Geology

August 2022, Volume 50 Issue 8 Pages 934-938 https://doi.org/10.1130/G49956.1 https://archimer.ifremer.fr/doc/00769/88128/

Extensive evidence for a last interglacial Laurentide outburst (LILO) event

Zhou Yuxin 1, McManus Jerry 1

¹ Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, USA

Abstract:

A catastrophic last interglacial Laurentide outburst (LILO) event approximately 125,000 years ago (125 ka) may have contributed to abrupt climate change during the last interglacial. It has been proposed that this event was an analog of the Holocene 8.2 ka event. We characterize in detail the (1) provenance, (2) timing, and (3) delivery mechanism of a layer of red sediments deposited across much of the northwestern Atlantic Ocean at 125 ka. Our observations provide strong support for the occurrence of a LILO event that was analogous to the 8.2 ka event in all three aspects, and likely surpassed it in magnitude. The freshwater discharge associated with the 125 ka LILO event may explain a series of abrupt global changes, including a reduction of the North Atlantic Deep Water and reinvigoration of the Antarctic Bottom Water. Our findings suggest that the mechanism that triggered the LILO event may be an integral part of the deglacial sequence of events, during which the final collapse of the contiguous Laurentide Ice Sheet took place 3.5–4 k.y. after full interglacial temperature was reached in the middle and high northern latitudes.

Publisher: GSA Journal: GEOL: Geology

Introduction DOI:10.1130/G49956.1

22	Approximately 8200 years ago, large proglacial Lakes Agassiz and Ojibway
23	(central North America) burst through the ice dam formed by the Laurentide Ice Sheet
24	(LIS) remnant and discharged via the Hudson Strait into the North Atlantic Ocean
25	(Barber et al., 1999). The ice dam collapsed because of the marine-terminating outlet and
26	the presence of subglacial till in the Hudson Bay region (Licciardi et al., 1998; Stokes
27	and Tarasov, 2010; Tarasov et al., 2012). The so-called "8.2 ka event" has subsequently
28	been speculated to have been caused by the accelerated melting of the ice dam due to the
29	positive feedback between mass balance and elevation (Carlson et al., 2008; Gregoire et
30	al., 2012). The 8.2 ka event, the largest abrupt climate change during the Holocene, had
31	global climate impacts (Alley and Ágústsdóttir, 2005).
32	Previously, it was Nicholl et al. (2012) suggested that a red layer of sediments
33	with a sharp basal contact in the Labrador Sea might be evidence of an analogous
34	catastrophic event during the last interglacial (LIG). Their seminal finding was important
35	and intriguing, given that a long-noted feature of the 8.2 ka event is the deposition of a
36	red layer around the Hudson Strait (Table S2 in the Supplemental Material ¹). Nicholl et
37	al. (2012) also speculated that the red layer's distribution might be more widespread than
38	documented in their study, inspiring a more extensive survey of evidence for the
39	deposition of the red layer, and better constraints on the age of the LIG red layer and its
40	geographical distribution. We employed physical, chemical, and chronological methods
41	[[analyses?]] on deep-sea sediment cores to document evidence for the counterpart of the
42	8.2 ka event during the LIG.
43	METHODS

14	The identification of the red layer relies on archive core photos and color
15	reflectance data archived in the International Ocean Discovery Program (IODP) Janus
16	database (Text S1 in see the Supplemental Material [[There is no need to number each
17	section in the supplemental text]]). We examined all [[all existing? Or all cores from
18	specific studies?]] drill cores from the western and central North Atlantic Ocean, with
19	the exceptions of those from tropical regions and those without age models, in order to
50	locate the LIG layer.
51	Core EW9303-37JPC (43.68°N, 46.28°W, 3981 m water depth, International Geo
52	Sample Number [IGSN]: DSR000507; hereafter core EW37JPC) is a jumbo piston core
53	retrieved off the coast of Newfoundland, Canada. [[Indicate what organization drilled
54	this core, and when.]] A chronology for this core was previously established by
55	correlating the percentage of foraminifer Neogloboquadrina pachyderma to another sea-
56	surface temperature record (Zhou et al., 2021). The chronology indicates that the
57	sedimentation rate at this site is 10 cm/k.y. on average. We identified a red layer in this
58	core at 1220 cm core depth, roughly the interval of the last interglacial. To further
59	constrain the red layer's age, we added new $\delta^{18}\text{O}$ measurements from the epifaunal
50	$benthic\ for a minifer a\ species\ \textit{Cibicidoides\ wuellerstorfi}\ to\ an\ existing\ record\ (McManus$
51	et al., 2002) (see the Supplemental Material). Our new data cover the entire Marine
52	Isotope Stage (MIS) 5, and triple the resolution of the previous benthic $\delta^{18}\text{O}$ record of
53	McManus et al. (2002). The new age model also increases the number of age-control
54	points during MIS 5 to 140 from the previous 7 of Zhou et al. (2021).
55	We used flux fusion measurements of elemental concentrations to calibrate the
56	scanning X-ray fluorescence (XRF) Fe count data from core EW37JPC. The method is

