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Abstract :   
 
For centuries fishers have exploited the propensity for tuna to associate with floating objects, yet the 
reasons and mechanisms behind this behavior remain unclear. The number of man-made floating objects 
(FADs, Fish Aggregating Devices) undergone a dramatic increase in recent decades, with the 
development of industrial tuna purse seine fishing. However, current knowledge does not allow for the 
evaluation of the consequences of this increase on the ecology of tuna. Here, we developed a model of 
tuna movements in an array of FADs, using passive acoustic tagging data. The model was built using four 
behavioral rules: (1) when no FAD is perceived, tuna exhibit a random search behavior, (2) individuals 
can orient directly to a FAD when they perceive it (within a given orientation radius), (3) the associative 
dynamics of tuna follow a daily rhythm and (4) Continuous Residence Time (CRTs – time spend at FAD 
by tuna) are independent from previous Continuous Absent Time (CATs- time between two consecutive 
CRTs). The model is based on only four parameters: swimming speed, path sinuosity, orientation distance 
and a loss term to account for natural and fishing mortality events. The model was calibrated on 70±10 cm 
yellowfin tuna (Thunnus albacares), acoustically tagged in two different networks of anchored FADs 
(Oahu, Hawaii, U.S.A. and Mauritius) with different FAD densities. Our results show that the model can 
reproduce the time tuna spent traveling between FADs (i.e., time away from the FADs), as well as the 
total time spent by the fish in the FAD array (total residence time) at both study sites. The parameter sets 
that best reproduce the experimental data correspond to a steering radius between 2 and 5 km, a sinuosity 
(correlated random walk parameter) between 0.9 and 0.995 and mortality rates between 1 and 3% per 
day. This model, thus parameterized, could be used in future studies to predict tuna movements in arrays 
of different FAD densities and thus provide scientific advice for their management. The same approach 
can be used for modeling the movements of marine and terrestrial animals detected near aggregation 
sites. 
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Highlights 

► First model to reproduce tuna movements in an array of Fish Aggregating Device. ► Calibration of the 
model parameters using passive acoustic telemetry data. ► This model can be used to evaluate the 
impact of increasing numbers of aggregation sites on the movement behavior of animals. 

 

Keywords : Correlated Random Walk, Tropical tuna, Spatial model, Fish Aggregating Device, Acoustic 
tagging, Survival curve, Tuna motion, Residency 
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densities and thus provide scientific advice for their management. The same approach can be used for 34 

modeling the movements of marine and terrestrial animals detected near aggregation sites. 35 

 36 

Keywords: Correlated Random Walk, tropical tuna, spatial model, Fish Aggregating Device, acoustic 37 

tagging, survival curve, tuna motion, residency 38 

 39 

Highlights: 40 

• First model to reproduce tuna movements in an array of Fish Aggregating Device 41 

• Calibration of the model parameters using passive acoustic telemetry data 42 

• This model can be used to evaluate the impact of increasing numbers of aggregation sites on 43 

the movement behavior of animals 44 

 45 

 46 

1. Introduction 47 

With more than 5.3 million tonnes caught in 2019 (ISSF, 2021) tropical tuna constitutes one of the 48 

major harvested fish species. Currently, yellowfin tuna (Thunnus albacares), bigeye tuna (T. obesus) 49 

and skipjack (Katsuwonus pelamis) represent almost 95% of the global tuna catches (ISSF, 2021)⁠. 50 

Tropical tunas display an associative behavior with floating objects, forming large multi-specific 51 

aggregations around them. The reasons why tuna associate with floating objects are still unknown. 52 

Two main hypotheses are widely accepted: (1) the meeting-point hypothesis (Dagorn & Fréon 1999, 53 

Fréon & Dagorn, 2000) and (2) the indicator-log hypothesis (Hall, 1992). The meeting-point  54 

hypothesis posits that floating objects act as meeting-points, where tuna gather to form bigger schools. 55 

The indicator-log hypothesis posits that natural floating objects, such as logs,  are more numerous  in 56 

productive areas , as they concentrate in river months, estuaries and frontal structures. Following this 57 

hypothesis, tuna could use floating objects as indicators of productive areas. 58 

Fishers have used this associative behavior to their advantage for centuries (Dempster & Taquet, 59 

2004) and, more recently, have deployed human-made floating objects, called Fish Aggregating 60 

Device (FAD), to increase their catches. In the open ocean, drifting FADs are primarily used by 61 

industrial purse seine fleets, while, in coastal areas, anchored FADs are used by artisanal and semi-62 

industrial fisheries (Dagorn et al. 2013b; Dempster & Taquet, 2004; Scott & Lopez, 2014)⁠. About 63 

37% of the tropical tuna catches (all fishing gears) are made by purse seiners on drifting FADs, 64 

ranging between 32% to 51% depending of the ocean (Dagorn et al. 2013b; Murua et al. 2021)⁠. The 65 

number of FADs has drastically increased in the three past decades, with more than 100,000 FADs 66 

deployed globally, each year (Scott & Lopez, 2014)⁠, although precise numbers are difficult to obtain. 67 



 

3 

This increase raised concerns over possible impacts on tuna populations, because FADs increase the 68 

vulnerability of tunas to capture but also because increasing the number of floating objects (Dagorn 69 

et al. 2013b)⁠ could affect their ecology. Marsac et al. (2000)⁠, were the first to suggest that FADs could 70 

act as an ecological trap for tunas. Following the indicator-log  hypothesis, FADs could mislead tuna 71 

if they are deployed or drift into biologically poor areas and if tuna do not differentiate between 72 

natural and man-made objects. Therefore, tuna could remain associated with FADs even if their 73 

surrounding environment is detrimental to their fitness (Marsac et al. 2000). However, current 74 

knowledge does not allow for the assessment of the effects of increasing FAD densities on tuna 75 

ecology, even when the environment (other than floating objects) remains constant. 76 

