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Climatic constraints  and diversity  of  habitats  (linked in  particular  to  orographic  and soil
diversity), as well as diverse disturbances linked to human activities, have contributed to a
wide  diversity  of  evolutionary  trajectories  in  Mediterranean  marine  and  terrestrial
ecosystems and socio-ecosystems. A remarkable endemic biodiversity coexists with widely
distributed  species  at  a  global  scale,  which  are  often  keystone  species  in  terrestrial
communities (e.g. oak and pine forests, shrublands like "garrigue” or “maquis"), olive groves)
and  marine  environments  (Posidonia  meadows,  coralligenous  assemblages,  planktonic
assemblages in pelagic ecoregions).

Below  we  present  adaptive  characteristics  of  7  selected  Mediterranean  ecosystems,
detailing current knowledge for each of them on:
- context and pressures: what are the main current and future threats (if any);
- demography: what are the putative demographic trends in the context of global change
(usually based on demographic models that do not take adaptation into account);
- adaptive abilities:  differences in the response to major stressors,  with a focus on their
origin (acclimatisation or genetic adaptation). This includes:
- population genetics: genetic diversity is the fuel of genetic adaptation that powers the

engine of natural and man-made selection. This can be studied indirectly through neutral
markers  or  directly  by searching  for  adaptive  loci  through genomic  approaches.  Genetic
structure and connectivity will also be important to understand range shift and the potential
dispersal of adaptive alleles.

This material is the base for Table S1, which summarises the adaptive characteristics for 8 
Mediterranean ecosystems and provides an estimate of their overall expected adaptive 
potential to environmental changes. 

1. MARINE SYSTEMS

A. Phytoplankton and zooplankton  

The basis of marine food webs is a set of small stream-dependent organisms - plankton -
whose diversity and functions are still under-documented compared to higher trophic levels
such as fishes or marine mammals. The biodiversity of plankton is immense and includes a
very wide variety of living organisms, stemming from all branches of evolutionary history -
virus,  bacteria,  archaea,  unicellular  and  multicellular  from  different  eukaryotic  lineages
(Brierley, 2017). The diversity of these planktonic microorganisms is also characterized by a
very large size spectrum in depth spanning across several orders of magnitude (10 -7 to 100
m), by metabolic diversity (photo-, mixo-, heterotrophy), and by complex life cycles of very
variable  duration  (hour  to  several  years)  (Carlotti,  2019).  Hereafter,  we  focus  on
phytoplankton  and  zooplankton  adaptive  characteristics,  as  structural  and  functional
adaptation of the smaller marine forms has generated intense research in the last decades
(Fuhrman & Caron, 2016).
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A1. Phytoplankton

Context and pressures

Marine phytoplankton is the base of the marine food web. Their production is determined
by light availability and access to nutrients. Developing in epipelagic waters due to their light
dependence, phytoplankton and their associated microbial food webs are under multiple
pressures, whom cumulated roles are partially unknown, including temperature (with their
associated consequences on stratification and heat waves),  acidification,  changes in light
(UV) and nutrient inputs from continents and atmosphere.

Temperature, stratification, deoxygenation

Earlier studies (e.g. Behrenfeld et al., 2006) reported an overall inverse relationship between
anomalies in sea surface temperature and phytoplankton chlorophyll concentrations during
the last decades. It is suggested that future climate change would decrease phytoplankton
stocks and thus reduce ocean productivity  (Boyce et al., 2010). This view has been largely
challenged in the last decade, and there is now no consensus about the future projections of
global  ocean  productivity  (e.g.  Behrenfeld  et  al.,  2016).  In  theory,  it  is  expected  that
increased stratification will  reduce the mixing  of  nutrients  necessary  for  photosynthesis,
leading to a reduction of primary productivity, but also of the biologically-mediated carbon
export to the deep ocean. In the Mediterranean Sea, the spring phytoplankton bloom is
related to the intensity of previous winter mixing of the water column, and future water
density changes are key players to project the evolution in primary productivity (Macias et
al., 2015).

Nevertheless, a recent modelling study in the western Mediterranean Sea suggested that
climate-change may not significantly modify the pelagic planktonic ecosystem (despite small
impacts  on  plankton  phenology  and  size  spectrum),  nor  its  associated  carbon  cycle
(Herrmann et al.,  2014). Basin-scale modelled projections for the end of the 21st century
documented a stable net community production. This results from an increase in metabolic
rates  due to warming temperatures,  leading  to  an  increase  by  5% of  the gross  primary
production, which is compensated by increased community respiration rates and reduction
of biomasses  (Lazzari et al., 2014). Understanding and projecting how oceanic productivity
will  evolve  under  future  climate  requires  further  evaluation  of  how  the  multifaceted
stressors of a warmer, higher-CO2 world will impact the overall activity and adaptation of
plankton communities, as well as carbon sequestration.

When considering the natural nutrient limitation characterising the Mediterranean Sea, that
could increase due to increased stratification, the direct effect of sea surface warming on
phytoplankton growth and productivity may be smaller than anticipated because resource
limitation overrides temperature effects (Marañón et al., 2014). Increased stratification may
also lead to reduced oxygen dissolution. Deoxygenation potentially impacts all oceanic life,
from microbes to higher trophic levels; its consequences range from ecological shifts (Levin,
2018 and references therein), adaptation (Levin, 2003),  changes of biogeochemical activity
(Breitburg et al., 2018), to mass mortality events through hypoxia (Diaz & Rosenberg, 2008)
and biodiversity restructuring (Vaquer-Sunyer & Duarte, 2008). Although still not detected in
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the open Mediterranean Sea, deoxygenation is underway in the Black Sea (Capet et al. 2016)
and affects Mediterranean lagoons seasonally (Dedieu et al 2007).

UV

The sensitivity of plankton to UV depends on nutrient status, pre acclimatisation,  mixing
regime (mixing depth vs UV transparency), inherent optical properties of dissolved organic
matter  and  particles  (photoreactivity,  absorption,  diffusion,  backscattering),  presence  of
radical  precursors,  and community  composition.  From ecosystem-level  experiments,  it  is
difficult to discriminate between direct UV effects and cascading effects propagated through
the food web (e.g. prey or grazer/predator, viruses, bacterial utilization of derived-detritus
or DOC), and mesocosms experiments help analyse such questions (Belzile et al., 2006). UV-B
generally  leads  to  reduced Net  Community  Production  (NCP)  (Regaudie de Gioux  et  al.,‐ ‐
2014;  Agustí et al., 2014) by enhancing respiration more than photosynthesis, as warming
does.

Acidification

Acidification  directly  affects  photosynthesis  and  decreases  calcium  carbonate  saturation
states. Thus it might affect calcareous microorganisms directly. Indirectly, through cascade
effects, it can impact multiple components of the plankton food web. Acidification effects
are mainly studied through artificial pH decrease in enclosed sea water (from pure cultures
in batch cultures to communities in enclosed mesocosms). The initial species diversity largely
influences the outcome of acidification experiments  (Eggers et al., 2014), as well as initial
conditions  of  nutrient  enrichments.  Indeed,  the  nutrient  limitation overrides  a  potential
effect of ocean acidification (Maugendre et al., 2015). Thus, when maintaining oligotrophic
conditions of the Mediterranean Sea, mesocosm acidification experiments show no clear
effect of ocean acidification on plankton metabolic rates.

Aerosols

The Mediterranean Sea is submitted to significant pulsed nutrient and trace metal inputs
from the atmosphere, like Saharan dust from the South and anthropogenic sources from the
North  (Djaoudi  et  al.,  2018;  Guerzoni  et  al.,  1999).  It  is  suggested  that  the  increased
temperature  and  decreased  humidity  will  promote  soil  drying,  and  will  increase  dust
emissions,  particularly  in  the  eastern  Mediterranean.  After  few  hours  of  addition  of
artificially  aged Saharan dust in mesocosms, an increase in chlorophyll  a production was
observed, but heterotrophic bacteria were more impacted by dust deposition than primary
producers, resulting in a more heterotrophic natural assemblage. The sinking of particulate
organic  carbon  (POC)  through  DOM/dust  ballast  effect  and  aggregation  processes  was
favoured under dust deposition, decreasing the residence time of nutrients in the euphotic
layer by several days  (Guieu et al., 2014). A dust deposition event of 10 g m-2 simulated at
the surface of minicosms triggered the abiotic formation of transparent exopolymer particles
(TEP), leading to the formation of organic-mineral aggregates. The amount of exported POC
increased (Louis et al., 2017). Modelling the impact of atmospheric deposition of inorganic
nutrients (ammonium phosphate and nitrate) on the whole Mediterranean Sea, Richon et al.
(2018) calculated the fertilising effects of phosphate from dust to be low on average (6–10%)
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for the period 1997-2012 but an increase of up to 30% in primary productivity could be
observed during the months when surface water stratification occured.

Adaptive abilities

Because  of  their  huge  population  sizes  and  short  generation  time  (hours  to  days),
phytoplankton  species  should  display  a  high  potential  for  genetic  adaptation  (Reusch  &
Boyd,  2013).  Indeed these populations should have high levels  of  genetic diversity (both
from mutation supply and sexual recombination when relevant), very low genetic drift and
high efficiency at natural selection. Additionally, observed patterns of temperature optima
suggest  the  possibility  of  adaptation  to  local  conditions  across  distant  latitudes  in
phytoplankton  (Thomas et al.,  2012),  which remains to be better understood and tested
(Peijnenburg & Goetze, 2013).

The adaptive abilities are often studied through changes in plankton functional types (Quéré
et al.,  2015) rather than taxonomic composition, as they are corresponding to simplified
phytoplankton groups having characteristic  nutrient requirements,  growth capacities and
fate  (nitrogen  fixing,  calcifying  organisms,  pico,  nano,  and  micro  phytoplankton  groups
including  silica-requiring  phytoplankton).  For  example  diatoms,  developing  during  spring
bloom specifically in some Mediterranean regions are mostly responsible for carbon export
through sedimentation of  particles  (cf  the silica  pump,  (Leblanc  et  al.,  2005)).  However,
damming  resulted  in  reduced  silica  inputs  from  rivers  in  the  Mediterranean  Sea.
Theoretically,  this  means  that  silica-requiring  phytoplankton,  like  diatoms,  will  be
progressively replaced by other nano- and pico-sized microphytoplankton redirecting food
webs towards small grazers and carbon export via dissolved organic matter. Nevertheless,
diatoms can persist and adapt in changing Mediterranean Sea by developing in a micro niche
(for  instance  a  persistent  fucoxanthin  and  biogenic  silica  accumulation  layer  was
documented below the deep chlorophyll maximum depth in summer even in the eastern
Mediterranean Sea  (Crombet et al., 2011)), or by reducing in size (the nano sized diatom
Nannochloropsis can  bloom in  the North  western Mediterranean  (Leblanc  et  al.,  2018)).
Long-term natural phytoplankton changes can be estimated from oceanographic time series
at fixed points, but these are rare in the Mediterranean  (Estrada & Vaqué, 2014) and the
older ones mainly focus on chlorophyll stocks (or plankton functional types) derived from
pigment distribution or size-fractionation of  chlorophyll  (Marty  et  al.,  2002),  and not on
phytoplankton  taxonomy  (however  see  the  REPHY  initiative at
https://www.seanoe.org/data/00361/47248/ or  the  LTER  time  series  at
http://www.iobis.org/explore/#/dataset/3500). Moreover, their analysis based only on a few
decades is difficult due to the large interannual variability in thermohaline circulation, mixed
layer dynamics, coastal effects or mesoscale variability.

