

Echantillonnage DCE des Masses d'Eau Côtières pour le paramètre « faune invertébrée benthique »

- District Hydrographique Adour-Garonne -
 - Année 2008 –

Aurélie Garcia, Hugues Blanchet, Benoît Gouillieux, Guy Bachelet, Michel Leconte, Nicolas Lavesque, Pascal Lebleu, Henri Bouillard, Francis Prince.

Rapport du contrat n° 2008 5 210 115

- Sommaire -

Introduction	1
Méthodologie	1
Echantillonnage	
Traitement des échantillons	1
Echantillons de faune	2
Granulométrie et teneur en matière organique	2
1. Masse d'Eau « Arcachon Amont » - FRFC 06	5
1.1. Méthodologie	· 5
1.1.1. Localisation des stations	· 5
1.1.2. Echantillonnage	5
a. Sédiments	5
b. Faune	6
1.2.1. Contexte environnemental	· 7
1.2.3. Faune invertébrée benthique – Station arc 173	11
1.2.4. Faune invertébrée benthique – Station arc 43	14
1.3. Changements observés et calculs des indicateurs de qualité	
milieu	
2. Masse d'Eau « Arcachon Aval » - FRFC 07	
2.1. Méthodologie	20
2.1.1. Localisation des stations	
a. Sédiments	21
b. Faune	21
2.2.1. Contexte environnemental	
2.2.2. Faune invertébrée benthique	22
2.3. Changements observés et calculs des indicateurs de qualité milieumilieu	
3. Masse d'Eau « Côte Landaise » - FRFC 08	26
3.1. Méthodologie	26
3.1.1. Localisation des stations	26
a. Sédiments	27
b. Faune	27
3.2.1. Contexte environnemental	28
3.2.2. Faune invertébrée benthique	28

3.3. Changements observés et calculs des indicateurs de qualité milieu	
4. Masse d'Eau « Lac d'Hossegor » - FRFC 09 –	32
4.1. Méthodologie	32
4.1.1. Localisation des stations	32
a. Sédiments	33
b. Faune	33
4.2. Résultats	34
4.2.1. Contexte environnemental	34
4.2.2. Faune invertébrée benthique	35
a. Hos_h_int	35
b. Hos_b_int	38
c. Hos_b_sub	42
4.3. Changements observés et calculs des indicateurs de qualité milieu	
5. Masse d'Eau « Côte Basque » - FRFC 11 –	
5.1. Méthodologie	
5.1.1. Localisation des stations	48
a. Sédiments	49
b. Faune	49
5.2.1. Contexte environnemental	49
5.2.2. Faune invertébrée benthique	50
5.3. Changements observés et calculs des indicateurs de qualité milieu	
9. Conclusions	55

Introduction -

La Directive Cadre sur l'Eau 2000/60/CE établit un nouveau cadre pour une politique communautaire dans le domaine de l'eau. Elle fixe comme objectif général l'atteinte, à l'horizon 2015, d'un bon état écologique et chimique des masses d'eau souterraines et de surface, ces dernières incluant les eaux côtières et de transition (estuaires en particulier).

Dans le district Adour-Garonne, qui s'étend des Pertuis charentais à l'estuaire de la Bidassoa (frontière espagnole), 5 Masses d'eau côtières (Arcachon amont, Arcachon aval, Pointe d'Arcachon-Ondres, Lac d'Hossegor et Côte Basque) ont été échantillonnées. La faune invertébrée benthique de chacune de ces Masses d'eau a été échantillonnée au Printemps de l'année 2008.

Ce rapport présente les résultats obtenus Masse d'Eau par Masse d'Eau.

Méthodologie

Echantillonnage

L'échantillonnage des Masses d'eau côtières a eu lieu au Printemps et à l'Automne 2007.

En domaine intertidal, les échantillons ont été collectés à l'aide de carottiers métalliques prélevant une surface unitaire de 0,04 m². Le nombre d'échantillons prélevés est dépendant du type d'habitat considéré.

Nombre d'échantillon unitaires prélevés aux stations intertidales des masses d'eau côtières

	Nombre d'échantillons prélevés
Herbier à Z. noltii	5
Sable des plages de mode battu	10
Autre habitat inertidal	7

En domaine subtidal, les échantillons ont été collectés à l'aide de bennes de type van Veen dans la majorité des cas (cf. tableau ci dessous). Cette benne prélève une surface unitaire de 0,1 m². Dans chaque station et pour chaque date, 5 échantillons unitaires ont été prélevés. Seule la station subtidale du Lac d'Hossegor a été échantillonnée à l'aide d'une benne Ekman manipulée par des plongeurs en raison de l'impossibilité d'accéder au site avec des moyens nautiques susceptible de manipuler une benne de type van Veen.

Stations pour lesquelles l'échantillonnage a été réalisé à l'aide d'une benne de type « benne Ekman »

Masse d'eau	Station	Nombre	Surface unitaire	Surface totale
		d'échantillon	d'échantillonnage	échantillonnée
		collectés	(m²)	(m²)
Lac d'Hossegor	Station subtidale B	10	0,00225	0,0225

Traitement des échantillons

Echantillons de faune

Les sédiments ont été tamisés sur maille de 1 mm de côté. Le refus de tamis a été fixé à l'aide d'une solution de Formol (4%) et coloré au Rose Bengale. Au laboratoire, la faune a été triée, identifiée au niveau du plus petit taxon possible et dénombrée sous loupe binoculaire.

Granulométrie et teneur en matière organique

La granulométrie du sédiment a été mesurée sur colonne humide. Cette colonne humide consiste en des tamis de maille décroissante empilés (1 mm, 0,5 mm, 0,25 mm, 0,125 mm et 0,063 mm). Le sédiment préalablement séché à l'étuve (60°C pendant au moins 48H) et pesés sont passés au travers de la colonne humide. Chaque fraction est récupérée, séchée et pesée. La médiane granulométrique a été déterminée en utilisant le logiciel GRADISTAT.

La teneur en matière organique des sédiments a été déterminée par perte au feu. Un échantillon de sédiment préalablement séché (poids sec : 60°C pendant au moins 48H) et pesé est placé dans un four à 450°C pendant 6H. Après crémation, le sédiment calciné est pesé (poids sec de cendres). La teneur en matière organique est exprimée comme le pourcentage représenté par la différence entre poids sec et poids sec de cendres sur le poids sec de sédiment.

Traitement des données : calcul du M-AMBI

Dans un premier temps et malgré les défauts non négligeables de cette approche, l'état écologique de la macrofaune invertébrée benthique a été déterminé en utilisant la méthode du M-AMBI développée par Muxika et al. (200 ?).

La mesure du M-AMBI repose sur le calcul de trois valeurs :

- -La richesse spécifique S qui correspond au nombre total d'espèce récoltées dans la station.
- -L'indice de diversité de Shannon H' selon la formule :

$$H' = \sum_{i=1}^{S} p_i \cdot Log_2(p_i)$$

Avec

S, le nombre d'espèce ;

 p_i est la proportion, en abondance, de l'espèce i par rapport à l'abondance totale.

-La valeur de l'AMBI, calculée selon la formule :

$$AMBI = (p_{GE1} \times 0) + (p_{GE2} \times 1,5) + (p_{GE3} \times 3) + (p_{GE4} \times 4,5) + (p_{GE5} \times 6)$$

Avec

 p_{Gex} la proportion, en abondance, des espèces du groupe écologique x définies par Borja et al (2000). Celui-ci défini 5 groupes écologiques de polluo-sensibilité décroissante :

GE 1 : espèces sensibles aux perturbations ;

GE 2 : espèces indifférentes aux perturbations ;

GE 3 : espèces tolérantes aux perturbations ;

GE 4 : espèces opportunistes de second ordre ;

GE 5 : espèces opportunistes de premier ordre.

Le calcul du M-AMBI nécessite la définition de conditions de références du « Très Bon Etat » écologique et de l'état « Mauvais ». La définition de ces états de références pour les côtes françaises Manche-Atlantique a été réalisée en collaboration avec l'Ifremer sur la base de l'analyse de données collectées dans des milieux considérés comme non perturbés. Ce travail a permis de définir les états de référence pour 3 habitats : les sables envasés subtidaux, les sables propres subtidaux et les sables envasés intertidaux. Il n'existe aucun état de référence pour les eaux de transitions estuariennes, en conséquence, la valeur de cet indice n'a pas été calculée.

Pour le « Très Bon » état écologique, les valeurs les plus élevées de S et de H' trouvées dans le jeu de données ont été utilisées. Pour l'AMBI, ce sont les valeurs les plus faibles de l'indice AMBI dans le jeu de données qui ont été utilisées.

La définition du « Mauvais » état écologique est similaire quelle que soit l'habitat considéré : il correspond à un sédiment dépourvu de macrofaune. Dans de telles conditions, S et H' sont égales à 0 et la valeur de l'AMBI est maximale.

La valeur du M-AMBI pour chaque station est obtenue en fonction de la position de la projection du point-station par rapport au segment reliant les point-références « Très Bon » et « Mauvais » dans l'espace des deux premières dimensions d'une analyse factorielle (Muxika et al., 2004). La distance de la projection du point-station par rapport aux extrémités (les

points-référence « Très Bon » et « Mauvais ») du segment est interprété comme un Ecological Quality Ratio (EQR) et convertis en état écologique selon une échelle d'EQR prédéfinie.

En attendant la standardisation (en cours) de la procédure, le calcul a été réalisé à l'aide de l'interface fournie par l'AZTI.

1. Masse d'Eau « Arcachon Amont » - FRFC 06 -

1.1. Méthodologie

1.1.1. Localisation des stations

Un total de 3 stations a été échantillonné dans cette Masse d'Eau.

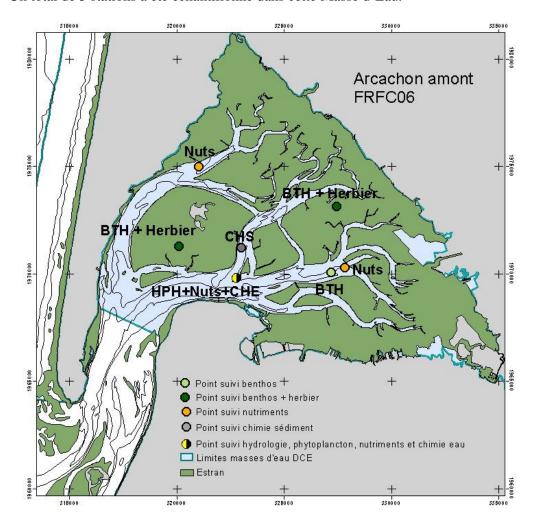


Figure 1 : Position des stations échantillonnées dans la masse d'eau « Arcachon Amont » (source : Ifremer)

1.1.2. Echantillonnage

a. Sédiments

Les sédiments ont été prélevés soit directement en domaine intertidal, soit à l'aide d'une benne supplémentaire selon le protocole brièvement résumé ci-dessous.

Granulométrie

Méthode	
Engin d'échantillonnage	Carottier plastique
Dimensions échantillon	3,5 cm - 10 cm de profondeur
Nombre d'échantillon	1 échantillon
Analyse	Séchage - Passage sur une colonne humide de 5 tamis de maille
	décroissante (1000 μm, 500 μm, 250 μm, 125 μm et 63 μm) –
	Séchage – Pesée – Médiane obtenue par méthode graphique.

Matière organique

Méthode	
Engin d'échantillonnage	Carottier plastique
Dimensions échantillon	3,5 cm - 10 cm de profondeur
Nombre d'échantillon	1 échantillon
Analyse	Perte au feu (4h – 450°C)

b. Faune

Herbiers à Zostera noltii: Stations arc 108 et arc 173

Méthode	
Engin d'échantillonnage	Carottier métal
Dimensions échantillon	$0.20 \text{ m} * 0.20 \text{ m} = 0.04 \text{ m}^2$
Nombre d'échantillon	5 échantillons
Analyse	Séparation par espèce
	Dénombrement
	AMBI (AZTI's Marine Biotic Index), Borja et al., 2000
	M-AMBI (Multivariate AZTI's Marine Biotic Index), Muxika
	et al., 2007

Station subtidale: Station arc 43

Méthode	
Engin d'échantillonnage	Benne van Veen
Dimensions échantillon	$0.20 \text{ m} * 0.50 \text{ m} = 0.1 \text{ m}^2$
Nombre d'échantillon	5 échantillons
Analyse	Séparation par espèce
	Dénombrement
	AMBI (AZTI's Marine Biotic Index), Borja et al., 2000
	M-AMBI (Multivariate AZTI's Marine Biotic Index), Muxika et
	al., 2007

Mesure de la biomasse par phylum

Méthode	
Perte au feu	
Température	450 °C
Durée	4 H

1.2. Résultats

1.2.1. Contexte environnemental

L'herbier de la station 108 est installé sur un sédiment vaso-sableux (médiane granulométrique comprise entre 40 et 95 μ m) dont le taux de matière organique était compris entre 5,7 et 9,1 %, entre l'Automne 2007 et le Printemps 2008, respectivement. La teneur en particules fines (< 63 μ m) était comprise entre 59 et 31 %.