Acoustic telemetry has been widely used to monitor tuna movements and behavior within FAD arrays. 77 

With this technology, acoustically tagged fish (i.e., fish equipped by an acoustic tag ) can be either 78 

actively tracked or detected by a set of fixed acoustic receivers. In the former case, known as active 79 

tracking, the recorded path of the receiver, which is considered as a proxy of the animal path, 80 

generally corresponds to short periods of time (few days at most) (Girard et al. 2004; Girard et al. 81 

2007). In the latter case, known as passive acoustic telemetry, a time series of acoustic detections is 82 

recorded within the array of receivers (Dagorn et al. 2007; Tolotti et al. 2020). The acoustic receivers 83 

are generally placed in proximity of aggregation/attraction sites (FADs in this case), where it is more 84 

likely to detect the tagged individuals. Passive acoustic telemetry has the advantage to cover longer 85 

period of time (up to several months or even more than a year, depending on the tag battery life and 86 

the fish residency within the array). However, the time series of acoustic detections recorded at 87 

aggregation sites cannot be easily translated into movement rules. 88 

Previous passive acoustic telemetry studies conducted in anchored FAD arrays quantified the amount 89 

of time that tuna spend associated with these floating objects (residence times), as well as the time 90 

they spend traveling between two objects (absence times) (Dagorn et al. 2007; Govinden et al., 2013; 91 

Robert et al., 2013; Rodriguez-Tress et al., 2017)⁠. These studies highlighted the variability of such 92 

durations according to both the size of the tagged individuals (Robert et al., 2013)⁠ as well as the 93 

species (Rodriguez-Tress et al., 2017)⁠. Recently, Pérez et al. (2020)⁠ compared the residence and 94 

absence times recorded for individual tuna tagged within different FAD arrays, demonstrating that 95 

tuna spend less time traveling between FADs and more time in association as FAD density increases. 96 

Passive and active acoustic telemetry studies have also shown a diel rhythm in the associative 97 

behavior of tunas, with close association occurring mostly during the daytime while regular 98 

excursions away from the FAD are undertaken at night (Holland et al. 1990; Marsac & Cayré, 1998; 99 

Dagorn, et al. 2000; Forget et al., 2015; Tolotti et al., 2020)⁠. Furthermore, active tracking studies 100 

allowed the fine-scale movements of tagged individuals in arrays of FADs to be investigated. Using 101 

acoustic telemetry data from actively tracked yellowfin tuna in anchored FAD arrays in the Pacific 102 
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and Indian oceans, Girard et al. (2004)⁠ found that tuna adopt a random search behavior until they 103 

perceive a FAD, then orient towards the device at distances ranging between 4 to 17 km. 104 

Recently, Pérez et al. (2020)⁠, used a simple random walk model to assess whether the observed trends 105 

in behavioural indices, obtained from passive acoustic tagging data across increasing FAD densities, 106 

could result from the random-search component in tuna behaviour suggested in previous experiments 107 

(Girard et al.  2004)⁠. While this simple model was able to explain the observed trends of shorter 108 

absence times for increasing FAD densities, it could not quantitatively predict their durations, since 109 

it did not account for the oriented movements (Girard et al. 2004)⁠ or for the diel pattern in tuna 110 

behavior (Marsac & Cayré, 1998; Forget et al., 2015)⁠. Correlated Random Walk (CRW) models are 111 

frequently used to reconstruct animal paths from active tracking data (e.g. Girard et al. 2004; 112 

Patterson et al. 2009; McClintock et al. 2012; Cramer et al. 2021)⁠, as well as to simulate their 113 

movements (Byers, 2001; Carita et al. 2012; Ahearn et al. 2017; Cramer et al. 2021)⁠. These models 114 

are used because, unlike a simple random walk, they account for the tendency of animals to go 115 

forward. A CRW model is thus a better choice than a simple random walk for animals with bilateral 116 

symmetry such as tuna. On the other hand, despite the large availability of passive acoustic telemetry 117 

data for tuna and their large temporal coverage, this data has not been used so far to construct this 118 

type of models, due to the discrete nature of the data (acoustic detections) recorded  both in time and 119 

space. 120 

The aim of this study was to develop a data-based model of tuna movements in an array of FADs, 121 

which can reproduce the motion of tuna from one FAD association to another detected through  122 

passive acoustic telemetry. Such model constitutes the first step to predict the effects of increasing 123 

FAD numbers on tuna behavior and ecology. The model was calibrated using passive acoustic 124 

telemetry data collected at two study sites (Mauritius, see Rodriguez-Tress et al. 2017, and Oahu, 125 

Hawaii, U.S.A., see Dagorn et al. 2007; Robert et al. 2013 ⁠) with different FAD densities (Pérez et al. 126 

2020)⁠. 127 

 128 

 129 

2. Materials & Methods 130 

2.1. Field data 131 

Passive acoustic telemetry data were used to characterize tuna movements in FAD arrays. This 132 

technology is based on the transmission of an acoustic signal between an acoustic transmitter (or tag) 133 

implanted in a tuna and acoustic receivers (or hydrophones) installed at specific study sites. The 134 

identification of the tagged fish is possible when the fish is located close to the receivers, within a 135 

given detection range. Passive acoustic tagging data were collected in two anchored FAD arrays, one 136 

around the island of Mauritius (Rodriguez-Tress et al. 2017)⁠ in the Western Indian Ocean, and the 137 
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other around the island of Oahu (Robert et al. 2013)⁠, within the Hawaiian archipelago in the Central 138 