Potential  effects  of  climate change on phytoplankton are often based on experimentally
artificial and abrupt changes of forcing factors (alone or in combination) in experimental
enclosures (Guieu et al., 2010, Gazeau et al., 2017) or cultures. This may not reflect what will
occur in nature. It has been shown for instance that the initial species composition largely
influences the outcome of some acidification experiments (Eggers et al., 2014), and clearly
little  attention  has  been  paid  to  the  composition-functional  relationships  in  these
experiments. Not only taxonomic but also exploration of the total  functional potential of
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communities – with meta genomic approaches - coupled to such short-term manipulation of
forcing  factors  on  natural  communities  would  help  to  interpret  biogeochemical  analysis
based  on  marine  waters’  origin.  Nevertheless  existing  experiments  provide  important
information to study adaptive processes in marine phytoplankton  (Reusch & Boyd, 2013).
They can be used to study  reaction norms and have revealed inter-clonal  differences in
several  species.  In  agreement  with  the  aforementioned  properties  of  phytoplankton
populations,  an  important  variability  of  physiological  traits  exists  within  various
phytoplankton species, traits that are important for adaptive abilities (Reusch & Boyd, 2013).
Phenotypic plasticity has also been observed, which complements the adaptive abilities of
phytoplanktonic species. Indeed experimental evolution, even if restricted in time and space,
has demonstrated such possibility of adaptation in a few cases.  Some pending questions
remain to extrapolate this to the real world, including the possible interferences between
genotypes and between selection regimes, or the importance of dispersal  (Reusch & Boyd,
2013).

A2. Zooplankton

Context and pressures

Zooplankton  (here  defined  as  planktonic  metazoans  >200  μm)  exhibits  a  very  large
taxonomic  diversity  at  the  level  of  holoplancton  (continually  living  in  full  water)  or
meroplankton (larval  stages  of  many benthic  groups,  and fish eggs  and larvae).  Because
ocean currents provide an ideal mechanism for dispersal over a broad range of distances
(from m to 1000 km), almost all marine animals have planktonic stages in their life cycles.
Their diversity provides the main functions at the base of marine food webs in controlling
primary production,  linking microbial  food webs to higher trophic  levels  and cycling and
transporting biogenic elements in the ocean  (Brierley, 2017). Climatic and anthropogenic
forcing impact zooplankton vital rates, life cycles, population distributions and community
structure and in fine the efficiency of these functions (Carlotti & Poggiale, 2010). Unlike other
marine groups, such as fish and many intertidal organisms, zooplankton are generally not
commercially  exploited  (with  the  exception  of  krill  and  some  jellyfish  species),  and
consequently  studies  of  long-term  trends  in  response  to  environmental  changes  are
generally  not  confounded  with  trends  in  exploitation.  The  Mediterranean  Sea  presents
strong hydrographic and biogeochemical characteristics, and environmental gradients that
seem to  allow  the  development  of  a  wide  variety  of  planktonic  organisms,  at  different
organisation  levels,  characterised  by  different  environmental  preferences  (Durrieu  de
Madron et al., 2011).

Demography: zooplankton community changes in response to environmental changes

Data describing the diversity and composition of zooplankton in the Mediterranean Sea are
widely dispersed in time and space  (Siokou-Frangou et al., 2009) and regional patterns of
planktonic biodiversity are still poorly understood, although the Mediterranean is one of the
first basins to be studied (Bianchi & Morri, 2000). Copepods form the emblematic group of
zooplankton. It is the most abundant multicellular metazoan group in the oceans, or even on
earth (Bron et al., 2011), and dominates the composition and biomass of zooplankton in all
oceans,  as well  as in the Mediterranean  (Frangoulis  et  al.,  2004; Mazzocchi  et  al.,  2014;
Siokou-Frangou  et  al.,  2009).  According  to  the  copepod  database  http://copepodes.obs-
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banyuls.fr/en (last accessed on May 10, 2019), about 560 different species of copepods are
listed in the Mediterranean Sea. Most individuals are located in the 200 upper meters of the
water column, at the deep maximum of chlorophyll a, and relatively few species perform
large-scale diel  migrations  (Andersen et  al.,  2001;  Brugnano et al.,  2012; di  Carlo et  al.,
1984). The bulk of the Mediterranean copepod communities is composed of small (< 2 mm)
species belonging to very diverse genera.

Quantitative  synthesis  of  the  literature  (including  observed  oceanic  data,  models  and
satellite  analyses)  shows  that  climatic  changes  will  induce  major  changes  in  the
Mediterranean  sea,  such  as  hydrographic  properties  including  surface  circulation,  deep
water  winter  convection and  extended  seasonal  stratification,  in  addition  to  changes  in
temperature,  pH,  salinity,…  all  of  which  is  expected  to  deeply  modify  zooplanktonic
distributions as zooplankton is generally very sensitive to these changes (Richardson, 2008).
However  Mediterranean  zooplankton  time  series  are  too  few  and  too  dispersed,  with
relatively  short  overlapping  periods,  some  of  them  too  close  of  coastal  anthropogenic
influence  masking  the  climate  signal,  in  highly  spatially  differentiated  regional  climate
patterns, to allow drawing a clear pattern of planktonic spatial and temporal shifts at the
Mediterranean scale, which could be comparable to the North Atlantic with the CPR data
analysis (Beaugrand et al., 2002). At times, abrupt and dramatic changes in ecosystems occur
in  response  to  subtle  climate  or  physical  oceanic  forcings.  Such  abrupt  reorganisation,
known as a regime shift, can transform systems from one stable state to another  (Hare &
Mantua, 2000). Comparative studies of physical and biological time series in the eastern and
western Mediterranean Sea for several decades (Berline et al., 2012; Conversi et al., 2010)
converge to show an abrupt period of change in the late 1980s, that involved Mediterranean
surface circulation and pelagic  biotic and abiotic properties.  Larger scale climate indexes
(NHT and NAO) changed around that time as well  (Conversi et al., 2010), and results from
zooplankton time series in the northwestern Mediterranean have shown that inter-annual
abundance patterns fitted the inter-annual pattern of the winter NAO (Fernández de Puelles
&  Molinero,  2007;  Molinero et  al.,  2005;  Molinero  et  al.,  2008).  However,  these
Mediterranean "biological" time series are not yet sufficiently extensive in time, or do not
have a sufficient taxonomic resolution (Berline et al., 2012) to confirm an impact of climate
change neither on the community composition, nor on changes in phenology. At present, it
is  impossible  to  say  which  species  (or  functional  groups)  will  be  advantaged  or
disadvantaged by future temperature rises in the Mediterranean.

Mechanisms underlying this zooplanktonic community change are still poorly known. Global
warming  is  expected  to  have  great  repercussions  for  marine  ecosystems  because
temperature influences the water column stability, nutrient enrichment, and the degree of
new production, and thus the abundance, size composition, diversity, and trophic efficiency
of zooplankton (Richardson, 2008). The effects of variations within the ocean climate system
on zooplankton populations and their phenology  (Ji et al., 2010; Richardson, 2008) can be
direct  (rising  temperature,  rising  salinity,  rising  CO2,  decreasing  pH,  and  decreasing  O2)
through alteration of  physiological  functions and life-history  traits  and  consequently  the
fitness  of  individual  zooplankters  (Dam,  2013),  and  indirect  for  effects  exerted  through
vertical  density  stratification,  which  alters  phytoplankton  abundance  and size  as  well  as
changes in phytoplankton community structure (Doney, 2013; Litchman et al., 2012). These
variables  affect  individual  fitness,  predator–prey  dynamics,  and  competition  among
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zooplankton species. Other indirect effects are exerted through altered circulation patterns,
which  can  in  turn  impact  zooplankton  spatial  distribution  (Reid,  2000).  Projections  of
community  changes  based  on  key  mechanisms  (i.e.  impact  of  temperature)  have  been
realised using new approaches of ensemble niche modelling. The application of a population
thermal  preference  curve  of  106  copepod  species  in  oceanic  temperature  fields  in  the
Mediterranean projected by hydro-climatic model  (Adloff et al.,  2015) has been used to
project  changes  between  present  and  future  distribution  of  zooplanktonic  assemblages
(Benedetti et al., 2018). Their projections contrasted with those reported for higher trophic
levels  (Albouy et al., 2015), suggesting that a more complex ecosystem based approach is
required.

Adaptive abilities: physiology and life-history traits

Marine species often have complex life-cycles, as many have a dispersive planktonic stage,
with distinct life stages potentially occupying different habitats, each with different exposure
and sensitivity to changing climate (Rijnsdorp et al., 2009). Despite this apparent complexity,
which could be seen as a disadvantage to resist climate and associated ecosystem changes, it
is in reality an advantage because it gives a flexibility through modifications of the life cycle
(by reducing some critical planktonic phases). Recent evidence suggests that many of the
meroplanktonic  life  stages  are  even  more  sensitive  to  climate  change  than  their  holo-
zooplanktonic neighbours living permanently in the plankton (Richardson, 2008).

Zooplankton  are  characterised  by  physiological  and  behavioural  traits  that  affect  their
ecological  function  and  influence  their  interactions  with  other  trophic  levels  (Litchman,
Ohman,  &  Kiørboe,  2013).  Changes  in  species  composition  are  for  a  large  part  the
consequence  of  species-specific  behavioural  changes,  as  change  in  behaviour  results  in
changes in the main demographic  parameters,  birth and mortality  (Halsband-Lenk et al.,
2004; Ohman, 1990), and consequently in the success or failure of the species in a changing
ecosystem.

From  a  physiological  point  of  view,  zooplanktonic  organisms  are  excellent  sentinels  of
climate  change  for  several  reasons.  Because  zooplankton  are  poikilotherms,  their
physiological functions (ingestion, respiration, excretion, defecation, growth) and life-history
traits (e.g. short time to maturity in the order of weeks to months, fecundity up to 1000
eggs/female,  and  flexible  development  rate)  are  strongly  sensitive  to  temperature
(Mauchline,  1998).  Maximum rates of  ingestion,  growth,  and respiration double or  even
triple in many zooplankters with a standardized temperature increase of 10°C  (Halsband-
Lenk et al., 2002; Hansen et al., 1997), and with typical generation times of weeks to months
zooplankton  populations  can  respond  quickly  to  environmental  changes  by  means  of
phenotypic plasticity and natural selection (Dam, 2013). Despite previous statements on the
low capacity of evolution of zooplankton, there are several traits which are favourable to
evolution  and  adaptation  facing  climate  change  (Peijnenburg  &  Goetze,  2013):  as  for
phytoplankton, huge population sizes, along with the previously mentioned short generation
time, are important traits favouring genetic adaptation through natural selection. Another
important trait is that zooplankton nutrition and trophic interactions with phytoplankton,
microzooplankton and other zooplankton are quite flexible  (Kiørboe et al., 2018), even for
zooplankton  species  identified as  herbivorous,  because  most  of  the  time phytoplankton
species  dominate  for  short  duration.  The change  in  individual  size  during  the ontogenic
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development (ratio 1 to 100 from egg size to adult size) makes this feeding flexibility as a
rule.

One  particular  very  flexible  behaviour  of  zooplankton  to  limit  predation  and  maximize
feeding and reproduction in changing environments is its ability to swim vertically between
surface and deep layers either by diel vertical migration (DVM) (Hays, 2003) or by ontogenic
migration (Hidalgo et al., 2005). As in other oceans, zooplankton in the Mediterranean sea
presents a high variability in diel vertical migration (several hundred of meters) within the
same planktonic community (Andersen et al., 2001; Brugnano et al., 2012; Halsband-Lenk et
al.,  2002),  and  between  different  phases  of  their  ontogenic  life  cycle  for  each  species.
Ontogenic migrations, generally for a long phase (overwintering or oversummering) to deep
waters is  another  major  behavioural  trait.  The high  flexibility  of  these behavioural  traits
allows  to  swim  across  a  variety  of  water  layers  of  different  physical  and  chemical
characteristics,  which  allows  zooplanktonic  species  to  maximize  their  metabolic  and
developmental  rates  in  response  to  rapid  environmental  changes  (Bonnet  et  al.,  2005;
Carlotti & Nival, 1991; Halsband-Lenk et al., 2001; Halsband-Lenk et al., 2004; Halsband-Lenk
et  al.,  2002;  Svetlichny  et  al.,  2000).  Finally,  the  wide  variety  of  coastal  and  deep-sea
habitats,  from  continental  shelf  areas  to  canyons  and  mesopelagic  and  bathypelagic
habitats, offer to these flexible organisms the capacity to overcome major climate changes in
terms of adaptive abilities.