L'herbier de la station 173 est installé sur un sédiment plus sableux en 2007 alors qu'au Printemps 2008 il s'est légèrement envasé (médiane granulométrique : 190 μ m en 2007 et 210 μ m au Printemps 2008). Il est moins riche en matière organique et particules fines (teneur en MO : 1,3 % en 2007 et 17,41 % au Printemps 2008, teneur en pélites : 10% en 2007 et 3.8 % au Printemps 2008).

La station subtidale (arc 43) correspond à des sables fins légèrement envasés (médiane granulométrique comprise entre 200 et 290 μ m) avec un taux de particules fines compris entre 2 et 7,18 % et une teneur en MO de 0,6 à 1,38 %.

Stations	Printemps 2007	Automne 2007	Printemps 2008
Arc 108 Intertidal			
% MO	7	5,7	9,1
% < 63 μm	59	31	21,25
Médiane granulométrique	40 μm	95 µm	40 µm
Arc 173 Intertidal			
% MO	1,3	1,3	3,80
% < 63 μm	10	10	17,41
Médiane granulométrique	190 µm	190 µm	210 µm
Arc 43 Subtidal			
% MO	0,6	1,1	1,4
% < 63 μm	6	2	7,18
Médiane granulométrique	200 μm	265 µm	290 μm

1.2.2. Faune invertébrée benthique – station arc 108

Tableau 1 : Abondance (± Erreur Standard) de la macrofaune invertébrée dans l'herbier à Zostera noltii de la station arc108

Code station	arc_108_int	
Surface prélèvement (m²)	0,04	

			06	20	007		007	20	008
		_	mbre		ars		mbre		ars
PHYLUM	TAXON	abon (ind/m²)	ES (ind/m²)	abon (ind/m²)	ES (ind/m²)	abon (ind/m²)	ES (ind/m²)	abon (ind/m²)	ES (ind/m²)
amphipoda	Ampelisca brevicornis	0	0	0	0	0	0	5	5
	Ampithoe sp	10	10	0	0	100	41	0	0
	Corophium acherusicum	0	0	0	0	0	0	5	5
	Corophium multisetosum	45	17	0	0	0	0	0	0
	Corophium urbadaiense	0	0	40	40	0	0	0	0
	Dexamine spinosa	5	5	0	0	0	0	0	0
	Ericthonius difformis	5	5	0	0	5	5	0	0
	Melita palmata	35	13	10	6	25	14	0	0
	Microdeutopus anomalus	0	0	0	0	0	0	5	5
	Microdeutopus gryllotalpa	5	5	25	25	0	0	0	0
	Perioculodes longimanus	0	0	20	15	0	0	5	5
	Siphonoecetes sp	0	0	25	19	0	0	0	0
bivalvia	Abra segmentum	740	272	650	164	40	28	75	22
	Bivalvia	0	0	0	0	5	5	0	0
	Cerastoderma edule	10	6	5	5	140	59	80	29
	Crassostrea gigas	5	5	0	0	0	0	0	0
	Loripes lacteus	15	10	15	15	0	0	0	0
	Modiolus modiolus	0	0	0	0	0	0	5	5
	Modiolus sp	0	0	0	0	0	0	5	5
	Musculista senhousia	10	6	15	6	10	10	5	5
	Mytilus edulis	0	0	0	0	65	23	0	0
	Parvicardium exiguum	5	5	30	12	0	0	0	0
	Tapes philippinarum	50	26	15	10	35	13	15	10
cnidaria	Actinaria Anemonia	0	0	0	0	5	5	0	0
	viridis	65	17	0	0	0	0	0	0
cumacea	Iphinoe trispinosa Carcinus	0	0	10	6	0	0	0	0
decapoda	maenas	5	5	0	0	10	10	10	6
	Crangon	0	0	5	5	0	0	0	0

	crangon Hemigrapsus penicillatus	0	0	0	0	10	6	0	0
gastropoda	Bittium reticulatum	50	27	0	0	0	0	35	24
	Cyclope neritea	5	5	0	0	5	5	0	0
	Hydrobia ulvae	185	65	180	79	1 785	643	8 600	1 207
	Littorina littorea	15	10	0	0	0	0	0	0
	Nassarius								
	reticulatus	0	0	0	0	5	5	5	5
	Nudibranchia	10	10	5	5	0	0	0	0
	Opisthobranchia	0	0	0	0	0	0	10	6
insecta	Chironomidae	10	10	0	0	0	0	0	0
	Dolichopodidae	45	17	50	14	0	0	0	0
isopoda	Idotea chelipes	75	30	5	5	70	41	25	0
•	Idotea neglecta	0	0	0	0	5	5	0	0
	Lekanesphaera	0	0	5	5	0	0	0	0
	spp								
nemertina	Nemertina	95	71	10	6	5	5	0	0
oligochaeta	Oligochaeta	25	14	25	8	50	24	25	14
	Tubificoides benedii	1 415	604	630	211	515	312	965	167
phoronida	Phoronidae	5	5	10	6	0	0	0	0
•	Alkmaria								
polychaeta	romijni	0	0	5	5	0	0	0	0
	Aphelochaeta	2 5 1 5	490	175	33	215	133	85	30
	marioni	2313	170	173	33	213	133	03	30
	Capitella capitata	0	0	5	5	10	6	10	6
	Cirriformia	0	0	10	10	0	0	0	0
	tentaculata	Ü	Ü	10	10	O	Ü	Ü	Ü
	Clymenura	5	5	0	0	0	0	0	0
	clypeata	15	10	0	0	0	0	0	0
	Diopatra sp Eteone picta	10	6	10	6	0	0	0	0
	Exogone sp	0	0	0	0	0	0	5	5
	Glycera spp	70	27	40	15	25	11	25	8
	Heteromastus								
	filiformis	1 015	426	210	52	200	129	400	154
	Melinna palmata	0	0	220	49	0	0	15	15
	Nephtys				• •				
	hombergii	60	31	60	20	25	14	25	19
	Nereis	0	0	525	187	0	0	0	0
	diversicolor	U	U	323	107	U	U	U	U
	Notomastus	5	5	20	15	5	5	10	6
	latericeus								
	Platynereis dumerilii	75	33	0	0	0	0	0	0
	Polydora ligni	20	20	0	0	0	0	0	0
	Pseudopolydora								
	antennata	0	0	380	140	0	0	20	15
	Pseudopolydora	485	196	0	0	15	15	0	0
	paucibranchiata	.00	-20	~	~			Ŭ	~
	Pygospio elegans	0	0	2 255	612	0	0	115	38
	Spio decoratus	0	0	5	5	0	0	0	0
	Streblospio shrubsolii	15	6	145	15	5	5	35	24
	SIII WOSOIII								

Prionospio steenstrupi	0	0	0	0	5	5	0	0
polyplacophora Polyplacophora	15	6	0	0	0	0	0	0
Total abondance	7 250	1 553	5 850	624	3 395	1 158	10 625	1 200
Total taxon	40		37		29		29	

station arc_108

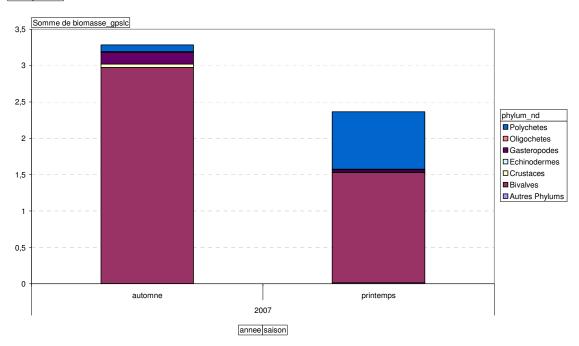


Figure 2 : Biomasses totales (g poids sec libre de cendres) par phylum mesurées dans la station arc_108_int

1.2.3. Faune invertébrée benthique – Station arc 173

Tableau 2 : Abondance (± Erreur Standard) de la macrofaune invertébrée dans l'herbier à Zostera noltii de la station arc_173_int

Code station	arc_173_int
Surface prélèvement (m²)	0,04

			006 embre		007 ars		07 mbre		008 ars
PHYLUM	TAXON	abon (ind/m²)	ES (ind/m²)	abon (ind/m²)	ES (ind/m²)	abon (ind/m²)	ES (ind/m²)	abon (ind/m²)	ES (ind/m²)
amphipoda	Ampelisca	0	0	10	6	0	0	0	0
	brevicornis								
	Ampithoe sp	15	15	0	0	30	15	10	10
	Colomastix	0	0	10	6	0	0	0	0
	pusilla								
	Corophium	0	0	0	0	5	5	0	0
	acherusicum								
	Corophium	5	5	10	6	0	0	5	5
	insidiosum	0	0	10		0	0	0	0
	Corophium sp	0	0	10	6	0	0	0	0
	Ericthonius difformis	545	155	0	0	0	0	0	0
	Melita palmata	110	70	15	10	60	26	15	10
	Microdeutopus anomalus	0	0	0	0	0	0	115	62
	Microdeutopus	455	31	90	34	20	15	20	15
	gryllotalpa								
	Perioculodes	0	0	120	27	0	0	65	42
	longimanus								
	Phtisica marina	0	0	10	10	0	0	0	0
	Siphonoecetes	0	0	30	18	5	5	0	0
	sp								
	Corophium	0	0	0	0	0	0	5	5
	sextonea	60		215	2.5	2.40	0.0	0.0	4.5
bivalvia	Abra segmentum	60	22	215	35	240	99	80	17
	Abra tenuis	0	0	0	0	0	0	10	10
	Bivalvia	0	0	15	15	0	0	0	0
	Cerastoderma edule	0	0	0	0	15	6	0	0
	Gastrana fragilis	0	0	0	0	0	0	5	5
	Loripes lacteus	180	37	190	28	50	21	170	35
	Modiolus modiolus	0	0	0	0	5	5	0	0
	Musculista	5	5	5	5	5	5	5	5
	senhousia								
	Mytilus edulis	0	0	5	5	0	0	0	0
	Paphia aurea	65	26	155	12	10	10	65	30
	Parvicardium	135	22	375	54	15	6	50	18
	exiguum								
	Tapes	0	0	10	6	5	5	0	0
	decussatus								
	Tapes	15	15	60	17	30	15	5	5
	philippinarum								
	Tapes sp	0	0	0	0	0	0	45	23

Echar	ntillonnage DCE	– Faune	invertéb	orée benth	nique		- Arcac	chon Am	ont -
cnidaria	Actinaria	0	0	5	5	0	0	0	0
	Anemonia viridis	0	0	0	0	50	18	20	15
	Anthozoa	0	0	0	0	0	0	5	5
	Cereus	40	15	45	20	10	10	30	18
	pedunculatus	.0	10				10	20	10
cumacea	Iphinoe	0	0	30	18	5	5	30	24
	trispinosa								
decapoda	Carcinus maenas	30	20	10	6	40	23	10	10
	Pinnotheres pisum	0	0	5	5	0	0	0	0
	Upogebia pusilla	10	10	5	5	0	0	0	0
echinodermata	Amphipholis	0	0	20	5	0	0	20	20
	squamata	10	6	0	0	0	0	5	_
	Ophiuroidea		6						5 672
gastropoda	Bittium reticulatum	2 565	496	1 140	630	1 365	487	5 285	672
	Gibbula	5	5	0	0	5	5	25	14
	umbilicalis	0	0	5	5	300	67	50	34
	Hydrobia ulvae Nassarius	10	10	0	0	0	0	0	0
	reticulatus	10	10	U	U	U	U	U	U
	Opisthobranchia	0	0	5	5	0	0	45	22
insecta	Chironomidae	0	0	0	0	80	29	80	35
isopoda	Cyathura	0	0	10	6	50	50	100	26
isopoda	carinata	O	O	10	O	30	30	100	20
	Idotea chelipes	10	10	15	10	255	90	210	34
mysidacea	Mysidacea	0	0	0	0	10	10	0	0
nemertina	Nemertina	45	24	150	41	155	38	215	59
oligochaeta	Oligochaeta	10	10	25	8	40	29	85	30
<i>g</i>	Tubificoides benedii	565	300	3 795	373	6 435	1 216	7 680	2 541
phoronida	Phoronidae	75	29	315	200	230	70	285	47
picnogonida	Anoplodactylus	0	0	5	5	10	6	325	191
	sp Endeis spinosa	0	0	0	0	0	0	5	5
polychaeta	Alitta succinea	0	0	0	0	5	5	0	0
poryenacia	Alkmaria	0	0	0	0	0	0	5	5
	romijni								
	Aonides oxycephala	45	24	160	44	70	53	300	44
	Aphelochaeta marioni	450	185	120	24	2 110	530	2 955	716
	Arenicola	0	0	5	5	385	193	0	0
	marina Capitella	5	5	270	128	120	70	330	33
	capitata	0	0	0	0	0	0	_	_
	Capitellidae Cirriformia	0	0	0 0	0	0 5	0 5	5 20	5 9
	tentaculata	U	U	U	U	3	3	20	9
	Clymenura	45	45	640	306	60	48	1 120	89
	clypeata	0	0	0	0	10	-	0	0
	Eteone picta	0	0	0	0	10	6	0	0
	Euclymene collaris	20	20	5	5	0	0	10	6
	Euclymene oerstedii	45	28	310	117	35	15	530	80