67	described in detail elsewhere (Zhou et al., 2021). We calculated Fe flux by multiplying
68	the bulk sediment mass flux record by the calibrated Fe concentration data.
69	DISCUSSION
70	Five cores in the northwestern Atlantic, and possibly a sixth, contain red layers in
71	the LIG sediment (Figs. 1A and 2). Even excluding the sixth, the cores span an
72	astounding linear distance of >3000 km from the Labrador Sea to the subtropical
73	Atlantic. In the sixth core, from Ocean Drilling Program (ODP) Site 1061, we found a red
74	layer, but its ambiguous bottom contact and nominally younger age lowered our
75	confidence in the identification. The presence of the red layer was previously reported in
76	two IODP cores, from Sites U1302 and U1305 (Nicholl et al., 2012).
77	PROVENANCE
78	The sediment layer's red color likely comes from the oxidation of iron-rich
79	minerals, likely hematite (Giosan et al., 2002). Red, hematite-rich sediments can be found
80	in the Dubawnt Formation [[Dubawnt Supergroup, according to Weblex Canada? (all
81	instances)]] in the northern Hudson Bay (Sanford et al., 1979; Shilts, 1980). The
82	Dubawnt Formation red sediments likely spread to Mansel and Coats Islands in the
83	Hudson Bay (Aylsworth and Shilts, 1991) (Fig. 1). In core EW37JPC, the iron-rich
84	composition of the red layer is corroborated by the associated increase in Fe flux data
85	(Fig. 3I).
86	The provenance of the 125 ka red layer in core EW37JPC may be further
87	narrowed down by Ca/Sr ratios (Nicholl et al., 2012). High Ca/Sr in the North Atlantic
88	has been used as an indicator of detrital carbonates originating through the Hudson Strait
89	(Hodell et al., 2008; Channell et al., 2012b). In core EW37JPC, Ca/Sr within the 125 ka

90 red layer is the highest observed throughout the last glacial cycle (Zhou et al., 2021) (Fig. 91 3G), similarly suggesting a Hudson Strait-Hudson Bay source. 92 The spatial distribution of the 125 ka red layer might provide yet another clue to 93 the layer's origin. Four of the six cores where we identified the red layer are adjacent to the meandering of the Northwest Atlantic Mid-Ocean Channel (NAMOC; see the 94 95 Supplemental Material). The other two cores, from ODP Sites 1063 and 1061, are in the 96 general downstream direction from where mapping of the NAMOC ends. It may be that 97 the unmapped portion of the NAMOC extends further toward the two cores. Submarine 98 density flows have previously been shown to transport sediments hundreds to thousands 99 of kilometers away from their source (Talling et al., 2007). A submarine density flow 100 originating from the Hudson Strait would thus have been capable of spreading the red layer along the NAMOC to ~3000 km away. One core we examined near the eastern edge 101 of the NAMOC, from ODP Site 647, does not appear to contain the red layer. The 102 103 absence of the red layer at this location may be due to Coriolis deflection of the 104 sediments westward (Chough and Hesse, 1976). 105 Red-colored sediments deposited during the 8.2 ka event have been noted in 17 cores in and around the Hudson Strait (Fig. 1B). The 8.2 ka red layer is not as extensive 106 107 as the 125 ka one, but both are likely derived from the Hudson Strait based on their 108 spatial distribution. Peaks of Ca/Sr and Fe flux that fit the timing of the 8.2 ka event are 109 also evident in core EW37JPC (Fig. 3H), consistent with a Hudson Strait origin. 110 TIMING In five cores with the red layer, the respective chronologies place the age of the 111 red layer at 125 ± 5 ka (see the Supplemental Material). In the core from ODP Site 1061, 112

the red layer is dated to the early part of MIS 5 (Grützner et al., 2002), although the existing chronology precludes a more precise placement.