Population genetics and genomics

Although the number of studies that have rigorously tested for genetic adaptation in marine
zooplankton  is  small,  and  limited  to  estuarine  and  coastal  taxa  that  are  amenable  to
laboratory  experimentation  (reviewed  in  Dam,  2013),  unequivocal  evidence  exists  for
genetic adaptation in marine zooplankton. One example is the case of grazer populations
exposed to toxic algal blooms that show higher fitness than non-exposed populations when
facing toxic prey (Colin & Dam, 2007). The use of the water flea Daphnia also led to a lot of
studies regarding adaptive evolution for this freshwater model species  (e.g.  Pantel  et al.,
2015).  For  open  ocean  zooplankton,  the  majority  of  which  cannot  be  cultured  in  the
laboratory, evolutionary responses to global change are important to study and have been
explored for limited number of taxa (e.g.  Calanus in the Nordic Seas). This should rely on a
precise  species  delimitation  and  identification,  which  may  require  genetic  confirmation
(Choquet et al., 2018; Choquet Marvin et al., 2017). Most population genetics studies for
Mediterranean zooplanktonic  species  have been carried out  in comparative studies with
populations in North Atlantic and Black sea, such as the copepod Calanus helgolandicus, the
euphausiid Meganyctyphanes norvegica, the jellyfish Pelagia noctiluca, or the chaetognathe
Sagitta setosa (Peijnenburg & Goetze, 2013). Such studies are still at the infancy, and clearly
the Mediterranean pelagic habitat present obvious geographic isolating barriers that would
be necessary for speciation in allopatry, the most common geographic mode of speciation.
 
Regarding the huge population sizes and geographical ranges of planktonic species, as well
as  their  high  adaptive  potential,  management  tools  are  probably  neither  realistic,  nor
necessary. 
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B. Seagrass meadows (  Posidonia oceanica  )  

Context and pressures

Seagrass meadows are one of the most productive coastal ecosystems, whom ecosystemic
value has  been estimated at  a  global  scale to be one of  the highest  (29000 US$/ha/yr ;
Costanza  et  al.,  2014).  Most  seagrass  species  are  ecosystem  engineers  and  can  act  as
ecological sentinels (Boudouresque et al., 2009; Boudouresque et al., 2012;  Boudouresque
et al., 2016).  Six native seagrass species are present in the Mediterranean Sea, the endemic
Posidonia  oceanica (Linnaeus)  Delile  being  the  most  common  in  the  open  sea
(Boudouresque et al.,  2009). We will  focus here on  P. oceanica,  which is a key engineer
species that forms dense meadows from sea level down to 40-45 m depth depending on
water  transparency  (Boudouresque  et  al.,  2012;  Telesca  et  al.,  2015).  The  structure
constituted by live and dead parts of rhizomes, together with the sediment that fills the
interstices, is called ‘matte’  (Boudouresque et al.,  2009;  Boudouresque et al.,  2016).  This
structure is essential to stabilize coastal sediments and attenuate coastal wave action. Its
photosynthetic activity plays an important role in carbon sequestration (Fourqurean et al.,
2012;  Marbà  et  al.,  2014;  Pergent  et  al.,  2014) given  its  very  high  biomass  production
(Pergent  & Pergent-Martini,  1991).  While  a  little  proportion  of  P.  oceanica leaf  primary
production and associated epibiota is consumed by herbivores  (Peirano et al.,  2001),  the
majority is exported in the form of dead leaves that is consumed by detritus feeders and is
then transferred to higher trophic levels  (Guidetti, 2000; Pergent et al., 1997; Personnic et
al., 2014; Boudouresque et al., 2016). This habitat also provides food and shelter, allowing
high  quality  settlement  and  nursery  habitats  for  many  fish  and  invertebrate  species
(Boudouresque et al., 2012; Hughes, Williams, Duarte, Heck, & Waycott, 2009). 

Due to its particular sensitivity to environmental perturbations and anthropogenic stresses,
P.  oceanica and  its  ecosystem  are  used  as  bioindicators  to  assess  the  quality  of  the
environment  (Montefalcone,  2009;  Personnic  et  al.,  2014).  A  regression  of  P.  oceanica
meadows has been observed in different regions of the Mediterranean Sea (Boudouresque
et al., 2009). This species is impacted by direct and indirect effects of human activities such
as coastal development, trawling, beach replenishment, increasing turbidity (Boudouresque
et al., 2009; Boudouresque et al., 2012; Francour et al., 1999; González-Correa et al., 2008;
Montefalcone  et  al.,  2010;  Pergent Martini  et  al.,  2006;  Ruiz  &  Romero,  2003)‐ ,  and
potentially  by  non-native  species  (but  see  discussion  in  Boudouresque  et  al.,  2009).
Regarding climate change,  Marbà & Duarte (2010) observed an increase in shoot mortality
following two heat waves (2003 and 2006). Additionally the rise in sea level could lead to a
withdrawal of P. oceanica at its lower limit (Boudouresque et al., 2017a).

Demography

Posidonia oceanica is a long-lived species (up to several thousand years for some clones; see
below),  with a very slow growth of  the rhizomes (a  few cm per year).  Its  recolonisation
abilities, either via asexual propagation or by seeds, are very low (Boudouresque et al., 2009
and references therein). Indeed full-recovery of P. oceanica meadows may not be possible at
a human-time scale (Telesca et al., 2015). P. oceanica mainly reproduces asexually, through
rhizome splitting and elongation  (Marbà & Duarte, 1998),  forming meadows that occupy
between 2.5 and 5 x 1010 m2 (Pasqualini et al., 1998). This flowering plant also reproduces
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sexually.  Sexual  reproduction  seems  locally  sporadic  in  time,  and  has  therefore  been
considered as inefficient. Flowering records compiled for the second half of the twentieth
century across the Mediterranean Sea showed that flowering occurs on average every 5
years and involve 8% of the shoot of any one meadow (Diaz-Almela et al., 2006). The survey
of  Diaz-Almela et  al.  (2006) indicated that  the proportion of  flowering meadows was on
average 17%, but varied from 3 to 86% of  meadows depending on the years.  Flowering
prevalence  and  intensity  was  shown  to  coincide  with  peaks  of  sea  surface  annual
temperature maxima (Diaz-Almela et al., 2006). 

Population genetics

One major  characteristic  of  the  genetic  diversity  of  Posidonia  oceanica is  clonality:  one
population can be composed of different clones with different spatial extent. The level of
clonality (estimated by the clonal diversity), can be very variable depending on the meadows
(Arnaud Haond et al., 2007; Procaccini et al., 2001; Serra et al., 2010)‐ , with at the lower end
some monoclonal populations (Ruggiero et al., 2002). Identical multilocus genotypes (MLGs,
i.e. clones) can be observed at up to several kilometres of distance, potentially indicating a
high  longevity  (hundreds  to  thousand  years)  and  plasticity,  or  dispersal  following
fragmentation  (Arnaud-Haond  et  al.,  2012;  Migliaccio  et  al.,  2005).  At  higher  spatial
distances,  P.  oceanica from  the  western  and  eastern  Mediterranean  basins  are  well
differentiated with a contact zone around the siculo-tunisian strait  (Arnaud Haond et al.,‐
2007; Serra et al., 2010).

Adaptive abilities

Posidonia oceanica can be found in contrasted conditions, with populations dwelling in low
salinity and low temperature areas (e.g.  the Marmara Sea)  and in high salinity and high
temperature areas (e.g. the El-Biban Lagoon)  (Meinesz et al., 2009; Tomasello et al., 2009;
Vela  et  al.,  2008),  which  suggests  that  adaptability  is  higher  than  previously  expected.
Information on the potential impact of warming comes from  in situ correlations between
shoot  mortality  and  maximum  sea  water  temperature  (Marba  &  Duarte,  2010),  and
lepidochronology  (Mayot et al., 2005). Experimental studies have shown that acidification
seems to have no or reduced beneficial effect, which could buffer the effect of thermal stress
(Cox et al., 2015; Cox et al.,  2016). When considering the possible future warming trend,
concerns about the future of this species along with climate change (Jordà et al., 2012) could
have been overestimated. Regarding range shift,  Boudouresque et al. (2017a) discussed if
the warming could lead to a shrinking of the range of this species in its warmest locations
(eastern Mediterranean),  but also to an expansion at its cold limit  (e.g.  Adriatic, Gulf  of
Lions). Differences in thermotolerance have been demonstrated between depths or regions,
which will influence the future evolution of this species  (Marín-Guirao et al., 2018; Marín-
Guirao et al., 2016). This could modulate the expected important range loss deduced from
ecological niche modeling  (Chefaoui et al., 2018). 

From  an  adaptive  point  of  view,  asexual  reproduction  via  clonality  raises  important
questions. On one side, it might be expected that sexual reproduction should be important
for adaptive evolution by the creation of important genetic diversity at  each generation.
Flowering  could  be  induced  by  thermal  stress  in  P.  oceanica,  which  may  enhance  the
production of new genotypes along with climate change (Marín-Guirao et al., 2019). In other
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seagrasses some experiments also suggested a putative direct effect of genotypic diversity
on the response of community to disturbances  (Hughes & Stachowicz, 2004). On another
side, very large and old clones could correspond to « general  purpose genotypes » with
important  plasticity  allowing  them  to  cope  with  spatial  and  temporal  environmental
variations (Arnaud-Haond et al., 2012). The observation of very old clones means that some
of  them  were  indeed  able  to  cope  with  past  environmental  changes.  Such  mixed
reproductive mode, along with its long term persistance in the Mediterranean area, suggests
higher adaptive abilities than expected for P. oceanica. The persistence of P. oceanica in the
Mediterranean Sea, before and after the Messinian crises (5 to 6 million years ago),  and
during the Pleistocene 30 glaciation-deglaciation cycles, with abrupt changes in sea level and
temperature,  suggests  that  P. oceanica presents high adaptive characteristics and that  it
could be one of the most resistant species to climate change.

C. Coralligenous ecosystems (including marine animal forests)  
   

Coralligenous assemblages are biogenic emblematic ecosystems of the Mediterranean Sea
mainly built by calcareous encrusting algae (CEA). They are one of the biodiversity hotspots
of  the  Mediterranean  Sea  (Ballesteros,  2006) and  provide  a  wide  variety  of  ecosystem
services  (de  Ville  d’Avray  et  al.,  2019). Marine  animal  forests  correspond  to  habitats
structured by long-lived sessile metazoans, such as gorgonian octocorals, which also provide
some habitat for other species (Paoli et al., 2017). In the Mediterranean these communities
can  be  deeply  intertwined,  for  example  with  octocorals  and  Cystoseira  forests  in
coralligenous habitats  (Boudouresque et al., 2017b). We will therefore group the study of
these habitats here, with a focus on CEA and octocorals, i.e. the sister group of hexacorals
that  includes reef-building scleractinians. Nevertheless, there are specific characteristics to
each of them such as ecological range (such as depth), main pressures, life history traits, or
state of knowledge that can be very different depending on the species. Therefore we will
separate the corresponding information whenever necessary. 

Context and pressures

Coralligenous ecosystems (including marine animal  forests)  could be deeply impacted by
climate change. Octocoral populations, along with other sessile organisms, have suffered in
the last decades from mortality events induced by Marine Heat Waves (MHW) (Garrabou et
al., 2009; Perez et al., 2000; Garrabou et al., 2019). The first reported mortality events in the
Mediterranean dates back to 1983,  and one of the most impressive mortality events was
observed in 1999, followed by other ones with different impacts (Garrabou et al.,  2019;
Rivetti et al., 2014). Depending on the area and the date, the impact of the mortality could
extend down to 70 m depth, and up to 1 000 km of  coastline  (Rivetti et al.,  2014).  The
occurrence  of such mortality events was linked with short acute thermal stress or longer
milder stress (Crisci et al., 2011). The length of MHW may have increased after 2003 in the
North-Western Mediterranean and in the Adriatic (Garrabou et al., 2021). The frequency and
intensity of MHW is also expected to increase in the future in these areas along with climate
change (Garrabou et al., 2021).