	Eusyllis sp	0	0	30	24	0	0	0	0
	Exogone sp	0	0	630	66	20	15	1 275	432
	Glycera spp	50	14	80	15	235	47	160	10
	Heteromastus filiformis	1 190	285	1 260	112	5 540	548	3 790	319
	Lumbrineris latreilli	45	20	10	10	0	0	10	6
	Maldanidae	0	0	0	0	5	5	0	0
	Marphysa bellii	5	5	5	5	0	0	10	6
	Marphysa	0	0	0	0	5	5	0	0
	sanguinea	U	U	U	U	3	3	U	U
	Melinna palmata	340	100	490	49	660	134	1 280	243
	Myriochele	0	0	10	10	0	0	435	163
	oculata Neanthes	0	0	5	5	0	0	0	0
	caudata								
	Nemertina	0	0	0	0	0	0	65	65
	Nephtys	25	8	70	22	10	6	0	0
	hombergii	0	0	0	0	0	0	7 0	21
	Nereidae	0	0	0	0	0	0	50	21
	Nereis	0	0	0	0	5	5	0	0
	diversicolor	005	225	905	116	0	0	165	126
	Notomastus	905	225	805	116	0	0	465	126
	latericeus Owenia	5	5	0	0	0	0	5	5
	fusiformis	3	3	U	U	U	U	3	3
	Paraonidae	70	31	445	103	705	248	2 125	437
	Phyllodoce	0	0	5	5	5	5	50	26
	mucosa	U	U	3	3	3	3	30	20
	Phylo foetida	0	0	0	0	5	5	0	0
	Platynereis	55	5	0	0	0	0	0	0
	dumerilii	33	3	Ü	O	O	O	Ü	O
	Pseudopolydora antennata	0	0	0	0	640	267	0	0
	Pseudopolydora	20	12	335	66	60	60	60	19
	paucibranchiata Pseudopolydora	0	0	0	0	0	0	10	6
	pulchra								
	Pygospio elegans	0	0	95	41	50	50	0	0
	Sabellidae	0	0	0	0	0	0	80	32
	Spio decoratus	0	0	55	17	0	0	0	0
	Spirorbis sp	110	36	10	10	0	0	125	55
	Streblospio	0	0	0	0	380	146	10	10
	shrubsolii								
	Syllidae	0	0	0	0	0	0	5	5
	Terebellidae	0	0	0	0	0	0	5	5
	Tubificoides benedii	0	0	0	0	0	0	1 260	1 260
	Magelona	0	0	0	0	0	0	5	5
	mirabilis Nematonereis sp	0	0	0	0	0	0	5	5
	Prionospio	10	6	195	51	5	5	110	22
	steenstrupi								
polyplacophora	Acanthochitona sp	5	5	25	11	0	0	5	5
	Lepidochitona sp	0	0	10	6	10	6	0	0

Total taxon		44		63		58		72		
Total abonda	ince	8 425	431	13 005	410	20 685	1 931	31 915	3 981	-
turbellaria	Platyhelminthes	0	0	0	0	5	5	0	0	
tanaidacea	Zeuxo holdichi	0	0	5	5	5	5	55	30	

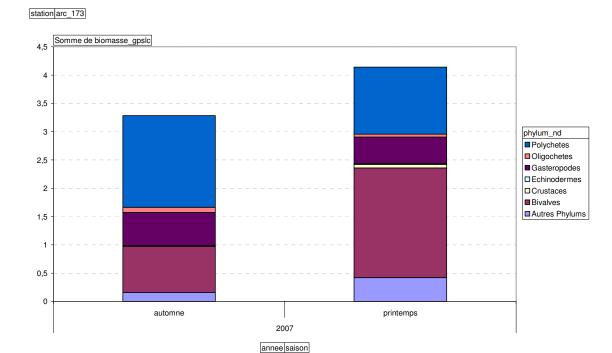


Figure 3 : Biomasses totales (g poids sec libre de cendres) par phylum mesurées dans la Station arc_173

1.2.4. Faune invertébrée benthique – Station arc 43

Tableau 3 : Abondance (± Erreur Standard) de la macrofaune invertébrée dans la station arc 43

Code station arc 43 sub

surface prélèvement (m²) 0,1

		20	007	20	07	20	008
		av	ril	nove	mbre	ma	ars
PHYLUM	TAXON	abon	ES	abon	ES	abon	ES
		(ind/m²)	(ind/m²)	(Ind/m²)	(ind/m²)	(ind/m²)	(ind/m ²)
amphipoda	Abludomelita obtusata	36	22	8	8	0	0
	Ampelisca brevicornis	2	2	4	2	2	2
	Ampithoe sp	0	0	18	18	0	0
	Aoridae	2	2	0	0	0	0
	Bathyporeia spp	2	2	8	6	0	0
	Corophium sp	2	2	2	2	0	0
	Megaluropus agilis	2	2	0	0	0	0
	Perioculodes	8	5	2	2	0	0
	longimanus						
	Siphonoecetes sp	2	2	26	13	0	0
	Urothoe grimaldii	2	2	2	2	0	0
	Urothoe pulchella	44	17	0	0	0	0

bivalvia	Abra alba	4	4	32	16	2	2
	Abra nitida	0	0	0	0	6	4
	Bivalvia	0	0	10	8	0	0
	Cerastoderma edule	2	2	4	2	2	2
	Fabulina fabula	8	6	4	4	0	0
	Mactra glauca	2	2	0	0	0	0
	Mytilus edulis	0	0	0	0	2	2
	Nucula nitidosa	0	0	0	0	2	2
	Solen marginatus	2	2	10	4	4	2
	Tapes philippinarum	6	2	0	0	0	0
	Tellimya ferruginosa	0	0	6	4	0	0
	Tellina tenuis	8	5	12	6	0	0
cumacea	Iphinoe trispinosa	0	0	2	2	0	0
decapoda	Callianassa subterranea	0	0	2	2	0	0
	Diogenes pugilator	4	4	4	2	0	0
	Liocarcinus holsatus	0	0	2 6	2	0	0
	Natantia Pinnotheres pisum	0 2	0 2	0	0	0	0
achinadammata	•	0	0		0		
echinodermata	Amphipholis squamata Ophiuroidea	10	8	0 18	18	16 0	14 0
gootnom o do	Bela nebula	2	2	0	0	0	0
gastropoda	Беш певищ Epitonium clathrus	0	0	2	2	0	0
	Hydrobia ulvae	0	0	2	2	0	0
	Nassarius incrassatus	10	8	0	0	0	0
	Nassarius reticulatus	4	2	0	0	8	4
isopoda	Eurydice pulchra	0	0	2	2	0	0
mysidacea	Gastrosaccus spinifer	0	0	4	2	0	0
mysidacca	Paramysis nouveli	2	2	0	0	0	0
nemertina	Nemertina	4	2	10	3	14	7
oligochaeta	Oligochaeta	0	0	0	0	22	7
polychaeta	Aphelochaeta marioni	2	2	70	30	80	24
porjenaeta	Capitella capitata	0	0	2	2	0	0
	Diopatra sp	2	2	4	4	6	6
	Euclymene collaris	24	10	178	60	22	7
	Euclymene oerstedii	2	2	4	4	78	9
	Exogone sp	0	0	0	0	2	2
	Glycera sp	0	0	0	0	4	4
	Glycera spp	14	7	32	8	18	7
	Hesionidae	0	0	0	0	2	2
	Heteromastus filiformis	124	60	82	26	0	0
	Keffersteinia sp	2	2	0	0	0	0
	Lanice conchilega	6	6	0	0	0	0
	Mediomastus fragilis	0	0	0	0	80	20
	Melinna palmata	0	0	0	0	2	2
	Nephtys hombergii	6	2	6	4	12	6
	Notomastus latericeus	2	2	4	4	4	2
	Owenia fusiformis	20	6	0	0	10	5
	Paradoneis armata	20	5	0	0	0	0
	Paraonidae	0	0	4	2	0	0
	Pectinaria koreni	0	0	0	0	2	2
	Phyllodoce lineata	2	2	0	0	0	0
	Phyllodoce mucosa	2	2	0	0	0	0
	Phylo foetida	12	4	12	5	4	4
	Poecilochaetus serpens	36	19	24	11	44	11
	Polydora ligni	0	0	0	0	2	2
	Polynoidae	2	2	0	0	0	0

Echantillonnage DCE – Faune invertébrée benthique - Arcachon Amont
--

Total taxon		45		46		34	
Total abondance	-	548	156	710	137	524	30
	Prionospio steenstrupi	0	0	2	2	6	2
	Magelona mirabilis	4	2	42	20	26	4
	Terebellidae	0	0	16	8	8	5
	Syllidae	0	0	4	4	0	0
	Spio decoratus	66	28	4	2	8	6
	Scoloplos armiger	28	11	14	9	20	6
	Pygospio elegans	0	0	2	2	4	4
	Pseudopolydora paucibranchiata	0	0	2	2	0	0

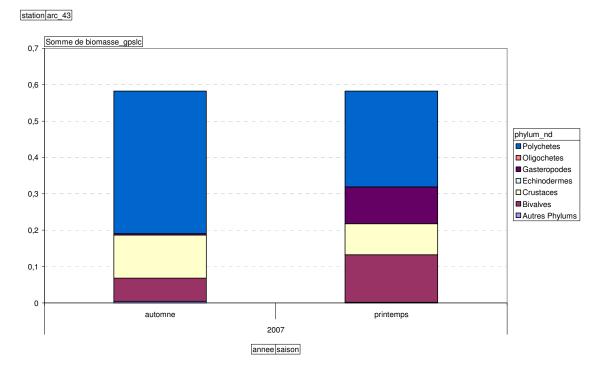


Figure 4 : Biomasses totales (g poids sec libre de cendres) par phylum mesurées dans la Station arc_43_sub

1.3. Changements observés et calculs des indicateurs de qualité écologique du milieu

Station 108: A l'Automne 2006 le peuplement de macrofaune était dominé par 4 espèces dont les polychètes *Aphaelocheta marioni* et *Heteromastus filiformis*, l'oligochète *Tubificoides benedeni* et le bivalve *Abra segmentum* (=*Abra ovata*) (Tableau 1). Au printemps 2007, <u>la situation précise de la station a été modifiée, en raison de la disparition de la végétation dans la station échantillonnée à l'Automne 2006. Le peuplement de cette station était dominé par *Pygospio elegans*, *Tubificoides benedii*, *Abra segmentum*, *Nereis diversicolor*, *Pseudopolydora antennata* et *Melinna palmata*. A l'Automne 2007 et au</u>

Printemps 2008, la dominance est assumée par *Hydrobia ulvae* et *Tubificoides benedeni* (Tableau 1).

Le nombre de taxons échantillonné a nettement décru entre le Printemps et l'Automne 2007, baisse confirmée au Printemps 2008. Le niveau d'abondance de l'endofaune (i.e. hors *H. ulvae*) marque également une diminution entre le Printemps et l'Automne 2007 confirmée au Printemps 2008.

Sur le site arc_108_int, les valeurs du M-AMBI (Tableau 2), issues de l'analyse multivariée basée sur les valeurs de l'AMBI (3,24<AMBI<4,29), de l'indice de diversité de Shannon (1,23<H'<3,23) et de la richesse spécifique (28<S<37) évoluent entre 0,54 et 0,76 indiquent un **Bon état écologique** pour cette station en 2007 et 2008 (figure 5).

Tableau 4: Evolution des valeurs du M-AMBI sur la station arc_108_int.

Code station	arc_108_int
Habitat	sables envasés intertidaux

Stations	AMBI	Diversity	Richness	X	Y	Z	M-	Status
							AMBI	
Bad	6	0	0	-3,039	2,738	2,345	0	Bad
High	1	4	35	1,583	-2,091	-1,501	1	High
arc_108_int_sept06	4,289	2,969	37	0,664	-0,025	-0,422	0,691	Good
arc_108_int_mars07	3,459	3,229	36	0,865	-0,534	-0,681	0,765	Good
arc_108_int_dec07	3,244	2,619	29	0,257	-0,292	-0,236	0,669	Good
arc_108_int_mars08	3,337	1,225	28	-0,331	0,203	0,495	0,536	Good

Station 173: Depuis l'Automne 2006, on observe une augmentation de l'abondance du peuplement sur cette station. Les niveaux de diversité restent cependant comparables. Bien qu'un certain nombre d'espèces parmi les plus abondantes au Printemps 2006 aient disparu ou montre des effectifs en réduction au cours de l'année 2007 (*Notomastus latericeus*, *Microdeutopus gryllotalpa*) et l'apparition de nouveaux taxons dont les niveaux d'abondances restent très modérés (espèces peu fréquentes) au Printemps 2008, la structure du peuplement reste à peu près stable (Tableau 3).

Les valeurs du M-AMBI indiquent que l'écosystème est de **très bonne qualité sauf à l'Automne 2007 où l'indice perd une classe de qualité** principalement due à une baisse de l'homogeneite de la répartition des espèces au sein du peuplement (modification de la valeur de l'indice de Shannon, en raison de la dominance d'*H. ulvae*) (Tableau 4).

Tableau 5 : Evolution de la valeur du M-AMBI sur la station arc_173_int.