Pacific Ocean (Fig. 1). These anchored FAD arrays differ in their inter-FAD distances, with the 139 

Mauritian array having shorter nearest and next-nearest neighboring distances than the Hawaiian 140 

array (Pérez et al., 2020)⁠. The Mauritian array consisted of 9 FADs with 7 equipped with acoustic 141 

receivers, and the Hawaiian array comprised 13 FADs, all of which were equipped with acoustic 142 

receivers (see Dagorn et al. 2007; Rodriguez-Tress et al. 2017 ⁠ for specifications of acoustic receivers). 143 

In both arrays, FADs were moored in depths of between 1000 and 2500 m. The design of FADs was 144 

similar within the same array, but differed slightly between arrays. 145 

 146 

Fig. 1: Anchored FAD arrays of Mauritius (left) and Oahu (right). Positions of the anchored FADs 147 

are represented by a black dot when equipped with an acoustic receiver, and by a black cross 148 

otherwise. 149 

 150 

Since previous studies outlined species and size-dependent variability in the associative behavior of 151 

tuna at FADs (Robert et al. 2013; Rodriguez-Tress et al. 2017; Pérez et al., 2020)⁠, this study focused 152 

on a single species (yellowfin tuna) and size of ~70 cm fork length (fork length range: 60-80 cm), 153 

named YFT-70, which was common to both study sites. For the Mauritian array, due to the short 154 

duration of the experiment (Rodriguez-Tress et al. 2017)⁠, the data recorded during the first 38 days 155 

was considered, resulting in the smallest observation time. For the Hawaiian array, where the 156 

experiment lasted more than one year, only the initial 120 days after tagging were considered because 157 

95% of the time between the first and the last detection at a FAD lasted less than 120 days (Robert et 158 

al. 2013)⁠. As a result, the field data consisted of 14 YFT-70 tagged in the Mauritian array and 56 YFT-159 

70 individuals in the Hawaiian array (Table 1). Details on the tagging procedures can be found in 160 

Rodriguez-Tress et al. (2017)⁠ for the Mauritian array and in Robert et al. (2013)⁠ for the Hawaiian 161 

array. 162 

 163 
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Table 1: Number of yellowfin tuna of ~70 cm tagged (Ntuna), total number of CRTs (excluding the 

first CRT, NCRT) and total number of CATdiff (NCATdiff) recorded in the Mauritian and the 

Hawaiian array. 

 Hawaii Mauritius 

Ntuna 56 14 

NCRT 111 29 

NCATdiff 59 19 

 164 

2.2. Residence and absence times in the FAD array 165 

Acoustic telemetry data were processed to obtain information on durations of presence at and absence 166 

from instrumented FADs displayed by tagged tuna, following the procedure described in Capello et 167 

al. (2015)⁠. This procedure translates the discrete time series of acoustic detections into continuous 168 

bouts of time. It relies on the definition of a maximum blanking period (MBP), i.e., a maximum 169 

temporal separation between two subsequent acoustic detections at the same FAD (or receiver), where 170 

fish is still considered to be associated. The definition of a MBP not only allows to account for small 171 

data gaps related to detection issues and sonic collisions (Forget et al. 2015), but also for fish 172 

excursions out of the detection range of the receiver. In the case of tropical tuna, a MBP value of 24h 173 

was chosen, in order to account for the regular diel excursions that tuna perform out of the FAD at 174 

nighttime (Holland et al. 1990; Marsac & Cayré, 1998; Dagorn et al. 2000; Forget et al. 2015). 175 

Following this procedure, the Continuous Residence Times (CRTs) (Ohta & Kakuma 2005; Dagorn 176 

et al. 2007; Capello et al. 2015)⁠, corresponded to continuous bouts of time spent at the same FAD 177 

without any day-scale absence (>24h). Conversely, the time spent away from FADs were defined as 178 

Continuous Absence Times (CAT) (Govinden et al. 2013; Capello et al. 2015)⁠. Absence times related 179 

to movements between two different FADs were referred to as CATdiff (Pérez et al. 2020)⁠. Finally, for 180 

each individual, the sum of all recorded CRTs and CATs corresponded to the Total Residence Time 181 

(TRT), namely the time between the first and the last detection recorded in the FAD array (Fig. 2). 182 

 183 

2.3. Model 184 

The model was built upon four behavioral rules, based on the current knowledge of the associative 185 

behavior of tuna at FADs (Fig. 3): (1) Tuna display a random search behavior between two FAD 186 

associations (Girard et al. 2004; Pérez et al. 2020)⁠, (2) at a certain distance from FADs tuna show 187 

oriented movements towards FADs (Girard et al. 2004)⁠, (3) the tuna association dynamics follows a 188 

diel rhythm (Holland et al. 1990; Marsac & Cayré 1998; Dagorn et al. 2000; Forget et al. 2015; Tolotti 189 
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et al., 2020; Govinden et al. 2021)⁠, and (4) CRTs were independent from previous CATs (Robert et 190 

al. 2013)⁠. 191 

As tuna, like most animals, have a tendency to move forward, the random-search movements were 192 

simulated using a Correlated Random Walk model (Kareiva & Shigesada, 1983; Carita et al. 2000; 193 

Codling et al. 2008; Ahearn et al. 2017)⁠. These models are based on a Markov process where 194 

consecutive changes in the animal’s consecutive direction are correlated. For each time step Δt, the 195 

position of an individual at time t depends on its previous position at time t-Δt and the turning angle 196 

α, defining the change in direction relative to the previous time step. Turning angles were randomly 197 

sampled from a normal distribution defined in the range [-π; π], with zero mean and standard deviation 198 