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

Our identification of the red layer's occurrence relative to the core EW37JPC benthic $\delta^{18}O$ record and the alignment of the EW37JPC record to a benthic $\delta^{18}O$ stack offer the most confident stratigraphic and chronological placement of the red layer among the six cores (Fig. S1 in the Supplemental Material). The age model puts the red layer at 125.0 ka with a nominal 2σ uncertainty of 0.5 k.y. (see the Supplemental Material). However, a visual inspection of the δ18O alignment indicates that this assessment of the age uncertainty is overly optimistic, and we instead use the maximum age uncertainty of the entire record (3 k.y.) as a more robust estimate of the uncertainty associated with the age of the red layer. The 125.0 ka timing of the red layer is 4 k.y. after the onset of LIG warmth, absolutely dated to 129 ± 1 ka (Drysdale et al., 2005). This 4 k.y. interval is similar to the length of time between the 8.2 ka event and the Holocene onset at 11.7 ka (Walker et al., 2009). We suggest that this similarity in timing is not a coincidence. The delivery of the red sediments may result from a coherent deglacial sequence of events that took place near the beginning of both the current and the last interglacial. The implication is that 3.5-4 k.y. after full interglacial temperature is reached, the LIS seems to repeatedly experience instabilities that originate from the Hudson Strait region. The duration of time represented by the deposition of the red layer in core EW37JPC can be estimated by excess ²³⁰Th (²³⁰Th_{xs}) profiling, a technique previously employed to estimate the durations of Heinrich events (François and Bacon, 1994), or by our age model (see the Supplemental Material). Using these approaches, we estimate the event that deposited the red layer to be briefer than 126 yr (Fig. S2). This is in line with

estimate of 160.5 yr for the duration of the 8.2 ka event based on ice-core data (Thomas et al., 2007).

DELIVERY

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

deserves more attention.

The 125 ka red layer in core EW37JPC is characterized by high mass flux and low coarse fraction (Figs. 3A and 3K). Previously, it was suggested that either iceberg calving events or meltwater-induced submarine density flows caused the high mass-flux peaks in EW37JPC (Zhou et al., 2021). The fraction of coarse sediment, defined as the mass >63 µm relative to the whole, can be a differentiating factor between the two potential mechanisms. In this core, each Heinrich event during the last glacial cycle was characterized by increases in both the coarse fraction and mass flux, most likely related to the rapid deposition of ice-rafted debris across the entire grain-size spectrum. On the other hand, a mass-flux increase with a contemporaneous decrease in the relative proportion of coarse sediment implies the rapid deposition of silt and clay alone. The sediment-transport category of density flow includes turbidity currents that deposit graded sediments and debris flows that deposit poorly sorted fine sediments (Mulder and Alexander, 2001). The essential absence of coarse grains in the core EW37JPC red layer may be the result of a debris flow with a high sediment concentration compared to a turbidity flow (Mulder and Alexander, 2001). Alternatively, the red layer could have been produced by a turbidity flow that deposited its coarse sediments upstream. Both debris flows and turbidity flows can travel as far as 1500 km, and a decelerating turbidity flow can evolve into a debris flow (Talling et al., 2007), although the inferred 3000 km transport of the 125 ka red layer appears unprecedented and

159	The delivery of sediments by density flow has been suggested for the 8.2 ka even
160	(St-Onge and Lajeunesse, 2007). In core EW37JPC, the 8.2 ka event, like the 125 ka red
161	layer, is associated with high sedimentary mass flux and low coarse fraction. Density
162	flows may thus have been responsible for both the 8.2 ka and the 125 ka red layers,
163	indicating yet another important similarity between the two events.
164	LAST INTERGLACIAL LAURENTIDE OUTBURST (LILO) EVENT
165	We have offered three lines of evidence—provenance, timing, and delivery
166	mechanism—that the 125 ka red layer was caused by a LIG event analogous to the 8.2 ka
167	event. We suggest naming the LIG analog of the 8.2 ka event as the last interglacial
168	Laurentide outburst (LILO) event.
169	The proposed LILO event coincides with a series of abrupt changes globally
170	during the LIG (Fig. 4). The North Atlantic Deep Water (NADW) underwent rapid
171	reductions (Galaasen et al., 2014) while the Antarctic Bottom Water (AABW)
172	reinvigorated after a stagnation (Hayes et al., 2014). The Antarctic temperature also
173	experienced a small but detectable rise (Jouzel et al., 2007). The North Atlantic's
174	freshening would have increased the buoyancy flux of the surface water and may have
175	slowed down the NADW production (Galaasen et al., 2014) (Fig. 4C). We infer that the
176	LILO event may have seen a higher peak discharge rate than the 8.2 ka event, judging
177	from the far more widespread distribution of the LILO red layer. This difference could
178	explain the more prominent NADW reduction during the LILO event than the $8.2\ ka$
179	event (Kleiven et al., 2008; Galaasen et al., 2020). The freshening of the North Atlantic
180	combined with the persistence of vertical mixing could have decreased the deep ocean
181	density, presenting a deficit to be filled by the AABW (Broecker, 1998), thus leading to