Code station	arc_173_int
Habitat	sables envasés intertidaux

Stations	AMBI	Diversity	Richness	X	Y	Z	M- AMBI	Status
Bad	6	0	0	3,508	3,143	-0,297	0	Bad
High	1	4	35	-0,356	-1,671	0,095	1	High
arc_173_int_sept06	2,085	3,594	42	-0,321	-0,932	0,052	0,903	High
arc_173_int_mars07	3,467	4,015	59	-1,043	-0,453	0,083	0,916	High
arc_173_int_nov07	4,233	3,197	56	-0,449	0,356	0,004	0,754	Good
arc_173_int_mars08	3,437	3,787	69	-1,340	-0,444	0,062	0,945	High

Station 43: Le peuplement de la station 43, uniquement composé d'annélides, montre une certaine stabilité en termes d'abondance, de biomasses et de richesse spécifique (Tableau 5 et Figure 5). Aucune espèce n'étant réellement dominante numériquement dans cette station, les changements observés restent mineurs.

Les valeurs du M-AMBI sont basses et relativement stables depuis le début de l'étude en 2007 (Tableau 6) indiquant un très bon état écologique.

Tableau 6 : Evolution de la valeur du M-AMBI sur la station arc_43_int.

Code station	arc 43 sub
Habitat	sables envasés subtidaux

Stations	AMBI	Diversity	Richness	X	Y	Z	M-AMBI	Status
Bad	6	0	0	3,618	3,575	0,369	0	Bad
High	1	4	58	-1,594	-1,381	-0,157	1	High
arc 43 sub avril07	2,051	4,254	45	-0,792	-0,814	-0,066	0,865	High
arc 43 sub nov07	1,662	4,182	45	-0,912	-0,916	-0,095	0,887	High
arc 43 sub mars08	2,059	4,083	34	-0,319	-0,464	-0,050	0,784	High

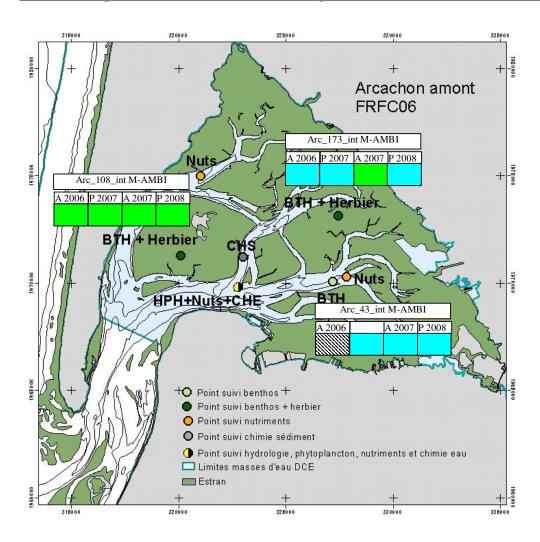


Figure 5: Cartographie M-AMBI - Arcachon amont FRFC06

2. Masse d'Eau « Arcachon Aval » - FRFC 07 -

2.1. Méthodologie

2.1.1. Localisation des stations

Une seule station a été échantillonnée dans cette Masse d'Eau.

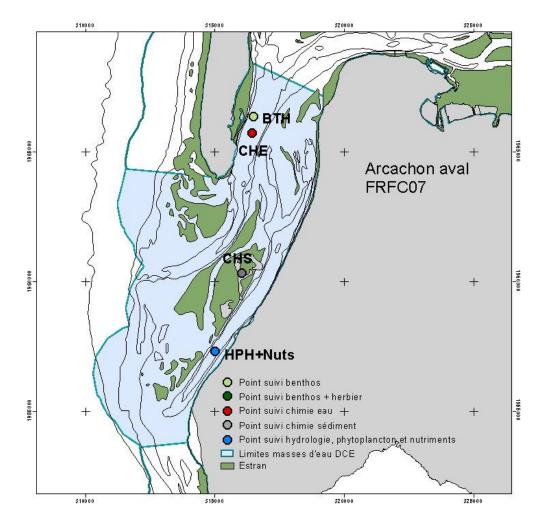


Figure 6 : Position des stations échantillonnées dans la masse d'eau « Arcachon Aval » (source : Ifremer)

2.1.2. Echantillonnage

a. Sédiments

Les sédiments ont été prélevés à l'aide d'une benne supplémentaire et traités selon le protocole brièvement résumé ci-dessous.

Granulométrie

Méthode	
Engin d'échantillonnage	Carottier plastique
Dimensions échantillon	3,5 cm - 10 cm de profondeur
Nombre d'échantillon	1 échantillon
Analyse	Séchage - Passage sur une colonne humide de 5 tamis de maille
	décroissante (1000 μm, 500 μm, 250 μm, 125 μm et 63 μm) –
	Séchage – Pesée – Médiane obtenue par méthode graphique.

Matière organique

Méthode	
Engin d'échantillonnage	Carottier plastique
Dimensions échantillon	3,5 cm - 10 cm de profondeur
Nombre d'échantillon	1 échantillon
Analyse	Perte au feu (4h – 450°C)

b. Faune

Station subtidale: Station arc 148

Méthode	
Engin d'échantillonnage	Benne van Veen
Dimensions échantillon	$0.20 \text{ m} * 0.50 \text{ m} = 0.1 \text{ m}^2$
Nombre d'échantillon	5 échantillons
Analyse	Séparation par espèce
	Dénombrement
	AMBI (AZTI's Marine Biotic Index), Borja et al., 2000
	M-AMBI (Multivariate AZTI's Marine Biotic Index), Muxika et
	al., 2007

Mesure de la biomasse par phylum

Méthode	
Perte au feu	
Température	450 °C
Durée	4 H

2.2. Résultats

2.2.1. Contexte environnemental

La station 148 se situe sur des sables moyens (médiane granulométrique : 370 à 425 μm) propres dont le taux de matière organique était constamment inférieur à 0,2 %, corrélé à une teneur en particules fines inférieur à 2% (1,6 à 1,7 %).

Stations	Printemps 2007	Automne 2007	Printemps 2008
Arc 148 Subtidal			
% MO	0,1	0,2	0,2
% < 63 μm	1,6	1,7	1,1
Médiane granulométrique	425 μm	385 μm	370 μm

2.2.2. Faune invertébrée benthique

Tableau 7 : Abondance (± Erreur Standard) de la macrofaune invertébrée dans la station arc 148

Code station	arc_148_sub
Surface prélèvement (m²)	0,1

		20 ju	07 in	2007 octobre		2008 mars	
PHYLUM	TAXON	abon (ind/m²)	ES (ind/m²)	abon (ind/m²)	ES (ind/m²)	abon (ind/m²)	ES (ind/m²)
amphipoda	Abludomelita obtusata	6	6	0	(ma/m)	0	0
	Bathyporeia spp	6	4	0	0	0	0
	Haustorius arenarius	0	0	0	0	2	2
	Hippomedon denticulatus	4	2	6	4	10	5
	Melita palmata	2	2	0	0	0	0
	Urothoe pulchella	40	- 11	6	2	102	52
bivalvia	Bivalvia	2	2	0	0	0	0
	Musculista senhousia	2	2	0	0	0	0
	Mytilus edulis	2	2	0	0	0	0
cnidaria	cnidaria	0	0	0	0	2	2
gastropoda	Hydrobia ulvae	0	0	10	10	0	0
isopoda	Eurydice pulchra	2	2	2	2	0	0
•	Lekanesphaera spp	0	0	6	4	4	2
	Eurydice spinigera	0	0	0	0	2	2
mysidacea	Gastrosaccus spinifer	60	12	888	313	50	15
	Mysidacea	34	34	0	0	0	0
nemertina	Nemertina	8	5	2	2	0	0
pisces	Ammodytes tobianus	0	0	0	0	2	2
polychaeta	Hesionidae	2	2	0	0	0	0
	Lumbrineris latreilli	2	2	0	0	0	0
	Nephtys cirrosa	10	5	14	2	8	4
	Ophelia neglecta	34	12	4	2	2	2
	Paradoneis armata	0	0	6	6	0	0
	Syllidae	0	0	4	2	0	0
Total abondance		216	42	948	305	184	48
Total taxon		16		11		10	

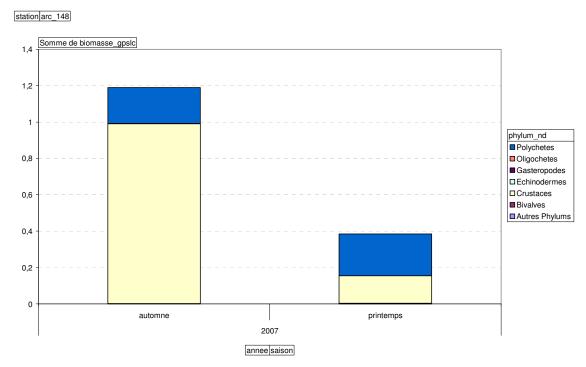


Figure 3 : Biomasses totales (g poids sec libre de cendres) par phylum mesurées dans la Station arc_148_sub

2.3. Changements observés et calculs des indicateurs de qualité écologique du milieu

La station arc 148 présente un peuplement typique des sables moyens soumis à des courants importants. La faune y est assez clairsemée d'où un niveau de densité et de richesse spécifique faibles. La principale différence observée entre le Printemps et l'Automne 2007 est liée aux fluctuations de l'abondance de *Gastrosaccus spinifer*, organisme très mobile dont les fluctuations ne reflètent probablement pas une tendance liée au cycle de vie de cette espèce.

Les valeurs du M-AMBI indiquent que l'écosystème est de très bonne qualité au Printemps 2007 et de bonne qualité à l'Automne 2007 et au Printemps 2008 (Tableau 7). La perte de classe de qualité est causée par l'apparition massive de *Gastrosaccus spinifer* à l'Automne 2007 et celle de *Urothoe pulchella* en 2008 causant un déséquilibre des proportions des espèces (Tableau 7 & 8).

Tableau 8: Progression de la valeur de l'M-AMBI sur la station arc_148_int.

Code station	arc_148_sub
Habitat	Sables propres

Stations	AMBI	Diversity	Richness	X	Y	Z	M-AMBI	Status
Bad	6	0	0	3,040	2,534	-1,662	0	Bad
High	1	3,5	15	-1,347	-1,629	0,865	1	High
arc_148_sub_juin07	0,989	2,968	15	-1,225	-1,313	0,780	0,952	High
arc_148_sub_oct07	1,503	0,536	11	-0,031	0,562	-0,045	0,600	Good
arc_148_sub_mars08	0,745	1,816	9	-0,436	-0,155	0,061	0,717	Good

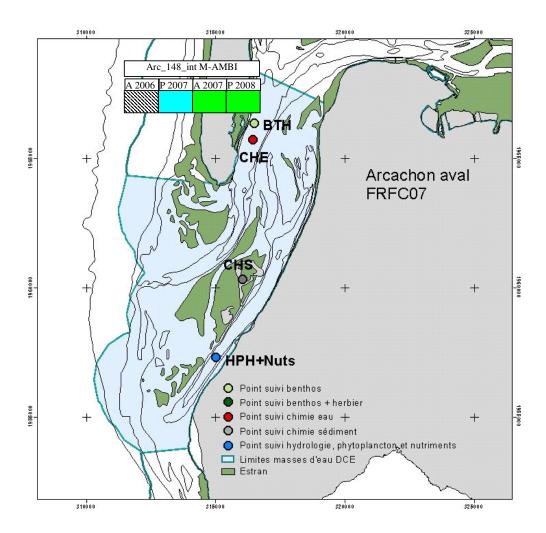


Figure 8 : Cartographie M-AMBI - Arcachon aval FRFC07

3. Masse d'Eau « Côte Landaise » - FRFC 08 -

3.1. Méthodologie

3.1.1. Localisation des stations

Une station a été échantillonnée dans cette Masse d'Eau sur la plage de Biscarosse.

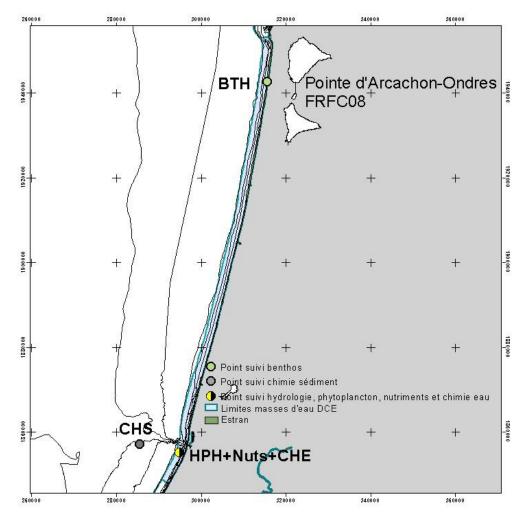


Figure 9 : Position des stations échantillonnées dans la masse d'eau « Côte Landaise (Pointe d'Arcachon – Ondres) » (source : Ifremer)

3.1.2. Echantillonnage

a. Sédiments

Les sédiments ont été prélevés à l'aide d'un carottier directement employé sur site et traités selon le protocole brièvement résumé ci-dessous.