σ  following the method of Bovet & Benhamou (1988), using the scipy.stats.truncnorm python 199 

function. Standard deviation σ = 0 correspond to straight trajectories whereas in the limit σ→∞ the 200 

model converges to a simple random walk. In the following, σ was expressed in terms of the 201 

coefficient of sinuosity (c) according to the relationship, σ=√(-2ln(c)) with c Є ]0,1] (Bovet & 202 

Benhamou, 1988; Benhamou 2004)⁠. The limit c→0 corresponds to a simple random walk (highest 203 

sinuosity) whereas increasing c decreases the sinuosity, with straight trajectories for c=1. A total of 9 204 

coefficients of sinuosity were tested, ranging between 0.2 and 0.9999 (Table 2). Fig. 4 illustrates the 205 

distribution of turning angles and an example of a tuna trajectory for each coefficient of sinuosity 206 

tested. 207 

 208 

Table 2: Model parameters that gives the 648 sets of parameters tested. 209 

Parameters Values 

Tested parameters 

v Speed (m/s) 0.7, 1.4 

m Rate of mortality (%/day) 0, 1, 2, 3, 4, 5 

Ro Orientation radius (km) 0, 2, 5, 10, 15, 20 

c Coefficient of sinuosity 0.2, 0.7, 0.9, 0.97, 0.99, 0.995, 0.997, 0,999, 0.9999 

Fixed parameters 

Δt Time step (s) 100 

N No. of simulated individuals 1000 

T Total duration (day) 38 (Mauritius), 120 (Hawaii) 

 



 

8 

In order to account for the orientation behavior of tuna towards FADs, different values of the 210 

orientation radius were tested (Fig. 4, Table 2 and Supplementary Information 1). Each time a tuna 211 

enters within this radius, its path changes to a straight trajectory oriented towards the FAD location. 212 

If the tuna was located within the orientation radius of multiple FADs, a FAD was randomly selected 213 

between them using a uniform distribution. A total of six orientation radii were tested, ranging 214 

between 0 (no orientation) to 20 km, see Table 2. The diel rhythm in the associative behavior of tunas 215 

was accounted for by defining two behavioral modes (“daytime” and “nighttime”) with a periodicity 216 

of 24 hours each. During the 12 hours of “daytime” tuna displayed an orientation behavior towards 217 

FADs (if located within the orientation radius). Conversely, during the 12 hours of “nighttime” tuna 218 

did not exhibit a long-range attraction to FADs (no oriented behavior within the orientation radius) 219 

and therefore followed a simple CRW dynamic. In both “daytime” and “nighttime” behavioral modes 220 

a tuna was, however, considered to be associated with a FAD when it was located within 500 m of it. 221 

This value is in accordance with both the observations of tuna when they were associated with FADs 222 

(see Josse et al. 2000; Moreno et al. 2007)⁠, and the detection range of acoustic tags used in telemetry 223 

studies around instrumented FADs (see Forget et al. 2015)⁠. 224 

The model did not represent the association time of tuna at FADs (CRT), but these durations were 225 

needed to compare the model with the field data. Therefore, the CRTs recorded from field data were 226 

used as a model input. Each time a tuna reaches a FAD (i.e., it was located within 500 m of it), a CRT 227 

value was randomly sampled from the actual CRT data of the corresponding array and the simulated 228 

individuals do not move away from the FAD during the entire duration of the CRT. The CRTs recorded 229 

from field data in each array are shown in the Supplementary Information 2. Once this time has 230 

elapsed, individuals could leave the FAD in a random direction sampled from a uniform distribution 231 

between [-π; π]. To avoid immediate returns, during the 24 hours following the end of a CRT, fish 232 

was not affected by the association radius (Ro) of the FAD of departure. Similarly, returns   due to 233 

tuna re-entering the detection range within 24 hours (which were already taken into account in the 234 

CRT duration) were neglected. For this purpose, each time a CATreturn of less than 24 hours was 235 

recorded after a CRT, this movement was discarded and the simulation time was reset to the end of 236 

the last CRT recorded (Fig. 3). This procedure ensured that CRT durations were consistent with field 237 

data. Since the CRTs recorded immediately after tagging were significantly longer than the other 238 

CRTs in the Hawaii field experiments and slightly longer in the Mauritius field data, (see 239 

Supplementary Information 2) they were not considered in the above procedure. Accordingly, the 240 

first CRT were also subtracted from the TRT to ensure data consistency. 241 

Finally, a mortality rate (m) was considered to account for natural and fishing mortality events that 242 

may cause the interruption of the acoustic detections for some tagged individuals. For this purpose, a 243 

Monte Carlo algorithm was applied where, for each individual and at each time step, a random number 244 
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ε was sampled from a uniform distribution in the interval [0,1] and compared with the corresponding 245 

mortality rate using a Bernoulli test. A death was accepted for ε < m*T. The constant T depends on 246 

the time step Δt and on the temporal units of the mortality rate. Different mortality rates were tested, 247 

ranging between 0 and 5% per day (Table 2). For a mortality rate expressed in days-1 and Δt in 248 

seconds, T= Δt/(3600×24). The upper bound of 5% per day was estimated from survival analyses of 249 

field data (see Supplementary Information 3).  TRTs values therefore depended on both the CRW 250 

dynamics (which affects the number of tuna associations, thus the time at which the last FAD 251 

detections occur) and the mortality rates (Fig. 2). 252 

 253 

 254 

 255 

 256 

 257 

 258 

 259 

 260 

Fig. 2: Schematic diagram of behavioral sequences and Total Residence Time  (TRT) definition. The 261 

tuna #1 presents a TRT ending at the end of the last Continuous Residence Time  (CRT), recorded 262 

before the end of the experiment (indicated by a C-shape). The tuna #2 presents a TRT ending during 263 

a CRT because the experiment stopped, while the tuna was associated. CAT corresponds to 264 