Calcareous encrusting algae produce carbonate structures and are particularly sensitive to
ocean warming and acidification (Martin et al., 2013; Martin & Gattuso, 2009; Linares et al.,
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2015;  Lombardi  et  al.,  2011;  Nash  et  al.,  2016;  Rodríguez-Prieto,  2016).  The  red  coral
Corallium rubrum,  a calcifying species, may also suffer from acidification  (Bramanti et al.,
2013).

Coralligenous habitats  are  jeopardized  by other  pressures  such as  physical  damage  (e.g.
storms),  chemical  pollutants,  increased sedimentation and invasive species  (Balata et al.,
2005;  Balata  et  al.,  2007;  Ballesteros,  2006;  Boudouresque  et  al.,  2017b;  Hong,  1980) .
Octocoral   populations  suffer  from  pollution,  damages  from  fishing  nets,  detachment
induced by recreational diving or mucilage development (Coma et al., 2004; Sini et al., 2015;
Topçu & Öztürk, 2015). The red coral is harvested for jewellery, which led to an important
reduction of the size of colonies in over-exploited populations (Garrabou et al., 2017).

Demography

On a long timescale, the accumulation rate of coralligenous constructions is very low (0.006–
0.83 mm a-1) and varies according to depth and time period (Sartoretto, 1996). The growth
rates for two major species of CEA builders are very low: from 1.5 and 4.0 mm to 1.3 and 2.5
mm a-1 in  situ (Garrabou  & Ballesteros,  2000),  and  even slower  when measured in  the
laboratory (Rodríguez-Prieto, 2016). The generation time of CEA is difficult to estimate: the
age at first reproduction probably exceeds one-year old, and longevity probably exceeds one
dozen, maybe several dozens of years. Thus the turnover of individuals is likely to be slow
and suggests a generation time in the order of the decade. As far as Cystoseira zosteroides is
concerned, it is a long-lived species : more than 50 years  (Ballesteros et al., 2009), maybe
centuries.

The growth rate of octocorals is variable depending on species, but very low for C. rubrum
(less than 0.5 mm.a-1 for basal diameter (Marschal et al., 2004). The age at first reproduction
is around 3-5 years for  C. rubrum (Torrents et al., 2005), and this species could live more
than 100 years (Garrabou et al.,  2017). Nevertheless, harvesting has deeply modified the
demographic structure of red coral populations towards small size colonies (Garrabou et al.,
2017). These demographic characteristics question the future of coralligenous and octocoral
species facing environmental  changes.  Modelling the demography of  two Mediterranean
octocorals  (Paramuricea  clavata and  C.  rubrum)  following  mortality  events  suggested
possible recovery depending on the species (Santangelo et al., 2015). Conversely, Linares &
Doak (2010) deducted high extinction risk  for  P.  clavata populations  following recurrent
mortality  events.  Interestingly,  long-lived  species  such  as  C.  rubrum,  may  lead  to
demographic stability, but could also increase their sensitivity to mortality events (Montero-
Serra  et  al.,  2018).  Immediate  impacts  of  mortality  events  lead  to  an  increase  in  the
frequency  of  necrosis,  and  a  decrease  in  population  density  (Garrabou  et  al.,  2021).
Sublethal effects can have long-term consequences on gorgonian populations for example
through detrimental effects on reproductive success (Garrabou et al., 2021). A monitoring of
P. clavata populations over 10 to 14 years after mortality events in France has shown that
after an important initial decline in biomass, no sign of recovery was observed (Garrabou et
al., 2021).

Population genetics and genomics
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To date, data indicate frequent cases of significant genetic structure at short distances in
metazoans from coralligenous habitat, with short estimated dispersal distances  (Costantini
et al., 2018; Ledoux et al., 2010), which is quite unusual among marine species  with larval
dispersal. Nevertheless, this observation may be driven by a taxonomic bias in the studied
species. Among the main species of marine animal forest, a strong genetic structure has
been  observed  in  Mediterranean  octocorals,  with  significant  differentiation  at  short  to
moderate distances, including between depths at a same site in several cases (Costantini et
al., 2011; Gazulla et al., 2021; Ledoux et al., 2010; Masmoudi et al., 2016; Mokhtar Jamaï et‐
al.,  2011; Pérez-Portela et  al.,  2016; but see  Padron et al.,  2018 on  Eunicella singularis).
Recent studies on the bryozoan M. truncata also revealed a high genetic structure even at
small spatial scale (Cahill et al., 2017, De Jode et al. pers. com.). Regarding CEA, De Jode et al.
(2019) revealed  the  presence  of  several  cryptic  species  among  the  engineering  CEA  of
coralligenous reefs. The most abundant of these species harboured low genetic diversity and
high genetic structure even at small spatial scales.

The observed genetic differentiation is  often discussed with respect to the deep refugia
hypothesis: as deeper populations may be less affected by extreme thermal events, they
could "reseed" shallow sites (e.g.  Bongaerts et al., 2017) provided dispersal from deep to
shallow  sites  is  frequent  enough.  The  observation  of  significant  genetic  differentiation
between  depths  or  sites  (as  observed  in  the  aforementioned  cases),  is  sometimes
interpreted  as  a  lack  of  recolonisation abilities  between populations.  Nevertheless,  such
interpretation  is  far  from  straightforward.  First,  the  different  depth  populations  could
correspond to different species (Pantel et al., 2015; Prada & Hellberg, 2013). Second, genetic
differentiation  is  the  result  of  interaction  between  gene  flow  and  genetic  drift,  which
depends on effective population size  (Luikart  et  al.,  2010).  Low effective size  can be an
important factor leading to high differentiation. Third, current exchanges can be limited by
available  space  and  colonisation  effects  (Orsini  et  al.,  2013):  studies  of  recruitment  on
natural  and  artificial  substrates  show  that  recolonisation  abilities  may  be  important  in
Mediterranean octocorals  (Cánovas-Molina  et  al.,  2018;  Aurelle  et  al.,  2020),  when free
habitat is available. When different sites or environments are occupied by different cryptic
species (as in CEA), the question of recolonization abilities remains: could the local loss of
one species open the way to colonisation from a related one in a neighbouring site?  Apart
from demographic effects, the previously mentioned decline in population biomass following
mortality events may have genetic consequences as well:  depending on its intensity and
duration,  this  decline  may  increase  genetic  drift  in  gorgonian  populations.  The  genetic
analysis of a declining population of red coral in Spain did not evidence any difference in
population  effective  size  compared  to  a  pristine-like  population  (Ledoux  et  al.,  2020).
Nevertheless  this  last  study  suggested  an  higher  biparental  inbreeding  in  the  declining
population (Ledoux et al., 2020). Regarding the generally generation time of Mediterranean
gorgonians, genetic effects may be visible on longer time intervals.

Microbial diversity and climate-linked diseases

Adaptation  of  an  organism  to  different  environments  should  be  understood  at  the
hologenome  level.  Similarly  to  tropical  reef-building  scleractinian  corals,  temperate
octocorals are holobiont entities inhabited by a diverse bacterial assemblage  (Bayer et al.,
2013; La Rivière, et al.,  2013; van de Water et al.,  2018a). However, in contrast with the
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ubiquitous  association  of  scleractinian  corals  with  the  dinoflagellate  alga  Symbiodinium,
Eunicella singularis is the only Mediterranean octocoral hosting symbiotic Symbiodinium.

The bacterial microbiomes of the Mediterranean octocorals are species-specific, although
closely related hosts like  Eunicella cavolini and  E. singularis share some common bacterial
phylotypes  (La Rivière et al.,  2015; van de Water et al.,  2017). With the exception of  C.
rubrum, the octocoral microbiome is mainly composed of members of the Proteobacteria
phylum, and largely dominated by a gammaproteobacterial symbiont affiliated to the genus
Endozoicomonas (order  Oceanospirillales)  which  can  represent  more  than  90%  of  the
microbiome (La Rivière et al., 2013). Endozoicomonas are also detected in the microbiome of
C. rubrum, but the main associates of this species belong to the Spirochaetes phylum (van de
Water et al., 2016).

Endozoicomonas are predominant bacteria in the microbiome of a wide range of tropical
reef corals and have been suggested to play an important role in host fitness (Peixoto et al.,
2017), which may rely on their potential capacities in nutrient acquisition or production of
antimicrobial compounds (Neave et al., 2016). Their presence within the host tissues is also
indicative  of  an  intimate  biological  relationship,  possibly  resulting  from  a  long-term
coadaptation  process  (La  Rivière  et  al.,  2016;  Neave  et  al.,  2016).  The  abundance  of
Endozoicomonas decreases under altered environmental conditions, including climate stress,
and in health-compromised colonies of various coral species (McDevitt-Irwin et al., 2017). In
Mediterranean octocorals, a decreasing dominance by  Endozoicomonas  is observed in the
microbiome of  P. clavata populations subjected to anthropogenic impacts  (Vezzulli  et al.,
2013).  The  loss  of  Endozoicomonas may  trigger  or  facilitate  a  microbial  shift  toward
opportunistic or disease-associated microorganisms such as vibrios. In P. clavata, microbial
infection  by  Vibrio coralliilyticus has  been  identified  as  the  cause  of  tissue  lysis  during
mortality  outbreaks  induced by heat  waves  (La  Rivière  et  al.,  2016).  This  bacterium has
previously emerged as a thermo-dependent pathogen of tropical corals, and its occurrence
in the Mediterranean is correlated with the seawater temperature  (Vezzulli  et al.,  2010).
Susceptibility  to pathogens  under  temperature  stress  may also be related  to  the down-
regulation of some components of the immune defence system. For example, a mannose-
binding lectin involved in recognition of a variety of bacteria, including  V. coralliilyticus, is
down-regulated in heat-stressed hexacorals  (Kvennefors et al.,  2008). Although a putative
link  between  temperature  stress  and  immune  response  has  yet  to  be  elucidated  in
Mediterranean octocorals,  the overexpression of a lectin homologue observed in shallow
colonies of C. rubrum may suggest the implication of adaptive mechanisms to counteract a
higher pathogen pressure in warmer, low-depth environmental conditions  (Pratlong et al.,
2015).

In addition to the  Endozoicomonas-dominated “core” microbiome consistently associated
with  each  species,  unique  combinations  of  other  bacterial  taxa  are  present  in  different
locations (van de Water et al., 2018b). In Eunicella species, the abundance and the diversity
of  locally  stable  bacterial  associates  increase  in  locations  submitted  to  anthropogenic
disturbances.  In contrast,  the relative amount of the core bacterial  taxa in the octocoral
Leptogorgia sarmentosa  was greater in a disturbed site, indicating that each host species
may  exert  different  control  over  their  microbial  partners  (van  de  Water  et  al.,  2018).
Notably, changes in diversity and abundances of various  Endozoicomonas phylotypes were
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observed in the microbiome of  Eunicella spp. and  L. sarmentosa from different locations,
suggesting  that  the  most  adapted  ecotypes  are  favoured  in  a  given  environment.  In  C.
rubrum, changes in the microbiome were also evidenced at spatial scale, consisting in the
readjustment  of  the  relative  abundance  of  members  of  the  Spirochaetales  and
Oceanospirillales (van de Water et al., 2016). Overall, this suggests that octocoral holobionts
may  fluctuate  in  their  microbial  composition  in  response  to  environmental  conditions,
raising  the  question  of  the  potential  contribution  of  microbiome  flexibility  in  local
adaptation. This research area is emerging as a major topic in the future, which should be
extended to other engineer species.