182	the AABW resumption (Hayes et al., 2014) (Fig. 4B). The NADW reduction may also
183	have curbed the upper branch of the Atlantic Meridional Overturning Circulation. With
184	the associated northward heat transport from the Southern Hemisphere to the Northern
185	Hemisphere diminished, Antarctica temperature rose as a result (Fig. 4A), a process often
186	referred to as the bipolar seesaw[[Cite Broecker, 1998?]].
187	Before the ice dam between the Keewatin and Labrador ice domes collapsed
188	during the 8.2 ka event, the LIS was about the same size as, or slightly larger than, the
189	Greenland Ice Sheet (Dyke et al., 2003) (Fig. 1B). Likewise, before and after the LILO
190	event took place, the LIS may have been in a similar configuration as [[during? or
191	before and after?]] the 8.2 ka event, and the existing sea-level data do not preclude that
192	possibility (see the Supplemental Material). We suggest that the ice dam's collapse that
193	broke up the contiguous LIS into smaller ice domes is an integral part of the deglacial
194	sequence of events, taking place 3.5–4 k.y. after full interglacial temperature is achieved.
195	In this framework, the 8.2 ka and LILO events [[each?]] represent the "last gasp" of the
196	LIS before its summary demise.
197	CONCLUSIONS
198	Our study lays out three lines of evidence that a red layer of sediment was
199	deposited at 125 ka throughout the northwest Atlantic Ocean by a LIG analog of the 8.2
200	ka event:
201	(1) Similar to the 8.2 ka red layer, the 125 ka red layer likely originated from the Hudson
202	Strait given its high Ca/Sr, red color, high Fe flux, and occurrence along the
203	NAMOC.

204	DOI:10.1130/G49956.1 (2) The 8.2 ka and LILO events both occurred 3.5–4 k.y. after the onset of the full
205	warming associated with their respective interglacial intervals.
206	(3) In core EW37JPC, the 125 ka red layer was deposited rapidly and with mostly fine
207	sediments. This, together with the red layer's occurrence along the NAMOC, suggests
208	that a density flow triggered by an 8.2 ka-style glacial outburst or accelerated melting
209	likely delivered the red sediments.
210	We suggest naming the LIG analog of the 8.2 ka event the LILO event. [[Already
211	stated on line 167, and the acronym is used previous to this sentence in this
212	Conclusions section.]] The proposed LILO event can explain a series of abrupt global
213	climate changes, including a reduction of the North Atlantic Deep Water and
214	reinvigoration of the Antarctic Bottom Water. The existence of the LILO event suggests
215	that the same mechanism that triggered the 8.2 ka event may be an integral part of the
216	deglacial sequence of events, wherein the breakdown of the contiguous LIS takes place
217	3.5-4 k.y. after full interglacial temperature is established.
218	ACKNOWLEDGMENTS
219	We thank Julia Gottschalk and Sid Hemming for discussions that led to this
220	project. We thank Kassandra M. Costa for sharing the core EW37JPC XRF data, and
221	James E.T. Channell for sharing data from Ocean Drilling Program Site 1063. This
222	research used samples and/or data provided by the International Ocean Discovery
223	Program (IODP). Y. Zhou acknowledges the support from the IODP Schlanger
224	Fellowship. This research was funded in part by U.S. National Science Foundation grant
225	AGS 16-35019 to J. McManus, with additional support from the Gary Comer Family
226	Foundation (Chicago, Illinois, USA) Abrupt Climate Change Fellowship, and the