Continuous Absence Times. 265 

 266 

The model was run in a continuous unbounded space, centered around the actual FAD arrays of 267 

Mauritius and Hawaii. The topography of each island was considered using data from the R package 268 

“rworldmap” (South 2011)⁠. Each time simulated individuals were at risk of crossing island 269 

boundaries, the distribution of turning angles α was sub-sampled in order to avoid the island. 270 

A total of 1000 individuals were considered in each FAD array, for each combination of model 271 

parameters. For each individual, the simulations started at one of the FADs of tagging, in order to 272 

reproduce the experimental design as accurately as possible. The probability to start at a given FAD 273 

was obtained considering the number of tuna tagged at the FAD, relative to the total number of tuna 274 

tagged in the field experiment (see Supplementary Information 4). Two different swimming speeds 275 

were tested: 0.7 and 1.4 m/s, corresponding to one and two body-lengths per second respectively (see 276 

swimming speeds in Girard et al. 2004 and tagging studies used in this study: Robert et al. 2013 and 277 

Rodriguez-Tress et al. 2017). Time steps (Δt) lasted 100 s and each resulted in individual fish 278 

movements of 70 and 140 m depending on the speed. 279 
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A summary of all model parameters can be found in Table 2. All the simulations were performed 280 

using the Python 3 programming language (Python Software Foundation, version 3.8.5). 281 

Fig. 3: Flow-Chart diagram illustrating the model algorithm. CRW denotes Correlated Random 282 

Walk, R0 corresponds to the orientation radius, dist corresponds to the distance between the tuna and 283 
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the closest Fish Aggregating Device (FAD) and the value tend takes into account the death of tuna as 284 

well as the end of the experimentation. 285 

 286 

Fig. 4: Example of tuna path trajectories according to the coefficient of sinuosity (c; rows) and the 287 

orientation radius (Ro, columns) tested for the Hawaiian array. The first column shows the 288 

distribution of turning angles (α in radians) for each coefficient of sinuosity tested. The orientation 289 

radii are represented by red circles centered around each FAD and the case Ro=0 is not represented. 290 

For the Mauritian array, see Supplementary Information 2. 291 
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 292 

2.4. Comparison between simulated and field data 293 

Since the model aimed at fitting the time that tuna spent between two FAD associations (CATdiff), the 294 

comparison between the model and the field data focused on this metric. However, the distribution of 295 

CATdiff also depends on the total time spent in the FAD array (i.e. longer CATdiff can only be observed 296 

for longer TRT). As such, the comparison between the model and the field data was performed for 297 

both metrics. For this purpose, CATdiff and TRT were obtained from the simulated data using the same 298 

procedures applied to the field data. The selection of model parameters which best fitted the field data 299 

was made using a survival analysis, by comparing the theoretical survival curves of the TRT and the 300 

CATdiff with those obtained from field data, through a bootstrap method. Experimental survival curves 301 

S(t) were constructed (Capello et al. 2015)⁠, which represented the proportion of events (TRT or 302 

CATdiff) longer than a given duration t. For each set of parameters the survival curve of the field data 303 

was compared 1000 times with a sub-sample of the same size as the field data, i.e. 56 individuals for 304 

Hawaii and 14 for Mauritius (Table 1), randomly sampled from the 1000 simulated individuals. For 305 

each of the bootstrap sample , survival curves obtained from the simulated and field data were 306 

compared using Cox proportional hazards regressions. The statistical significance of the model was 307 

assessed using the p-value from a logrank test, which tested the null hypothesis of identical hazards 308 

between the model and the field data. For each survival curve (TRT and CATdiff) and FAD array 309 

(Mauritius and Hawaii), the percentage of retained bootstrap tests was calculated, corresponding to 310 

the number of bootstrap tests showing p-values>0.05 over the 1000 tests performed. Finally, each set 311 

of parameters was assigned the lower percentage of retained bootstraps estimated over survival curves 312 

(TRT and CATdiff) and FAD arrays (Hawaii and Mauritius). 313 

The Cox proportional hazards regressions and logrank tests were performed using the R software (R 314 

Core Team 2018 version 3.4.4) with the function “coxph” in the “survival” package version 3.1-8  315 

(Therneau & Grambsch 2000)⁠. 316 

 317 

 318 

 319 

 320 

 321 

 322 

 323 

 324 

 325 
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 326 

3. Results 327 

A total of 648 sets of parameters were tested (Table 2), of which 7 appeared to best fit both the CATdiff 328 

and TRT recorded in the Mauritian and Hawaiian arrays considering a percentage of retained 329 

bootstrap tests ≥85% (Table 3 and Supplementary Information 5). That is, over the 1000 tests 330 

performed for each set of parameters, 7 sets were not statistically different from the field data in more 331 

than 85% of the tests performed on both survival curves (TRT and CATdiff) and FAD arrays (Mauritius 332 

and Hawaii). Fig. 5 and Fig. 6 present the CATdiff and TRT survival curves for each FAD array, for 333 

the two sets of parameters performing the best.   334 

Table 3: Set of retained model parameters for which more that 85% of the bootstrap tests fit the 

field data. . 

v (m/s) m (%/day) Ro (km) c 
Retained 

Bootstraps (%) 

