
to approximate the sampling mismatch uncertainties. At global scale, the STD of the
normalized differences is 1.15 when only the satellite SSS uncertainty is considered and
1.03 when the GLORYS derived mismatch is taken into account. Moreover, we find that an
efficient way to counter the limited spatial resolution of GLORYS is to adjust the GLORYS
derived variabilities by a spectral analysis as proposed by [12]. With this correction, the
global scale STD of the normalized differences equals 0.99.

The analyses shown in this main paper have been obtained with weekly CCI fields.
Analyses of monthly CCI v3 data compared with Argo data (in Supplementary Information)
give similar results but with a reinforced importance of the mismatch uncertainty com-
pared to the uncertainty of the monthly satellite SSS (which is reduced with respect to the
uncertainty of the weekly fields). Again, the spectral correction of GLORYS variability
improves the comparisons.

The results obtained at global scale are corroborated by analyses of distributions over
large regions. The standard deviation of the distribution of differences reduced by the
quadratic sum of the uncertainties Usat and Umis has a standard deviation very close to 1
over the global ocean, slightly too high (1.05) in the variable regions and a little too low
(0.98) in the region of low variability of the Pacific. These results are significantly better,
up to 30% better in the Gulf Stream, than when the sampling mismatch uncertainty is not
taken into account.

These results highlight the consistency of satellite uncertainties of CCI version 3
products at the global scale, considering the validation method proposed by [7]. We observe
an overly pitted distribution of reduced differences in the Amazon region, corresponding to
a 15% overestimate of the total variability. Although this could indicate an overestimation
of Usat, as was commented on in the discussion, the calculation of Umis_glo in the river
plume regions may be too high. Future studies should address this issue by comparing the
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variabilities obtained from GLORYS to the ones estimated from other models or with other
in situ datasets.

Conversely, in the Gulf Stream region, the distribution of reduced differences is too
wide, and the STD is too high by about 15%, which suggests that Usat is too low there.
This could be related to remaining seasonal variation of biases at high northern latitudes
possibly linked to ice contamination, and to calibration flaws related to sun or antenna
temperature or RFIs impacts, which are not well represented in the Usat values.

The interest of this method is also to carry out comparative validations between
different products. The results of these tests on the previous version of the CCI products
(version 2) highlights the clear improvement of uncertainty estimates in the new version
related to modifications in the error propagation in the optimal interpolation methodology.
This shows the importance of carrying such tests for the validation of satellite products and
their uncertainties.

For reasons of data availability and computational time, we have restricted the study
to three years during the period common to SMOS and SMAP. It would be interesting for
complete validations to conduct a similar study for the whole period of the CCI products.
Indeed, the information used to derive Usat, the satellite measurements uncertainties and
the representativity uncertainties is specific to each instrument and strongly differs for the
Aquarius measurements. Aquarius SSS’ uncertainties are lower than the uncertainties of
SMOS and SMAP level 2 SSS, while its representativity uncertainties are larger due to the
spatial integration over 100–150 km relative to 50 km and to a narrower swath leading
to an increased undersampling. The work on level 4 CCI+SSS data presented here could
also be applied to other types of data, by adapting the spatio-temporal scales on which the
uncertainties due to sampling mismatches are calculated.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14081878/s1. Figure S1: Monthly GLORYS SSS SFV, 15 February
2017. Figure S2: Same as Figures 4 and 5 of main paper, for CCI v3.2 monthly products. Figure S3:
Same as Figures 4 and 5 of main paper, for CCI v2.3 weekly products. Figure S4: Same as Figures 4
and 5 of main paper, for CCI v2.3 monthly products. Figure S5: Same as Figures 6 and 7 of main
paper, for CCI v3.2 monthly products. Figure S6: Same as Figures 6 and 7 of main paper, for CCI v2.3
weekly products. Figure S7: Same as Figures 6 and 7 of main paper, for CCI v2.3 monthly products.
Table S1: Median SSS SFV, computed from GLORYS for a 50 km footprint for the all the months of
the year, for comparison with Bingham 2021 results. Unitless color scale, with the colors scaling with
the base 10 logarithm of the SFV. The month is given at the top of each panel.
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Appendix A

In this appendix, we describe the method for calculating Umis, based on a spectral
analysis of surface salinity. This method has been developed in [12], Appendix A.

The variance of a signal between a chosen wavelength and the Nyquist wavelength
can be inferred assuming that the slope of the spectrum between the two wavelengths is
reasonably known.

The variance of a signal is defined as the integral of its PSD:

σk =

√∫ kn

k

∫ π

−π
PSD(k)kdθdk (A1)

where k =
√

k2
x + k2

y and kn is the Nyquist wavenumber.
We consider the power spectral density of salinity to have a power-law scaling [12,20]

y(k) = b ∗ k−m (A2)

where m corresponds to the slope of the PSD when viewed as a log-log plot and b is the
y-intercept of the PSD.

Introducing (A1) into (A2) gives

σk =

√∫ kn

k

∫ π

−π
b ∗ k−mkdθdk (A3)

Additionally, integrating with respect to θ,

σk =

√∫ kn

k
2πbk1−mdk (A4)

And with respect to k,

σk =

√
2πb

m − 2
(k2−m − kn2−m) (A5)

We can express this formula as a function of wavelength:

σλ =

√
2πb

m − 2
(λm−2 − λnm−2) (A6)

In this equation, λ is the wavelength below which we calculate the variance and λn is
the Nyquist wavelength.
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