227	Columbia University Climate Center (New York, USA). We thank Lev Tarasov and an
228	anonymous reviewer for comments that greatly improved the manuscript.
229	REFERENCES CITED
230	Aksu, A.E., and Hillaire-Marcel, C., 1989, Upper Miocene to Holocene oxygen and
231	carbon isotopic stratigraphy of Sites 646 and 647, Labrador Sea, in Srivastava, S.P.,
232	et al., Proceedings of Integrated Ocean Drilling Program, Scientific Results, Volume
233	105: College Station, Texas, Ocean Drilling Program, p. 689-704,
234	https://doi.org/10.2973/odp.proc.sr.105.139.1989.
235	Alley, R.B., and Ágústsdóttir, A.M., 2005, The 8k event: Cause and consequences of a
236	major Holocene abrupt climate change: Quaternary Science Reviews, v. 24, p. 1123-
237	1149, https://doi.org/10.1016/j.quascirev.2004.12.004.
238	Aylsworth, J.M., and Shilts, W.W., 1991, Surficial geology of Coats and Mansel islands,
239	Northwest Territories: Geological Survey of Canada Paper 89-23, 26 p.,
240	https://doi.org/10.4095/131927.
241	Barber, D.C., et al., 1999, Forcing of the cold event of 8,200 years ago by catastrophic
242	drainage of Laurentide lakes: Nature, v. 400, p. 344-348,
243	https://doi.org/10.1038/22504.
244	Bond, G., et al., 1992, Evidence for massive discharges of icebergs into the North
245	Atlantic ocean during the last glacial period: Nature, v. 360, p. 245-249,
246	https://doi.org/10.1038/360245a0.
247	Broecker, W.S., 1998, Paleocean circulation during the Last Deglaciation: A bipolar
248	seesaw?: Paleoceanography, v. 13, p. 119–121, https://doi.org/10.1029/97PA03707 .

	DOI:10.1130/G49956.1
249	Carlson, A.E., LeGrande, A.N., Oppo, D.W., Came, R.E., Schmidt, G.A., Anslow, F.S.,
250	Licciardi, J.M., and Obbink, E.A., 2008, Rapid early Holocene deglaciation of the
251	Laurentide ice sheet: Nature Geoscience, v. 1, p. 620-624,
252	https://doi.org/10.1038/ngeo285.
253	Channell, J.E.T., Hodell, D.A., and Curtis, J.H., 2012a, ODP Site 1063 (Bermuda Rise)
254	revisited: Oxygen isotopes, excursions and paleointensity in the Brunhes Chron:
255	Geochemistry Geophysics Geosystems, v. 13, Q02001,
256	https://doi.org/10.1029/2011GC003897.
257	Channell, J.E.T., Hodell, D.A., Romero, O., Hillaire-Marcel, C., de Vernal, A., Stoner,
258	J.S., Mazaud, A., and Röhl, U., 2012b, A 750-kyr detrital-layer stratigraphy for the
259	North Atlantic (IODP Sites U1302-U1303, Orphan Knoll, Labrador Sea): Earth and
260	Planetary Science Letters, v. 317-318, p. 218-230,
261	https://doi.org/10.1016/j.epsl.2011.11.029.
262	Chough, S., and Hesse, R., 1976, Submarine meandering thalweg and turbidity currents
263	flowing for 4,000 km in the Northwest Atlantic Mid-Ocean Channel, Labrador Sea:
264	Geology, v. 4, p. 529-533, https://doi.org/10.1130/0091-
265	7613(1976)4<529:SMTATC>2.0.CO;2.
266	Drysdale, R.N., Zanchetta, G., Hellstrom, J.C., Fallick, A.E., and Zhao, J.X., 2005,
267	Stalagmite evidence for the onset of the Last Interglacial in southern Europe at 129 \pm
268	1 ka: Geophysical Research Letters, v. 32, L24708,
269	https://doi.org/10.1029/2005GL024658.

270	Dyke, A.S., Moore,	A., and Robertson,	L., 2003, Deglaciation	of North America:
-----	--------------------	--------------------	------------------------	-------------------