0.7 2 5 0.99 91.5 

1.4 2 2 0.97 90.7 

1.4 3 2 0.9 89.8 

0.7 2 5 0.995 89.7 

1.4 4 2 0.9 89.4 

1.4 2 2 0.9 87.5 

0.7 3 5 0.99 86.6 

 335 
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Fig. 5.: Comparison of survival curves obtained from field data(black) and from the 1000 bootstrap 336 

samples (gray) for a speed v=0.7 m s-1, a mortality m=2%, a orientation radius Ro=5 km and a 337 

coefficient of sinuosity c=0.99 (with % retained bootstrap = 91.5%, see Table 3). The first row 338 

corresponds to the survival curves of CATdiff (A and B) and the second row to the TRT (C and D). The 339 

first column denotes the Hawaiian FAD array (A and C) and the second column the Mauritian array  340 

(B and D). The red line corresponds to the theoretical curve (exp(-mt))  representing the upper bound 341 

of TRT. 342 

 343 

 344 

 345 

 346 

 347 

 348 
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Fig. 6: Comparison of survival curves obtained from field data(black) and  from the 1000 bootstrap 349 

samples (gray) for a speed v=1.4 m s-1, a mortality m=2%, a orientation radius Ro=2 km and a 350 

coefficient of sinuosity c=0.97 (with % retained bootstrap = 90.7%, see Table 3). The first row 351 

corresponds to the survival curves of CATdiff (A and B) and the second row to the TRT (C and D). The 352 

first column denotes the Hawaiian FAD array (A and C) and the second column the Mauritian array  353 

(B and D). The red line corresponds to the theoretical curve (exp(-mt))  representing the upper bound 354 

of TRT. 355 

 356 

 357 

The complete results of the bootstrap test are available in Supplementary Information 6. Any speed 358 

values between the tested ones (0.7 and 1.4 m/s) will reflected the field behavior (Fig. 7 and 359 

Supplementary Information 7). In the same way, all values of the mortality rate can be retained. 360 

However, null mortalities (m=0), showed poorer bootstrap results (higher percentage of retained 361 

bootraps of 62.2%, see Fig. 7,  Supplementary Information 6 and 7). Similarly,  mortality rates of 5% 362 



 

16 

and 1% did not appear among the 7 best fits (Table 3). However, combinations of parameters exist 363 

with high percentages of retained bootstraps (83.5% for m=5%/day and 80.1% for m=1%/day, see 364 

Fig. 7, Supplementary Information 6 and 7). On the opposite, orientation radii of 2 and 5 km clearly 365 

stand out (Fig. 7 and Supplementary Information 7)), all the other values having a percentage of 366 

retained bootstraps below 55% (Fig. 7, Supplementary Information 6) and even below 20% for 367 

orientation radii of 15 and 20 km (Fig. 7, Supplementary Information 6). Finally, the coefficients of 368 

sinuosity (c) performing the best range from 0.9 to 0.995 (all with a percentage of retained bootstraps 369 

above 80%, Fig. 7, Supplementary Information 6 and 7). Coefficients of c=0.2, 0.999 and 0.9999 370 

showed poorer results (percentage of retained bootstraps respectively 37.2%, 51.3% and 7%, see Fig. 371 

7, Supplementary Information 6 and 7). 372 

 373 

Fig. 7: Heatmap of the percentage of retained bootstraps that fit the field data for each set of model 374 

parameters. Rows corresponds to the tested speeds (v), columns denote the mortality rates (m). Tested 375 

values of the orientation radius (R0) are shown in the x-axis and tested coefficients of sinuosity (c) in 376 

the y-axis. 377 

 378 

4. Discussion 379 

The study of animal behavior made considerable progress in the last decades, thanks to the 380 

development of electronic tagging and camera trapping technologies (Swann & Perkins, 2014; 381 

Hughey et al. 2018). However, characterizing the movement of animals in their own environment still 382 

remains a challenging task, particularly in marine environments, where GPS technologies can rarely 383 
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be used. Here, through the use a field-based modeling approach and passive acoustic telemetry data, 384 

we provide, for the first time, a method for describing the movement behavior of tunas in FAD arrays. 385 

The model is built upon four main behavioral components, based on the state-of-the-art knowledge 386 

of the associative dynamics of tunas at FADs: random walk dynamics, orientation capabilities, diel 387 

behavior and a lack in correlation between the duration of consecutive CRTs and CATs. A relatively 388 

small number of parameters drive the model’s properties: swimming speed, path sinuosity, orientation 389 

radius and mortality rate. Despite the model’s structural simplicity and the reduced number of 390 

parameters, it was able to reproduce both of the investigated movement metrics (time between two 391 

FAD associations and total time spent in the array) in two different FAD arrays. 392 

The four parameters tested can be related to the physiological capabilities and condition of tuna, as 393 

well as their environment (including the FADs, other tuna and non-tuna species present in the array). 394 

The two swimming speeds tested (corresponding to the 0.7 and 1.4 m/s) stem from previous studies 395 

showing that swimming speed typically range between 1 and 2 body lengths per second (Girard et 396 

al., 2004; Dagorn et al. 2013b)⁠. In contrast, despite previous evidences of a random walk behavior in 397 

tuna movements between FADs (Girard et al. 2004; Pérez et al. 2020)⁠, no empirical studies have 398 

estimated the sinuosity of a tuna path in a FAD array. As a consequence, large ranges of sinuosity 399 

were considered. The results show that, while both speed values could be retained by the simulations, 400 

only a limited subset of sinuosity coefficients emerged. The majority of sinuosity coefficients that 401 

were retained indicated a rather skewed distribution of turning angles (Fig. 3, Table 3). Lower 402 

sinuosity coefficients were mostly found for the highest swimming speed (Table 3). This is to be 403 

expected considering that for a given average distance traveled during a correlated random walk, 404 

higher speeds imply lower sinuosity coefficients and vice-versa (Hall 1977; Kareiva & Shigesada 405 