Granulométrie

Méthode	
Engin d'échantillonnage	Carottier plastique
Dimensions échantillon	3,5 cm - 10 cm de profondeur
Nombre d'échantillon	1 échantillon
Analyse	Séchage - Passage sur une colonne humide de 5 tamis de maille
	décroissante (1000 μm, 500 μm, 250 μm, 125 μm et 63 μm) –
	Séchage – Pesée – Médiane obtenue par méthode graphique.

Matière organique

Méthode	
Engin d'échantillonnage	Carottier plastique
Dimensions échantillon	3,5 cm - 10 cm de profondeur
Nombre d'échantillon	1 échantillon
Analyse	Perte au feu (4h – 450°C)

b. Faune

Station intertidale bisca_int

Méthode	
Engin d'échantillonnage	Carottier plastique
Dimensions échantillon	$0.20 \text{ m} * 0.20 \text{ m} = 0.04 \text{ m}^2$
Nombre d'échantillon	10 échantillons [#]
Analyse	Séparation par espèce
	Dénombrement
	AMBI (AZTI's Marine Biotic Index), Borja et al., 2000
	M-AMBI (Multivariate AZTI's Marine Biotic Index), Muxika et
	al., 2007

^{*} En raison de la faible densité de la faune sur ce type de plage battue le nombre d'échantillon a été augmenté par rapport au protocole DCE

Mesure de la biomasse par phylum

Méthode	
Perte au feu	
Température	450 °C
Durée	4 H

3.2. Résultats

3.2.1. Contexte environnemental

Le substrat de la station Bisca_int correspond à des sables moyens propres (médiane granulométrique (390-400 µm) ne contenant que très peu de matière organique (<0,5 %), corrélé à une teneur en particules fines très faible (< 3,2 %).

Stations	Printemps 2007	Automne 2007	Printemps 2008
Bisca_int			
% MO	0,1	0,3	0,05
% < 63 μm	1,3	3,2	1,41
Médiane granulométrique	400 μm	390 µm	350 µm

3.2.2. Faune invertébrée benthique

Tableau 9 : Abondance (± Erreur Standard) de la macrofaune invertébrée dans la station bisca_int

Code station	bisca_int
Surface prélèvement (m²)	0,04

			06 obre		07 ars		07 obre		08 ars
PHYLUM	TAXON	abon (ind/m²)	ES (ind/m²)	abon (ind/m²)	ES (ind/m²)	abon (ind/m²)	ES (ind/m²)	abon (ind/m²)	ES (ind/m²)
amphipoda	Haustorius arenarius	0	0	0	0	25	8	35	11
	Pontocrates arenarius	5	3	10	6	10	4	35	11
bivalvia	Modiolus modiolus	0	0	8	5	0	0	0	0
decapoda	Portumnus latipes	3	3	0	0	0	0	0	0
gastropoda	Hydrobia ulvae	0	0	153	128	0	0	0	0
isopoda	Eurydice pulchra	3	3	10	6	55	24	35	9
mysidacea	Gastrosaccus spinifer	8	4	8	4	30	11	5	5
pisces	Ammodytes tobianus	0	0	5	3	0	0	0	0
polychaeta	Aonides oxycephala	0	0	0	0	0	0	3	3
	Nephtys cirrosa	5	3	0	0	0	0	0	0
	Ophelia neglecta	0	0	5	5	0	0	0	0
Total abond	-	30	3	203	130	128	37	115	25
Total taxon		6		8		5		6	

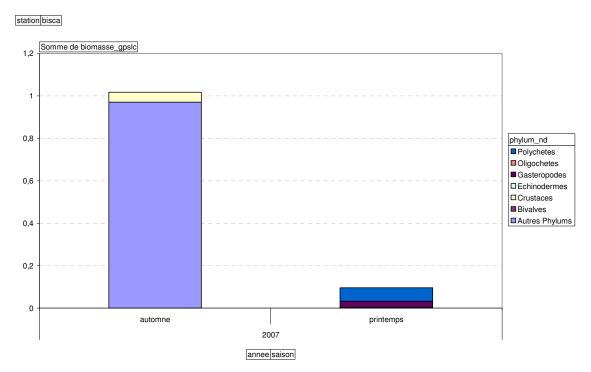


Figure 10 : Biomasses totales (g poids sec libre de cendres) par phylum mesurées dans la Station bis_1

3.3. Changements observés et calculs des indicateurs de qualité écologique du milieu

Le peuplement de cette zone est typique des plages sableuses de mode battu. La faune est très peu dense. Trois espèces sont présentes de manière systématique d'une saison à l'autre : *Gastrosaccus spinifer*, *Eurydice pulchra* et *Pontocrates arenarius*. Les variations observées entre chaque saison sont faibles (Tableau 9).

Les valeurs du M-AMBI indiquent un écosystème de **très bonne qualité à l'Automne** 2006 et au Printemps 2008 et de bonne qualité en 2007.

Tableau 10: Progression de la valeur de l'M-AMBI sur la station bisca_int.

Code station	bisca_int
Habitat	auto référence

Stations	AMBI	Diversity	Richness	X	Y	Z	M-AMBI	Status
Bad	6	0	0	-3,223	-3,261	2,775	0	Bad
High	1,18	2,2	6	1,381	1,367	-1,217	1	High
bisca_int_oct06	2,850	2,197	5	0,727	0,532	-0,369	0,825	High
bisca_int_mars07	2,747	1,211	6	-0,030	0,446	-0,126	0,742	Good
bisca_int_oct07	2,482	1,786	4	0,246	0,066	-0,157	0,736	Good
bisca_int_mars08	1,180	1,894	5	0,899	0,850	-0,905	0,900	High

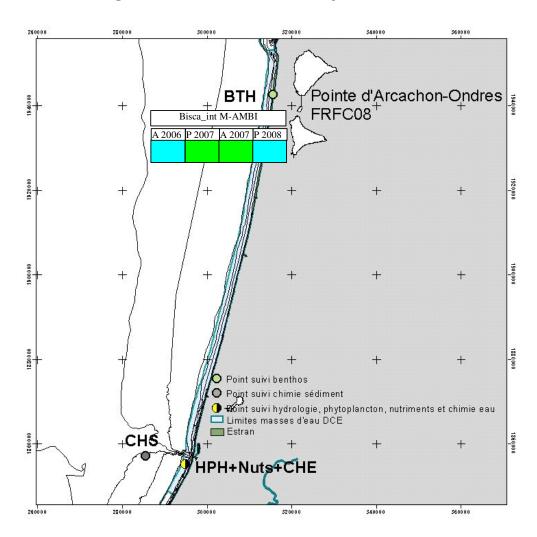


Figure 11: Cartographie M-AMBI – Pointe d'Arcachon-Ondres FRFC08

4. Masse d'Eau « Lac d'Hossegor » - FRFC 09 -

4.1. Méthodologie

4.1.1. Localisation des stations

Trois stations ont été échantillonnées dans cette Masse d'Eau: deux stations intertidales dont une correspond à un herbier à Zostera noltii et une station subtidale.

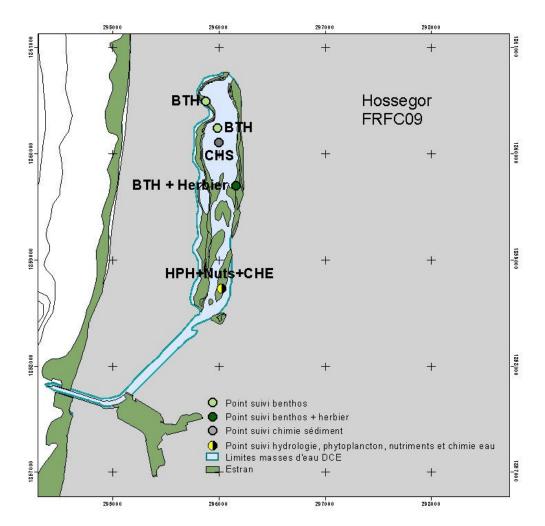


Figure 4 : Position des stations échantillonnées dans la masse d'eau « Lac d'Hossegor » (source : Ifremer)

4.1.2. Echantillonnage

a. Sédiments

Les sédiments ont été traités selon le protocole brièvement résumé ci-dessous

Granulométrie

Méthode	
Engin d'échantillonnage	Carottier plastique
Dimensions échantillon	3,5 cm - 10 cm de profondeur
Nombre d'échantillon	1 échantillon
Analyse	Séchage - Passage sur une colonne humide de 5 tamis de maille
	décroissante (1000 μm, 500 μm, 250 μm, 125 μm et 63 μm) –
	Séchage – Pesée – Médiane obtenue par méthode graphique.

Matière organique

Méthode	
Engin d'échantillonnage	Carottier plastique
Dimensions échantillon	3,5 cm - 10 cm de profondeur
Nombre d'échantillon	1 échantillon
Analyse	Perte au feu (4h – 450°C)

b. Faune

Une méthode différente a été employée pour chaque station. Nous avons appliqué, pour les stations intertidales, les protocoles propres aux herbiers à *Zostera noltii* et celui propre aux zones intertidales pour les stations Hos H int et Hos B int, respectivement.

La station subtidale Hos B sub ne peut être échantillonnée à l'aide d'une benne van Veen tel que prévu dans le protocole DCE en raison de l'impossibilité d'accès à cette zone par des moyens nautiques susceptibles d'embarquer une benne de type van Veen. Par conséquent, l'échantillonnage a été réalisé en plongée autonome à l'aide d'une benne de plus petites dimensions.

Herbiers à Zostera noltii Hos h int

Méthode	
Engin d'échantillonnage	Carottier métal
Dimensions échantillon	$0.20 \text{ m} * 0.20 \text{ m} = 0.04 \text{ m}^2$
Nombre d'échantillon	5 échantillons
Analyse	Séparation par espèce
	Dénombrement
	AMBI (AZTI's Marine Biotic Index), Borja et al., 2000
	M-AMBI (Multivariate AZTI's Marine Biotic Index), Muxika et
	al., 2007

Station intertidales Hos b int

Méthode	
Engin d'échantillonnage	Carottier métal
Dimensions échantillon	$0.20 \text{ m} * 0.20 \text{ m} = 0.04 \text{ m}^2$
Nombre d'échantillon	7 échantillons
Analyse	Séparation par espèce
	Dénombrement
	AMBI (AZTI's Marine Biotic Index), Borja et al., 2000
	M-AMBI (Multivariate AZTI's Marine Biotic Index), Muxika et
	al., 2007

Station subtidale échantillonnées en plongée autonome Hos b sub

Méthode	
Engin d'échantillonnage	Benne Eckman
Dimensions échantillon	$0.15 \text{ m} * 0.15 \text{ m} = 0.0225 \text{ m}^2$
Nombre d'échantillon	10 échantillons
Analyse	Séparation par espèce
	Dénombrement
	AMBI (AZTI's Marine Biotic Index), Borja et al., 2000
	M-AMBI (Multivariate AZTI's Marine Biotic Index), Muxika et
	al., 2007

Mesure de la biomasse par phylum

Méthode	
Perte au feu	
Température	450 °C
Durée	4 H

4.2. Résultats

4.2.1. Contexte environnemental

L'herbier à *Z. noltii* d'Hossegor est installé sur un sédiment vaseux (médiane granulométrique : 25 à 55 μ m) contenant 77 à 53 % de particules fines en 2007. Au Printemps 2008 on remarque un ensablement très marqué de cet herbier (médiane granulométrique : 330 μ m) associé à une chute de la teneur en particules fines (77 % et 53 % en 2007 pour 11,5 % au Printemps 2008).

L'autre station intertidale (hos_b_int) est située sur un substrat sableux dont la médiane granulométrique est comprise entre 370 et 380 μ m). Ces sédiments contiennent cependant une petite quantité (2,5 à 4 %) de particules fines.

La station subtidale était située sur des vases (médiane granulométrique : 40 μ m) en 2007 qui ont eu tendance à s'ensabler au Printemps 2008. Le sédiment constitué de 51,27 à 53 % de particules fines, et de 0,8 à 8,04 % de matière organique.