- 271 Geological Survey of Canada Open File 1574, 2 sheets, 1 CD-ROM,
- 272 https://doi.org/10.4095/214399.
- 273 Francois, R., and Bacon, M.P., 1994, Heinrich events in the North Atlantic:
- 274 Radiochemical evidence: Deep-Sea Research Part I: Oceanographic Research
- 275 Papers, v. 41, p. 315–334, https://doi.org/10.1016/0967-0637(94)90006-X.
- 276 Galaasen, E.V., Ninnemann, U.S., Irvalı, N., Kleiven, H.F., Rosenthal, Y., Kissel, C., and
- 277 Hodell, D.A., 2014, Rapid reductions in North Atlantic Deep Water during the peak
- 278 of the last interglacial period: Science, v. 343, p. 1129–1132,
- 279 <u>https://doi.org/10.1126/science.1248667</u>.
- 280 Galaasen, E.V., Ninnemann, U.S., Kessler, A., Irvalı, N., Rosenthal, Y., Tjiputra, J.,
- 281 Bouttes, N., Roche, D.M., Kleiven, H.F., and Hodell, D.A., 2020, Interglacial
- instability of North Atlantic Deep Water ventilation: Science, v. 367, p. 1485–1489,
- 283 https://doi.org/10.1126/science.aay6381.
- 284 Giosan, L., Flood, R.D., and Aller, R.C., 2002, Paleoceanographic significance of
- 285 sediment color on western North Atlantic drifts: I. Origin of color: Marine Geology,
- v. 189, p. 25-41, https://doi.org/10.1016/S0025-3227(02)00321-3.
- 287 Gregoire, L.J., Payne, A.J., and Valdes, P.J., 2012, Deglacial rapid sea level rises caused
- 288 by ice-sheet saddle collapses: Nature, v. 487, p. 219–222,
- 289 https://doi.org/10.1038/nature11257.
- 290 Grützner, J., et al., 2002, Astronomical age models for Pleistocene drift sediments from
- 291 the western North Atlantic (ODP Sites 1055–1063): Marine Geology, v. 189, p. 5–
- 292 23, https://doi.org/10.1016/S0025-3227(02)00320-1.

293	DOI:10.1130/G49956.1 Hayes, C.T., Martínez-García, A., Hasenfratz, A.P., Jaccard, S.L., Hodell, D.A., Sigman,
294	D.M., Haug, G.H., and Anderson, R.F., 2014, A stagnation event in the deep South
295	Atlantic during the last interglacial period: Science, v. 346, p. 1514-1517,
296	https://doi.org/10.1126/science.1256620.
297	Hodell, D.A., Channeil, J.E.T., Curtis, J.H., Romero, O.E., and Röhl, U., 2008, Onset of
298	"Hudson Strait" Heinrich events in the eastern North Atlantic at the end of the
299	middle Pleistocene transition (~640 ka)?: Paleoceanography, v. 23, PA4218,
300	https://doi.org/10.1029/2008PA001591.
301	Jouzel, J., et al., 2007, Orbital and millennial Antarctic climate variability over the past
302	800,000 years: Science, v. 317, p. 793-796, https://doi.org/10.1126/science.1141038.
303	Kleiven, H.F., Kissel, C., Laj, C., Ninnemann, U.S., Richter, T.O., and Cortijo, E., 2008,
304	Reduced North Atlantic Deep Water coeval with the Glacial Lake Agassiz
305	freshwater outburst: Science, v. 319, p. 60-64,
306	https://doi.org/10.1126/science.1148924.
307	Licciardi, J.M., Clark, P.U., Jenson, J.W., and MacAyeal, D.R., 1998, Deglaciation of a
308	soft-bedded Laurentide ice sheet: Quaternary Science Reviews, v. 17, p. 427-448,
309	https://doi.org/10.1016/S0277-3791(97)00044-9.
310	McManus, J.F., Oppo, D.W., Keigwin, L.D., Cullen, J.L., and Bond, G.C., 2002,
311	Thermohaline circulation and prolonged interglacial warmth in the North Atlantic:
312	Quaternary Research, v. 58, p. 17–21, https://doi.org/10.1006/qres.2002.2367 .
313	Mulder, T., and Alexander, J., 2001, The physical character of subaqueous sedimentary
314	density flows and their deposits: Sedimentology, v. 48, p. 269-299,
315	https://doi.org/10.1046/j.1365-3091.2001.00360.x.