Research and management implications

Interactions between environmental diversity, especially along depth, and intrinsic dispersal
abilities, have generated complex genetic and adaptive patterns, including at short distances,
among coralligenous and animal forests in the Mediterranean Sea. Observations of mortality
events mostly coincide with areas where warming trends are already recorded, and also with
areas where other cumulative impacts are present  (Rivetti et al., 2014). This raises several
questions regarding the potential adaptive abilities of the affected species facing climate
change.  On  the  positive  side,  the  available  studies  documented  an  important  genetic
diversity among populations, and in some cases an important adaptive diversity.  Indeed a
signal of local adaptation to depth has been shown (Ledoux et al., 2015) and more resistant
individuals have been observed during mortality events (Garrabou et al., 2021). These results
suggest a potential for  acclimatisation or genetic adaptation with time. The presence of a
given species along a depth gradient could  also  allow its  persistence in deep refugia less
affected by warming, but possibly at the expense of a range contraction (Galli et al., 2017).
On the negative side, the slow growth rate and demographic dynamics of some engineer
species could limit the rate of adaptive evolution, resulting in a slower adaptation than the
environmental changes driving it. The reduced dispersal abilities could limit the exchange of
adaptive  alleles  between  populations  (conversely,  natural  selection  can  increase  their
frequency). Interactions between pressures can be problematic as well, as  demonstrated for
acidification and temperature (Prada et al., 2017), but other non-climatic effects could act.
For example, a reduction of population size through habitat destruction or harvesting could
impact genetic drift.

There are several management tools for coralligenous or animal forests that could take this
information into account in order to sustain adaptive evolution. Marine Protected Areas
(MPAs) should be designed by favouring connectivity between populations (Palumbi, 2003).
In the case of red coral, the modelling study of Montero-Serra et al. (2019) has shown that
while MPAs can increase population growth if mass mortality events are rare, they are not
efficient when the frequency of such events increases, as expected under future climate
conditions. This is in line with observations on recent mass bleaching events in the Great
Barrier Reef, where local protection had little effect on the resistance to bleaching (Hughes
et al., 2017). Transplantations are increasingly proposed by environmental consulting firms
as tools to sustain or recover octocoral  populations in the Mediterranean Sea (Aurelle &
Bally, pers. com.). This could be used to sustain the demography of populations or to restore
gene flow for isolated populations.  Nevertheless,  such proposals  usually do not take the
possible adaptation to local conditions into account, nor do they fully estimate the required
efforts. The potential effects of such practices and the best modalities sustaining biological
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evolution could be evaluated through simulation approaches (Bay et al., 2017). In the case of
tropical  coral  reefs,  the possibility of using assisted evolution (i.e. acceleration of natural
evolutionary processes, here to increase thermotolerance) in management plans is discussed
(van  Oppen  et  al.,  2015).  In  all  cases  knowledge  gaps  remain.  One  major  point  is  the
determinism  of  adaptation  and  its  heritability  (with  questions  on  genetic  architecture,
epigenetic  effects,  transgenerational  acclimatisation,  holobiont  evolution):  this  will  have
major consequences on the possibility of evolution and on the corresponding management
strategies. This is an evidently highly complex task which only starts to be understood in
non-model species, e.g.  Bay et al. (2017) on corals;  and Perrier & Charmantier (2019) for
examples and potential pitfalls with birds. These last examples show that this is now a timely
and possible research line for Mediterranean marine species.

Adaptive abilities

The  study  of  the  possibility  of  adaptation  to  temperature  or  pH  changes  in  non-model
marine  species,  can  take  advantage  of  environmental  gradients  to  study  the  current
adaptive diversity. Indeed in the Mediterranean Sea, temperature regime can vary sharply
along a short depth range (Haguenauer et al., 2013), which allow testing for local adaptation.
Natural pH gradients were used to study the impact of acidification (Prada et al., 2017). In
octocorals, higher thermotolerance levels were observed for shallower colonies (from 11 or
20 m depth) compared to deeper ones (40 m depth) in C. rubrum (Torrents et al., 2008) and
Eunicella cavolini (Pivotto et al., 2015). Nevertheless in P. clavata, Crisci et al. (2017) did not
observe  a  correlation  between  thermotolerance  and  the  original  thermal  regime
experienced  in situ by colonies.  This  could be the consequence of  genetic drift counter-
acting  local  adaptation,  or  of  the  protocol:  colonies  were  fed  during  the  experiment,
whereas  energetic  constraints  during  summer  have  been  proposed  as  a  factor  shaping
mortality  events  (Coma  &  Ribes,  2003).  In  Eunicella  singularis,  a  reverse  pattern  of
thermotolerance  was  observed  with  shallower  colonies  being  less  thermotolerant  than
deeper  ones  (15  vs  35  m depth)  (Ferrier-Pagès  et  al.,  2009).  This  could  be  due  to  the
photosynthetic activity  of  Symbiodinium  symbionts  in  this  species (Symbiodinium),  which
could interact with thermal stress at lower depths. Additionally, it is not clear whether such
diversity in thermotolerance corresponds to acclimatisation, to local, genetic adaptation, or
to  interactions  between  both  processes.  Acclimatisation  could  buffer  the  impact  of
environmental  changes for long-lived species with long generation time as suggested for
tropical corals (Munday et al., 2013a). There is little information on acclimatisation abilities
of Mediterranean octocorals: one experiment in  C. rubrum has shown a reduction of the
expression  of  HSP70  in  experimental  thermal  stress  following  a  first  similar  stress
(Haguenauer  et  al.,  2013),  but  a  reverse  signal  was  observed  for  another  temperate
octocoral after acclimatisation to temperature (Lopes et al., 2018). In all cases, for such long
lived species, acclimatisation abilities should be explored on a longer time interval, especially
over different years. Transplant studies on the bryozoan Myriapora truncata showed that, at
low pH, individuals were able to survive, but not to grow (Lombardi et al., 2011).  Rodolfo‐
Metalpa  et  al.  (2010) showed  that  under  elevated  pCO2  one  event  of  prolonged  high
seawater temperature triggered the death of all individuals in the experiment. These last
experiments on M. truncata were not dedicated to study the diversity of responses, but they
showed the potential impact of acidification on this calcifying metazoan.
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Laboratory  studies  on  CEA  species  showed  that  their  survival  rate,  calcification  rate,
photosynthesis  declined  with  increased  temperature  and  acidification(Rodríguez-Prieto,
2016; Martin et al., 2013). Thus, engineering species of coralligenous habitats have limited
acclimatization abilities, especially when facing a combination of stresses (see also Prada et
al., 2017; Rodolfo-Metalpa et al., 2011). 

The possibility of genetic adaptation to local thermal conditions is supported by reciprocal
transplant experiments between depths in C. rubrum, but in only one of the two investigated
regions  (Ledoux  et  al.,  2015).  Gene  expression  differences  between  depths  have  been
demonstrated for this species at the transcriptome level (Pratlong et al., 2015). Some of the
differentially expressed genes are involved in stress response in other coral species, but a
demonstration of their role in adaptation is still lacking in C. rubrum. A population genomic
study indicated a signal of local (genetic) adaptation to depth in the red coral (Pratlong et al.,
2018).  Nevertheless,  in such species with important genetic differentiation, false positive
induced by genetic drift are really problematic, and additional  work is  required to study
genetic adaptation in this species (Pratlong et al., 2018). Regarding depth gradients, genetic
studies have shown that CEA species community composition vary along a depth and light
gradient suggesting that different species are adapted to different niches  (De Jode et al.,
2019). The case of CEA underlines that the diversity of adaptation should be considered at
different levels: from within species to between related species.

At  higher  distances,  different  octocoral  species  are  present  in  different  parts  of  the
Mediterranean  Sea  (North  –  South,  East  –  West).  It  would  be  interesting  to  study  the
differences in adaptive abilities according to the different basins. In all cases, for such long-
lived species  with sometimes long generation time,  the possibility  of  genetic adaptation
along  with  environmental  changes  seems  difficult,  especially  if  extreme  events  strongly
impact  the  population  dynamics.  The  study  of  recurrent  bleaching  events  in  the  Great
Barrier Reef, conversely indicated that previous bleaching events could reduce the impact of
new events,  possibly  as  a  consequence of  selective effects (mortality  affecting the most
sensitive individuals or species) or of acclimatisation (Hughes et al., 2018). Additional studies
would be required for a better understanding of this effect and its potential consequences
on corals’ evolution. 

2. LAND SYSTEMS

D. Microbial soil communities of pine and oak forests   

Drivers of forest soil diversity

Soil represents a huge reservoir of biodiversity including microorganisms (mainly bacteria,
fungi and protozoa) and invertebrate animals (Gobat et al., 2004), all of which are actively
involved in  organic  matter  transformation.  This  fundamental  ecosystem process  sustains
major ecosystem services, such as primary production and biogeochemical cycles (Bardgett
et al.,  2008). Forests are essential biomes in providing such services. The abundance and
diversity of soil microorganisms is particularly high in such ecosystems  (Buée et al., 2009;
Lladó et al.,  2017). Both bacterial  and fungal  communities are key soil  components that
produce extracellular enzymes involved in nutrient turnover and humification, leading to CO2
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emission and carbon storage (assimilation in the biomass, aggregation…) in soil. Forest soils
can indeed act as both sinks and potential sources of carbon (Bardgett et al., 2008; DeAngelis
et al., 2016) and this balance is driven by various environmental factors acting at different
spatial scales. At a global scale, temperature and mean annual precipitation (Tedersoo et al.,
2016) and edaphic properties - mainly pH - (Fierer & Jackson, 2006) have been identified as
main drivers of  soil  microbial  diversity,  while  locally  it  varies  greatly  according to above
ground plant diversity (Haichar et al., 2008; Roesch et al., 2007; Tardy, 2015). At a local scale,
soil microbial activities indeed depend on the nature and quantity of organic input coming
from root exudates, litter fall or fire residues  (Schmidt et al., 2011) as well as on physico-
chemical processes (e.g. organo-mineral association, freezing and thawing) and interactions
between soil organisms mainly related to trophic relationships (Scheu, 2002). 

The Mediterranean context

The dynamics of Mediterranean forest stands react to various environmental drivers acting
at different spatio-temporal scales. Of all these drivers, land use legacy and specific edaphic
and  climate  conditions,  play  an  important  role  (Ertlen  et  al.,  2015).  The  surface  and
composition of European Mediterranean forests have been strongly structured by wildfires
and human activities leading to agro-silvo-pastoral systems during the last century (Quezel &
Médail, 2003). From the 1930s, abandonment of land previously devoted to agriculture and
increasingly frequent wildfires promoted massive colonisation of natural spaces by resinous
species such as Pinus halepensis Mill. and Pinus sylvestris (Tatoni & Roche, 1994), resulting in
pure stands. The Mediterranean region is characterized by particularly dry summer periods
that  have  selected  plants  producing  leaf  litters  containing  particularly  high  amounts  of
secondary  metabolites  (Chomel  et  al.,  2016;  Hashoum  et  al.,  2017) and  of  recalcitrant
phenolic compounds  (Rovira & Ramón Vallejo, 2007) that were both shown to affect litter
decomposition and soil  nutrient cycling.  In forests,  vegetation assemblages are known to
deeply impact soil organic matter composition. Broadleaved species, such as  Quercus spp.,
enhance  soil  organic  matter  quality,  increasing  easily-degradable  compounds  and  thus
enhancing microbial metabolism (Polyakova & Billor, 2007). Conversely, some plant species
that  are  specific  to the Mediterranean area  such as  Pinus spp.  contain  particularly  high
amounts of recalcitrant molecules (such as cutin or lignin) and are poor in nutrients, which
induces  lower  rates  of  decomposition.  When  both  type  of  species  (broadleaves  and
coniferous)  are  mixed,  the  tree-species  identity  and  the  function  traits  associated  can
strongly  modify  the  stand  ‘print’  on  soil  properties  and  thus  on  soil  chemical  signature
(Laganière  et  al.,  2009;  Matos  et  al.,  2010;  Prescott  &  Grayston,  2013).  This  has  been
described as additive or non-additive (synergistic or antagonistic) effects (Brunel et al., 2017;
Scheibe et al., 2015). 