Stations	Printemps 2007	Automne 2007	Printemps 2008
Hos h Intertidal			
% MO	2,4	2,8	1,41
% < 63 μm	77	53	11,54
Médiane granulométrique	24 µm	55 μm	330 µm
Hos b Intertidal			
% MO	0,3	0,1	0,28
% < 63 μm	4	4	2,57
Médiane granulométrique	370 µm	380 µm	330 µm
Hos b Subtidal			
% MO	0,8	1,8	8,04
% < 63 μm	53	53	51,27
Médiane granulométrique	40 μm	40 μm	60 µm

4.2.2. Faune invertébrée benthique

a. Hos_h_int

Tableau 11 : Abondance (± Erreur Standard) de la macrofaune invertébrée dans l'herbier à Zostera noltii de la station Hos h int

Code station	hos h int
Surface prélèvement (m²)	0,04

			006 mbre)0 7 ai		007 mbre		008 ars
PHYLUM	TAXON	abon (ind/m²)	ES (ind/m²)	abon (ind/m²)	ES (ind/m²)	abon (ind/m²)	ES (ind/m²)	abon (ind/m²)	ES (ind/m²)
amphipoda	Amphipoda	0	0	5	5	0	0	0	0
	Ampithoe sp	0	0	0	0	10	10	0	0
	Corophium acherusicum	0	0	25	11	0	0	0	0
	Corophium insidiosum	0	0	5	5	0	0	0	0
	Gammarus sp	325	155	5	5	0	0	35	19
	Melita palmata	125	94	10	10	0	0	0	0
	Microdeutopus gryllotalpa	20	15	85	35	0	0	0	0
	Microdeutopus sp	0	0	0	0	0	0	5	5
bivalvia	Abra segmentum	0	0	0	0	0	0	65	32
	Bivalvia	0	0	0	0	5	5	0	0

	C	00	2.4	25	10	25	15	10	10
	Cerastoderma edule	90	34	25	19	35	15	10	10
	Cerastoderma glaucum	0	0	0	0	5	5	0	0
	Crassostrea gigas	0	0	10	6	0	0	0	0
	Modiolus modiolus	0	0	65	28	0	0	0	0
	Musculista senhousia	5	5	0	0	0	0	0	0
	Mytilus edulis	5	5	10	6	0	0	0	0
	Paphia aurea	15	6	20	5	10	6	0	0
	Parvicardium	0	0	110	44	0	0	5	5
	exiguum	Ü	· ·	110			Ü		
	Scrobicularia plana	410	93	185	65	340	78	175	36
	Tapes decussatus	0	0	15	10	60	13	45	18
	Tapes	15	10	20	5	90	20	25	16
	philippinarum								
	Tapes sp	0	0	0	0	0	0	5	5
	Tellimya	0	0	15	15	0	0	0	0
	ferruginosa								
cnidaria	Actinaria	0	0	10	6	5	5	0	0
	Anemonia viridis	0	0	0	0	0	0	35	19
decapoda	Brachyura	0	0	0	0	0	0	5	5
	Carcinus	120	17	130	35	25	0	55	17
	maenas Clibanarius	5	5	5	5	0	0	0	0
	erythropus	0	0	-	~	0	0	0	0
	Crangon	0	0	5	5	0	0	0	0
	crangon Grapsidae	10	6	0	0	0	0	0	0
	Hemigrapsus	0	0	0	0	10	10	5	5
	penicillatus	U	U	U	U	10	10	J	J
	Hippolyte sp	0	0	0	0	5	5	0	0
	Palaemon	15	10	0	0	0	0	0	0
	adspersus								
	Pinnotheres	0	0	0	0	10	10	0	0
	pisum			• •					
	Upogebia pusilla	0	0	30	12	0	0	0	0
	Upogebia stellata	65	23	0	0	0	0	0	0
echinodermata		5	5	5	5	0	0	0	0
gastropoda	Bittium reticulatum	50	39	25	25	1 930	306	540	171
	Cyclope neritea	0	0	0	0	0	0	20	9
	Hydrobia ulvae	20	9	5 745	1 620	13 630	420	10 370	1 893
	Littorina littorea	195	45	10	6	70	28	10	6
	Nassarius	0	0	10	10	80	40	0	0
	reticulatus								
	Nudibranchia	0	0	0	0	10	6	0	0
	Opisthobranchia	20	15	0	0	0	0	0	0
insecta	Chironomidae	0	0	5	5	0	0	10	6
isopoda	Idotea chelipes	0	0	70	15	0	0	0	0
mysidacea	Paramysis	0	0	0	0	5	5	0	0

	bacescoi								
nemertina	Nemertina	35	17	10	6	180	76	15	10
oligochaeta	Oligochaeta	395	113	2 360	624	285	26	20	20
C	Tubificoides	750	376	4 590	969	700	106	875	361
	benedii								
polychaeta	Aonides	5	5	10	10	0	0	20	5
	oxycephala								
	Aphelochaeta	5	5	0	0	465	157	100	47
	marioni	~	~	0	0	0	0	0	0
	Arenicola	5	5	0	0	0	0	0	0
	marina Boccardia sp	5	5	0	0	0	0	0	0
	Capitella	65	23	5	5	115	47	55	28
	capitata	0.5	23	3	3	113	7/	33	20
	Glycera spp	0	0	5	5	0	0	0	0
	Heteromastus	1 245	406	1 175	215	5 095	617	3 930	541
	filiformis								
	Malacoceros	0	0	5	5	0	0	0	0
	fuliginosus								
	Neanthes	0	0	0	0	0	0	5	5
	caudata	20	0	10	-	10		0	0
	Nephtys hombergii	30	9	10	6	10	6	0	0
	Nereis	60	26	175	47	95	22	625	165
	diversicolor	00	20	175	47	75	22	023	103
	Notomastus	130	49	125	22	60	20	125	19
	latericeus								
	Pectinaria	0	0	10	6	0	0	0	0
	koreni								
	Phyllodoce	0	0	15	10	15	15	20	12
	mucosa	0	0	1.5	6	0	0	0	0
	Polydora ligni Prionospio sp	0	0	15 0	0	15	10	0	0 0
	Pseudopolydora	15	15	0	0	5	5	5	5
	paucibranchiata	13	13	U	U	3	3	3	3
	Pseudopolydora	0	0	20	9	0	0	0	0
	sp	~	Ü			Ŭ	ŭ	Ü	Ŭ
	Serpulidae	0	0	20	9	0	0	0	0
	Spio decoratus	0	0	10	10	0	0	0	0
	Spirorbis sp	0	0	5	5	25	14	0	0
	Streblospio	100	35	180	80	220	85	90	56
	shrubsolii								
	Syllidae	0	0	0	0	15	10	0	0
tanaidacea	Zeuxo holdichi	0	0	5	5	0	0	0	0
turbellaria	Turbellaria	10	10	0	0	0	0	0	0
Total abonda	ance	4 370	536	15 410	2 742	23 635	1 256	17 305	2 158
Total taxon		34		48		34		31	

Figure 13 : Biomasses totales (g poids sec libre de cendres) par phylum mesurées dans la Station hos_h_int

b. Hos_b_int

Tableau 12 : Abondance (± Erreur Standard) de la macrofaune invertébrée dans la station Hos b int

Code station Surace prélèvement (m²)	hos h int 0,04	
	2006 septembre	2007 mai

		20	06	20	07	20	07	20	08
		septe	mbre	m	ai	nove	mbre	ma	ars
PHYLUM	TAXON	abon	ES	abon	ES	abon	ES	abon	ES
		(ind/m ²)							
amphipoda	Amphipoda	0	0	5	5	0	0	0	0
	Ampithoe sp	0	0	0	0	10	10	0	0
	Corophium	0	0	25	11	0	0	0	0
	acherusicum								
	Corophium	0	0	5	5	0	0	0	0
	insidiosum				_		_		
	Gammarus sp	325	155	5	5	0	0	35	19
	Melita palmata	125	94	10	10	0	0	0	0
	Microdeutopus	20	15	85	35	0	0	0	0
	gryllotalpa								
	Microdeutopus	0	0	0	0	0	0	5	5
	sp								
bivalvia	Abra segmentum	0	0	0	0	0	0	65	32
	Bivalvia	0	0	0	0	5	5	0	0
	Cerastoderma	90	34	25	19	35	15	10	10
	edule								
	Cerastoderma	0	0	0	0	5	5	0	0
	glaucum								
	Crassostrea	0	0	10	6	0	0	0	0

	gigas								
	Modiolus	0	0	65	28	0	0	0	0
	modiolus								
	Musculista	5	5	0	0	0	0	0	0
	senhousia								
	Mytilus edulis	5	5	10	6	0	0	0	0
	Paphia aurea	15	6	20	5	10	6	0	0
	Parvicardium	0	0	110	44	0	0	5	5
	exiguum Scrobicularia	410	93	185	65	340	78	175	36
	plana	410	93	103	03	340	76	175	30
	Tapes	0	0	15	10	60	13	45	18
	decussatus								
	Tapes	15	10	20	5	90	20	25	16
	philippinarum								
	Tapes sp	0	0	0	0	0	0	5	5
	Tellimya	0	0	15	15	0	0	0	0
tdt.	ferruginosa	0	0	10	(_	_	0	0
cnidaria	Actinaria Anemonia	0	0	10 0	6 0	5 0	5 0	0 35	0 19
	viridis	U	U	U	U	U	U	33	19
decapoda	Brachyura	0	0	0	0	0	0	5	5
accupoda	Carcinus	120	17	130	35	25	0	55	17
	maenas						-		
	Clibanarius	5	5	5	5	0	0	0	0
	erythropus								
	Crangon	0	0	5	5	0	0	0	0
	crangon	10		0	0	0	0	0	0
	Grapsidae	10	6	0	0	0	0	0	0
	Hemigrapsus penicillatus	0	0	0	0	10	10	5	5
	Hippolyte sp	0	0	0	0	5	5	0	0
	Palaemon	15	10	0	0	0	0	0	0
	adspersus	13	10	Ü	O	Ü	O	Ü	O
	Pinnotheres	0	0	0	0	10	10	0	0
	pisum								
	Upogebia	0	0	30	12	0	0	0	0
	pusilla								
	Upogebia	65	23	0	0	0	0	0	0
echinodermata	stellata Astorina	5	5	5	5	0	0	0	0
cciiiiodciiiata	gibbosa	3	3	3	3	U	U	U	U
gastropoda	Bittium	50	39	25	25	1 930	306	540	171
	reticulatum								
	Cyclope neritea	0	0	0	0	0	0	20	9
	Hydrobia ulvae	20	9	5 745	1 620	13 630	420	10 370	1 893
	Littorina littorea	195	45	10	6	70	28	10	6
	Nassarius	0	0	10	10	80	40	0	0
	reticulatus	0	0	•	0	4.0	_	•	0
	Nudibranchia	0	0	0	0	10	6	0	0
:t-	Opisthobranchia	20	15 0	0 5	0 5	0	0	0	0
insecta	Chironomidae	0				0	0	10	6
isopoda	Idotea chelipes	0	0	70 0	15	0 5	0 5	0	0
mysidacea	Paramysis bacescoi	0	0	U	0	3	3	0	0
nemertina	Nemertina	35	17	10	6	180	76	15	10
oligochaeta	Oligochaeta	395	113	2 360	624	285	26	20	20
6	Tubificoides	750	376	4 590	969	700	106	875	361
	benedii								

Ech	antillonnage DCE	E – Faune	inverté	brée bent	hique		- Lac	e d'Hosse	gor -
polychaeta	Aonides oxycephala	5	5	10	10	0	0	20	5
	Aphelochaeta marioni	5	5	0	0	465	157	100	47
	Arenicola marina	5	5	0	0	0	0	0	0
	Boccardia sp	5	5	0	0	0	0	0	0
	Capitella capitata	65	23	5	5	115	47	55	28
	Glycera spp	0	0	5	5	0	0	0	0
	Heteromastus filiformis	1 245	406	1 175	215	5 095	617	3 930	541
	Malacoceros fuliginosus	0	0	5	5	0	0	0	0
	Neanthes caudata	0	0	0	0	0	0	5	5
	Nephtys hombergii	30	9	10	6	10	6	0	0
	Nereis diversicolor	60	26	175	47	95	22	625	165
	Notomastus latericeus	130	49	125	22	60	20	125	19
	Pectinaria koreni	0	0	10	6	0	0	0	0
	Phyllodoce mucosa	0	0	15	10	15	15	20	12
	Polydora ligni	0	0	15	6	0	0	0	0
	Prionospio sp	0	0	0	0	15	10	0	0
	Pseudopolydora paucibranchiata	15	15	0	0	5	5	5	5
	Pseudopolydora sp	0	0	20	9	0	0	0	0
	Serpulidae	0	0	20	9	0	0	0	0
	Spio decoratus	0	0	10	10	0	0	0	0
	Spirorbis sp	0	0	5	5	25	14	0	0
	Streblospio shrubsolii	100	35	180	80	220	85	90	56
	Syllidae	0	0	0	0	15	10	0	0
tanaidacea	Zeuxo holdichi	0	0	5	5	0	0	0	0
turbellaria	Turbellaria	10	10	0	0	0	0	0	0
Total abonda	ance	4 370	536	15 410	2 742	23 635	1 256	17 305	2 158
Total taxon		34		48		34		31	

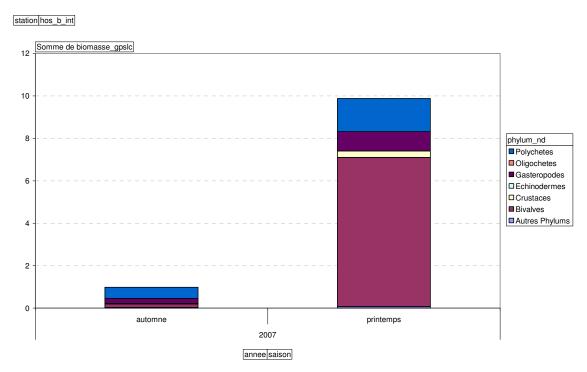


Figure 14 : Biomasses totales (g poids sec libre de cendres) par phylum mesurées dans la Station hos_b_int

c. Hos_b_sub

Tableau 13 : Abondance (± Erreur Standard) de la macrofaune invertébrée dans la station Hos b sub