316	DOI:10.1130/G49956.1 Nicholl, J.A.L., Hodell, D.A., Naafs, B.D.A., Hillaire-Marcel, C., Channell, J.E.T., and
317	Romero, O.E., 2012, A Laurentide outburst flooding event during the last interglacial
318	period: Nature Geoscience, v. 5, p. 901-904, https://doi.org/10.1038/ngeo1622.
319	Sanford, B.V., Grant, A.C., Wade, J.A., and Barss, M.S., 1979, Geology, eastern Canada
320	and adjacent areas: Geological Survey of Canada Map 1401A, 4 sheets, scale
321	1:2,000,000, https://doi.org/10.4095/133910.
322	Shilts, W.W., 1980, Flow patterns in the central North American ice sheet: Nature,
323	v. 286, p. 213-218, https://doi.org/10.1038/286213a0.
324	Stokes, C.R., and Tarasov, L., 2010, Ice streaming in the Laurentide Ice Sheet: A first
325	comparison between data-calibrated numerical model output and geological
326	evidence: Geophysical Research Letters, v. 37, L01501,
327	https://doi.org/10.1029/2009GL040990.
328	St-Onge, G., and Lajeunesse, P., 2007, Flood-induced turbidites from northern Hudson
329	Bay and western Hudson Strait: A two-pulse record of Lake Agassiz final outburst
330	flood?, in Lykousis, V., et al., eds., Submarine Mass Movements and Their
331	Consequences: Dordrecht, Netherlands, Springer, p. 129-137,
332	https://doi.org/10.1007/978-1-4020-6512-5 14.
333	Talling, P.J., et al., 2007, Onset of submarine debris flow deposition far from original
334	giant landslide: Nature, v. 450, p. 541-544, https://doi.org/10.1038/nature06313 .
335	Tarasov, L., Dyke, A.S., Neal, R.M., and Peltier, W.R., 2012, A data-calibrated
336	distribution of deglacial chronologies for the North American ice complex from
337	glaciological modeling: Earth and Planetary Science Letters, v. 315-316, p. 30-40,
338	https://doi.org/10.1016/j.eps1.2011.09.010.

339	DOI:10.1130/G49956.1 Thomas, E.R., Wolff, E.W., Mulvaney, R., Steffensen, J.P., Johnsen, S.J., Arrowsmith,
340	C., White, J.W.C., Vaughn, B., and Popp, T., 2007, The 8.2 ka event from Greenland
341	ice cores: Quaternary Science Reviews, v. 26, p. 70-81,
342	https://doi.org/10.1016/j.quascirev.2006.07.017.
343	Walker, M., et al., 2009, Formal definition and dating of the GSSP (Global Stratotype
344	Section and Point) for the base of the Holocene using the Greenland NGRIP ice core,
345	and selected auxiliary records: Journal of Quaternary Science, v. 24, p. 3-17,
346	https://doi.org/10.1002/jqs.1227.
347	Zhou, Y., McManus, J.F., Jacobel, A.W., Costa, K.M., Wang, S., and Alvarez Caraveo,
348	B., 2021, Enhanced iceberg discharge in the western North Atlantic during all
349	Heinrich events of the last glaciation: Earth and Planetary Science Letters, v. 564,
350	116910, https://doi.org/10.1016/j.epsl.2021.116910.
351	FIGURE CAPTIONS
352	Figure 1. Extent of red sediment layers during the 125 ka and 8.2 ka events. (A) Red
353	circles are core locations [[correct?]] with a red layer present during the last interglacial.
354	White circles indicate the layer is not present. Black line is the Northwest Atlantic Mid-
355	Ocean Channel (NAMOC). LILO—last interglacial Laurentide outburst. Core EW9303-
356	37JPC is marked as EW37JPC. Also marked are the distribution of Dubawnt Group[[See
357	query in the text regarding Dubawnt Formation versus Supergroup]] red beds
358	including sedimentary and volcanogenic rock (Aylsworth and Shilts, 1991) as well as
359	limestone and dolomite bedrock (Bond et al., 1992). (B) Red diamonds indicate core
360	locations with a red layer during the 8.2 ka event. Details on the cores can be found in
361	Tables S1 and S2 (see footnote 1). Blue and white polygons are the lake and ice extents,