Mediterranean forest soil functioning may be threatened by additional pressures linked to
environmental changes. The Mediterranean basin, considered as a hotspot of biodiversity
(Quezel & Médail, 2003), has also been identified as one of the most prominent “Hot-Spots”
in  climate  change  projections  (Giorgi,  2006;  Giorgi  &  Lionello,  2008).  Climate  scenarios
project changes in the spatial and temporal distribution of precipitation as well as increased
frequency and intensity of extreme events (heat waves, droughts, wildfires) that will impact
ecosystem functioning (Giorgi & Lionello, 2008), including through soil-related processes.
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Forest soil responses to drought stress

Soil ecologists are now extensively focusing their research on how climate change effects
may  alter  soil  diversity  and  functions  (Kéfi  et  al.,  2007).  Most  litter  decomposition
experiments have investigated litters from plants artificially exposed to global change factors
such as warming, drought or elevated CO2 (Suseela & Tharayil,  2018). Some studies have
used field-scale experiments via rainfall exclusion to mimic drought constraints (Rodriguez‐
Ramirez  et  al.,  2017;  Santonja  et  al.,  2017),  while  others  are  now using  transplantation
experiments across natural climate gradients to investigate the impact of climate conditions
on forest soils in situ (Berger et al., 2016; Keiser & Bradford, 2017; Makkonen et al., 2012).

Previous studies showed that microbial communities frequently exposed to drought stresses
are more resistant to drying/rewetting cycles than less exposed communities (Butterly et al.,
2009; Farnet Da Silva et al., 2016; Fierer et al., 2003; Fierer & Schimel, 2002; Schmitt et al.,
2010; Van Gestel, Merckx, & Vlassak, 1993), which has been interpreted as resulting from
natural  selection  (Sparling  et  al.,  1987).  Several  authors  detected  a  shift  in  microbial
composition towards fungal-dominant communities after repeated drying (Cleveland et al.,
2004; Evans & Wallenstein, 2012; Yao et al., 2011), suggesting that this microbial group can
resist to drought stress better than bacteria. More precisely, fungi may be more tolerant to
drought stresses (fungal hyphae can transfer moisture from water-filled micropores) than
bacteria,  which are  more connected to their  immediate  surroundings  and require water
films for motility and substrate diffusion as described above (Evans & Wallenstein, 2012). In
fact, based on morphology and life history strategies (inherent resistance and acclimatisation
abilities) of microbial groups, stresses linked to drying/rewetting cycles are likely to favour
Gram-positive bacteria (with a strong, thick, interlinked peptidoglycan cell wall) and fungi
rather than Gram-negative bacteria (with a single-layer cell wall and an outer membrane)
(Schimel  et  al.,  2007).  Production  of  intracellular  osmolytes  is  often  observed  as  a
physiological response to water potential stresses  (Kakumanu & Williams, 2014), which is
particularly  energy-consuming  for  microorganisms  and  thus  impacts  their  metabolism.
However, the stability of decomposer microbial communities after stress also relies on other
factors that shape community structure, composition and diversity, such as organic matter
quality and quantity  (Loreau et al., 2001; Loreau Michel, 2010; Wardle & Jonsson, 2014).
Mixed forests have long been considered essential  for  sustainable  forestry  management
(Gartner & Cardon, 2004; Rodríguez-Loinaz et al., 2008). Increased biodiversity creates more
diverse habitats,   produces more above-ground biomass  (Vilà et al.,  2007) and enhances
resilience to stress and to disturbances like diseases  (Pautasso et al.,  2005),  fires  (Wirth,
2005) or extreme weather events (Dhôte, 2005). 

Numerous previous studies (Rodriguez Ramirez et al., 2017‐ ;  Setiawan et al., 2016; Zimmer,
2002) have shown higher decomposition rates in mixed litter compared to monospecific
litters, depending strongly on litter species within the mixture (Brunel et al., 2017; Cuchietti
et al., 2014; Prescott & Grayston, 2013; Wu et al., 2013). The diversity of plant species within
litter mixtures is also thought to maximize the diversity of nutrient resources, which in turn
favours microbial diversity and abundance (Santonja et al., 2017, 2018). Any alteration of the
plant species diversity should thus drive strong cascading effects on microbial decomposer
communities. In other words, diversity begets diversity  (Chapman & Newman, 2010). This
can be related to the ecological  concept of complementary ecological  niches, underlying
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better  microbial  exploitation  of  organic  matter  and  better  stability  (Loreau  et  al.,  2001;
Loreau Michel, 2010). A meta-analyses by Cornwell et al. (2008) suggests that plant species
traits  have  a  strong  effect  on  resistance  to  stresses  and  could  be  considered  as  a
predominant driver of soil functioning within biomes worldwide. However, another concept
based on the redundancy of functions in soil microbial communities supports the fact that
there  is  no  clear  relationship  between  microbial  diversity  and  the  stability  of  function
‘decomposition’.  Many  authors  have  indeed  assumed  that  there  is  a  high  level  of
equivalence in functions within decomposer communities and thus a substantial potential of
resilience in functional capacity. In other words, the loss of any group of species may not
strongly  impact  decomposition  processes  since  other  microorganisms  can  sustain  its
function (Nannipieri et al., 2003; Swift, Izac, & van Noordwijk, 2004). 

Many research outputs point to the need to take drivers at different spatio-temporal scales
into account  (mainly stress legacy,  land use history,  climate conditions at  various spatial
scales and litter chemical signature) to improve our projection capacity of functional and
structural  microbial  community  responses  to  environmental  changes,  and  their
consequences  for  ecosystem functioning  and stability.  This  is  particularly  challenging  for
microbial  communities  of  soils  since  only  a  very  small  fraction  of  the  existing  species
diversity is known. Yet, it is crucial for the above ground communities that depend on soil
biodiversity, such as forests.

E. Semi-arid and arid Mediterranean steppes  

Mediterranean steppes host a unique biodiversity with rare and threatened species.  Among
them, steppe bird  species  (e.g.  Chersophilus  duponti,  Tetrax  tetrax,  Otis tarda,  Pterocles
alchata, Falco naumanni) represent the most threatened group of birds in Europe (Laiolo &
Tella, 2006). Steppes also host rich assemblages of arthropods with many species typical of
oligotrophic and arid areas (Fadda et al., 2007), also including some endemic taxa (e.g. the
grasshopper Prionotropis rhodanica Uvarov in the Plaine de La Crau, France). North African
steppes are exceptionally rich with more than 2600 plant species of which 25% are endemic
(Le Houerou, 1995). In North Africa, arid steppes potentially cover over 630 000 km²  (Le
Houerou, 1995). Today, only fragmented and reduced surface of semi-arid and arid steppes
occur  in  the  Mediterranean  basin,  especially  in  the  western  Mediterranean  (Iberian
Peninsula, and North Africa).

The openness of steppes confers them a long history of traditional agricultural practices such
as sheep grazing, especially the gramineous steppes of Stipa tenacissima that are often the
result of the degradation of former Mediterranean open forests  (Gauquelin et al.,  1998).
However, arid and semi-arid ecosystems are especially prone to state changes as a result of
scarce, variable rainfall and low soil fertility, and among the most sensitive ecosystems to
global  climate  change  (Kéfi  et  al.,  2007;  Reynolds  et  al.,  2007).  In  North  and  South
Mediterranean,  recent  industrial  development,  agricultural  intensification,  changes  in
agricultural  practices  or  changes  in  fire  regimes  pushes  arid  and  semi-arid  ecosystems
towards  the  edge  of  extinction  (Kéfi  et  al.,  2007;  Puigdefábregas  &  Mendizabal,  1998).
Desertification,  land degradation in arid, semi-arid and dry sub-humid areas results  from
various factors, including climatic variations and human activities (Reynolds et al., 2007).
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Many studies have reported the consequences of climate and land use changes in steppes
on biodiversity. In North Africa,  (Le Cuziat, et al., 2005) showed that human presence and
pastoral activity affect the distribution of a steppe bird species, the Houbara bustard. Similar
projections for steppe bird species in Spain showed a strong impact of land use on their
potential distribution range (Brotons et al., 2004). Agricultural intensification also impacted
the composition of steppe vegetation  (Römermann et al., 2005). Trait-based modelling of
plant abundances in the arid steppes of eastern Morocco showed that stress-tolerant sub-
shrubs will become the dominant functional group in the next decades whatever the climate
change scenario used, suggesting a process of desertification (Frenette-Dussault et al., 2013).
In North Africa, a vegetation model simulating an increase of atmospheric CO2 (500 ppmv)
and of annual temperature (+2°C) with stable precipitation showed that a woody xerophytic
vegetation might occupy a more extensive territory than today, and would replace part of
the present steppe area (Cheddadi et al., 2001). The phenomenon of shrub encroachment,
i.e. the increase in the density and cover of shrubs in former grassland, triggered by many
factors  ranging  from  climate  change  to  grazing  to  fire  suppression,  has  been  largely
reported.  Stipa  tenacissima –  when  preserved  –  might  also  have  a  direct  key  role  of
facilitation on these introduced shrubs in some arid and semi-arid steppes (Maestre et al.,
2001).

In this context, the authors recommend enlarging the network of protected areas to prevent
any further habitat degradation and to implement agri-environmental measures as well as
active transnational management measures for the maintenance and survival of viable bird
population (Brotons et al., 2004; Buisson & Dutoit, 2006) and biodiversity in general.

F. Forests  

F1. Thermophilic oak-pine forests and shrubland

Downy oak (Quercus pubescens  Willd.), Holm oak (Quercus ilex L.) and Aleppo pine (Pinus
halepensis Miller) are the three most widespread forest tree species of the western part of
the Mediterranean. They form vast monospecific or mixed forests as do many species of
oaks  and  pines  across  the  altitudinal  vegetation  belts  throughout  the  region  (Quezel  &
Médail, 2003). They are adapted to the long summer droughts of the Mediterranean and will
probably  increase  their  ecological  role  and  distribution  area  as  climate  gets  hotter  and
summers get drier throughout the 21st century.

Total forest cover of Allepo pine is estimated to be approximately 3.5 million hectares (Fady
et al.,  2003; Mauri et al.,  2016). P. halepensis is  mainly found at lower elevations in the
thermo- and meso-Mediterranean belts,  and up to 2 000 m above sea level in Morocco.
Total forest cover of downy oak is at least 2.5 million hectares, with over 1.7 million hectares
in France and Italy alone. Downy oak is a northern Mediterranean oak that can grow from
coastal plains up to 1200-1300 m above sea level while it is most often found on hillsides
between 200 and 800 m. Downy oaks prefer lime-rich and well drained soils in the northern
part of  their  range,  while  they may also be common on acidic  soils  in its  southern part
(Pasta, de Rigo, & Caudullo, 2016). Total forest cover of  holm  oak is over 6 million hectares,
with the largest forests in the western Mediterranean (Quezel & Médail, 2003). Holm oak is
mostly found from 0 to 1000 m above sea level but can reach elevations of 2500 m in areas
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where competition with other broadleaves is limited such as in Morocco and Spain. Holm
oak can be the keystone species of various ecosystems, from open matorral type to late
successional (de Rigo & Caudullo, 2016). It prefers well drained sites and is insensitive to soil
pH.

The current distribution of these thermophilic, drought resistant forests and their associated
biodiversity  results  from  millennia  of  human  disturbance  and  it  is  actually  difficult  to
precisely characterize the limits of the ecological niche of these species  (Covas & Blondel,
1998; Doblas-Miranda et al., 2017; Henne et al.,  2013). Fire and land use change are the
main drivers of their distribution and their recolonisation of low elevation sites has been
spectacular during the second half of the 20th century onwards (Quezel & Médail, 2003). 

The major challenge for these species during the 21st century will be to adapt to increased
periods  of  summer  drought  and  heat.  Widespread  mortality  of  Quercus  pubescens  in
southern  France  over  the  past  years,  for  example,  have  alarmed  forest  management
agencies.  Ongoing  experiments  in  flux  tower  sites  measuring  gas  exchange  rates  over
Mediterranean  oak  and  pine  ecosystems  reveal  numerous  adaptation  potentials.  In  the
O3HP  Oak  Observatory  in  Provence  (France),  rain  exclusion  experiments  helped  better
understand the capacity of Q. pubescens to resist recurrent droughts projected by climatic
models.   After  4  years  of  reduced  rain  (30%),  although  water  potential  (Ψ)  and  net
photosynthesis  (Pn)  were  noticeably  reduced,  trees  showed no reduced growth and  no
oxidative stress. Defences such as Volatil Organic Compound emissions actually decreased.
However, growth decrease was observed at longer term (5th year) and antioxidant contents
(carotenoids and isoprene) started to change (Saunier et al., 2018). Although Q. pubescens is
a  highly  drought-resistant  species  that  possesses  efficient  antioxidant  mechanisms
(tocopherol, xanthophyll cycle) to cope with oxidative stress, we can anticipate substantial
decreases  in  gas  exchange,  adjustments  of  the  photosynthetic  pigment  composition
(chlorophylls,  carotenoids),  impaired  growth  in  the  long-term  and  maybe  stronger
compensatory mechanisms between antioxidants. The wide distribution of this taxon often
occurring in the transition of several climatic influences (Quezel & Médail, 2003) still requires
further research on its entire range in order to test its phenotypic plasticity.