Code station	hos_b_sub
Surface prélèvement (m²)	0,0225

			006 mbre		007 nai	2007 novembre		2008 mars	
PHYLUM	TAXON	abon (ind/m²)	ES (ind/m²)	abon (ind/m²)	ES (ind/m²)	abon (ind/m²)	ES (ind/m²)	abon (ind/m²)	ES (ind/m²)
amphipoda	Amphipoda	4	4	4	4	0	0	4	4
F F	Aora gracilis	0	0	138	52	293	123	1 511	908
	Corophium	0	0	58	25	0	0	0	0
	acherusicum	-	_			_	-		
	Gammarella	0	0	4	4	4	4	49	23
	fucicola								
	Gammarus sp	0	0	0	0	138	56	67	36
	Melita palmata	0	0	4	4	4	4	0	0
	Microdeutopus	0	0	373	110	53	44	387	165
	anomalus								
	Microdeutopus	9	6	49	15	4	4	4	4
	gryllotalpa								
bivalvia	Abra alba	98	65	22	10	0	0	0	0
	Abra tenuis	0	0	0	0	4	4	0	0
	Acanthocardia tuberculata	4	4	0	0	0	0	0	0
	Bivalvia	0	0	4	4	0	0	0	0
	Cerastoderma	22	14	13	7	0	0	0	0
	edule								
	Corbula gibba	0	0	18	7	0	0	4	4
	Crassostrea	4	4	4	4	0	0	0	0
	gigas								
	Modiolus modiolus	0	0	49	24	0	0	0	0
	Musculista	0	0	18	7	0	0	0	0
	senhousia								
	Musculus sp	0	0	0	0	0	0	4	4
	Parvicardium	0	0	89	24	22	14	222	89
	exiguum								
	Scrobicularia	0	0	13	9	0	0	0	0
	plana T	0	0	4	4	0	0	0	0
	Tapes decussatus								
cnidaria	Actinaria	0	0	1 440	458	760	295	0	0
	Anemonia	98	69	0	0	0	0	649	271
	viridis	0	0	0	0	0	0	0.4	4.4
	Ascidiella	0	0	0	0	0	0	84	44
auma aaa	aspersa Iphinoe	0	0	4	4	0	0	0	0
cumacea	trispinosa	U	U	4	4	U	U	U	U
decapoda	Brachyura	0	0	4	4	0	0	0	0
accupodu	Carcinus	4	4	22	10	4	4	0	0
	maenas	•	•		10	•	•	Ü	Ü
	Crangon	0	0	4	4	0	0	0	0
	crangon								
	Palaemon	0	0	4	4	0	0	0	0
	elegans								
	Upogebia	9	9	0	0	0	0	0	0

Echantillonnage	DCE -	Faune	invertébrée	benthique
				_

- Lac d'Hossegor -

		16		38		28		28	
Total abondar	nce	1 431	274	5 111	1 190	10 387	1 739	6 787	2 112
phyllocarida	Nebalia bipes	0	0	0	0	4	4	0	0
turbellaria	Platyhelminthes	0	0	0	0	9	6	0	0
	Syllidae	0	0	0	0	0	0	13	7
	Spirorbis sp	0	0	107	56	4 844	1 127	0	0
	Sabellidae	0	0	4	4	0	0	0	0
	Pseudopolydora paucibranchiata	0	0	324	117	18	10	0	0
	triqueter	0	0	224	117	10	10	0	0
	Pomatoceros	0	0	9	9	0	0	0	0
	Polydora ligni	0	0	13	9	0	0	0	0
	Phylo foetida	4	4	0	0	0	0	0	0
	koreni								
	Pectinaria	0	0	13	7	0	0	0	0
	latericeus	~	J		,	9	9	9	Ü
	Notomastus	0	0	13	7	0	0	0	0
	neantnes caudata	70	23	31	13	21	10	31	13
	fuliginosus Neanthes	76	23	31	13	27	10	31	15
	Malacoceros	0	0	18	7	53	23	289	58
	conchilega								
	Lanice	0	0	4	4	0	0	0	0
	filiformis	U	U	U	U	7	U	10	10
	affinis Heteromastus	0	0	0	0	9	6	18	18
	Flabelligera	0	0	0	0	0	0	9	6
	ockelmanni	0	0	0	0	0	0	0	-
	Eumida	0	0	9	9	0	0	0	0
	capitata	_							
	Capitella	342	69	76	22	27	12	71	32
r ,	oxycephala	~	J	Ü	5	•	•	9	Ü
polychaeta	Aonides	0	0	0	0	4	4	0	0
oligochaeta	Oligochaeta	0	0	0	0	0	0	9	6
nemertina	Nemertina	13	13	0	0	0	0	36	22
mysidacea	Mysidacea	0	0	0	0	13	7	0	0
insecta	Opisthobranchia Chironomidae	0 4	0 4	0	0	18 0	18 0	4 4	4 4
	reticulatus	0	0	0	0	10	10	4	4
	Nassarius	0	0	0	0	9	6	0	0
	incrassatus								
	Nassarius	0	0	0	0	4	4	4	4
	Hydrobia ulvae	196	117	1 209	269	2 209	742	1 218	527
	Hiatella arctica	0	0	0	0	4	4	9	6
	umbilicalis	U	U	U	U	U	U	9	9
	reticulatum Gibbula	0	0	0	0	0	0	9	9
gastropoda	Bittium	542	157	924	356	1 813	407	2 058	452
4 1 .	Ophiuroidea D::	0	0	0	0	9	6	0	0
	gibbosa	0	0	0	0	0	6	0	0
	Asterina	0	0	9	6	22	10	4	4
	squamata								
	Amphipholis	0	0	0	0	0	0	13	7

43

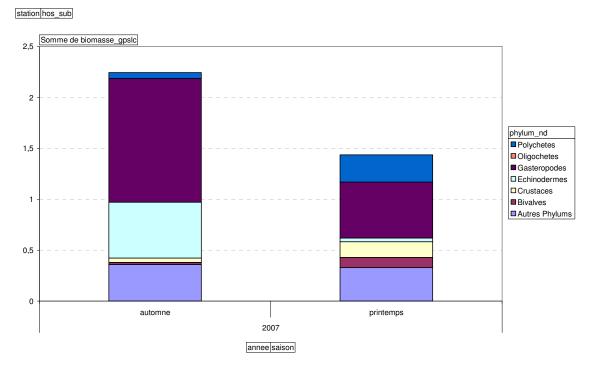


Figure 15 : Biomasses totales (g poids sec libre de cendres) par phylum mesurées dans la Station hos b sub

4.3. Changements observés et calculs des indicateurs de qualité écologique du milieu

Le principal changement observé dans l'**herbier** d'Hossegor est une augmentation globale de la densité du peuplement qui est principalement liée à une fluctuation du niveau d'abondance d'*Hydrobia ulvae* entre les saisons. Cette augmentation très forte de densité ne peut être interprétée en termes de modification de la qualité du milieu En effet, *H. ulvae* étant un gastéropode connu pour sa capacité à se déplacer par flottaison, ce qui entraîne l'observation de très importantes fluctuations de densité d'une marée à l'autre. La structure du peuplement est stable sur l'Automne 2006 / 2007 et diminue entre le Printemps 2007 et 2008 à cause de la disparition de certaines espèces comme *Idotea chelipes, Upogebia pusilla, Pseudopolydora* sp (Tableau 11).

La qualité de l'écosystème est bonne et reste stable depuis le début de l'étude (Tableau 12). Il est cependant à noter une très forte modification de cet herbier (faibles densités et enseblement très important) en 2008.

Tableau 14: Evolution de la valeur du M-AMBI sur la station hos_h_int.

Code station	hos_h_int
Habitat	Sables envasée intertidaux

Stations	AMBI	Diversity	Richness	X	Y	Z	M- AMBI	Status
Bad	6	0	0	-2,675	-2,911	-2,127	0	Bad
High	1	4	35	2,184	1,289	1,405	1	High
hos_h_int_sep06	3,779	3,538	34	0,434	0,640	0,651	0,741	Good
hos_h_int_mai07	4,414	2,515	47	-0,091	0,961	0,256	0,693	Good
hos_h_int_nov07	3,226	2,064	32	0,167	0,109	-0,021	0,632	Good
hos_h_int_mars08	3,399	1,910	30	-0,019	-0,088	-0,165	0,590	Good

La station intertidale quand à elle, montre des niveaux d'abondance comparables entre saisons printanières et entre saisons automnales si l'on ne prend pas en compte les fluctuations d'abondance d'*Hydrobia ulvae*. La variation de la composition du peuplement correspond à la disparition d'espèces faiblement abondantes au Printemps 2007 qui n'ont pas été retrouvées dans les autres échantillons (Tableau 13).

L'écosystème de la station intertidale est de bonne qualité jusqu'au Printemps 2007 puis perd une classe de qualité du à une chute simultanée du nombre de taxon et de l'homogénéité du peuplement (Tableau 14). Cepandant comme nous l'avons fait remarqué plus haut *Hydrobia ulvae* impacte de façon aléatoire l'homogénéité et la variation du nombre d'espèce est du à leur faible abondance.

Tableau 15: Evolution de la valeur du M-AMBI sur la station hos_b_int.

Code station	hos_b_int
Habitat	Sables envasées intertidaux

Stations	AMBI	Diversity	Richness	X	Y	Z	M- AMBI	Status
Bad	6	0	0	2,522	2,449	-2,311	0	Bad
High	1	4	35	-2,455	-2,433	2,091	1	High
hos_b_int_sept06	3,014	2,806	16	-0,565	-0,269	0,317	0,591	Good
hos_b_int_mai07	2,887	1,566	29	-0,221	-0,789	0,336	0,605	Good
hos_b_int_nov07	2,958	1,483	9	0,406	0,568	-0,242	0,424	Moderate
hos_b_int_mars08	2,985	1,605	10	0,314	0,474	-0,191	0,441	Moderate

En milieu subtidal, les fluctuations d'abondance observées sont uniquement liées à l'abondance de *Spirorbis* sp., petite espèce d'annélide polychète tubicole dont les tubes sont retrouvés sur les substrats durs tels que les coquilles, les fragments de feuilles de *Zostera* spp. ou les fragments de macroalgues vertes. Cette espèce peut montrer des niveaux d'abondances très élevés lorsqu'elle est présente. Dans le cas présent, l'abondance mesurée au Printemps 2007 correspond à des tubes retrouvés fortuitement sur une coquille de bivalve. Ce changement apparent ne doit donc pas être interprété comme un changement de qualité écologique du milieu. Néammoins, si les espèces dominantes sont les mêmes aux deux saisons, le niveau de diversité est nettement plus élevé en Automne 2007 qu'au Printemps et plus élevé qu'à l'Automne 2006 (Cottet et al., 2007).

En 2006 la qualité de l'écosystème était moyenne mais elle a gagné une classe de qualité au Printemps 2007 et ce jusqu'en 2008 liée à l'augmentation de la richesse spécifique (Tableau 15).

Tableau 16: Evolution de la valeur du M-AMBI sur la station hos_b_sub.

Code station	hos_b_sub
Habitat	Sables envasées subtidaux

Stations	AMBI	Diversity	Richness	X	Y	Z	M-AMBI	Status
Bad	6	0	0	-2,833	3,040	2,417	-1,038E-16	Bad
High	1	4	58	2,275	-1,964	-1,749	1	High
hos_b_sub_nov06	3,117	2,375	15	-0,629	0,539	0,352	0,473	Moderate
hos_b_sub_mai07	1,978	3,096	35	0,742	-0,682	-0,637	0,724	Good
hos_b_sub_nov07	1,535	1,981	27	0,061	-0,290	0,004	0,606	Good
hos_b_sub_mars08	1,313	2,667	27	0,384	-0,643	-0,387	0,680	Good

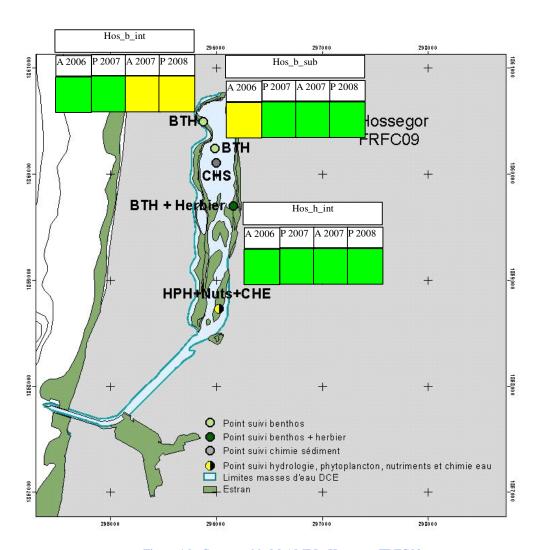


Figure 16 : Cartographie M-AMBI - Hossegor FRFC09

5. Masse d'Eau « Côte Basque » - FRFC 11 -

5.1. Méthodologie

5.1.1. Localisation des stations

Une station a été échantillonnée dans cette Masse d'Eau entre les embouchures de l'estuaire de la Bidassoa, au Sud et de l'estuaire de l'Adour, au Nord.