362	Journal: GEOL: Geology DOI:10.1130/G49956.1 respectively, at 8.45 ka B.P. [[Change to either "kyr B.P." or "ka", just prior to 8.2 ka
363	event (Dyke et al., 2003).
364	[[In the figure, replace the hyphen with a space in "125 ka" and "8.2 ka"]]
365	
366	Figure 2. North Atlantic sediment core images that show red layers. The red layer can be
367	found at International Ocean Discovery Program (IODP) Expedition 303 Site U1305
368	(IODP 303–1305), red layer C4H2, 30 cm[[Specify what parameter this value refers to
369	(core depth? measurement from top of the core segment? thickness of the red
370	layer?)]]; Ocean Drilling Program (ODP) Leg 105 Site 646 (ODP 105-646), red layer
371	B2H5, 20 cm; IODP Expedition 303 Site U1302 (IODP 303-1302), red layer C2H6, 100
372	cm; [[Indicate what organization drilled this core]]core EW9303-37JPC (EW37JPC),
373	1220 cm; ODP Leg 172 Site 1063 (ODP 172–1063), red layer B4H5, 25 cm; and ODP
374	Leg 172 Site 1061 (ODP 172-1061), red layer D4H7, 45 cm. Age of the red layer is
375	interpolated from published age models for IODP 303–1305 (Nicholl et al., 2012), ODP
376	105-646 (Aksu and Hillaire-Marcel, 1989), IODP 303-1302 (Channell et al., 2012b),
377	EW37JPC (this study), ODP 172-1063 (Channell et al., 2012a), and ODP 172-1061
378	(Grützner et al., 2002). Color reflectance (a*) data or red/green ratios (R/G) from digital-
379	image RGB channels are overlain on the images. No color data are available from ODP
380	105-646. MIS—Marine Isotope Stage.
381	[[In the figure, change instances of "~" to "ca." followed by a space; in the "a*" axis
202	
382	descriptions, include units of measure in parentheses]]

384	Figure 3. Sedimentary proxy measurements from North Atlantic sediment core EW9303-
385	37JPC. (A,B) Coarse fraction (>63 $\mu m)$ (Zhou et al., 2021). (C,D) Benthic $\delta^{18}O$
386	measurements on Cibicidoides wuellerstorfi (this study; McManus et al., 2002). Black
387	line in C is Prob-stack[[Cite Ahn et al., 2017?]] (see the Supplemental Material [see
388	footnote 1]). (E,F) Planktic $\delta^{18}O$ measurements on Neogloboquadrina pachyderma (Zhou
389	et al., 2021). (G,H) Ca/Sr (Zhou et al., 2021). (I,J) Fe flux (this study). (K,L) Mass flux
390	based on excess 230 Th $(^{230}$ Th $_{xs})$ (Zhou et al., 2021). Pink shadings are last interglacial
391	Laurentide outburst (LILO) and 8.2 ka events; gray shadings mark warm Marine Isotope
392	Stages (MISs) 5e, 5c, and 5a and the Holocene; blue shadings denote Heinrich 11 event
393	(H11) and the Younger Dryas (YD).
394	[In the figure, change instances of "yrs BP" to "yr B.P."; remove all italics from all
395	vertical-axis descriptions; insert a space in instances of "63 μm "; replace hyphen
396	with a space in "8.2 ka"; change instances of "kyr" to "k.y." preceded by a space
397	(for time spans "4 k.y." and "3.5 k.y.") or a slash (in units of measure in vertical-
398	axis descriptions for panels I, J, K, and L)]]
399	
100	Figure 4. Last interglacial Laurentide outburst (LILO) event's relation to other last
401	interglacial abrupt changes. MIS—Marine Isotope Stage; H11—Heinrich 11 event. (A)
102	Antarctic ice core δD from Dome C (core EDC) (Jouzel et al., 2007).[[Explain the
103	difference between the two lines (thin versus thick)]] (B) Antarctic South Atlantic
104	authigenic uranium mass-accumulation rate (aU MAR) from Ocean Drilling Program Site
105	1094 (Hayes et al., 2014). (C) North Atlantic benthic $\delta^{13}C$ from core MD03-2664
106	(IMAGES P.I.C.A.S.S.O cruise on the R/V Marion Dufresne; Galaasen et al.,

	DOI:10.1130/G49956.1
407	2014).[[Explain the difference between the two lines (thin versus thick)]] (D,E) Ca/Sr
408	and mass flux from core EW9303-37JPC (same as Figs. 3G and 3I[[3K? (3I shows Fe
409	flux, not mass flux)]]).
410	[[In the figure, change "yrs BP" to "yr B.P."; remove all italics from all vertical-axis
411	descriptions; change instances of "kyr" to "k.y."; in units of measure, use slashes
412	instead of negative exponents for consistency with the rest of the paper (e.g., change
413	"µg cm $^{-2}$ k.y. $^{-1}$ " to "µg/cm 2 /k.y."); in panel B, change "Southern Ocean" to "South
414	Atlantic" for consistency with the caption (or vice versa)]]
415	
416	¹ Supplemental Material. [[Please provide a brief caption here]]. Please visit
417	https://doi.org/10.1130/XXXX to access the supplemental material, and contact
418	editing@geosociety.org with any questions.