Other effects of experimental reduction of rainfall in Q. ilex forests (in Catalunia (Spain) and
Puechabon,  near  Montpellier,  France)  have  included  significant  shifts  in  community
composition of ectomycorrhizal communities  (Richard et al., 2011), decreased soil enzyme
activity  (Sardans & Peñuelas, 2005), decreased species richness of recruited seedlings in a
Mediterranean shrubland (Lloret et al., 2004) and phenological changes (Misson et al., 2011;
Ogaya & Peñuelas, 2004). In the long run these shifts may offset the increased productivity
projected by mechanistic process-based models focusing on CO2 fertilisation (Keenan et al.,
2011). Varying phenotypes under different environmental conditions are better projected by
phenotypic plasticity than by genetic diversity (Valladares et al., 2002). 

Increased risk of wildfires is another major challenge. Fire is a dominant ecosystem process
of  low  elevation  pine  and  oak  forests,  likely  to  become  more  prevalent  under  climate
warming in the 21st century. Low elevation pines have developed serotinous cones that make
them particularly adapted to recurrent fires at a frequency of over 20-30 years. It is likely
that recurrent fires have impacted the genetic diversity of Aleppo pine, making it a relatively
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low diversity species amongst pines. Oaks are resprouters and are also well adapted to fire.
Nonetheless, an increase in fire frequency and intensity may negatively affect pine and oak
forest composition, recovery rate and suitability as a habitat for other communities of plants
and animals  (Doblas-Miranda et al.,  2017; Puerta-Piñero et al.,  2012; Regos et al.,  2015),
with complex feedback loops associated to other changes such as drought and land-use (see
review by (Doblas-Miranda et al., 2017). 

Despite some sensitivity to late frosts and winter freezing, Aleppo pine is likely to resist and
be one of  the winners  of  climate warming  in  the Mediterranean.  From an evolutionary
ecology  perspective,  this  eastern  Mediterranean  origin  pine  re-occupied  its  current
distribution after the Glacial cycles from a few refugial areas via local diffusion and long-
distance dispersal processes. The genetic diversity of this species is one of the lowest for
trees worldwide, indicating strong past demographic bottlenecks (such as cold episodes and
large wildfires)  (Fady, 2012; Fady & Conord, 2010; Grivet et al., 2009;  Grivet et al., 2011).
Aleppo  pine  displays  several  strategies  to  withstand  severe  drought,  including  high
resistance to embolism and a capacity to reduce wood-formation rates as water availability
decreases  (e.g.  Camarero et  al.,  2015).  However,  water  shortage  can  limit  growth  and
productivity of Aleppo pine forests and increase tree mortality (del Río et al., 2014; Dorman
et al., 2013). Depending on the origin of the populations in the vast and contrasted climatic
zones  the  species  occupies,  from  semi-desert  to  temperate  climates,  climate-growth
response  functions  are  highly  variable  (Luis  et  al.,  2013).  Although  some  evidence  of
differentiation for survival (xylem hydraulic conductance and resistance to embolism) has
been found in semi-arid common gardens  (David-Schwartz et al.,  2016; Klein et al.,  2013;
Schiller & Atzmon, 2009),  signatures of local  adaptation are limited  (Gómez et al.,  2001;
Grivet et al., 2011). This suggests that most of the variation is due to phenotypic plasticity
(Baquedano et al., 2008; Chambel et al., 2007). 

Similarly, Q.  ilex  is  likely  to  be  among  the  winners  of  environmental  changes  in  the
Mediterranean. Although there are fewer molecular studies in this oak than in other oak
species or Aleppo pine, its genetic diversity is higher than that of Aleppo pine and among the
highest within the oaks. Quercus ilex is made of three major genetic clusters: eastern, central
and western Mediterranean (Vitelli et al., 2016). Quercus ilex has its highest diversity in the
eastern  Mediterranean  cluster,  similarly  to  Aleppo  pine  and  many  species  in  the
Mediterranean (Conord et al., 2012). 

F2. Beech-fir forest

Ecology

 
Some  of  the  typical  mixed  broadleaf  conifer  forests  of  the  mountain  belts  of  the
Mediterranean  region  are  Abies sp.  and  Fagus.  sp.  Forests,  collectively  names  beech-fir
forest in this section. Abies sp. forests are found from 700-900 m and up to 2300 m above
sea level while Fagus sp. forests are found between 700 and 1800 m in the Mediterranean.
Their  occurrence  is  highly  dependent  on  soil  and  air  moisture  and the lowest  elevation
presence of beech is often associated with riverine forests  (Quézel & Médail, 2003). While
approx. 10 species of Abies have been described in Mediterranean mountains, there are only
two for the genus Fagus (F. sylvatica and F. orientalis), and they are often considered as sub-
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species level taxonomic entities  (Quézel & Médail, 2003) (Table S1). Abies and Fagus species
form both mixed and single species dominated forests. 

Most Abies species occupy reduced distribution areas in isolated mountains except  Abies
alba,  the  European silver  fir  whose European distribution spans  from Spain  to  Romania
(Valladares et al., 2002; Wolf, 2003). In the westernmost part of its Alpine distribution, Abies
alba grows under various biogeographical (from inner to outer Alps), bioclimatic (from Mid-
European to Sub-Mediterranean influences) and edaphic conditions, with scattered locations
under strict Mediterranean climate  (Ozenda, 1981). Mediterranean climate occurrences of
Abies alba are rare outside of France. Similarly to  Abies alba,  Fagus sylvatica is a typically
medio-European forest tree, requiring moist habitats and able to colonise mountain belts
under  Mediterranean  climate  (i.e.  where  adaptation  to  summer  drought  is  an  issue)  in
Catalonia,  southern  France,  southern  Italy,  Sicily  and  central  Greece  (Quezel  &  Médail,
2003). It has the same longitudinal span as  Abies alba and is replaced by its more drought
resistant congener, Fagus orientalis, in scattered places in northern Greece and Bulgaria and
large forests in Turkey (Kandemir & Kaya, 2009; Von Wuehlisch, 2008). 
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 Table   S  1 : Distribution and bioclimatic preferences of Mediterranean Abies (a) and Fagus (b) 
species, compiled from  (Quezel & Médail,  2003) unless indicated otherwise. A sub-humid 
bioclimate receives between 600 and 800 mm of precipitation a year, a humid bioclimate 
over 800. Temperature variants are as follows: fresh when mean temperature of coldest 
month (m) is 0°C < m < 3°C, cold: -3°C < m < 0°C, very cold: -7°C < m < -3°C. Data for A. alba 
and  A.  bornmuelleriana are  limited  to  their  Mediterranean  distribution.  Elevation  and 
surface data for A. equi trojani are from Kaya et al. (2008) and data for A. bornmuelleriana 
are from Özel & Erteki,(2012). MECC* (national forest inventory) data provided for Greece 
are  from  P.  Dimopoulos  and  the  project:  National  Cadastre  &  Mapping  Agency  S.A.  & 
Ministry  of  the  Environment  and  Climate  Change  (2015).  Distribution  data  for  Fagus 
orientalis in Turkey are from Ozturk et al. (2010). Distribution data for  Fagus sp. in Greece 
were provided by P. Alizoti using the reference: Results of the first national forest inventory, 
1992.  Ministry  of  Agriculture,  General  Secretariat  for  Forests  and  Natural  Environment, 
General Directorate for Forests and Natural Environment, Athens. 
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(a) 

Species Occupied surface 
(in ha)

Country
of occur-

rence

Altitudinal
range (in m)

(and
extremes)

Bioclimate
type and

temperature
variants

Substrate Summer
drought
duration
(months)

ABIES SPECIES

A. 
cephalonica 

200 000 
(130 000 according

to MECC*)
Greece

700 - 2000 

(400 - 2300)

sub-humid to
humid, fresh to

cold

Limestone
and

dolomites
1 - 5

A. borisii regis
57 000 (according

to MECC*)
Greece

1100 - 1900

(600 - 2000)

sub-humid to
humid, cold to

very cold

Limestone
and

serpentine

Probably
between

A.
cephalonic

a and A.
alba

A. bornmuel-
-leriana

200 000 (entire
range)

Turkey 1200 - 2000
humid, cold to

very cold
Schists and

gneiss
0 – 2

A. equi-
trojani

3600 Turkey
1300 - 1500

(400 - 1600)

humid, cold to
very cold

Metamor-
phic

bedrock
0 - 2

A. cilicica 350 000
Lebanon,
Syria and

Turkey

1200 - 2100

(1100 -
2200)

humid, cold to
very cold

Limestone
and

dolomites
(some

serpentines)

1 – 3

A. pinsapo 
and 
A. marocana

2300 (Spain) and
7000 (Morocco)

Spain,
Morocco

900 - 1800
in Spain, 700

- 2200 in
Morocco

humid, fresh to
cold

Limestone
and

dolomites
1 – 4

A. numidica 300 Algeria 1750 - 2000 humid, cold
Limestone

and
dolomites

1 – 3

A. 
nebrodensis

150 Italy 1400 - 1600 humid, cold Schists 0 – 1

A. alba 
(Medit. 
range)

20 000
France,

Italy,
Spain

1100 - 1600

(600 - 2000)

humid, fresh to
cold

Limestone
and

dolomites
0 – 1
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(b)

Species Occupied surface 
(in ha)

Country
of occur-

rence

Altitudinal
range (in m)

(and
extremes)

Bioclimate type
and

temperature
variants

Substrate Summer
drought
duration
(months)

FAGUS SPECIES

F. sylvatica 
(Mediterrane
an range)

295 290 
(in Greece)

France,
Italy,

Spain,
Greece

800 - 1700

(600 - 2200)

sub-humid to
humid, cold to

very cold
(locally, fresh)

Limestone
and

dolomites
(locally
acidic)

0 – 1

F. orientalis 
(Mediterrane
an range)

85 000 
(in Turkey), 

41 350 
(in Greece)

Greece,
Turkey

(mostly)
1000 - 1800

sub-humid to
humid, cold to

very cold

Limestone
and

dolomites
0 – 1

Evolutionary history

Fir and beech survived the last glacial cycle of the Pleistocene and the Late Glacial Maximum
(LGM)  in  refugia  located  in  the  Mediterranean,  giving  rise  to  highly  differentiated  and
genetically  rich local  populations.  The  LGM refugial  and Holocene colonisation history  is
rather well known for both Fagus sylvatica and Abies alba, the most largely distributed of all
Euro-Mediterranean firs (Liepelt et al., 2009; Magri et al., 2006). Magri et al. (2006) showed
using both paleoecological and genetic data that beech survived the last glaciation in at least
10 different refugia. Most of them were in the Mediterranean but did not contribute to the
recolonisation of  Europe,  which instead sprung from refugia further north in  the Massif
Central, Slovenia and possibly Carpathians. The Mediterranean refugia may in fact be a long-
term area of persistence for beech throughout the last two glacial / interglacial cycles of the
Pleistocene. Liepelt et al. (2009), also using both paleoecological and genetic data, showed
that  Abies  alba survived  in  multiple  refugia  during  the  LGM.  As  for  beech,  few  of  the
Mediterranean refugia  were effective sources  for  Holocene recolonisation,  which sprung
from refugia further  north in  the Apennines,  Dinaric  Alps  and at  least  two areas  in  the
northern Balkans (Gömöry et al., 2012).  The Mediterranean refugia may again indicate areas
of long-term persistence during the glacial periods of the Pleistocene. 