1983; Marsh & Jones 1988)⁠. Hence, the values of the sinuosity coefficient (c) retained are valid 406 

considering the chosen time step (Δt=100 s). It is likely that the tuna movement characteristics (speed 407 

and sinuosity) also depend on the fine-scale environmental characteristics within the FAD array, such 408 

as the type and distribution of prey, or the physiological conditions of the tuna itself. In future, the 409 

consideration of a range of swimming speeds and path sinuosity, as opposed to single values, could 410 

provide a more realistic picture of tuna movements. However, the range of values used in this study 411 

provides an initial set of movement characteristics that are compatible with field observations, thus 412 

contributing to the poorly understood dynamics of tuna in a FAD array. 413 

The mortality rate (which accounts for both natural and fishing mortality) is primarily influenced by 414 

risks associated with fishing activity, natural predation and disease. A previous study using 415 

conventional tags from the Hawaii Tuna Tagging Project (HTTP) showed a natural mortality rate of 416 

0.36% per day and a fishing mortality of 0.67 % per day for yellowfin tuna larger than 56 cm (Adam 417 

et al. 2003)⁠. As such, the global mortality rates estimated through our simulations appear to be higher 418 
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than previous findings. This difference could be due to a specific mortality in each study site and 419 

period considered. Indeed, even if in both cases the Hawaiian archipelago was considered, these 420 

studies concern different islands and study periods, for which the fishing pressure might differ as well 421 

as the natural mortality. 422 

Acoustic telemetry data do not allow for the direct estimation of mortality rate, but do provide 423 

information on the time at which an individual is no longer detected by receivers deployed on FADs. 424 

Generally, a lack of acoustic detections indicates that tuna have either left the FAD array or died. 425 

Movement dynamics of tuna can explain the first potential causes for a lack of detection. Within the 426 

model, the propensity of an individual to depart from the array is directly linked to the sinuosity of 427 

its path, its swimming speed and its orientation radius. For instance, large path sinuosity (resulting 428 

from small values of the sinuosity coefficient c) primarily leads to movements close to the FAD of 429 

departure and little or no detections at the other FADs. Conversely, small path sinuosity (form high 430 

values of the coefficient of sinuosity c) generally results in individuals rapidly leaving the array (Fig. 431 

3 and Supplementary Information 1). In this way, the model provides direct information on the rate 432 

at which tuna are lost from FAD arrays. Fitting the model to the field data allows for differentiation 433 

between loss through randomness of movement and loss due to mortality (Table 2 and Supplementary 434 

Information 3). As such this field-based movement model could provide a new and alternative 435 

methodology for estimating the mortality rates of tuna in a FAD array. 436 

In the model, the orientation radius represents the distance from which tunas are able to orient 437 

themselves towards FADs them, while on the field tuna could be able to perceive FADs before 438 

orienting themselves toward them. No data is available on the distance at which tunas perceive FADs, 439 

but tuna movements provide input on the distance at which tunas start to orient themselves toward 440 

FADs. Therefore, the FAD perception radius was not considered in this study. This distance naturally 441 

depends on the tuna’s ability to perceive its surrounding environment, as well as on the physical 442 

characteristics of the area. Given the large distances from which tuna can orient themselves towards 443 

FADs, highlighted in previous studies (Girard et al. 2004)⁠, as well as those found in this study, the 444 

use of visual cues as explanatory factors can be discarded. As sound can travel great distances 445 

underwater, the perception of acoustic stimuli could be a valid hypothesis for explaining the ability 446 

of tunas to orient towards FADs from such large distances. Environmental characteristics may impact 447 

the propagation of sounds between FADs and tunas and influence how strong these sound stimuli are. 448 

The physical characteristics of the water mass are known to affect the propagation of sound waves 449 

(Lee et al. 2017; Siddiqui & Dong 2019)⁠. Furthermore, the topology of the FAD array and its location 450 

relative to the coastline could also affect underwater sound propagation. As sounds may be produced 451 

by the FAD structures themselves, they can vary depending on the materials used and the design of 452 

each structure, which often differ among FAD arrays. Although FAD design has not been identified 453 
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as influencing the attractiveness of FADs (Fréon & Dagorn 2000)⁠, it may impact their detectability. 454 

Tunas may also perceive the presence of a FAD through the emission of noise generated by the fish 455 

aggregation itself. In such a situation the intensity of the noise could be dependent on the quantity of 456 

fish present, but also on the types of species and their activities. Considering these multiple potential 457 

sources of environmental variability, the distance at which tuna are able to perceive FADs (orientation 458 

radius) is likely to vary both within and between FAD arrays. No single value of the orientation radius 459 

can exist, but rather a distribution of these distances with a subset of values for which the probability 460 

of being located in the environment is greatest. A general model that describes the movements of tuna 461 

in different FAD arrays with the same parameters, such as the one developed in this study, provides 462 

a subset of the most probable orientation distances. However, it is likely that a distribution of 463 

orientation distances could be more realistic and for a particular FAD, the orientation radius could 464 

have its own dynamics according to local environmental conditions. 465 

A previous study by Girard et al. (2004) determined orientation radii between 4 and 17 km, with a 466 

mode around 10 km. This study was based on 14 yellowfin tuna (YFT) from 47 cm to 167 cm FL, 467 

that were acoustically tracked in different FAD arrays (Holland et al., 1990; Marsac & Cayré, 1998; 468 