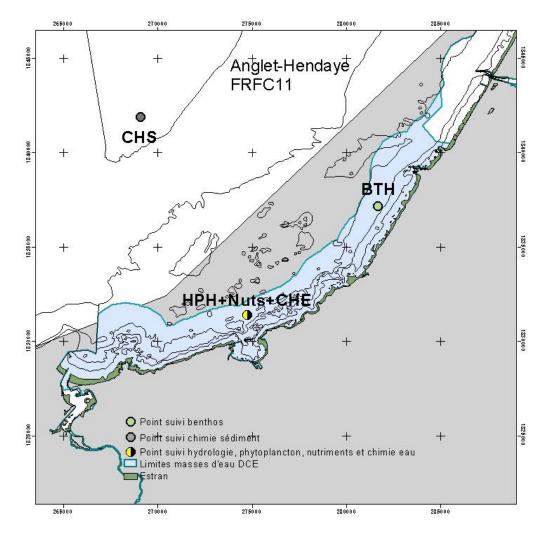


Figure 17 : Position des stations échantillonnées dans la masse d'eau « Côte Basque (Anglet-Hendaye) » (source Ifremer)

5.1.2. Echantillonnage

a. Sédiments

Les sédiments ont été traités selon le protocole brièvement résumé ci-dessous

Granulométrie

Méthode	
Engin d'échantillonnage	Carottier plastique
Dimensions échantillon	3,5 cm - 10 cm de profondeur
Nombre d'échantillon	1 échantillon
Analyse	Séchage - Passage sur une colonne humide de 5 tamis de maille
	décroissante (1000 μm, 500 μm, 250 μm, 125 μm et 63 μm) –
	Séchage – Pesée – Médiane obtenue par méthode graphique.

Matière organique

Méthode	
Engin d'échantillonnage	Carottier plastique
Dimensions échantillon	3,5 cm - 10 cm de profondeur
Nombre d'échantillon	1 échantillon
Analyse	Perte au feu (4h – 450°C)

b. Faune

Station subtidale Cotbas sub

Méthode	
Engin d'échantillonnage	Benne van Veen
Dimensions échantillon	$0.20 \text{ m} * 0.50 \text{ m} = 0.1 \text{ m}^2$
Nombre d'échantillon	5 échantillons
Analyse	Séparation par espèce
	Dénombrement
	AMBI (AZTI's Marine Biotic Index), Borja et al., 2000
	M-AMBI (Multivariate AZTI's Marine Biotic Index), Muxika et
	al., 2007

Mesure de la biomasse par phylum

Méthode	
Perte au feu	
Température	450 °C
Durée	4 H

5.2. Résultats

5.2.1. Contexte environnemental

La station échantillonnée est située sur des sables fins (médiane granulométrique : 165 à 195 μ m) en 2007 pauvres en particules fines (1-3 %) et en matière organique (<1%). Au

Printemps 2008 le sédiment à évolué vers des sables moyens, cependant la teneur en particules fines (1.89 %) et en matière organique (0,86 %) restent faibles.

Stations	Printemps 2007	Automne 2007	Printemps 2008
Cotbas Subtidal			
% MO	0,8	1,0	0,86
% < 63 μm	3	1	1,89
Médiane granulométrique	165 µm	195 µm	310 µm

5.2.2. Faune invertébrée benthique

Tableau 17 : Abondance (± Erreur Standard) de la macrofaune invertébrée dans la station Cotbas sub

Code station	cotbas_sub
Surface prélèvement (m²)	0.1

PHYLUM	TAVON	2007 juin abon ES		200 décer abon		2008 mars	
FIIILOWI	TAXON	abon (ind/m²)	ES (ind/m²)	abon (ind/m²)	ES (ind/m²)	abon (ind/m²)	ES (ind/m²)
amphipoda	Ampelisca brevicornis	0	0	0	0	2	2
	Ampelisca sp	150	65	58	9	0	0
	Amphipoda	2	2	0	0	0	0
	Atylus swammerdami	2	2	0	0	0	0
	Bathyporeia spp	70	7	0	0	16	7
	Corophium sp	0	0	0	0	2	2
	Hippomedon denticulatus	4	4	4	4	2	2
	Idunella longirostris	0	0	6	4	0	0
	Perioculodes longimanus	6	2	0	0	0	0
	Phtisica marina	2	2	0	0	0	0
	Pontocrates arenarius	2	2	0	0	4	4
	Urothoe pulchella	4	4	0	0	12	6
bivalvia	Abra alba	0	0	0	0	2	2
	Bivalvia	0	0	4	2	0	0
	Chamelea gallina	0	0	4	2	2	2
	Donax vittatus	4	4	2	2	0	0
	Fabulina fabula	10	5	6	4	2	2
	Mactra stultorum	24	10	12	4	0	0
	Modiolus modiolus	4	2	0	0	0	0
	Pharus legumen	8	4	12	5	0	0
	Spisula sp	0	0	0	0	2	2
	Spisula subtruncata	0	0	0	0	2	2
	Tellimya ferruginosa	0	0	0	0	2	2

Lenanun	ioilliage DCL = Fau	IIC IIIVCITCO	ice benum	que		- Cott 1	<u> Jasque -</u>
	Tellina tenuis	4	4	0	0	0	0
cnidaria	Edwardsia sp	4	2	2	2	0	0
cumacea	Bodotria sp	0	0	2	2	0	0
	Diastylis bradyi	6	4	0	0	2	2
	Cumopsis fagei	0	0	0	0	4	4
	Eocuma dollfusi	0	0	0	0	4	4
decapoda	Brachyura	2	2	0	0	0	0
	Corystes	2	2	0	0	0	0
	cassivelaunus						
	Crangon crangon	0	0	4	2	2	2
	Diogenes	12	7	10	4	66	42
	pugilator						
	Polybius	2	2	0	0	0	0
	henslowii						
	Xaiva biguttata	0	0	2	2	0	0
echinodermata	Echinocardium	0	0	4	2	80	19
	cordatum						
	Holothuroidea	2	2	0	0	0	0
gastropoda	Hiatella arctica	0	0	0	0	0	0
	Nassarius	2	2	2	2	2	2
	reticulatus						
isopoda	Eurydice pulchra	0	0	6	2	0	0
	Janira maculosa	0	0	0	0	2	2
mysidacea	Gastrosaccus	14	12	8	4	26	12
	sanctus						
	Gastrosaccus	0	0	6	2	0	0
	spinifer						
	Mysidacea	2	2	0	0	0	0
nemertina	Nemertina	178	50	58	12	14	4
polychaeta	Aonides	0	0	0	0	2	2
	oxycephala						
	Aricidae	0	0	6	2	0	0
	Capitella capitata	2	2	0	0	0	0
	Glycera spp	22	13	28	4	0	0
	Lumbrineris sp	0	0	2	2	0	0
	Magelona	1 786	467	8	4	38	4
	johnstoni						
	Mediomastus sp	188	132	0	0	0	0
	Nephtys assimilis	24	10	4	2	0	0
	Nephtys cirrosa	0	0	0	0	18	9
	Nephtys	2	2	0	0	0	0
	hombergii						
	Onuphis eremita	2	2	8	4	6	4
	Owenia	10	4	2	2	16	7
	fusiformis						
	Paradoneis	78	21	20	6	8	4
	armata			_			_
	Phylo foetida	4	4	0	0	4	2
	Scolelepis mesnili	2	2	2	2	6	2
	Scoloplos	0	0	0	0	4	2
	armiger	_	_			_	_
	Serpulidae	0	0	2	2	0	0
	Sigalion	4	2	4	2	4	2
	mathildae	-	_		•		-
	Spio decoratus	6	2	0	0	14	6
	Spionidae	0	0	2	2	0	0
	Spiophanes	26	9	2	2	2	2
	bombyx						

Echantillonnage DCE – Faune invertébrée benthique - Côte Basque -

Total taxon		43		33		35	
Total abondance	•	2 686	594	302	20	376	78
	cylindracea						
	Cylichna	4	2	0	0	2	2
opistobranchia	Acteon tornatilis	2	2	0	0	0	0
sipunculidea	Sipunculidea	2	2	0	0	0	0

station cotbas

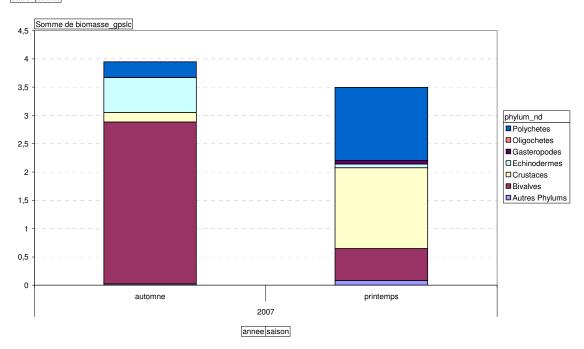


Figure 18: Biomasses totales (g poids sec libre de cendres) par phylum mesurées dans la Station cotbas_sub

5.3. Changements observés et calculs des indicateurs de qualité écologique du milieu

Les changements d'abondance observés entre le Printemps 2007 (2 686 ind.m⁻²) et l'Automne 2007 (302 ind.m⁻²) sont liés à la diminution du niveau d'abondance de l'annélide polychète Magelona filiformis qui représentait à elle seule, les deux tiers de l'abondance de la faune au Printemps 2007. Les autres espèces présentent montrent des niveaux d'abondance légèrement inférieurs en Automne qu'au Printemps et un nombre d'espèces plus faible. Il est à noter que le type de sédiment était légèrement différent en Automne (sables moyens propres) qu'au Printemps (sables fins). Cette différence est soit liée à des modifications des fonds ou, plus vraisemblablement à une répartition en tâche des différents types de sédiments sur cette zone.

La qualité de l'écosystème d'après le M-AMBI serait très bonne depuis le début de l'étude (Tableau 18)

Tableau 18: Progression de la valeur de l'M-AMBI sur la station cotbas_int.

Code station	cotbas_sub
Habitat	Sables propres

Stations	AMBI	Diversity	Richness	X	Y	Z	M-AMBI	Status
Bad	6	0	0	2,779	2,856	1,930	1,58E-16	Bad
High	1	3,5	15	0,173	-0,457	-0,231	1	High
cotbas_int_juin07	0,497	2,149	43	-1,192	-0,335	-0,591	1,175	High
cotbas_int_déc07	1,290	4,108	33	-0,810	-1,019	-0,517	1,225	High
cotbas_int_mars08	1,072	3,996	35	-0,949	-1,045	-0,591	1,252	High

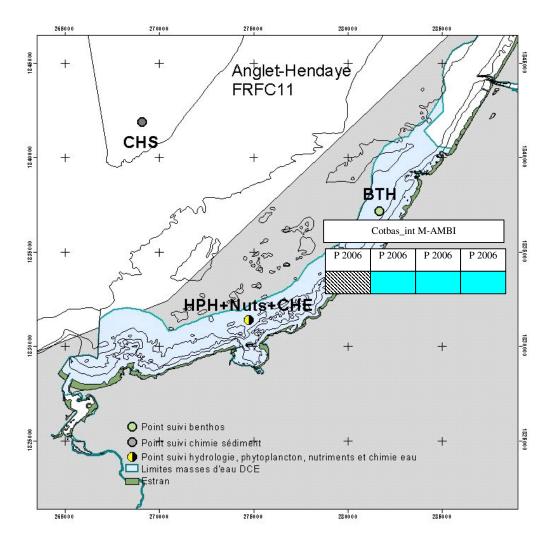


Figure 19: Cartographie M-AMBI – Anglet-Hendaye FRFC11

9. Conclusions-

Les données acquises depuis 2006 ou 2007 sur les différentes stations du réseau de surveillence de la faune invertébrée benthique révèlent, selon le critère du M-AMBI un état assez satisfaisant des Masses d'eau côtières faisant l'objet du contrôle de surveillance.

Némmoins une certaine variabilité de l'indice entre le « très bon » état et le « Bon état » est observé. L'objectif de la DCE, en plus d'obtenir le « Bon état » écologique des Masses d'eau, est de préserver les Masses d'eau en « très bon » état à ce niveau de qualité. En ce sens les fluctuations interannuelles observées entre Très Bon et Bon état écologique devront être interprétés avec prudence.

Références

- Auby I, Trut G, Blanchet H, Gouillieux B, Lavesque N, Pothier A (2008) Echantillonnage des sites de référence DCE pour les paramètres "faune invertébrée benthique" et "végétation". Rapport Ifremer - LER Arcachon -UMR 5805 - Station Marine d'Arcachon, Arcachon.
- Cottet M, Gouillieux B, Bachelet G, Blanchet H, De Montaudouin X, Lavesque N, Leconte M, Sauriau PG (2007) Etude préliminaire de la macrofaune benthique des masses d'eau côtières et de transition du District Hydrographique Adour-Garonne - Rapport Final - Novembre 2007-. Rapport Agence de l'Eau Adour-Garonne - Station Marine d'Arcachon -Centre de Recherche sur les Ecosystèmes Littoraux Anthropisés, Arcachon
- Guillaumont B, Gauthier E (2005) Recommandations pour un programme de surveillance adapté aux objectifs de la DCE - Recommandations concernant le benthos marin. Rapport Ifremer – Centre de Brest, Brest.
- Muxika I, Borja A, Bald J (2006) Using historical data, expert juggement and multivariate analysis in assessing refrence conditions and benthic ecological status, according to the European Water Framework Directive. Marine Pollution Bulletin 55: 16-29