Mediterranean Abies species are well differentiated, with few detected events of admixture
and  gene  flow,  indicating  that  Mediterranean  Abies species  have  probably  survived  in
separate refugia during the Pleistocene (Liepelt et al., 2010). Abies type pollen dating back to
the late Miocene and the Pliocene are widespread in paleoecological archives, an indication
of the long presence of firs in the Mediterranean. As for  Fagus  forests, their presence is
attested in sediments since the Oligocene (Quézel & Médail, 2003).

Importance and effect of land use and management
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Due to their importance for industry, from ship building as early as pre-Roman times, to
mining and construction throughout recent history, both Abies sp. and Fagus sp. dominated
forests  have seen their  distribution areas  shrink considerably  over historical  times.  They
reached  their  lowest  coverage  during  the  19th  century  on  Europe’s  side  of  the
Mediterranean  (Lander et al., 2011), while they remain threatened by land use change to
these days in North Africa and the Middle East (Awad et al., 2014). In Mediterranean Europe,
the demographic dynamics are still towards habitat recolonisation despite increasing decline
due to environmental changes.

Adaptation to environmental changes - decline

Reports  of  decline  due  to  environmental  changes  and  associated  factors  such  as  insect
outbreaks  (bark  beetles  for  example)  are  alarming.  In  the  words  of  Gazol  et  al.  (2015):
“Climate warming is distinctly modifying growth patterns and responses to climate in silver
fir  across  most  of  the species'  European distribution area.  In  south western  Europe  the‐
reduction  in  growth  of  many  populations  is  related  to  an  observed  increase  in  aridity,
whereas  in  more  temperate  areas  warming  is  enhancing  growth.  Our  results  confirm a
decline in the growth of silver fir at its south western distribution limits as a consequence of‐
climate warming”.  There are similar reports for beech, although the adaptive capacity of
marginal  populations located at the southern limit of this species' distribution is unclear.
Some reports indicate strong growth decline (up to 49% compared to pre-climate change
levels), whilst others highlight that sensitivity and low resistance to drought is greater at the
core of the species range than at the xeric range edge  (Cavin & Jump, 2017; Jump et al.,
2006). Just as local differences were found at tree and plot level for water stress sensitivity in
A. alba at range margins, it is likely that the same applies to beech (Cailleret et al., 2014).
Their conclusion that “this study highlights the importance of local site and stand conditions
on  mortality  and  decline  processes...”  can  probably  be  generalised  to  the  entire  range
margins  of  the two species  and their  communities.  There,  drought  is  a  strongly  limiting
factor that can be compensated by high local habitat heterogeneity, thus offering options for
adaptation to increased drought under environmental changes.

Long standing variability in local site conditions has triggered local adaptation under natural
selection processes, as identified in genomic signatures in both silver fir and European beech
(Brousseau et al., 2016; Lalagüe et al., 2014; Roschanski et al., 2016). In these studies, stress
related candidate genes (mostly cold resistance and drought resistance) showed significant
population differentiation along environmental  gradients  both within  and amongst  sites.
Despite  relatively  limited  dispersal  abilities,  their  habitat  heterogeneity  and  their  high
diversity  in  stress  related  genes make Mediterranean populations  of  beech and fir  both
museums of past diversity and a cradle of possible adaptation to environmental changes of
high conservation value.

G. Agrosystems

The terrestrial  Mediterranean hotspot  of  biodiversity  is  dominated by  agricultural  lands,
evergreen  woodlands  and  shrubland  habitats.  Several  traditional  Mediterranean  agro-
ecosystems are multifunctional mosaic associations of diverse annual and perennial crops,
grazing  and  semi-natural  areas.  The  potential  evolution  of  these  systems under  climate
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change is deeply shaped by interactions management choice and land uses, and will have
important  consequences  on  associated  landscapes  and  biodiversity.  Agro-silvo-pastoral
systems  are  present  on  both  sides  of  the  Mediterranean  Sea.  The  design  of  such
heterogeneous  systems shapes  a  man-made landscape  diversity  and  can  support  a  rich
specific biodiversity  (Bagella et al., 2016; Blondel & Aronson, 1999).  Blondel (2006) points
out that the exceptional richness of annual plant species in the Mediterranean flora is due to
long-standing but constantly changing human activities and heavily grazed areas.  

In  the  Mediterranean  region  like  everywhere  else,  a  decrease  in  biodiversity  has
accompanied the changes in land use and farming practices throughout the 20 th century. In
productive  areas,  agricultural  intensification  implies  first  a  reduction  of  the  diversity  of
cultivars and livestock varieties, while landscape simplification (Pinto-Correia & VOs, 2004),
mechanisation and the use of chemicals are responsible for the decrease of the biodiversity
within the whole agricultural landscape. The extinction of arable weeds  (Chamorro et al.,
2016; Saatkamp et al.,  2009), or the declining populations of farmland bird species often
with a high conservation status (Sirami et al., 2008) are particularly significant examples for
the  Mediterranean.  Beside  intensification,  land  abandonment  in  remote  (often
mountainous) areas of Mediterranean Europe is mostly followed by landscape closing due to
woody encroachment, which affects negatively plant species diversity due to competition on
light and water, or by inhibiting seed arrival and germination (Gabay et al., 2008). Even the
disappearance  of  livestock  in  forests  might  reduce  the  biodiversity  of  understorey  plant
communities on a regional scale because of a greater homogenisation of plant composition
(Fortuny et al., 2014). Rural land abandonment may lead to the return of forest birds when
forests spreads (Gil Tena et al., 2009)‐  and it proves to be the most effective way to recover
both habitat and bird populations in Mediterranean steppes (e.g.  Laiolo & Tella, 2006). In
contrast,  Papanastasis et al.  (2002) report that overgrazing in the mountains of Crete may
have a negative impact on plant biodiversity, especially when associated with burning. 

Regarding  intensification,  despite  the  continuous  general  use  of  synthetic  fertilizers  and
pesticides in Mediterranean agroecosystems (like worldwide), agroecological practices that
rely more on functional agrobiodiversity of the ecological system and less on external inputs
are on the rise  (Stojanovic, 2019) and has become an objective now supported by various
institutions. More specifically, agroecology aims at enhancing species biodiversity delivering
important  services for  agriculture,  like pollination,  soil  fertility,  or  biological  pest control
(Gaba  et  al.,  2018).  For  example,  organic  orchards  in  southern  France  hold  a  lot  more
earthworms -  soil  engineers -  than other orchards  (Sauphanor et al.,  2009). Besides, the
maintenance of on-farm diversity allows the conservation of threatened species,  like the
Great bustard  Otis tarda that benefits from cereal/fallow rotations in Portugal  (Moreira et
al., 2004). Policies enhancing low intensity management techniques such as organic farming‐
are also the main way to promote plant  diversity  in  dryland cereal  fields of  the Iberian
Peninsula  (José María et al.,  2010)‐ ,  or to favour bird communities and their resilience to
climate change in the Mediterranean vineyards (Rollan et al., 2019).

Threats  by environmental  changes  to Mediterranean agro-ecosystems are related to the
increasing drought and heat stress in the first place (see part C in Main manuscript). More
and more studies show how a change towards farming practices that favour the soil capacity
to  hold  and  keep  water,  like  conservation  farming,  with  the  objective  of  stabilizing  or
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enhancing  yields under Mediterranean climates  (Jemai et al.,  2013; Mrabet, 2011),  may
have a beneficial effect on biodiversity (e.g. arthropod population under no-tillage maize in
Spain  (Rodríguez,  Fernández-Anero,  Ruiz,  &  Campos,  2006)).  The  use  of  herbicides
consequent  to  many  no-tillage  systems  (used  to  fight  competition  by  arable  weeds)
contradicts the agro-ecological objectives. Research now investigates organic conservation
agriculture by using agro-ecological service crops and improved technology  (Canali  et al.,
2013;  Navarro-Miró  et  al.,  2017).  For  example,  conservation farming in  organic  systems
often rely on the use of legume intercrops for both increasing soil fertility and reducing weed
competition. Such systems increase biodiversity both within and and at the surface of the
soil (see e.g.  (Henneron et al., 2015;  Rypstra et al., 1999). Organic systems have a greater
abundance and diversity of arbuscular mycorrhizal  fungi  (Oehl et al.,  2004), which play a
crucial role in nutrient acquisition and soil fertility. Gianinazzi et al. (2010) highlight the fact
that arbuscular mycorrhizas fungi  alleviate stress salinity both in olive tree plantations in
Spain, and in palm groves in arid North Africa where yields are considerably affected by
drought  and  soil  salinity  (Bouamri  et  al.,  2006;  Porras-Soriano  et  al.,  2009).  Arbuscular
mycorrhizas  fungi  also  improve  resistance  of  clover  to  hydric  stress  in  arid  Morocco
(Meddich  et  al.,  2000).  Under  climatic  fluctuations,  intercrop  systems  in  Mediterranean
environments have a greater land use efficiency than monocrops (Lithourgidis et al., 2011a),
and are more stable to disturbances, this later effect being attributed to the larger on-farm
diversity (Lithourgidis et al., 2011b). Under projected increase water stress, Falco & Chavas
(2008) estimate  the  resilient  ability  of  the  south  Italian  cereal  agro-ecosystem  to  be
positively related to crop diversity.

Agroforestry and silvopastoral systems (crops and trees or livestock and trees association)
that were partly abandoned (Eichhorn et al., 2006) are now rediscovered, thanks to a better
understanding of their multiple ecosystem services. They appear to be well adapted to the
Mediterranean  climate  (Joffre  et  al.,  1999),  providing  a  better  temperate  and  less  dry
microclimate for crops or livestock between trees, and allowing a better water and nutrient
availability  due to tree roots plasticity  (Cardinael  et  al.,  2015),  therefore increasing total
productivity (Graves et al., 2007). At the same time, the land use mosaic of the silvopastoral
systems in the Iberian Peninsula (named “Montado”  in Portugal  and “Dehesa”  in  Spain)
supports a wide diversity of plant and animal species  (Diaz et al., 1997). The appropriate
management of such system  benefits both farmland and forest bird species  (Godinho &
Rabaça, 2011; Leal et al., 2011), as well as plant and invertebrate diversity  (Bugalho et al.,
2011a; Bugalho et al., 2011b).

This review highlights the fact that the pressures on Mediterranean agroecosystems due to
environmental  changes  may accelerate  changes toward agroecology  (already required to
counter  soil  erosion,  pollution,  and  biodiversity  loss),  bringing  together  enhanced
sustainability  and  biodiversity  in   a  positive  feedback  loop.  In  a  nutshell,  the  best
configuration for biodiversity is a mosaic landscape composed of open and woody patches
(Gabay et al., 2008).

in order to complement the adaptive capacity  expected from a progressive shift toward
agroecological management, work to improve the selection of cultivars better adapted to
the Mediterranean climate is ongoing (e.g. for drought tolerance (Cattivelli  et al.,  2008)).
Anticipating future droughts, Habash et al. (2009) discuss the potential of designing a climate
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change  ready  durum wheat  through genomic  approaches.  Plant  breeders  must  consider 
strategies  to  retain  diversity  from  wheat  landraces  (Lopes  et  al.,  2015),  especially 
Mediterranean durum landraces, which represent a particularly important group of genetic 
resources because of their extensive genetic variability, and their documented tolerance to 
drought (Kyzeridis et al., 1995), resilience to pests, resistance to diseases (Talas et al., 2011), 
and adaptability to low-input farming systems (see Chapter 6 by Srivastava and Damania in 
Brown et al. (1989)). Not only the quantitative production is looked at, but also its quality. In 
order to avoid grapevine ripening during very hot days,  (Costantini et al., 2008) show that 
breeding new late-ripening varieties is a way to increase the existing genetic variability and 
to adapt the grapevine phenology to environmental changes.

3. OVERVIEW

Table  S2: characteristics  of  the  different  Mediterranean  ecosystems  examined  and  overall 
expectation  according  to  authors’  opinion  as  to  their  adaptive  potential  under  changing 
environmental conditions. Cells in grey include a high level of uncertainty. 
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