Brill et al. 1999; Dagorn et al. 2000)⁠ and included the specie-size category considered in our 469 

simulations (YFT of ~70 cm). These 14 individuals were actively tracked over short durations, 470 

between 12 and 86 hours (due to the constraints of active tracking) rather than passively monitored 471 

as in our study. The radii found in our 7 sets of parameters (5 km and 2 km in one set) are similar to 472 

the lower range of the orientation distances (4-17 km) found by Girard et al. (2004)⁠. The longer 473 

orientation distances identified in that study⁠ could be attributed to the inclusion of only long paths 474 

(more than 7 km away from the FADs) in their analysis. Furthermore, the authors considered that the 475 

longest orientation distances (e.g. > 15 km) could be the result of tuna patrolling along the coast, thus 476 

using some bathymetric information rather than signals from FADs. As such, the distances found by 477 

Girard et al. (2004) may represent maximum orientation distances, while the average could be shorter, 478 

and more similar to the values we found (2-5 km).   479 

Finally, it is important to note that the two studies considered different datasets collected in different 480 

regions, and possible inter-FAD array variability in the orientation radius cannot be excluded. It is 481 

important to stress that the retention of the model parameters was very conservative: only those valid 482 

for both metrics (TRT and CATdiff) and FAD arrays were kept. In doing so, possible local variability 483 

in tuna behavior (for example, a different orientation radius depending on the study site) were 484 

excluded. This choice was made to obtaining the minimal, and most general model, that could 485 

reproduce the observations. Considering a threshold of 85% for the percentage of retained bootstraps 486 

provides 7 sets of parameter values over the 648 tested. These values (radius of orientation ranging 487 

between 2-5 km, coefficient of sinuosity between 0.9 and 0.995, mortality rates between 2 and 3%) 488 
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provide the main characteristics of tuna movements in FAD arrays. To avoid any scaling issue, the 489 

same data treatment was applied to both field and simulated data sets. Therefore, the model can be 490 

considered to correctly reproduce the tuna movements between FADs at the dayscale, i.e., the scale 491 

related to a maximum blanking period of 24h (Capello et al. 2015), which was used to process the 492 

acoustic data. Further studies, across a greater number of study sites, could provide insight into how 493 

these model parameters could vary between FAD arrays. Similarly, it would be of interest to consider 494 

how this model, fitted for YFT-70, is able to describe the behavior of other tuna species and sizes. 495 

This model could also be used for other non-tuna species that associate with FADs and in particular 496 

vulnerable species such as the silky sharks (Carcharhinus falciformis). 497 

 498 

As this model aimed to simulate tuna movements in FAD arrays, the time tuna spent associated with 499 

FADs (CRT) was not simulated and the experimental CRT distribution was used as an input of the 500 

model. Further model developments, which consider social interactions at FADs (Robert et al. 2014; 501 

Pérez et al. 2020), may allow the CRT durations within different FAD arrays to also be integrated into 502 

the model. This integration of CRTs into the model would involve adding social interactions between 503 

individuals and behavioral rules of social retention at the FAD that follow the meeting point 504 

hypothesis (Dagorn & Fréon 1999, Fréon & Dagorn, 2000, Robert el al. 2014). 505 

 506 

5. Conclusion 507 

Building on current knowledge of the associative behavior tuna at FADs from acoustic telemetry data, 508 

our model is the first to reproduce the movement behavior of tunas in a FAD array. A total of 7 sets 509 

of parameters (Table 3) were able to reproduce, with a high confidence, the movements of yellowfin 510 

tuna (fork length 70 cm) in two different FAD arrays, suggesting the model is robust. Future model 511 

improvements could consider distributions of speeds, sinuosity, detection radii and mortality rates 512 

(rather than fixed values) which may provide a better reflection of the variability induced by the local 513 

environment and the physiological conditions of the tuna themselves. 514 

This model can be used on all species that display associative behavior with floating object. This 515 

includes species such as dolphinfish (Coryphaena hippurus) or the vulnerable silky shark 516 

(Carcharhinus falciformis). When combined with acoustic telemetry data, the model can provide an 517 

alternative method for determining the mortality rate of tuna and other associated species in a FAD 518 

array. Given the difficulty in assessing natural and fishing mortality for wild marine species, this 519 

novel approach could be of interest for the stock assessment community. Moreover, the model could 520 

be used to predict how increasing numbers of FADs affect the ecology of tunas ecology, both in terms 521 

of the time spent away from FADs and the total time spent in a FAD array. This study offers a new 522 

tool to provide science-based advice for the management of FAD fisheries, since the more time fish 523 
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spend associated, the more vulnerable these individuals are to the fishery. Scenarios could be extended 524 

to drifting FADs in open ocean areas, as both anchored and drifting FADs alter the environment in a 525 

similar way (Dagorn et al. 2010)⁠. While acoustic telemetry experiments have successfully 526 

characterized residence times at drifting FADs (Govinden et al. 2010; Forget et al. 2015)⁠, measuring 527 

in situ absence times of tunas within drifting FAD arrays is a major research challenge and these 528 

parameters are key for the development of robust FAD management plans by Tuna Regional Fisheries 529 

Management Organisations (RFMOs). Our model provides a method for estimate these parameters 530 

in the absence of data from acoustically tagged tuna in drifting FAD arrays. 531 

Finally, the same approach can be used to study the movement behavior of other marine and terrestrial 532 

species that manifest an associative behavior with aggregating sites, and for which presence/absence 533 

data are recorded at these sites. For instance, our model could be used to study the movements of 534 

terrestrial animals who show associative behaviors with waterholes (Zvidzai et al. 2013; O’Farrill et 535 

al. 2014) detected through camera traps (Swann & Perkins, 2014; Hughey et al. 2018.). More 536 

generally, this method could be used even without any associative behavior at specific sites, as long 537 

as the study site is equipped with regularly spaced and sufficiently numerous receivers where 538 

individuals can be identified. 539 

 540 
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